WO2022044676A1 - Silver-coated flake-form copper powder, and method for manufacturing same - Google Patents

Silver-coated flake-form copper powder, and method for manufacturing same Download PDF

Info

Publication number
WO2022044676A1
WO2022044676A1 PCT/JP2021/027964 JP2021027964W WO2022044676A1 WO 2022044676 A1 WO2022044676 A1 WO 2022044676A1 JP 2021027964 W JP2021027964 W JP 2021027964W WO 2022044676 A1 WO2022044676 A1 WO 2022044676A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
flake
copper powder
coated
shaped copper
Prior art date
Application number
PCT/JP2021/027964
Other languages
French (fr)
Japanese (ja)
Inventor
卓 藤本
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2021568064A priority Critical patent/JP7018551B1/en
Priority to KR1020237004240A priority patent/KR20230057342A/en
Priority to CN202180058151.0A priority patent/CN116075380A/en
Priority to EP21861104.4A priority patent/EP4205886A4/en
Publication of WO2022044676A1 publication Critical patent/WO2022044676A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to silver-coated flake-shaped copper powder and a method for producing the same.
  • the flake-shaped copper particles have a large specific surface area due to their shape and the particles easily come into contact with each other, it is easy to impart conductivity to the resin by adding the flake-shaped copper particles to the resin. ..
  • copper is easily oxidized, and as a result, the electrical resistance of the copper particles is likely to increase.
  • various techniques have been proposed in which the surface of copper particles is coated with silver, which is a metal having a lower electric resistance than copper, to suppress an increase in the electric resistance of the particles.
  • Patent Documents 1 to 3 propose silver-coated flake-shaped copper powder having silver on the surface and containing flattened silver-coated flake-shaped copper particles.
  • the electrolytic copper powder is flattened using a crushing device such as an attritor, and then the surface of the copper powder is coated with silver by substitution plating.
  • the silver-coated flake-shaped copper powder obtained by this method has a problem that the silver coating is not uniform and the surface of the copper powder tends to be partially exposed. This problem is particularly remarkable when the thickness of the electrolytic copper powder after flattening is thin.
  • the silver-coated flake-shaped copper powder in such a coated state is mixed with the resin, copper is likely to elute into the resin, and as a result, the resin is likely to deteriorate over time. Therefore, an object of the present invention is to provide a silver-coated flake-shaped copper powder and a method for producing the same, which can eliminate various drawbacks of the above-mentioned prior art.
  • the present invention is a silver-coated flake-shaped copper powder containing at least silver-coated flake-shaped copper particles having silver on the surface.
  • the volume cumulative particle size at a cumulative volume of 90% by volume measured by the laser diffraction / scattering type particle size distribution measurement method is D 90 ( ⁇ m)
  • the volume cumulative particle size at a cumulative volume of 10% by volume is D 10 .
  • ( ⁇ m) is set The problem is solved by providing the silver-coated flake-shaped copper powder having a lightness L * of 13 or more with respect to the dispersity defined by D 90 / D 10 . Is.
  • the dispersion liquid containing the copper mother powder and the first complexing agent is treated with a medium stirring mill device to deform the copper mother particles constituting the copper mother powder into flakes.
  • the copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous solution containing silver ions and a second complexing agent to precipitate silver on the surface of the copper mother particles, in the form of silver-coated flakes. It provides a method for producing copper powder.
  • the present invention relates to silver-coated copper powder, which is an aggregate of silver-coated copper particles having silver on at least the surface of copper particles as a base material.
  • Silver-coated copper particles have one of the characteristics in their outer shape. Specifically, the silver-coated copper particles have a flake-like shape. Therefore, in the following description, the silver-coated copper particles are referred to as “silver-coated flake-shaped copper particles", and the silver-coated copper powder is referred to as "silver-coated flake-shaped copper powder”.
  • Flake-like is synonymous with “flat-like” and “flaky-like”, and means that the particles have a thin-plate-like shape.
  • Flake-like particles are specified by their aspect ratio.
  • the aspect ratio is a value of D / T, which is the ratio of the major axis D on the plate surface when the flake-shaped particles are viewed in a plan view to the thickness T of the flake-shaped particles.
  • the major axis D on the plate surface is the length of the longest line segment among the line segments crossing the plate surface.
  • the aspect ratio of the silver-coated flake-shaped copper particles is preferably 5 or more and 160 or less, preferably 10 or more, from the viewpoint of imparting high conductivity when the silver-coated flake-shaped copper powder is added to the resin. It is more preferably 160 or less, further preferably 10 or more and 140 or less, further preferably 15 or more and 140 or less, further preferably 20 or more and 140 or less, and 30 or more and 120 or less. Is particularly preferable, and 30 or more and 80 or less are particularly preferable.
  • the operation of measuring the major axis D and the thickness T for one particle and calculating the D / T value is performed for 50 or more particles, and the D / T value obtained by the operation is performed.
  • the method for measuring the major axis D and the thickness T is as follows.
  • Major axis D After taking a sample at an arbitrary magnification with an electron microscope, the major axis is measured using image analysis particle size distribution measurement software (Mac-View manufactured by Mountech Co., Ltd.).
  • Thickness T The sample is filled with resin, and the cross section is processed with a cross section polisher. Then, after taking an image at an arbitrary magnification using an electron microscope, the measurement is performed in the same manner as in the major axis D.
  • the silver-coated flake-shaped copper particles have no particular limitation on the shape in a plan view, that is, the shape of the plate surface, and may have a shape such as a substantially circular shape, a substantially oval shape, a substantially elliptical shape, or an amorphous shape. Of these shapes, a substantially circular shape is preferable from the viewpoint of imparting high conductivity when the silver-coated flake-shaped copper powder is added to the resin.
  • the circularity of the plate surface is preferably 0.60 or more and 0.95 or less, and 0.65 or more and 0.90 or less. Is more preferable, and more preferably 0.65 or more and 0.85 or less.
  • the circularity is defined as 4 ⁇ S / L 2 when the area of the plate surface is S and the peripheral length of the plate surface is L.
  • the circularity is an arithmetic mean value of the values measured for 50 or more particles.
  • the specific method for measuring the circularity is as follows. Image analysis Measurement is performed using particle size distribution measurement software (Mac-View manufactured by Mountech Co., Ltd.). Using this software, trace the contours of 50 or more samples to determine the area within the contours. Calculate the equivalent circle diameter from the area and average it.
  • the silver-coated flake-shaped copper particles if a part of the surface of the flake-shaped copper particles as the base material is exposed, that is, if the silver coating is non-uniform, the silver-coated flake-shaped copper powder When mixed with the resin, the resin may be denatured due to the contact of copper with the resin. Therefore, in the silver-coated flake-shaped copper particles, it is preferable that the surface of the flake-shaped copper particles as a base material is coated with silver as uniformly as possible. In particular, it is preferable from the viewpoint of economy that the surface of the flake-shaped copper particles is uniformly covered with as little silver as possible.
  • the state of silver coating on the silver-coated flake-shaped copper particles can be evaluated by the value of the brightness L * of the silver-coated flake-shaped copper powder.
  • the reason for this is that the brightness of silver itself is higher than the brightness of copper itself.
  • the surface of the flake-shaped copper particles is coated with silver with a large thickness to increase the brightness, not only is it economically disadvantageous, but also the dispersibility of the silver-coated flake-shaped copper powder in the resin is lowered. It became clear as a result of the examination of the present inventor. Therefore, it cannot be said that the silver-coated flake-shaped copper powder is preferable only because the value of the lightness L * of the silver-coated flake-shaped copper powder is high.
  • D 90 is the volume cumulative particle size ( ⁇ m) at the cumulative volume of 90% by volume by the laser diffraction scattering type particle size distribution measurement method
  • D 10 is the volume cumulative grain at the cumulative volume of 10% by volume by the same measurement method. It is the diameter ( ⁇ m).
  • the value of D 90 / D 10 is a value that serves as a measure of the particle size distribution of the powder, and is generally called the degree of dispersion.
  • the value of L * / dispersity is preferably 13 or more, more preferably 14 or more, and even more preferably 15 or more.
  • the value of L * / dispersion is preferably as described above, whereas the value of L * itself is preferably 70 or more, more preferably 73 or more, from the viewpoint of uniform coating with silver. It is more preferably 76 or more.
  • the silver-coated flake-shaped copper powder having such an L * value can be produced by a method described later.
  • the upper limit of L * is not particularly limited, and the closer it is to 100, the more preferable, but if the value of L * is as large as about 86, the desired effect of the present invention can be sufficiently achieved.
  • L * is measured using a diffused illumination vertical light receiving method described in JIS Z 8722 (conforming to geometric condition c / including specular reflected light), for example, a color difference meter (CR-400) manufactured by Konica Minolta Co., Ltd. To.
  • the value of the degree of dispersion is preferably 5.3 or less, particularly 5.0 or less, particularly 4.5 or less, from the viewpoint of enhancing the dispersibility of the silver-coated flake-shaped copper powder in the resin.
  • the silver-coated flake-shaped copper powder having such a degree of dispersion can be produced by a method described later.
  • the lower limit of the dispersity is not particularly limited, and the closer it is to 1, the more preferable it is, but if the value of the dispersity is as small as about 3.0, the desired effect of the present invention is sufficiently exhibited.
  • the value of the degree of dispersion can be calculated by, for example, the following method.
  • the particle size distribution of this measurement sample is measured using a laser diffraction / scattering type particle size distribution measuring device MT3300 (manufactured by Microtrac Bell Co., Ltd.) to obtain values of D 90 and D 10 .
  • the degree of dispersion is calculated from these values.
  • the ratio of the thickness T ( ⁇ m) of the silver-coated flake-shaped copper particles to D 50 ( ⁇ m) is adopted as a scale.
  • D 50 is a volume cumulative particle size ( ⁇ m) at a cumulative volume of 50% by volume by a laser diffraction / scattering type particle size distribution measurement method.
  • the value of T / D 50 is preferably 0.04 or less, and more preferably 0.03 or less.
  • the value of T / D 50 is preferably 0.005 or more, more preferably 0.01 or more, and even more preferably 0.01 or more and 0.02 or less.
  • the value of T / D 50 means that the thickness T of the silver-coated flake-shaped copper particles is smaller than the particle size D 50 when the particle size D 50 is fixed. If the thickness is too small, the surface area of the particles becomes too large, and the reactivity with the resin becomes strong.
  • the silver-coated flake-shaped copper powder is effective in preventing denaturation with the resin when it is mixed with the resin, and is effective in improving the dispersibility in the resin.
  • the thickness T it is sufficient to apply an external force to the copper mother powder as a raw material for a long time to deform it sufficiently flat, but the copper mother powder aggregates when the external force is applied for a long time.
  • D 50 tends to be large. That is, there is an antinomy between reducing the thickness T and reducing the D 50 .
  • the thinner the thickness T the more preferable it is, specifically, it is preferably 0.5 ⁇ m or less, particularly 0.3 ⁇ m or less, particularly 0.25 ⁇ m or less, and particularly preferably 0.20 ⁇ m or less.
  • the lower limit of the thickness T is not particularly limited, but if the thickness T is as small as about 0.10 ⁇ m, the desired effect of the present invention can be sufficiently achieved.
  • the value of D 50 is preferably 7 ⁇ m or more and 17 ⁇ m or less, more preferably 8 ⁇ m or more and 16 ⁇ m or less, and 9 ⁇ m or more and 15 ⁇ m or less, from the viewpoint of enhancing the dispersibility of the silver-coated flake-shaped copper powder in the resin. Is more preferable.
  • the value of D 50 can be measured by the same method as the above-mentioned measurement of the degree of dispersion.
  • the silver-coated flake-shaped copper powder of the present invention has a low degree of aggregation, that is, the above-mentioned dispersity (D 90 / D 10 ) is small. Therefore, in the silver-coated flake-shaped copper powder of the present invention, it is preferable that the values of D 90 and D 10 are not significantly different from the values of D 50 . From this viewpoint, the value of D 90 is preferably 15 ⁇ m or more and 35 ⁇ m or less, more preferably 16 ⁇ m or more and 31 ⁇ m or less, and further preferably 17 ⁇ m or more and 30.5 ⁇ m or less.
  • the value of D 10 is preferably 3.0 ⁇ m or more and 8.0 ⁇ m or less, more preferably 3.9 ⁇ m or more and 7.0 ⁇ m or less, and further preferably 5.0 ⁇ m or more and 6.2 ⁇ m or less. preferable.
  • the thickness of the silver-coated flake-shaped copper particles constituting the copper powder is thin, and the degree of aggregation of the particles is low. Due to this, the silver-coated flake-shaped copper powder of the present invention has a low tap density.
  • the tap density of the silver-coated flake-shaped copper powder of the present invention is preferably 0.5 g / cm 3 or more and 2.5 g / cm 3 or less, and more preferably 0.5 g / cm 3 or more 2.
  • It is 0 g / cm 3 or less, more preferably 0.7 g / cm 3 or more and 2.0 g / cm 3 or less, still more preferably 0.7 g / cm 3 or more and 1.8 g / cm 3 or less, and further more. It is preferably 0.7 g / cm 3 or more and 1.5 g / cm 3 or less, and particularly preferably 0.8 g / cm 3 or more and 1.3 g / cm 3 or less. Tap density is measured according to JIS Z 2512.
  • the proportion of silver in the silver-coated flake-shaped copper powder of the present invention is 5% by mass or more and 20% by mass or less, more preferably 7% by mass or more and 16% by mass or less, and further preferably 9% by mass. It is 14% by mass or less.
  • the proportion of silver in the silver-coated flaky copper powder can be measured by ICP emission spectroscopy.
  • the production method of the present invention is roughly classified into a flake-forming step of copper particles as a base material and a silver coating step of flake-shaped copper particles.
  • the flake formation step the dispersion liquid containing the copper mother powder and the first complexing agent is treated with a medium stirring mill device to deform the copper mother particles constituting the copper mother powder into flakes.
  • the silver coating step the copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous solution containing silver ions and a second complexing agent to precipitate silver on the surface of the copper mother particles. ..
  • each step will be described.
  • the copper mother powder includes, for example, a spherical copper mother powder produced by a wet reduction method, an electrolytic copper mother powder obtained by electrolyzing an electrolytic solution containing copper ions, and a spherical copper mother powder produced by an atomizing method. And so on.
  • a spherical copper mother powder produced by a wet reduction method an electrolytic copper mother powder obtained by electrolyzing an electrolytic solution containing copper ions
  • a spherical copper mother powder produced by an atomizing method atomizing method.
  • the crushing means is not particularly limited, and examples thereof include a disk type, a roller type, a cylinder type, an impact type, a jet type, and a high-speed rotary type crushing method. Further, either dry pulverization or wet pulverization may be used. Dry pulverization is preferable from the viewpoint of surely separating the branch portion and the trunk portion of the dendrite-like copper particles. For dry pulverization, for example, it is preferable to use a jet mill of a collision plate type or a jet mill of a type in which particles collide with each other.
  • the particle size D50 of the pulverized copper particles is preferably 2 ⁇ m or more and 8 ⁇ m or less, and more preferably 3 ⁇ m or more and 7 ⁇ m or less, from the viewpoint of obtaining flake-shaped copper particles having a desired particle size and thickness. It is more preferably 4 ⁇ m or more and 6 ⁇ m or less.
  • a medium stirring mill such as a bead mill, a ball mill, or an attritor can be used for flake formation.
  • copper particles Prior to flake formation using a medium stirring mill, copper particles are dispersed in a liquid medium to prepare a dispersion liquid.
  • the liquid medium used for preparing the dispersion liquid include water and an organic solvent.
  • a mixed solvent of water and an organic solvent can also be used.
  • the organic solvent include lower monoalcohols having 1 to 4 carbon atoms such as methanol and ethanol; lower polyhydric alcohols having 1 to 4 carbon atoms such as ethylene glycol; lower carboxylic acids having 1 to 4 carbon atoms; and 1 to 4 carbon atoms.
  • the lower amines and the like can be used alone or in combination of two or more.
  • liquid media it is preferable to use an organic solvent because the dispersibility of the copper particles in the dispersion liquid is improved and the quality stability when treated with the medium stirring mill is improved.
  • lower alcohols such as methanol because the medium can be easily volatilized and the medium does not easily remain in the target flake-shaped copper particles.
  • the concentration of copper particles in the dispersion is preferably 10% by mass or more and 60% by mass or less, preferably 20% by mass or more and 50% by mass or less, from the viewpoint of productivity and prevention of generation of coarse particles. Is preferable.
  • a dispersion may be prepared using a stirring and dispersing device.
  • a stirring and dispersing device examples include a fluid mill and T.I. K. Examples include Philmix (registered trademark).
  • the concentration of the first complexing agent contained in the dispersion liquid is 0.1% by mass or more and 40% by mass or less, provided that the concentration of the copper particles in the dispersion liquid is within the above range. It is more preferable, and it is more preferably 0.5% by mass or more and 20% by mass or less, and further preferably 1% by mass or more and 10% by mass or less.
  • the first complexing agent may be a single-seat one, or may be a multi-seat one such as two-seat, three-seat and four-seat.
  • examples of the first complexing agent include citric acid, ascorbic acid, ethylenediaminetetraacetic acid and the like.
  • One of these complexing agents may be used alone, or two or more thereof may be used in combination.
  • the dispersion liquid and the pulverized medium are placed in a medium stirring mill device and mixed and stirred.
  • the diameter of the pulverized media is preferably 0.1 mm or more and 1 mm or less.
  • the material of the pulverized media is generally zirconia or alumina.
  • the operation time, rotation speed, number of passes, etc. of the medium stirring mill device may be appropriately adjusted so that the desired flake-shaped copper powder can be obtained.
  • the silver coating step is performed next.
  • the copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous liquid containing silver ions and a second complexing agent.
  • This process preferably includes the following process 1 and process 2.
  • the silver ions and the flake-shaped copper particles are brought into contact with each other in water to perform replacement plating, and silver is deposited on the surface of the flake-shaped copper particles. Precursor particles are obtained by this precipitation.
  • the precursor particles obtained in Treatment 1, silver ions, and a reducing agent for silver ions are brought into contact with each other in water to further precipitate silver on the surface of the precursor particles.
  • the silver ions used in treatment 1 and treatment 2 are generated from a silver compound that is a silver source.
  • a silver compound for example, a water-soluble silver compound such as silver nitrate can be used.
  • the concentration of silver ions in water is preferably set to 0.01 to 10 mol / L, particularly 0.04 to 2.0 mol / L, from the viewpoint that a desirable amount of silver can be deposited on the surface of the flake-shaped copper particles. ..
  • the amount of the flake-shaped copper particles in water is preferably 1 to 1000 g / L, particularly preferably 50 to 500 g / L from the viewpoint that a desirable amount of silver can be deposited on the surface of the flake-shaped copper particles. ..
  • process 1 there is no particular limitation on the order of addition of flake-shaped copper particles and silver ions.
  • flake-shaped copper particles and silver ions can be added to water at the same time.
  • the dispersion liquid may be at room temperature or may be in the temperature range of 0 to 80 ° C.
  • a second complexing agent Prior to the addition of the silver compound, it is preferable to add a second complexing agent to the dispersion liquid to control the reduction of silver.
  • the second complexing agent include ethylenediaminetetraacetic acid salt, triethylenediamine, iminodiacetic acid and its salts, citric acid and its salts, and tartaric acid and its salts.
  • the first complexing agent described above and the second complexing agent described above may be of the same type or different types, but from the viewpoint of matching the stability constants of the complex. Therefore, it is preferable that the first complexing agent and the second complexing agent are of the same type.
  • the first complexing agent and the second complexing agent are Both are preferably ethylenediaminetetraacetic acid salts.
  • aqueous solution can be added all at once to the dispersion, or can be added continuously or discontinuously over a predetermined time. From the viewpoint of easy control of the reaction of the replacement plating, it is preferable to add the aqueous solution of the silver compound to the dispersion liquid over a predetermined time.
  • the dispersion liquid For the treatment 1, it is preferable to irradiate the dispersion liquid with ultrasonic waves before or at the same time as adding the silver compound to the dispersion liquid.
  • the irradiation of ultrasonic waves promotes the dispersion of the flake-shaped copper particles in the dispersion liquid, and the uniform coating of the flake-shaped copper particles with silver is likely to occur.
  • Ultrasound has a certain effect when irradiated with it, but the frequency is particularly preferably 200 kHz or less, and more preferably 45 kHz or less. A lower limit of 10 kHz is sufficient.
  • process 1 silver is deposited on the surface of the flake-shaped copper particles by the above-mentioned substitution plating, and precursor particles are obtained.
  • the amount of silver deposited in the precursor particles is 0.1 to 50% by mass, particularly 1 to 10% by mass, of the amount of silver in the finally obtained silver-coated flake-shaped copper powder, which is thin and uniform silver. It is preferable because it can form a coating of.
  • a silver ion and a silver ion reducing agent are added to the dispersion liquid containing the precursor particles obtained in the treatment 1.
  • the precursor particles obtained in the treatment 1 may be once solid-liquid separated and then dispersed in water to form a dispersion liquid, or the dispersion liquid of the precursor particles obtained in the treatment 1 may be directly used in the treatment 2. May be served. In the latter case, the silver ion added in the treatment 1 may or may not remain in the dispersion liquid.
  • the silver ion added in the treatment 2 is generated from the water-soluble silver compound as in the treatment 1.
  • the silver compound is preferably added to the dispersion in the form of an aqueous solution.
  • the concentration of silver ions in the aqueous solution is preferably 0.01 to 10 mol / L, more preferably 0.1 to 2.0 mol / L.
  • An aqueous solution having silver ions having a concentration in this range is 0.1 to 55 mass by mass with respect to 100 parts by mass of the precursor particles in the dispersion liquid containing 1 to 1000 g / L, particularly 50 to 500 g / L of precursor particles. It is preferable to add parts, particularly 1 to 25 parts by mass, from the viewpoint that a thin and uniform silver coating can be formed.
  • a reducing agent having a reducing power enough to allow silver substitution plating and reduction plating to proceed at the same time is used.
  • a thin and uniform silver coating can be successfully formed. If a reducing agent having a strong reducing property is used, the reducing plating proceeds unilaterally, and it is not easy to form a silver coating having a desired structure. On the other hand, when a reducing agent having a weak reducing property is used, the reduction plating of silver ions is difficult to proceed, and due to this, it is not easy to form a silver coating having a desired structure.
  • the reducing agent it is preferable to use an organic reducing agent that shows acidity when it is dissolved in water.
  • organic reducing agents there are formic acid, oxalic acid, L-ascorbic acid, erythorbic acid, formaldehyde and the like. These organic reducing agents may be used alone or in combination of two or more. Among them, it is preferable to use L-ascorbic acid.
  • the term "acidic" as used herein means that an aqueous solution prepared by dissolving 0.1 mol of an organic reducing agent in 1000 g of water exhibits a pH of 1 to 6 at 25 ° C.
  • the amount of the reducing agent added is 0.5 to 5.0 equivalents, particularly 1.0 to 2.0 equivalents with respect to the silver ions in the aqueous solution to be added, so that the silver substitution plating and the reducing plating proceed simultaneously. It is preferable because it is easy to make it.
  • the reducing agent and silver ions are added to the dispersion liquid containing the precursor particles.
  • the silver compound serving as a silver source can be added all at once to the dispersion liquid, or can be added continuously or discontinuously over a predetermined time. From the viewpoint that the reduction of silver ions can be easily controlled, it is preferable to add the silver compound to the dispersion liquid in the state of the aqueous solution for a predetermined time.
  • the dispersion when the silver substitution plating and the reduction plating are carried out at the same time, the dispersion may be kept at room temperature or heated in a temperature range of 0 to 80 ° C.
  • the treatment 2 it is preferable to irradiate the dispersion liquid with ultrasonic waves before or at the same time as adding the reducing agent to the dispersion liquid.
  • the irradiation of ultrasonic waves promotes the dispersion of the precursor particles in the dispersion liquid, and the uniform coating of the precursor particles with silver is likely to occur.
  • Ultrasound has a certain effect when irradiated with it, but the frequency is particularly preferably 200 kHz or less, and more preferably 45 kHz or less. A lower limit of 10 kHz is sufficient.
  • the silver-coated flake-shaped copper powder thus obtained is suitably used in the state of a conductive composition containing the copper powder and the resin.
  • silver-coated flake-shaped copper powder can be mixed with a resin, an organic solvent, glass frit, or the like to form a conductive paste.
  • the silver-coated flake-shaped copper powder can be mixed with an organic solvent or the like to form a conductive ink.
  • the silver coating is thin and uniform, so that the silver-coated flake-shaped copper powder effectively suppresses the elution of copper in the conductive composition.
  • the modification of the resin contained in the conductive composition is suppressed.
  • the silver-coated flake-shaped copper powder of the present invention since the silver-coated flake-shaped copper powder of the present invention has a low degree of aggregation, it has good dispersibility in the conductive composition. Therefore, the conductive film obtained from the conductive composition has high conductivity.
  • Example 1 Production of electrolytic copper powder
  • Nine cathode plates each of size (1.0 m x 1.0 m) are placed in an electrolytic cell having a size of 2.5 m x 1.1 m x 1.5 m (about 4 m 3 ).
  • an insoluble anode plate (DSE (manufactured by Permerek Electrode Co., Ltd.)) were suspended so that the distance between the electrodes was 5 cm.
  • a copper sulfate solution as an electrolytic solution was circulated in the electrolytic cell at 20 L / min.
  • Electrolysis was carried out for 40 minutes by adjusting the concentration of copper ions in the circulating electrolytic solution to 5 g / L, the concentration of sulfuric acid (H 2 SO 4 ) to 100 g / L, and the current density to 100 A / m 2 .
  • the copper deposited on the surface of the cathode was mechanically scraped off and recovered, and then washed to obtain a hydrous copper powder cake. This cake was dispersed in 3 L of water, stirred for 10 minutes, filtered through a Büchner funnel, washed, and dried at 80 ° C. for 6 hours under reduced pressure (1 ⁇ 10 -3 Pa) to obtain electrolytic copper powder.
  • a methanol dispersion of copper powder was prepared by mixing 3 kg of pulverized electrolytic copper powder, 9 kg of methanol, and 1 kg of disodium ethylenediaminetetraacetate (hereinafter, also referred to as “EDTA2Na”). 12 kg of this dispersion was placed in Star Mill (registered trademark) LMZ, which is a bead mill manufactured by Ashizawa Finetech Co., Ltd., and 4.85 kg of zirconia beads having a diameter of 0.2 mm was further placed. The bead mill was operated for 180 minutes to flake the copper powder. Then, after separating the dispersion liquid and the beads by filtration, the dispersion liquid was allowed to stand to settle the flake-shaped copper particles. The supernatant was removed and filtered to collect flaky copper particles. The flake-shaped copper particles were then washed with water, followed by washing with methanol twice.
  • Star Mill registered trademark
  • LMZ a bead mill manufactured by Ashizawa Finetech
  • Examples 2 to 8 A silver-coated flake-shaped copper powder was produced in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  • Example 1 In the flake formation step of Example 1, EDTA2Na was not used, and the flake formation time was set to 20 minutes. In addition, ultrasonic irradiation was not performed in the silver coating process. Except for these, silver-coated flake-shaped copper powder was produced in the same manner as in Example 1.
  • a conductive composition was prepared using the silver-coated flake-shaped copper powder obtained in Examples and Comparative Examples. Epoxy resin (EPICLON 850 manufactured by DIC) and butyl carbitol were mixed at a mass ratio of 35:65, and silver-coated flake-shaped copper powder was added to the mixture so as to have a concentration of 70% to prepare a paste-like conductive composition. ..
  • a conductive composition was applied to one surface of a polyethylene terephthalate (PET) film using a bar coater. The coating width was 200 mm. The gap of the bar coater was set to 30 ⁇ m. The formed coating film was dried in a vacuum dryer at 90 ° C. for 60 minutes.
  • the PET film on which the coating film was formed was sandwiched between sheets and vacuum pressed at 160 ° C. and 20 kN.
  • the thickness of the conductive film was measured using a micrometer (Nikon Digimicro MF-501).
  • the resistance value of the conductive film was measured.
  • the resistance value was measured by a four-probe method using a resistivity measuring device (Mitsubishi Chemical MCP-T600). The results are shown in Table 2.
  • the conductive film formed by using the silver-coated flake-shaped copper powder obtained in each example was formed by using the silver-coated flake-shaped copper powder obtained in the comparative example. It can be seen that the conductivity is higher than that of the conductive film. Further, it can be seen that the silver-coated flake-shaped copper powder obtained in each example has more suppressed elution of copper ions than the silver-coated flake-shaped copper powder obtained in the comparative example.
  • the dispersibility in the resin is good, the deterioration of the resin is suppressed, and the electrical resistance of the film formed from the resin can be reduced.
  • Flake-shaped copper powder and a method for producing the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

In the present invention, the value of a brightness L* with respect to a degree of dispersion defined by D90/D10 is 13 or higher, where D90 is the volume-cumulative grain diameter at an accumulated volume of 90 vol% according to a laser-diffraction-scattering grain distribution measurement method, and D10 is the volume-cumulative grain diameter at an accumulated volume of 10 vol%. A silver-coated flake-form copper powder is manufactured by a method in which: a dispersion liquid containing a copper parent powder and a first complexing agent is processed by a medium-stirring mill device, and copper parent particles constituting the copper parent powder are deformed into a flaky form; and the copper parent powder, which includes the copper parent particles that were deformed into a flaky form, is processed by an aqueous liquid containing silver ions and a second complexing agent, and the silver is deposited onto the surface of the copper parent particles.

Description

銀被覆フレーク状銅粉及びその製造方法Silver-coated flake-shaped copper powder and its manufacturing method
 本発明は、銀被覆フレーク状銅粉及びその製造方法に関する。 The present invention relates to silver-coated flake-shaped copper powder and a method for producing the same.
 フレーク状銅粒子は、その形状に起因して粒子の比表面積が大きく、また粒子どうしが接触しやすいことから、これを樹脂に添加することで該樹脂に導電性を付与することが容易である。しかし銅は酸化されやすく、その結果、銅粒子の電気抵抗が増大しやすいという欠点がある。この欠点を補うことを目的として、銅粒子の表面を、銅よりも電気抵抗の低い金属である銀で被覆して、粒子の電気抵抗の増大を抑制する技術が種々提案されている。 Since the flake-shaped copper particles have a large specific surface area due to their shape and the particles easily come into contact with each other, it is easy to impart conductivity to the resin by adding the flake-shaped copper particles to the resin. .. However, copper is easily oxidized, and as a result, the electrical resistance of the copper particles is likely to increase. For the purpose of compensating for this shortcoming, various techniques have been proposed in which the surface of copper particles is coated with silver, which is a metal having a lower electric resistance than copper, to suppress an increase in the electric resistance of the particles.
 例えば特許文献1ないし3には、表面に銀を有し、扁平化処理された銀被覆フレーク状銅粒子を含む銀被覆フレーク状銅粉が提案されている。 For example, Patent Documents 1 to 3 propose silver-coated flake-shaped copper powder having silver on the surface and containing flattened silver-coated flake-shaped copper particles.
特開2010-275638号公報Japanese Unexamined Patent Publication No. 2010-275638 特開2015-71818号公報JP-A-2015-71818 特開2016-35098号公報Japanese Unexamined Patent Publication No. 2016-35098
 特許文献1ないし3に記載の技術によれば、アトライターなどの粉砕装置を用いて電解銅粉を扁平化し、次いで置換めっきによって銅粉の表面を銀で被覆している。しかし、この方法で得られた銀被覆フレーク状銅粉は、銀の被覆が均一ではなく、銅粉の表面が一部露出した状態になりやすいという課題がある。この課題は、扁平化後の電解銅粉の厚みが薄い場合に特に顕著である。このような被覆状態の銀被覆フレーク状銅粉を樹脂と混合すると、樹脂中に銅が溶出しやすく、そのことに起因して樹脂が経時的に劣化しやすい。
 したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る銀被覆フレーク状銅粉及びその製造方法を提供することにある。
According to the techniques described in Patent Documents 1 to 3, the electrolytic copper powder is flattened using a crushing device such as an attritor, and then the surface of the copper powder is coated with silver by substitution plating. However, the silver-coated flake-shaped copper powder obtained by this method has a problem that the silver coating is not uniform and the surface of the copper powder tends to be partially exposed. This problem is particularly remarkable when the thickness of the electrolytic copper powder after flattening is thin. When the silver-coated flake-shaped copper powder in such a coated state is mixed with the resin, copper is likely to elute into the resin, and as a result, the resin is likely to deteriorate over time.
Therefore, an object of the present invention is to provide a silver-coated flake-shaped copper powder and a method for producing the same, which can eliminate various drawbacks of the above-mentioned prior art.
 本発明は、少なくとも表面に銀を有する銀被覆フレーク状銅粒子を含む銀被覆フレーク状銅粉であって、
 前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒径をD90(μm)とし、累積体積10容量%における体積累積粒径をD10(μm)としたとき、
 D90/D10で定義される分散度に対する、前記銀被覆フレーク状銅粉の明度L*の値が13以上である、銀被覆フレーク状銅粉を提供することによって前記の課題を解決したものである。
The present invention is a silver-coated flake-shaped copper powder containing at least silver-coated flake-shaped copper particles having silver on the surface.
For the silver-coated flake-shaped copper powder, the volume cumulative particle size at a cumulative volume of 90% by volume measured by the laser diffraction / scattering type particle size distribution measurement method is D 90 (μm), and the volume cumulative particle size at a cumulative volume of 10% by volume is D 10 . When (μm) is set
The problem is solved by providing the silver-coated flake-shaped copper powder having a lightness L * of 13 or more with respect to the dispersity defined by D 90 / D 10 . Is.
 また本発明は、銅母粉及び第1の錯化剤を含む分散液を、媒体撹拌ミル装置によって処理し、該銅母粉を構成する銅母粒子をフレーク状に変形させ、
 フレーク状に変形した前記銅母粒子を含む前記銅母粉を、銀イオン及び第2の錯化剤を含む水性液で処理し、該銅母粒子の表面に銀を析出させる、銀被覆フレーク状銅粉の製造方法を提供するものである。
Further, in the present invention, the dispersion liquid containing the copper mother powder and the first complexing agent is treated with a medium stirring mill device to deform the copper mother particles constituting the copper mother powder into flakes.
The copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous solution containing silver ions and a second complexing agent to precipitate silver on the surface of the copper mother particles, in the form of silver-coated flakes. It provides a method for producing copper powder.
 以下本発明を、その好ましい実施形態に基づき説明する。
 本発明は、母材としての銅粒子の少なくとも表面に銀を有する銀被覆銅粒子の集合体である銀被覆銅粉に関するものである。銀被覆銅粒子はその外形に特徴の一つを有する。詳細には、銀被覆銅粒子はフレーク状の形状を有する。したがって以下の説明においては、銀被覆銅粒子のことを「銀被覆フレーク状銅粒子」といい、銀被覆銅粉のことを「銀被覆フレーク状銅粉」という。
Hereinafter, the present invention will be described based on the preferred embodiment thereof.
The present invention relates to silver-coated copper powder, which is an aggregate of silver-coated copper particles having silver on at least the surface of copper particles as a base material. Silver-coated copper particles have one of the characteristics in their outer shape. Specifically, the silver-coated copper particles have a flake-like shape. Therefore, in the following description, the silver-coated copper particles are referred to as "silver-coated flake-shaped copper particles", and the silver-coated copper powder is referred to as "silver-coated flake-shaped copper powder".
 本明細書において「フレーク状」とは、「扁平状」や「薄片状」と同義であり、粒子が薄板状の形状であることを意味している。フレーク状粒子は、そのアスペクト比によって特定される。アスペクト比とは、フレーク状粒子の厚みTに対する、フレーク状粒子を平面視したときの板面における長径Dの比であるD/Tの値のことである。板面における長径Dは、該板面を横切る線分のうち最も長い線分の長さのことである。本発明において、銀被覆フレーク状銅粒子のアスペクト比は、銀被覆フレーク状銅粉を樹脂に添加したときに高い導電性を付与し得る観点から、5以上160以下であることが好ましく、10以上160以下であることがより好ましく、10以上140以下であることが更に好ましく、15以上140以下であることが一層好ましく、20以上140以下であることが更に一層好ましく、30以上120以下であることが特に好ましく、30以上80以下であることがとりわけ好ましい。 In the present specification, "flake-like" is synonymous with "flat-like" and "flaky-like", and means that the particles have a thin-plate-like shape. Flake-like particles are specified by their aspect ratio. The aspect ratio is a value of D / T, which is the ratio of the major axis D on the plate surface when the flake-shaped particles are viewed in a plan view to the thickness T of the flake-shaped particles. The major axis D on the plate surface is the length of the longest line segment among the line segments crossing the plate surface. In the present invention, the aspect ratio of the silver-coated flake-shaped copper particles is preferably 5 or more and 160 or less, preferably 10 or more, from the viewpoint of imparting high conductivity when the silver-coated flake-shaped copper powder is added to the resin. It is more preferably 160 or less, further preferably 10 or more and 140 or less, further preferably 15 or more and 140 or less, further preferably 20 or more and 140 or less, and 30 or more and 120 or less. Is particularly preferable, and 30 or more and 80 or less are particularly preferable.
 アスペクト比は、1個の粒子に対して長径D及び厚みTを測定してD/Tの値を算出する操作を50個以上の粒子に対して行い、それによって得られたD/Tの値の算術平均値とする。
 長径D及び厚みTの測定方法は次のとおりである。
 長径D:電子顕微鏡によって任意の倍率で試料を撮影後、画像解析粒度分布測定ソフトウェア(株式会社マウンテック社製 Mac-View)を用いて長径を測定する。
 厚みT:試料の樹脂埋めを行い、クロスセクションポリッシャによって断面加工を行う。その後、電子顕微鏡を用い任意の倍率で撮影後、長径Dと同様に測定する。
For the aspect ratio, the operation of measuring the major axis D and the thickness T for one particle and calculating the D / T value is performed for 50 or more particles, and the D / T value obtained by the operation is performed. The arithmetic mean value of.
The method for measuring the major axis D and the thickness T is as follows.
Major axis D: After taking a sample at an arbitrary magnification with an electron microscope, the major axis is measured using image analysis particle size distribution measurement software (Mac-View manufactured by Mountech Co., Ltd.).
Thickness T: The sample is filled with resin, and the cross section is processed with a cross section polisher. Then, after taking an image at an arbitrary magnification using an electron microscope, the measurement is performed in the same manner as in the major axis D.
 銀被覆フレーク状銅粒子は、その平面視での形状、すなわち板面の形状に特に制限はなく、例えば略円形、略長円形、略楕円形、不定形などの形状をとり得る。これらの形状のうち、略円形であることが、銀被覆フレーク状銅粉を樹脂に添加したときに高い導電性を付与し得る観点から好ましい。 The silver-coated flake-shaped copper particles have no particular limitation on the shape in a plan view, that is, the shape of the plate surface, and may have a shape such as a substantially circular shape, a substantially oval shape, a substantially elliptical shape, or an amorphous shape. Of these shapes, a substantially circular shape is preferable from the viewpoint of imparting high conductivity when the silver-coated flake-shaped copper powder is added to the resin.
 銀被覆フレーク状銅粒子の板面の形状が略円形である場合、該板面の円形度は0.60以上0.95以下であることが好ましく、0.65以上0.90以下であることが更に好ましく、0.65以上0.85以下であることが一層好ましい。円形度は、板面の面積をSとし、板面の周囲長をLとしたとき、4πS/Lで定義される。円形度は、50個以上の粒子に対して測定された値の算術平均値とする。 When the shape of the plate surface of the silver-coated flake-shaped copper particles is substantially circular, the circularity of the plate surface is preferably 0.60 or more and 0.95 or less, and 0.65 or more and 0.90 or less. Is more preferable, and more preferably 0.65 or more and 0.85 or less. The circularity is defined as 4πS / L 2 when the area of the plate surface is S and the peripheral length of the plate surface is L. The circularity is an arithmetic mean value of the values measured for 50 or more particles.
 円形度の具体的な測定方法は次のとおりである。
 画像解析粒度分布測定ソフトウェア(株式会社マウンテック社製 Mac-View)を用いて測定する。このソフトウェアを用いて50個以上の試料の輪郭をなぞり、輪郭内の面積を求める。面積から円相当径を計算し、これを平均化する。
The specific method for measuring the circularity is as follows.
Image analysis Measurement is performed using particle size distribution measurement software (Mac-View manufactured by Mountech Co., Ltd.). Using this software, trace the contours of 50 or more samples to determine the area within the contours. Calculate the equivalent circle diameter from the area and average it.
 銀被覆フレーク状銅粒子において、母材であるフレーク状銅粒子の表面の一部が露出した状態になっていると、すなわち銀の被覆が不均一になっていると、銀被覆フレーク状銅粉を樹脂と混合した場合、銅が樹脂と接触することに起因して樹脂が変性してしまう場合がある。したがって銀被覆フレーク状銅粒子は、母材としてのフレーク状銅粒子の表面に銀が極力均一に被覆されていることが好ましい。特に極力少ない量の銀でもってフレーク状銅粒子の表面が均一に被覆されていることが、経済性の観点から好ましい。 In the silver-coated flake-shaped copper particles, if a part of the surface of the flake-shaped copper particles as the base material is exposed, that is, if the silver coating is non-uniform, the silver-coated flake-shaped copper powder When mixed with the resin, the resin may be denatured due to the contact of copper with the resin. Therefore, in the silver-coated flake-shaped copper particles, it is preferable that the surface of the flake-shaped copper particles as a base material is coated with silver as uniformly as possible. In particular, it is preferable from the viewpoint of economy that the surface of the flake-shaped copper particles is uniformly covered with as little silver as possible.
 銀被覆フレーク状銅粒子における銀の被覆の状態は、銀被覆フレーク状銅粉の明度L*の値によって評価できる。この理由は、銅そのものの明度よりも銀そのものの明度の方が高いからである。尤も、フレーク状銅粒子の表面に大きな厚みでもって銀を被覆して明度を高めても経済的に不利になるばかりか、樹脂中での銀被覆フレーク状銅粉の分散性も低下してしまうことが本発明者の検討の結果判明した。したがって、銀被覆フレーク状銅粉の明度L*の値が高いことだけを理由として当該銀被覆フレーク状銅粉が好ましいものであるということはできない。 The state of silver coating on the silver-coated flake-shaped copper particles can be evaluated by the value of the brightness L * of the silver-coated flake-shaped copper powder. The reason for this is that the brightness of silver itself is higher than the brightness of copper itself. However, even if the surface of the flake-shaped copper particles is coated with silver with a large thickness to increase the brightness, not only is it economically disadvantageous, but also the dispersibility of the silver-coated flake-shaped copper powder in the resin is lowered. It became clear as a result of the examination of the present inventor. Therefore, it cannot be said that the silver-coated flake-shaped copper powder is preferable only because the value of the lightness L * of the silver-coated flake-shaped copper powder is high.
 樹脂と混合した場合の樹脂の変性を防止し且つ樹脂中での分散性を高める観点から本発明者が鋭意検討した結果、銀被覆フレーク状銅粉についてのD90/D10の値と、明度L*の値との比率を尺度として採用することが有利であることが判明した。D90とは、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒径(μm)のことであり、D10とは、同測定法による累積体積10容量%における体積累積粒径(μm)のことである。また、D90/D10の値は粉体の粒度分布の尺度となる値であり一般に分散度と呼ばれている。分散度の値が小さいほど、その粉体は粒子の凝集の程度が低く、また粒度分布がシャープであることを意味する。したがって、L*/分散度の値は、その値が大きければ大きいほど、銀による被覆が均一であり且つ銀被覆フレーク状銅粉の凝集の程度が低いことを意味する。 As a result of diligent studies by the present inventor from the viewpoint of preventing denaturation of the resin when mixed with the resin and enhancing the dispersibility in the resin, the value of D 90 / D 10 and the brightness of the silver-coated flake-shaped copper powder are obtained. It turned out to be advantageous to adopt the ratio with the value of L * as a measure. D 90 is the volume cumulative particle size (μm) at the cumulative volume of 90% by volume by the laser diffraction scattering type particle size distribution measurement method, and D 10 is the volume cumulative grain at the cumulative volume of 10% by volume by the same measurement method. It is the diameter (μm). Further, the value of D 90 / D 10 is a value that serves as a measure of the particle size distribution of the powder, and is generally called the degree of dispersion. The smaller the dispersity value, the lower the degree of particle agglomeration and the sharper the particle size distribution of the powder. Therefore, the value of L * / dispersity means that the larger the value, the more uniform the coating with silver and the lower the degree of aggregation of the silver-coated flake-shaped copper powder.
 本発明の銀被覆フレーク状銅粉においては、L*/分散度の値は、13以上であることが好ましく、14以上であることが更に好ましく、15以上であることが一層好ましい。L*/分散度の値は、大きければ大きいほど好ましいが25程度にその値が大きければ、本発明の所期の効果は十分に奏される。 In the silver-coated flake-shaped copper powder of the present invention, the value of L * / dispersity is preferably 13 or more, more preferably 14 or more, and even more preferably 15 or more. The larger the value of L * / dispersion is, the more preferable it is, but if the value is as large as about 25, the desired effect of the present invention is sufficiently exhibited.
 L*/分散度の値は上述のとおりであることが好ましいところ、L*そのものの値は、銀による均一な被覆の観点から70以上であることが好ましく、73以上であることが更に好ましく、76以上であることが一層好ましい。このようなL*値を有する銀被覆フレーク状銅粉は、後述する方法によって製造することができる。L*の上限値に特に制限はなく、100に近ければ近いほど好ましいが、86程度にL*の値が大きければ本発明の所期の効果は十分に奏される。L*の値は、JIS Z 8722 (幾何条件cに準拠/正反射光含む)記載の拡散照明垂直受光方式、例えばコニカミノルタ株式会社製の色彩色差計(CR-400)、を用いて測定される。 The value of L * / dispersion is preferably as described above, whereas the value of L * itself is preferably 70 or more, more preferably 73 or more, from the viewpoint of uniform coating with silver. It is more preferably 76 or more. The silver-coated flake-shaped copper powder having such an L * value can be produced by a method described later. The upper limit of L * is not particularly limited, and the closer it is to 100, the more preferable, but if the value of L * is as large as about 86, the desired effect of the present invention can be sufficiently achieved. The value of L * is measured using a diffused illumination vertical light receiving method described in JIS Z 8722 (conforming to geometric condition c / including specular reflected light), for example, a color difference meter (CR-400) manufactured by Konica Minolta Co., Ltd. To.
 一方、分散度の値は、5.3以下、特に5.0以下、とりわけ4.5以下であることが、樹脂中での銀被覆フレーク状銅粉の分散性を高める観点から好ましい。このような分散度を有する銀被覆フレーク状銅粉は、後述する方法によって製造することができる。分散度の下限値に特に制限はなくは1に近ければ近いほど好ましいが、3.0程度に分散度の値が小さければ本発明の所期の効果は十分に奏される。
 分散度の値は、例えば以下の方法で算出することができる。銀被覆フレーク状銅粉を少量ビーカーに取り、3質量%トリトンX溶液(関東化学株式会社製)を2、3滴添加し、粉末になじませてから、0.1質量%SNディスパーサント41溶液(サンノプコ株式会社製)50mLを添加する。その後、超音波分散器TIPφ20(株式会社日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製する。この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(マイクロトラックベル株式会社製)を用いて、粒度分布を測定しD90及びD10の値を得る。これらの値から分散度を算出する。
On the other hand, the value of the degree of dispersion is preferably 5.3 or less, particularly 5.0 or less, particularly 4.5 or less, from the viewpoint of enhancing the dispersibility of the silver-coated flake-shaped copper powder in the resin. The silver-coated flake-shaped copper powder having such a degree of dispersion can be produced by a method described later. The lower limit of the dispersity is not particularly limited, and the closer it is to 1, the more preferable it is, but if the value of the dispersity is as small as about 3.0, the desired effect of the present invention is sufficiently exhibited.
The value of the degree of dispersion can be calculated by, for example, the following method. Take a small amount of silver-coated flake-shaped copper powder in a beaker, add a few drops of 3% by mass Triton X solution (manufactured by Kanto Chemical Co., Inc.), and let it blend into the powder, then 0.1% by mass SN Dispersant 41 solution. (Manufactured by Sannopco Co., Ltd.) Add 50 mL. Then, a sample for measurement is prepared by dispersion treatment for 2 minutes using an ultrasonic disperser TIPφ20 (manufactured by Nissei Tokyo Office, OUTPUT: 8, TUNING: 5). The particle size distribution of this measurement sample is measured using a laser diffraction / scattering type particle size distribution measuring device MT3300 (manufactured by Microtrac Bell Co., Ltd.) to obtain values of D 90 and D 10 . The degree of dispersion is calculated from these values.
 樹脂と混合した場合の樹脂の変性を防止し且つ樹脂中での分散性を高める観点からは、D50(μm)に対する、銀被覆フレーク状銅粒子の厚みT(μm)の比率を尺度として採用することも有利であることが本発明者の検討の結果判明した。D50とは、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径(μm)のことである。本発明においては、T/D50の値が0.04以下であることが好ましく、0.03以下であることが更に好ましい。一方で、T/D50の値は0.005以上であることが好ましく、0.01以上であることが更に好ましく、0.01以上0.02以下であることが一層好ましい。T/D50の値は、粒径D50を固定して考えた場合、粒径D50に対して、銀被覆フレーク状銅粒子の厚みTが小さいことを意味している。厚みが小さすぎると粒子の表面積が大きくなりすぎ、樹脂との反応性が強くなる。銀被覆フレーク状銅粉は、これを樹脂と混合した場合の樹脂との変性防止に有効であり且つ樹脂中での分散性の向上に有効であることを意味している。一般に、厚みTを小さくするには、原料となる銅母粉に外力を長時間加えて十分に扁平に変形させればよいが、長時間にわたって外力を加えることで銅母粉が凝集してしまいD50が大きくなる傾向にある。つまり、厚みTを小さくすることと、D50を小さくすることとは二律背反の関係にある。しかし本発明においては、後述する方法によって銅母粉をフレーク化することによって、D50の増大を抑制しつつ厚みTを小さくすることが可能となった。 From the viewpoint of preventing denaturation of the resin when mixed with the resin and enhancing the dispersibility in the resin, the ratio of the thickness T (μm) of the silver-coated flake-shaped copper particles to D 50 (μm) is adopted as a scale. As a result of the study of the present inventor, it was found that it is also advantageous to do so. D 50 is a volume cumulative particle size (μm) at a cumulative volume of 50% by volume by a laser diffraction / scattering type particle size distribution measurement method. In the present invention, the value of T / D 50 is preferably 0.04 or less, and more preferably 0.03 or less. On the other hand, the value of T / D 50 is preferably 0.005 or more, more preferably 0.01 or more, and even more preferably 0.01 or more and 0.02 or less. The value of T / D 50 means that the thickness T of the silver-coated flake-shaped copper particles is smaller than the particle size D 50 when the particle size D 50 is fixed. If the thickness is too small, the surface area of the particles becomes too large, and the reactivity with the resin becomes strong. The silver-coated flake-shaped copper powder is effective in preventing denaturation with the resin when it is mixed with the resin, and is effective in improving the dispersibility in the resin. Generally, in order to reduce the thickness T, it is sufficient to apply an external force to the copper mother powder as a raw material for a long time to deform it sufficiently flat, but the copper mother powder aggregates when the external force is applied for a long time. D 50 tends to be large. That is, there is an antinomy between reducing the thickness T and reducing the D 50 . However, in the present invention, it is possible to reduce the thickness T while suppressing the increase in D 50 by flake the copper mother powder by the method described later.
 厚みTは薄ければ薄いほど好ましく、具体的には0.5μm以下、中でも0.3μm以下、特に0.25μm以下、とりわけ0.20μm以下であることが好ましい。厚みTの下限値に特に制限はないが、0.10μm程度に厚みTが小さければ、本発明の所期の効果は十分に奏される。 The thinner the thickness T, the more preferable it is, specifically, it is preferably 0.5 μm or less, particularly 0.3 μm or less, particularly 0.25 μm or less, and particularly preferably 0.20 μm or less. The lower limit of the thickness T is not particularly limited, but if the thickness T is as small as about 0.10 μm, the desired effect of the present invention can be sufficiently achieved.
 一方、D50の値は、銀被覆フレーク状銅粉の樹脂への分散性を高める観点から、7μm以上17μm以下であることが好ましく、8μm以上16μm以下であることが更に好ましく、9μm以上15μm以下であることが一層好ましい。D50の値は、上述した分散度の測定と同様の方法で測定できる。 On the other hand, the value of D 50 is preferably 7 μm or more and 17 μm or less, more preferably 8 μm or more and 16 μm or less, and 9 μm or more and 15 μm or less, from the viewpoint of enhancing the dispersibility of the silver-coated flake-shaped copper powder in the resin. Is more preferable. The value of D 50 can be measured by the same method as the above-mentioned measurement of the degree of dispersion.
 先に述べたとおり本発明の銀被覆フレーク状銅粉は凝集の程度が低い、すなわち上述した分散度(D90/D10)の値が小さいものである。したがって本発明の銀被覆フレーク状銅粉においては、D90及びD10の値は、D50の値から大きく離れたものになっていないことが好ましい。この観点から、D90の値は、15μm以上35μm以下であることが好ましく、16μm以上31μm以下であることが更に好ましく、17μm以上30.5μm以下であることが一層好ましい。一方、D10の値は、3.0μm以上8.0μm以下であることが好ましく、3.9μm以上7.0μm以下であることが更に好ましく、5.0μm以上6.2μm以下であることが一層好ましい。 As described above, the silver-coated flake-shaped copper powder of the present invention has a low degree of aggregation, that is, the above-mentioned dispersity (D 90 / D 10 ) is small. Therefore, in the silver-coated flake-shaped copper powder of the present invention, it is preferable that the values of D 90 and D 10 are not significantly different from the values of D 50 . From this viewpoint, the value of D 90 is preferably 15 μm or more and 35 μm or less, more preferably 16 μm or more and 31 μm or less, and further preferably 17 μm or more and 30.5 μm or less. On the other hand, the value of D 10 is preferably 3.0 μm or more and 8.0 μm or less, more preferably 3.9 μm or more and 7.0 μm or less, and further preferably 5.0 μm or more and 6.2 μm or less. preferable.
 以上のとおり本発明の銀被覆フレーク状銅粉は、これを構成する銀被覆フレーク状銅粒子の厚みが薄いものであり、また粒子の凝集の程度が低いものである。このことに起因して本発明の銀被覆フレーク状銅粉は、そのタップ密度が低いものとなる。具体的には、本発明の銀被覆フレーク状銅粉のタップ密度は、好ましくは0.5g/cm以上2.5g/cm以下であり、より好ましくは0.5g/cm以上2.0g/cm以下であり、更に好ましくは0.7g/cm以上2.0g/cm以下であり、一層好ましくは0.7g/cm以上1.8g/cm以下であり、更に一層好ましくは0.7g/cm以上1.5g/cm以下であり、特に好ましくは0.8g/cm以上1.3g/cm以下である。タップ密度はJIS Z 2512に準拠して測定される。 As described above, in the silver-coated flake-shaped copper powder of the present invention, the thickness of the silver-coated flake-shaped copper particles constituting the copper powder is thin, and the degree of aggregation of the particles is low. Due to this, the silver-coated flake-shaped copper powder of the present invention has a low tap density. Specifically, the tap density of the silver-coated flake-shaped copper powder of the present invention is preferably 0.5 g / cm 3 or more and 2.5 g / cm 3 or less, and more preferably 0.5 g / cm 3 or more 2. It is 0 g / cm 3 or less, more preferably 0.7 g / cm 3 or more and 2.0 g / cm 3 or less, still more preferably 0.7 g / cm 3 or more and 1.8 g / cm 3 or less, and further more. It is preferably 0.7 g / cm 3 or more and 1.5 g / cm 3 or less, and particularly preferably 0.8 g / cm 3 or more and 1.3 g / cm 3 or less. Tap density is measured according to JIS Z 2512.
 本発明の銀被覆フレーク状銅粉においては、母材であるフレーク状銅粒子の表面が、銀によって可能な限り薄く且つ均一に被覆されていることが望ましい。したがって本発明の銀被覆フレーク状銅粉における銀の割合を高くすることは望ましくない。詳細には、本発明の銀被覆フレーク状銅粉における銀の割合は、5質量%以上20質量%以下であり、更に好ましくは7質量%以上16質量%以下であり、一層好ましくは9質量%以上14質量%以下である。銀被覆フレーク状銅粉における銀の割合は、ICP発光分光分析法よって測定できる。 In the silver-coated flake-shaped copper powder of the present invention, it is desirable that the surface of the flake-shaped copper particles as the base material is coated with silver as thinly and uniformly as possible. Therefore, it is not desirable to increase the proportion of silver in the silver-coated flake-shaped copper powder of the present invention. Specifically, the proportion of silver in the silver-coated flake-shaped copper powder of the present invention is 5% by mass or more and 20% by mass or less, more preferably 7% by mass or more and 16% by mass or less, and further preferably 9% by mass. It is 14% by mass or less. The proportion of silver in the silver-coated flaky copper powder can be measured by ICP emission spectroscopy.
 次に本発明の銀被覆フレーク状銅粉の好適な製造方法について説明する。本発明の製造方法は、母材である銅粒子のフレーク化工程と、フレーク状銅粒子に対する銀の被覆工程とに大別される。
 フレーク化工程においては、銅母粉及び第1の錯化剤を含む分散液を、媒体撹拌ミル装置によって処理し、該銅母粉を構成する銅母粒子をフレーク状に変形させる。
 銀の被覆工程においては、フレーク状に変形した銅母粒子を含む銅母粉を、銀イオン及び第2の錯化剤を含む水性液で処理し、該銅母粒子の表面に銀を析出させる。
 以下、それぞれの工程について説明する。
Next, a suitable method for producing the silver-coated flake-shaped copper powder of the present invention will be described. The production method of the present invention is roughly classified into a flake-forming step of copper particles as a base material and a silver coating step of flake-shaped copper particles.
In the flake formation step, the dispersion liquid containing the copper mother powder and the first complexing agent is treated with a medium stirring mill device to deform the copper mother particles constituting the copper mother powder into flakes.
In the silver coating step, the copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous solution containing silver ions and a second complexing agent to precipitate silver on the surface of the copper mother particles. ..
Hereinafter, each step will be described.
 銅母粉のフレーク化工程においては、フレーク状以外の形状を有する銅母粉に外力を加え、該銅母粉を扁平な形状に変形させる。銅母粉としては、例えば湿式還元法によって製造された球状の銅母粉、銅イオンを含む電解液を電気分解して得られた電解銅母粉、アトマイズ法によって製造された球状の銅母粉などが挙げられる。これらの銅母粉のうち、電解法によって製造されたデンドライト状銅母粉をフレーク化することが、厚みの小さいフレーク状銅粉を首尾よく製造し得る点から好ましい。 In the process of flake-forming the copper mother powder, an external force is applied to the copper mother powder having a shape other than the flake shape to deform the copper mother powder into a flat shape. The copper mother powder includes, for example, a spherical copper mother powder produced by a wet reduction method, an electrolytic copper mother powder obtained by electrolyzing an electrolytic solution containing copper ions, and a spherical copper mother powder produced by an atomizing method. And so on. Of these copper mother powders, it is preferable to flake the dendrite-like copper mother powder produced by the electrolytic method because the flake-like copper powder having a small thickness can be successfully produced.
 電解法によって製造されたデンドライト状銅粒子を母粉として用いる場合には、フレーク化に先立ち、該デンドライト状銅粒子を粉砕することが、厚みの小さいフレーク状銅粉を一層首尾よく製造し得る点から好ましい。粉砕の手段は特に制限はなく、例えば円板式、ローラー式、シリンダー式、衝撃式、ジェット式、高速回転式による粉砕方式が挙げられる。また、乾式粉砕及び湿式粉砕のいずれを用いてもよい。デンドライト状銅粒子における枝部と幹部とを確実に分離させる観点からは乾式粉砕を行うことが好ましい。乾式粉砕には例えば衝突板方式のジェットミルや、粒子どうしを衝突させる方式のジェットミルを用いることが好ましい。 When the dendrite-like copper particles produced by the electrolytic method are used as the mother powder, crushing the dendrite-like copper particles prior to flake formation makes it possible to more successfully produce the flake-like copper powder having a small thickness. Is preferable. The crushing means is not particularly limited, and examples thereof include a disk type, a roller type, a cylinder type, an impact type, a jet type, and a high-speed rotary type crushing method. Further, either dry pulverization or wet pulverization may be used. Dry pulverization is preferable from the viewpoint of surely separating the branch portion and the trunk portion of the dendrite-like copper particles. For dry pulverization, for example, it is preferable to use a jet mill of a collision plate type or a jet mill of a type in which particles collide with each other.
 粉砕後の銅粒子の粒径D50は、所望の粒径及び厚みを有するフレーク状銅粒子を得る観点から、2μm以上8μm以下であることが好ましく、3μm以上7μm以下であることが更に好ましく、4μm以上6μm以下であることが一層好ましい。 The particle size D50 of the pulverized copper particles is preferably 2 μm or more and 8 μm or less, and more preferably 3 μm or more and 7 μm or less, from the viewpoint of obtaining flake-shaped copper particles having a desired particle size and thickness. It is more preferably 4 μm or more and 6 μm or less.
 次に、母材である銅粒子のフレーク化を行う。フレーク化には、ビーズミル、ボールミル、アトライターなどの媒体撹拌ミルを用いることができる。
 媒体撹拌ミルを用いてフレーク化を行うのに先立ち、銅粒子を液媒に分散させて分散液を調製する。分散液の調製に用いられる液媒としては、例えば水や有機溶媒が挙げられる。水と有機溶媒との混合溶媒を用いることもできる。有機溶媒としては、メタノール、エタノール等の炭素数1~4の低級モノアルコール;エチレングリコール等の炭素数1~4の低級多価アルコール;炭素数1~4の低級カルボン酸;炭素数1~4の低級アミン等を単独で又は2種以上組み合わせて用いることができる。これらの液媒のうち、有機溶媒を用いることが、分散液中での銅粒子の分散性が高まり、且つ媒体撹拌ミルで処理するときの品質の安定性が高まる点から好ましい。特にメタノール等の低級アルコール類を用いることが、媒体の揮発が容易であり、目的とするフレーク状銅粒子に媒体が残留しづらい点から好ましい。
Next, flakes of copper particles, which are the base material, are performed. A medium stirring mill such as a bead mill, a ball mill, or an attritor can be used for flake formation.
Prior to flake formation using a medium stirring mill, copper particles are dispersed in a liquid medium to prepare a dispersion liquid. Examples of the liquid medium used for preparing the dispersion liquid include water and an organic solvent. A mixed solvent of water and an organic solvent can also be used. Examples of the organic solvent include lower monoalcohols having 1 to 4 carbon atoms such as methanol and ethanol; lower polyhydric alcohols having 1 to 4 carbon atoms such as ethylene glycol; lower carboxylic acids having 1 to 4 carbon atoms; and 1 to 4 carbon atoms. The lower amines and the like can be used alone or in combination of two or more. Of these liquid media, it is preferable to use an organic solvent because the dispersibility of the copper particles in the dispersion liquid is improved and the quality stability when treated with the medium stirring mill is improved. In particular, it is preferable to use lower alcohols such as methanol because the medium can be easily volatilized and the medium does not easily remain in the target flake-shaped copper particles.
 分散液中における銅粒子の濃度は、生産性の点や、粗大粒子の発生の防止の点から、10質量%以上60質量%以下であることが好ましく、20質量%以上50質量%以下であることが好ましい。 The concentration of copper particles in the dispersion is preferably 10% by mass or more and 60% by mass or less, preferably 20% by mass or more and 50% by mass or less, from the viewpoint of productivity and prevention of generation of coarse particles. Is preferable.
 分散液を調製するには、銅粒子と液媒とを単に混ぜ合わせるだけでよい。場合によっては、撹拌分散装置を用いて分散液を調製してもよい。そのような装置としては、例えば流体ミルやプライミクス株式会社製のT.K.フィルミックス(登録商標)などが挙げられる。 To prepare a dispersion, simply mix the copper particles and the liquid medium. In some cases, a dispersion may be prepared using a stirring and dispersing device. Examples of such a device include a fluid mill and T.I. K. Examples include Philmix (registered trademark).
 本製造方法においては、分散液中に第1の錯化剤を含有させておくことが好ましい。第1の錯化剤の作用によって、フレーク化を行っている間の銅粒子の凝集が効果的に抑制される。また、銅粒子の表面に存在する酸化物が第1の錯化剤によって除去され、フレーク状銅粒子の表面に銀を薄く且つ均一に被覆させることができる。この観点から、分散液に含まれる第1の錯化剤の濃度は、分散液中における銅粒子の濃度が上述の範囲であることを条件として、0.1質量%以上40質量%以下であることが好ましく、0.5質量%以上20質量%以下であることが更に好ましく、1質量%以上10質量%以下であることが一層好ましい。 In this production method, it is preferable to contain the first complexing agent in the dispersion liquid. The action of the first complexing agent effectively suppresses the aggregation of copper particles during flake formation. Further, the oxide present on the surface of the copper particles is removed by the first complexing agent, and the surface of the flake-shaped copper particles can be coated with silver thinly and uniformly. From this viewpoint, the concentration of the first complexing agent contained in the dispersion liquid is 0.1% by mass or more and 40% by mass or less, provided that the concentration of the copper particles in the dispersion liquid is within the above range. It is more preferable, and it is more preferably 0.5% by mass or more and 20% by mass or less, and further preferably 1% by mass or more and 10% by mass or less.
 従来、銅母粉を媒体撹拌ミルによってフレーク化する場合には、該銅母粉を含む分散液に脂肪酸を含有させて該銅母粉を構成する銅粒子の凝集を抑制することが多かった。しかし脂肪酸を使用すると、フレーク化後の銅粒子の表面に該脂肪酸が付着して残留することから、フレーク化後の銅粒子の表面に銀を被覆させるためにはそれに先立ち脂肪酸を除去する必要があった。脂肪酸を除去するためには脱脂工程が必要となり工程が増えるという不都合と、脱脂工程によって銅粒子の表面が酸化されるという不都合があった。これに対して分散液中に脂肪酸を含有させず、それに代えて第1の錯化剤を含有させる本製造方法によれば、そのような不都合は生じない。 Conventionally, when copper mother powder is made into flakes by a medium stirring mill, fatty acids are often contained in a dispersion liquid containing the copper mother powder to suppress aggregation of copper particles constituting the copper mother powder. However, when fatty acids are used, the fatty acids adhere to and remain on the surface of the flaked copper particles. Therefore, in order to coat the surface of the flaked copper particles with silver, it is necessary to remove the fatty acids prior to that. there were. In order to remove the fatty acid, a degreasing step is required and the number of steps is increased, and there is a disadvantage that the surface of the copper particles is oxidized by the degreasing step. On the other hand, according to the present production method in which the dispersion liquid does not contain fatty acids and instead contains the first complexing agent, such inconvenience does not occur.
 第1の錯化剤は、単座のものであってもよく、二座、三座及び四座などの多座のものであってよい。銅への配位性の高さの観点から、第1の錯化剤としては、クエン酸、アスコルビン酸、エチレンジアミン四酢酸塩などが挙げられる。これらの錯化剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの錯化剤のうち、フレーク化工程において銅粒子の凝集を効果的に抑制し得る観点から、エチレンジアミン四酢酸塩を用いることが好ましい。 The first complexing agent may be a single-seat one, or may be a multi-seat one such as two-seat, three-seat and four-seat. From the viewpoint of high coordination with copper, examples of the first complexing agent include citric acid, ascorbic acid, ethylenediaminetetraacetic acid and the like. One of these complexing agents may be used alone, or two or more thereof may be used in combination. Among these complexing agents, it is preferable to use ethylenediaminetetraacetate from the viewpoint of effectively suppressing the aggregation of copper particles in the flake formation step.
 フレーク化工程においては、分散液と粉砕メディアとを媒体撹拌ミル装置内に入れて混合撹拌する。
 粉砕メディアの直径は0.1mm以上1mm以下であることが好ましい。粉砕メディアの材質は、一般にジルコニアやアルミナである。
 媒体撹拌ミル装置の運転時間や回転速度、パスの回数等は、目的とするフレーク状銅粉が得られるように適宜調整すればよい。
In the flake formation step, the dispersion liquid and the pulverized medium are placed in a medium stirring mill device and mixed and stirred.
The diameter of the pulverized media is preferably 0.1 mm or more and 1 mm or less. The material of the pulverized media is generally zirconia or alumina.
The operation time, rotation speed, number of passes, etc. of the medium stirring mill device may be appropriately adjusted so that the desired flake-shaped copper powder can be obtained.
 このようにして銅母粉を構成する銅母粒子をフレーク状に変形させたら、次に銀の被覆工程を行う。銀の被覆工程において、先に述べたとおり、フレーク状に変形した銅母粒子を含む銅母粉を、銀イオン及び第2の錯化剤を含む水性液で処理する。この処理は、以下の処理1及び処理2を含むことが好ましい。
 〔処理1〕
 銀イオンと、フレーク状銅粒子とを水中で接触させて置換めっきを行い、該フレーク状銅粒子の表面に銀を析出させる。この析出によって前駆体粒子を得る。
 〔処理2〕
 処理1で得られた前駆体粒子と、銀イオンと、銀イオンの還元剤とを水中で接触させて、該前駆体粒子の表面に更に銀を析出させる。
After the copper mother particles constituting the copper mother powder are deformed into flakes in this way, the silver coating step is performed next. In the silver coating step, as described above, the copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous liquid containing silver ions and a second complexing agent. This process preferably includes the following process 1 and process 2.
[Process 1]
The silver ions and the flake-shaped copper particles are brought into contact with each other in water to perform replacement plating, and silver is deposited on the surface of the flake-shaped copper particles. Precursor particles are obtained by this precipitation.
[Process 2]
The precursor particles obtained in Treatment 1, silver ions, and a reducing agent for silver ions are brought into contact with each other in water to further precipitate silver on the surface of the precursor particles.
 処理1及び処理2で用いられる銀イオンは、銀源となる銀化合物から生成させる。銀化合物としては、例えば硝酸銀等の水溶性銀化合物を用いることができる。水中における銀イオンの濃度は、0.01~10mol/L、特に0.04~2.0mol/Lに設定することが、望ましい量の銀をフレーク状銅粒子の表面に析出させ得る観点から好ましい。 The silver ions used in treatment 1 and treatment 2 are generated from a silver compound that is a silver source. As the silver compound, for example, a water-soluble silver compound such as silver nitrate can be used. The concentration of silver ions in water is preferably set to 0.01 to 10 mol / L, particularly 0.04 to 2.0 mol / L, from the viewpoint that a desirable amount of silver can be deposited on the surface of the flake-shaped copper particles. ..
 処理1において、水中におけるフレーク状銅粒子の量は、1~1000g/L、特に50~500g/Lとすることが、やはり望ましい量の銀をフレーク状銅粒子の表面に析出させ得る観点から好ましい。 In the treatment 1, the amount of the flake-shaped copper particles in water is preferably 1 to 1000 g / L, particularly preferably 50 to 500 g / L from the viewpoint that a desirable amount of silver can be deposited on the surface of the flake-shaped copper particles. ..
 処理1において、フレーク状銅粒子と銀イオンとの添加の順序に特に制限はない。例えばフレーク状銅粒子と銀イオンとを同時に水中に添加することができる。置換めっきによる銀の析出のコントロールのしやすさの観点からは、水中にフレーク状銅粒子を予め分散させて分散液を調製し、この分散液に銀源となる銀化合物を添加することが好ましい。この場合、分散液は常温でもよく、あるいは0~80℃の温度範囲でもよい。 In process 1, there is no particular limitation on the order of addition of flake-shaped copper particles and silver ions. For example, flake-shaped copper particles and silver ions can be added to water at the same time. From the viewpoint of ease of controlling the precipitation of silver by substitution plating, it is preferable to prepare a dispersion liquid by pre-dispersing flake-shaped copper particles in water and add a silver compound as a silver source to the dispersion liquid. .. In this case, the dispersion liquid may be at room temperature or may be in the temperature range of 0 to 80 ° C.
 銀化合物の添加に先立ち、分散液中に第2の錯化剤を添加しておき、銀の還元をコントロールすることが好ましい。第2の錯化剤としては、例えばエチレンジアミン四酢酸塩、トリエチレンジアミン、イミノ二酢酸及びその塩、クエン酸及びその塩、並びに酒石酸及びその塩などが挙げられる。 Prior to the addition of the silver compound, it is preferable to add a second complexing agent to the dispersion liquid to control the reduction of silver. Examples of the second complexing agent include ethylenediaminetetraacetic acid salt, triethylenediamine, iminodiacetic acid and its salts, citric acid and its salts, and tartaric acid and its salts.
 先に説明した第1の錯化剤と、前記の第2の錯化剤とは同種のものであってもよく、あるいは異種のものであってもよいが、錯体の安定度定数を合わせる観点から、第1の錯化剤と第2の錯化剤とは同種のものであることが好ましい。特に、フレーク化工程において銅粒子の凝集を効果的に抑制する観点、及び銀の被覆工程において銀を薄く且つ均一に被覆させる観点から、第1の錯化剤と第2の錯化剤とはいずれもエチレンジアミン四酢酸塩であることが好ましい。 The first complexing agent described above and the second complexing agent described above may be of the same type or different types, but from the viewpoint of matching the stability constants of the complex. Therefore, it is preferable that the first complexing agent and the second complexing agent are of the same type. In particular, from the viewpoint of effectively suppressing the aggregation of copper particles in the flake formation step and from the viewpoint of coating silver thinly and uniformly in the silver coating step, the first complexing agent and the second complexing agent are Both are preferably ethylenediaminetetraacetic acid salts.
 処理1における銀化合物の添加は水溶液の状態で行うことが好ましい。この水溶液は分散液中に一括添加することもでき、あるいは所定の時間にわたって連続的に又は不連続に添加することもできる。置換めっきの反応を制御しやすい点から、銀化合物の水溶液は、所定の時間にわたって分散液に添加することが好ましい。 It is preferable to add the silver compound in the treatment 1 in the state of an aqueous solution. This aqueous solution can be added all at once to the dispersion, or can be added continuously or discontinuously over a predetermined time. From the viewpoint of easy control of the reaction of the replacement plating, it is preferable to add the aqueous solution of the silver compound to the dispersion liquid over a predetermined time.
 処理1においは、分散液に銀化合物を添加する前から、又は添加するのと同時に、該分散液に超音波を照射することが好ましい。超音波の照射によって分散液中のフレーク状銅粒子の分散が促進されて、銀による該フレーク状銅粒子の均一被覆が起こりやすくなる。超音波はこれを照射すれば一定の効果はあるが、特に周波数は200kHz以下が好ましく、45kHz以下がより好ましい。下限は10kHzあれば十分である。 For the treatment 1, it is preferable to irradiate the dispersion liquid with ultrasonic waves before or at the same time as adding the silver compound to the dispersion liquid. The irradiation of ultrasonic waves promotes the dispersion of the flake-shaped copper particles in the dispersion liquid, and the uniform coating of the flake-shaped copper particles with silver is likely to occur. Ultrasound has a certain effect when irradiated with it, but the frequency is particularly preferably 200 kHz or less, and more preferably 45 kHz or less. A lower limit of 10 kHz is sufficient.
 処理1においては、上述した置換めっきによってフレーク状銅粒子の表面に銀が析出して前駆体粒子が得られる。前駆体粒子における銀の析出量は、最終的に得られる銀被覆フレーク状銅粉における銀の量の0.1~50質量%、特に1~10質量%とすることが、薄く且つ均一な銀の被覆を形成し得る点から好ましい。 In process 1, silver is deposited on the surface of the flake-shaped copper particles by the above-mentioned substitution plating, and precursor particles are obtained. The amount of silver deposited in the precursor particles is 0.1 to 50% by mass, particularly 1 to 10% by mass, of the amount of silver in the finally obtained silver-coated flake-shaped copper powder, which is thin and uniform silver. It is preferable because it can form a coating of.
 次に処理2について説明する。処理2においては、処理1で得られた前駆体粒子を含む分散液に、銀イオン及び銀イオンの還元剤を添加する。この場合、処理1で得られた前駆体粒子を一旦固液分離した後に水に分散させて分散液となしてもよく、あるいは処理1で得られた前駆体粒子の分散液をそのまま処理2に供してもよい。後者の場合、分散液中に、処理1で添加した銀イオンが残存していてもよく、あるいは残存していなくてもよい。 Next, process 2 will be described. In the treatment 2, a silver ion and a silver ion reducing agent are added to the dispersion liquid containing the precursor particles obtained in the treatment 1. In this case, the precursor particles obtained in the treatment 1 may be once solid-liquid separated and then dispersed in water to form a dispersion liquid, or the dispersion liquid of the precursor particles obtained in the treatment 1 may be directly used in the treatment 2. May be served. In the latter case, the silver ion added in the treatment 1 may or may not remain in the dispersion liquid.
 処理2において添加する銀イオンは、処理1と同じく水溶性銀化合物から生成させる。銀化合物は、水溶液の状態で分散液に添加することが好ましい。水溶液中の銀イオンの濃度は好ましくは0.01~10mol/L、更に好ましくは0.1~2.0mol/Lである。この範囲の濃度の銀イオンを有する水溶液を、1~1000g/L、特に50~500g/Lの前駆体粒子を含む前記分散液における該前駆体粒子100質量部に対して0.1~55質量部、特に1~25質量部添加することが、薄く且つ均一な銀の被覆を形成し得る点から好ましい。 The silver ion added in the treatment 2 is generated from the water-soluble silver compound as in the treatment 1. The silver compound is preferably added to the dispersion in the form of an aqueous solution. The concentration of silver ions in the aqueous solution is preferably 0.01 to 10 mol / L, more preferably 0.1 to 2.0 mol / L. An aqueous solution having silver ions having a concentration in this range is 0.1 to 55 mass by mass with respect to 100 parts by mass of the precursor particles in the dispersion liquid containing 1 to 1000 g / L, particularly 50 to 500 g / L of precursor particles. It is preferable to add parts, particularly 1 to 25 parts by mass, from the viewpoint that a thin and uniform silver coating can be formed.
 処理2において添加する還元剤としては、銀の置換めっき及び還元めっきを同時に進行させ得る程度の還元力を有するものを用いる。このような還元剤を用いることで、薄く且つ均一な銀の被覆を首尾よく形成することができる。還元性の強い還元剤を用いると、還元めっきが一方的に進行してしまい目的とする構造を有する銀の被覆を形成することが容易でない。一方、還元性の弱い還元剤を用いると、銀イオンの還元めっきが進行しづらく、そのことに起因してやはり目的とする構造を有する銀の被覆を形成することが容易でない。以上の観点から、還元剤としては、これを水に溶解したときに酸性を示す有機還元剤を用いることが好ましい。具体的には、蟻酸、シュウ酸、L-アスコルビン酸、エリソルビン酸、ホルムアルデヒドなどがある。これらの有機還元剤は1種を単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。その中でも、L-アスコルビン酸を用いることが好ましい。ここでいう「酸性」とは、有機還元剤0.1モルを1000gの水に溶解した水溶液が、25℃において1~6のpHを示すことである。 As the reducing agent added in the treatment 2, a reducing agent having a reducing power enough to allow silver substitution plating and reduction plating to proceed at the same time is used. By using such a reducing agent, a thin and uniform silver coating can be successfully formed. If a reducing agent having a strong reducing property is used, the reducing plating proceeds unilaterally, and it is not easy to form a silver coating having a desired structure. On the other hand, when a reducing agent having a weak reducing property is used, the reduction plating of silver ions is difficult to proceed, and due to this, it is not easy to form a silver coating having a desired structure. From the above viewpoint, as the reducing agent, it is preferable to use an organic reducing agent that shows acidity when it is dissolved in water. Specifically, there are formic acid, oxalic acid, L-ascorbic acid, erythorbic acid, formaldehyde and the like. These organic reducing agents may be used alone or in combination of two or more. Among them, it is preferable to use L-ascorbic acid. The term "acidic" as used herein means that an aqueous solution prepared by dissolving 0.1 mol of an organic reducing agent in 1000 g of water exhibits a pH of 1 to 6 at 25 ° C.
 還元剤の添加量は、添加する水溶液中の銀イオンに対して0.5~5.0当量、特に1.0~2.0当量とすることが、銀の置換めっき及び還元めっきを同時に進行させやすい点から好ましい。 The amount of the reducing agent added is 0.5 to 5.0 equivalents, particularly 1.0 to 2.0 equivalents with respect to the silver ions in the aqueous solution to be added, so that the silver substitution plating and the reducing plating proceed simultaneously. It is preferable because it is easy to make it.
 前駆体粒子を含む分散液に還元剤及び銀イオンを添加するときの順序に特に制限はない。銀イオンの還元を制御して、薄く且つ均一な銀の被覆を形成する観点からは、分散液中に還元剤を添加した後に銀イオンを添加することが好ましい。銀源となる銀化合物は、分散液中に一括添加することもでき、あるいは所定の時間にわたって連続的に又は不連続に添加することもできる。銀イオンの還元を制御しやすい点から、銀化合物はその水溶液の状態で、所定の時間にわたって分散液に添加することが好ましい。 There is no particular limitation on the order in which the reducing agent and silver ions are added to the dispersion liquid containing the precursor particles. From the viewpoint of controlling the reduction of silver ions to form a thin and uniform silver coating, it is preferable to add silver ions after adding the reducing agent to the dispersion. The silver compound serving as a silver source can be added all at once to the dispersion liquid, or can be added continuously or discontinuously over a predetermined time. From the viewpoint that the reduction of silver ions can be easily controlled, it is preferable to add the silver compound to the dispersion liquid in the state of the aqueous solution for a predetermined time.
 処理2において、銀の置換めっき及び還元めっきを同時に進行させるときには、分散液を常温の状態にしておいてもよく、あるいは0~80℃の温度範囲で加熱しておいてもよい。 In the process 2, when the silver substitution plating and the reduction plating are carried out at the same time, the dispersion may be kept at room temperature or heated in a temperature range of 0 to 80 ° C.
 処理1の場合と同様に処理2においては、分散液に還元剤を添加する前から、又は添加するのと同時に、該分散液に超音波を照射することが好ましい。超音波の照射によって分散液中の前駆体粒子の分散が促進されて、銀による該前駆体粒子の均一被覆が起こりやすくなる。超音波はこれを照射すれば一定の効果はあるが、特に周波数は200kHz以下が好ましく、45kHz以下がより好ましい。下限は10kHzあれば十分である。 Similar to the case of the treatment 1, in the treatment 2, it is preferable to irradiate the dispersion liquid with ultrasonic waves before or at the same time as adding the reducing agent to the dispersion liquid. The irradiation of ultrasonic waves promotes the dispersion of the precursor particles in the dispersion liquid, and the uniform coating of the precursor particles with silver is likely to occur. Ultrasound has a certain effect when irradiated with it, but the frequency is particularly preferably 200 kHz or less, and more preferably 45 kHz or less. A lower limit of 10 kHz is sufficient.
 このようにして得られた銀被覆フレーク状銅粉は、該銅粉及び樹脂を含む導電性組成物の状態で好適に用いられる。例えば銀被覆フレーク状銅粉を樹脂、有機溶媒及びガラスフリット等と混合して導電ペーストとなすことができる。あるいは、銀被覆フレーク状銅粉を有機溶媒等と混合して導電インクとなすことができる。このようにして得られた導電ペーストや導電インクを適用対象物の表面に施すことで、所望のパターンを有する導電膜を得ることができる。
 本発明の銀被覆フレーク状銅粉においては銀の被覆が薄く且つ均一になっているので、該銀被覆フレーク状銅粉は導電性組成物中において銅の溶出が効果的に抑制される。その結果、該導電性組成物に含まれる樹脂の変性が抑制されたものとなる。
 また本発明の銀被覆フレーク状銅粉は凝集の程度が低いので、導電性組成物中での分散性が良好である。したがって該導電性組成物から得られた導電膜はその導電性が高いものとなる。
The silver-coated flake-shaped copper powder thus obtained is suitably used in the state of a conductive composition containing the copper powder and the resin. For example, silver-coated flake-shaped copper powder can be mixed with a resin, an organic solvent, glass frit, or the like to form a conductive paste. Alternatively, the silver-coated flake-shaped copper powder can be mixed with an organic solvent or the like to form a conductive ink. By applying the conductive paste or conductive ink thus obtained to the surface of the object to be applied, a conductive film having a desired pattern can be obtained.
In the silver-coated flake-shaped copper powder of the present invention, the silver coating is thin and uniform, so that the silver-coated flake-shaped copper powder effectively suppresses the elution of copper in the conductive composition. As a result, the modification of the resin contained in the conductive composition is suppressed.
Further, since the silver-coated flake-shaped copper powder of the present invention has a low degree of aggregation, it has good dispersibility in the conductive composition. Therefore, the conductive film obtained from the conductive composition has high conductivity.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」及び「部」はそれぞれ「質量%」及び「質量部」を意味する。 Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the invention is not limited to such examples. Unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass", respectively.
  〔実施例1〕
(1)電解銅粉の製造
 2.5m×1.1m×1.5mの大きさ(約4m)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚の陰極板と不溶性陽極板(DSE(ペルメレック電極社製))とを電極間距離が5cmとなるように吊設した。電解液としての硫酸銅溶液を20L/分で電解槽を循環させた。この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
 循環させる電解液の銅イオンの濃度を5g/L、硫酸(HSO)の濃度を100g/L、電流密度を100A/mに調整して40分間電解を実施した。
 陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、含水銅粉ケーキを得た。このケーキを水3Lに分散させ、10分間撹拌した後、ブフナー漏斗で濾過し、洗浄後、減圧状態(1×10-3Pa)で80℃、6時間乾燥させ、電解銅粉を得た。
[Example 1]
(1) Production of electrolytic copper powder Nine cathode plates each of size (1.0 m x 1.0 m) are placed in an electrolytic cell having a size of 2.5 m x 1.1 m x 1.5 m (about 4 m 3 ). And an insoluble anode plate (DSE (manufactured by Permerek Electrode Co., Ltd.)) were suspended so that the distance between the electrodes was 5 cm. A copper sulfate solution as an electrolytic solution was circulated in the electrolytic cell at 20 L / min. An anode and a cathode were immersed in this electrolytic solution, and a direct current was passed through the anode to perform electrolysis, and powdered copper was deposited on the surface of the cathode.
Electrolysis was carried out for 40 minutes by adjusting the concentration of copper ions in the circulating electrolytic solution to 5 g / L, the concentration of sulfuric acid (H 2 SO 4 ) to 100 g / L, and the current density to 100 A / m 2 .
The copper deposited on the surface of the cathode was mechanically scraped off and recovered, and then washed to obtain a hydrous copper powder cake. This cake was dispersed in 3 L of water, stirred for 10 minutes, filtered through a Büchner funnel, washed, and dried at 80 ° C. for 6 hours under reduced pressure (1 × 10 -3 Pa) to obtain electrolytic copper powder.
(2)電解銅粉の粉砕
 衝突板方式ジェットミル(日本ニューマチック工業(株)社製のIDS式ジェットミル、IDS-5)によって、粉砕圧力6kgf/cm、供給速度6.7kg/hrの条件で電解銅粉を粉砕した。粉砕後の銅粉の粒径D50は4.5μmであった。
(2) Crushing of electrolytic copper powder Using a collision plate type jet mill (IDS type jet mill manufactured by Nippon Pneumatic Industries Co., Ltd., IDS-5), a crushing pressure of 6 kgf / cm 2 and a supply speed of 6.7 kg / hr. Electrolyzed copper powder was crushed under the conditions. The particle size D 50 of the copper powder after pulverization was 4.5 μm.
(3)フレーク化
 粉砕後の電解銅粉3kgと、メタノール9kgと、1kgのエチレンジアミン四酢酸二ナトリウム(以下「EDTA2Na」ともいう。)とを混合して、銅粉のメタノール分散液を調製した。この分散液12kgを、アシザワ・ファインテック株式会社製のビーズミルであるスターミル(登録商標)LMZに入れ、更に直径0.2mmのジルコニアビーズを4.85kg入れた。ビーズミルを180分間にわたり運転し、銅粉のフレーク化を行った。その後、分散液とビーズとを濾過によって分離した後、分散液を静置してフレーク状銅粒子を沈降させた。上澄みを除去し、濾過してフレーク状銅粒子を採取した。次いでフレーク状銅粒子を水洗し、引き続きメタノールでの洗浄を2回繰り返した。
(3) Flake formation A methanol dispersion of copper powder was prepared by mixing 3 kg of pulverized electrolytic copper powder, 9 kg of methanol, and 1 kg of disodium ethylenediaminetetraacetate (hereinafter, also referred to as “EDTA2Na”). 12 kg of this dispersion was placed in Star Mill (registered trademark) LMZ, which is a bead mill manufactured by Ashizawa Finetech Co., Ltd., and 4.85 kg of zirconia beads having a diameter of 0.2 mm was further placed. The bead mill was operated for 180 minutes to flake the copper powder. Then, after separating the dispersion liquid and the beads by filtration, the dispersion liquid was allowed to stand to settle the flake-shaped copper particles. The supernatant was removed and filtered to collect flaky copper particles. The flake-shaped copper particles were then washed with water, followed by washing with methanol twice.
(4)銀の被覆
 40℃に加熱した500mLの純水中に、100gのフレーク状銅粒子を投入し、分散液とした。この分散液を撹拌しながら、4.3gのEDTA2Naを添加し溶解させた。更にこの分散液に、0.44mol/Lの硝酸銀水溶液48mLを6分間にわたって連続添加して置換めっきを行い、フレーク状銅粒子の表面に銀を析出させて前駆体粒子を得た。この際、分散液に超音波(100W、28kHz)を照射した。
 次に還元剤としてのL-アスコルビン酸を分散液中に添加し溶解させた。更に、0.44mol/Lの硝酸銀水溶液192mLを24分間にわたって分散液に連続添加した。これによって、還元めっきと置換めっきとを同時に進行させて、前駆体粒子の表面に銀を更に析出させ、目的とする銀被覆フレーク状銅粉を得た。この間も超音波の照射を継続した。
(4) Silver coating 100 g of flake-shaped copper particles were put into 500 mL of pure water heated to 40 ° C. to prepare a dispersion liquid. While stirring this dispersion, 4.3 g of EDTA2Na was added and dissolved. Further, 48 mL of a 0.44 mol / L silver nitrate aqueous solution was continuously added to this dispersion for 6 minutes for substitution plating, and silver was precipitated on the surface of the flake-shaped copper particles to obtain precursor particles. At this time, the dispersion liquid was irradiated with ultrasonic waves (100 W, 28 kHz).
Next, L-ascorbic acid as a reducing agent was added to the dispersion and dissolved. Further, 192 mL of a 0.44 mol / L silver nitrate aqueous solution was continuously added to the dispersion for 24 minutes. As a result, reduction plating and substitution plating were simultaneously carried out to further precipitate silver on the surface of the precursor particles, and the desired silver-coated flake-shaped copper powder was obtained. During this time, ultrasonic irradiation was continued.
  〔実施例2ないし8〕
 以下の表1に示す条件を採用した以外は実施例1と同様にして銀被覆フレーク状銅粉を製造した。
[Examples 2 to 8]
A silver-coated flake-shaped copper powder was produced in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted.
  〔比較例1〕
 実施例1におけるフレーク化工程においてEDTA2Naを用いず、フレーク化時間を20分とした。また銀の被覆工程において超音波の照射を行わなかった。これら以外は実施例1と同様にして銀被覆フレーク状銅粉を製造した。
[Comparative Example 1]
In the flake formation step of Example 1, EDTA2Na was not used, and the flake formation time was set to 20 minutes. In addition, ultrasonic irradiation was not performed in the silver coating process. Except for these, silver-coated flake-shaped copper powder was produced in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  〔評価1〕
 実施例及び比較例で得られた銀被覆フレーク状銅粉について、上述した方法で粒度分布、明度、粒子の板面の円形度、粒子の厚み、タップ密度、銀の含有割合を測定した。それらの結果を以下の表2に示す。
[Evaluation 1]
For the silver-coated flake-shaped copper powders obtained in Examples and Comparative Examples, the particle size distribution, lightness, circularity of the plate surface of the particles, particle thickness, tap density, and silver content ratio were measured by the above-mentioned methods. The results are shown in Table 2 below.
  〔評価2〕
 実施例及び比較例で得られた銀被覆フレーク状銅粉を用いて導電性組成物を調製した。
 エポキシ樹脂(DIC製 EPICLON850)とブチルカルビトールとを質量比35:65混合し、これに銀被覆フレーク状銅粉を濃度70%となるように添加してペースト状の導電性組成物を調製した。
 ポリエチレンテレフタレート(PET)フィルムの一面に導電性組成物を、バーコーターを用いて塗工した。塗工幅は200mmとした。バーコーターのギャップは30μmとなるようにした。
 形成した塗膜を、90℃の真空乾燥機内で60分にわたり乾燥させた。その後、塗膜が形成されたPETフィルムをシートで挟み、160℃・20kNの条件で真空プレスを行った。このようにして得られたサンプルについて、マイクロメータ(Nikon製デジマイクロMF-501)を用いて導電膜の厚みを測定した。また導電膜の抵抗値を測定した。抵抗値は、抵抗率測定器(三菱化学MCP-T600)を用い、四探針法によって測定した。結果を表2に示す。
[Evaluation 2]
A conductive composition was prepared using the silver-coated flake-shaped copper powder obtained in Examples and Comparative Examples.
Epoxy resin (EPICLON 850 manufactured by DIC) and butyl carbitol were mixed at a mass ratio of 35:65, and silver-coated flake-shaped copper powder was added to the mixture so as to have a concentration of 70% to prepare a paste-like conductive composition. ..
A conductive composition was applied to one surface of a polyethylene terephthalate (PET) film using a bar coater. The coating width was 200 mm. The gap of the bar coater was set to 30 μm.
The formed coating film was dried in a vacuum dryer at 90 ° C. for 60 minutes. Then, the PET film on which the coating film was formed was sandwiched between sheets and vacuum pressed at 160 ° C. and 20 kN. With respect to the sample thus obtained, the thickness of the conductive film was measured using a micrometer (Nikon Digimicro MF-501). Moreover, the resistance value of the conductive film was measured. The resistance value was measured by a four-probe method using a resistivity measuring device (Mitsubishi Chemical MCP-T600). The results are shown in Table 2.
  〔評価3〕
 実施例及び比較例で得られた銀被覆フレーク状銅粉について、銅イオンの溶出量を測定した。
 0.2gの銀被覆フレーク状銅粉と、濃度15%の塩酸10mLと、メタノール2mLとを混合して分散液を調製した。この分散液を25℃の環境下に10分間静置した。その後、分散液を濾過し、濾液に含まれる銅イオンの濃度をICP発光分光分析法によって測定した。結果を表2に示す。
[Evaluation 3]
The elution amount of copper ions was measured for the silver-coated flake-shaped copper powders obtained in Examples and Comparative Examples.
A dispersion was prepared by mixing 0.2 g of silver-coated flake-shaped copper powder, 10 mL of hydrochloric acid having a concentration of 15%, and 2 mL of methanol. This dispersion was allowed to stand in an environment of 25 ° C. for 10 minutes. Then, the dispersion was filtered, and the concentration of copper ions contained in the filtrate was measured by ICP emission spectroscopy. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなとおり、各実施例で得られた銀被覆フレーク状銅粉を用いて形成された導電膜は、比較例で得られた銀被覆フレーク状銅粉を用いて形成された導電膜に比べて導電性の高いものであることが分かる。
 また、各実施例で得られた銀被覆フレーク状銅粉は、比較例で得られた銀被覆フレーク状銅粉よりも銅イオンの溶出が抑制されていることが分かる。
As is clear from the results shown in Table 2, the conductive film formed by using the silver-coated flake-shaped copper powder obtained in each example was formed by using the silver-coated flake-shaped copper powder obtained in the comparative example. It can be seen that the conductivity is higher than that of the conductive film.
Further, it can be seen that the silver-coated flake-shaped copper powder obtained in each example has more suppressed elution of copper ions than the silver-coated flake-shaped copper powder obtained in the comparative example.
 本発明によれば、樹脂と混合した場合に、樹脂中での分散性が良好であり、また樹脂の劣化が抑制され、更に、該樹脂から形成される膜の電気抵抗を低減させ得る銀被覆フレーク状銅粉及びその製造方法が提供される。
 
According to the present invention, when mixed with a resin, the dispersibility in the resin is good, the deterioration of the resin is suppressed, and the electrical resistance of the film formed from the resin can be reduced. Flake-shaped copper powder and a method for producing the same are provided.

Claims (16)

  1.  少なくとも表面に銀を有する銀被覆フレーク状銅粒子を含む銀被覆フレーク状銅粉であって、
     前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒径をD90(μm)とし、累積体積10容量%における体積累積粒径をD10(μm)としたとき、
     D90/D10で定義される分散度に対する、前記銀被覆フレーク状銅粉の明度L*の値が13以上である、銀被覆フレーク状銅粉。
    A silver-coated flake-shaped copper powder containing silver-coated flake-shaped copper particles having silver on the surface at least.
    For the silver-coated flake-shaped copper powder, the volume cumulative particle size at a cumulative volume of 90% by volume measured by the laser diffraction / scattering type particle size distribution measurement method is D 90 (μm), and the volume cumulative particle size at a cumulative volume of 10% by volume is D 10 . When (μm) is set
    A silver-coated flake-shaped copper powder having a lightness L * value of 13 or more with respect to the dispersity defined by D 90 / D 10 .
  2.  少なくとも表面に銀を有する銀被覆フレーク状銅粒子を含む銀被覆フレーク状銅粉であって、
     前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径をD50(μm)とし、前記銀被覆フレーク状銅粒子の厚みをT(μm)としたとき、
     粒径D50に対する、厚みTの値が0.04以下である、銀被覆フレーク状銅粉。
    A silver-coated flake-shaped copper powder containing silver-coated flake-shaped copper particles having silver on the surface at least.
    The cumulative volume of the silver-coated flake-shaped copper powder at a cumulative volume of 50% by volume measured by the laser diffraction / scattering particle size distribution measurement method is D 50 (μm), and the thickness of the silver-coated flake-shaped copper particles is T (μm). )
    A silver-coated flake-shaped copper powder having a thickness T of 0.04 or less with respect to a particle size D 50 .
  3.  前記銀被覆フレーク状銅粒子の厚みTが0.1μm以上0.5μm以下である、請求項1又は2に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to claim 1 or 2, wherein the thickness T of the silver-coated flake-shaped copper particles is 0.1 μm or more and 0.5 μm or less.
  4.  前記銀被覆フレーク状銅粒子の厚みTが0.1μm以上0.3μm以下である、請求項3に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to claim 3, wherein the thickness T of the silver-coated flake-shaped copper particles is 0.1 μm or more and 0.3 μm or less.
  5.  タップ密度が0.5g/cm以上2.5g/cm以下である、請求項1ないし4のいずれか一項に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to any one of claims 1 to 4, wherein the tap density is 0.5 g / cm 3 or more and 2.5 g / cm 3 or less.
  6.  銀の割合が5質量%以上20質量%以下である、請求項1ないし5のいずれか一項に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to any one of claims 1 to 5, wherein the proportion of silver is 5% by mass or more and 20% by mass or less.
  7.  前記銀被覆フレーク状銅粒子の円形度が0.60以上0.95以下である、請求項1ないし6のいずれか一項に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to any one of claims 1 to 6, wherein the silver-coated flake-shaped copper particles have a circularity of 0.60 or more and 0.95 or less.
  8.  明度L*が70以上86以下である、請求項1ないし7のいずれか一項に記載の銀被覆フレーク状銅粉。 The silver-coated flake-shaped copper powder according to any one of claims 1 to 7, wherein the brightness L * is 70 or more and 86 or less.
  9.  前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒径D90が15μm以上35μm以下である、請求項1ないし8のいずれか一項に記載の銀被覆フレーク状銅粉。 According to any one of claims 1 to 8, the cumulative volume particle size D 90 of the silver-coated flake-shaped copper powder at a cumulative volume of 90% by volume measured by a laser diffraction / scattering particle size distribution measurement method is 15 μm or more and 35 μm or less. The silver-coated flaky copper powder described.
  10.  前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積10容量%における体積累積粒径D10が3μm以上8μm以下である、請求項1ないし9のいずれか一項に記載の銀被覆フレーク状銅粉。 According to any one of claims 1 to 9, the cumulative volume particle size D 10 of the silver-coated flake-shaped copper powder at a cumulative volume of 10% by volume measured by a laser diffraction / scattering particle size distribution measurement method is 3 μm or more and 8 μm or less. The silver-coated flaky copper powder described.
  11.  D90/D10で定義される分散度が3.0以上5.3以下である、請求項10に記載の銀被覆フレーク状銅粉。 The silver-coated flaky copper powder according to claim 10, wherein the dispersity defined by D 90 / D 10 is 3.0 or more and 5.3 or less.
  12.  前記銀被覆フレーク状銅粉についての、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が7μm以上17μm以下である、請求項1ないし11のいずれか一項に記載の銀被覆フレーク状銅粉。 According to any one of claims 1 to 11, the cumulative volume particle size D 50 of the silver-coated flake-shaped copper powder at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method is 7 μm or more and 17 μm or less. The silver-coated flaky copper powder described.
  13.  銅母粉及び第1の錯化剤を含む分散液を、媒体撹拌ミル装置によって処理し、該銅母粉を構成する銅母粒子をフレーク状に変形させ、
     フレーク状に変形した前記銅母粒子を含む前記銅母粉を、銀イオン及び第2の錯化剤を含む水性液で処理し、該銅母粒子の表面に銀を析出させる、銀被覆フレーク状銅粉の製造方法。
    The dispersion liquid containing the copper mother powder and the first complexing agent is treated with a medium stirring mill device to deform the copper mother particles constituting the copper mother powder into flakes.
    The copper mother powder containing the copper mother particles deformed into flakes is treated with an aqueous solution containing silver ions and a second complexing agent to precipitate silver on the surface of the copper mother particles, in the form of silver-coated flakes. How to make copper powder.
  14.  第1の錯化剤及び第2の錯化剤が、同種のものであるか又は異種のものである、請求項13に記載の製造方法。 The production method according to claim 13, wherein the first complexing agent and the second complexing agent are of the same type or different types.
  15.  第1の錯化剤及び第2の錯化剤がいずれもエチレンジアミン四酢酸塩である、請求項14に記載の製造方法。 The production method according to claim 14, wherein both the first complexing agent and the second complexing agent are ethylenediaminetetraacetic acid salts.
  16.  前記銅母粉が、銅イオンを含む電解液を電気分解して得られた電解銅粉である、請求項13ないし15のいずれか一項に記載の製造方法。 The production method according to any one of claims 13 to 15, wherein the copper mother powder is an electrolytic copper powder obtained by electrolyzing an electrolytic solution containing copper ions.
PCT/JP2021/027964 2020-08-26 2021-07-28 Silver-coated flake-form copper powder, and method for manufacturing same WO2022044676A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021568064A JP7018551B1 (en) 2020-08-26 2021-07-28 Silver-coated flake-shaped copper powder and its manufacturing method
KR1020237004240A KR20230057342A (en) 2020-08-26 2021-07-28 Silver-coated flaky copper powder and its manufacturing method
CN202180058151.0A CN116075380A (en) 2020-08-26 2021-07-28 Silver-coated flake copper powder and method for producing same
EP21861104.4A EP4205886A4 (en) 2020-08-26 2021-07-28 Silver-coated flake-form copper powder, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-142319 2020-08-26
JP2020142319 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022044676A1 true WO2022044676A1 (en) 2022-03-03

Family

ID=80353038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027964 WO2022044676A1 (en) 2020-08-26 2021-07-28 Silver-coated flake-form copper powder, and method for manufacturing same

Country Status (5)

Country Link
EP (1) EP4205886A4 (en)
JP (1) JP7018551B1 (en)
KR (1) KR20230057342A (en)
CN (1) CN116075380A (en)
WO (1) WO2022044676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117136A (en) * 2023-02-16 2023-05-16 安靖盛(江苏)电子新材料有限公司 Silver-coated copper powder and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2008533307A (en) * 2005-03-15 2008-08-21 ナノダイナミックス・インコーポレイテッド Method for producing ultra-fine metal flakes
JP2010275638A (en) 2010-07-12 2010-12-09 Dowa Holdings Co Ltd Silver-coated copper powder and conductive paste
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
JP2015071819A (en) * 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Flaky copper powder and production method thereof
JP2016035098A (en) 2014-07-31 2016-03-17 Dowaエレクトロニクス株式会社 Silver-coated flake type copper powder and production method of the same, and conductive paste using the silver-coated flake type copper powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660701B2 (en) * 2004-12-03 2011-03-30 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing the same, and conductive paste
CN100493781C (en) * 2007-04-06 2009-06-03 深圳市危险废物处理站 Method of producing sheet shaped silver-plated copper powder
CN108176849B (en) * 2017-12-12 2020-01-17 南京邮电大学 Silver-coated copper nano powder and preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533307A (en) * 2005-03-15 2008-08-21 ナノダイナミックス・インコーポレイテッド Method for producing ultra-fine metal flakes
WO2007040195A1 (en) * 2005-10-03 2007-04-12 Mitsui Mining & Smelting Co., Ltd. Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
JP2010275638A (en) 2010-07-12 2010-12-09 Dowa Holdings Co Ltd Silver-coated copper powder and conductive paste
JP2015071819A (en) * 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Flaky copper powder and production method thereof
JP2015071818A (en) 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Silver coat flaky copper powder and production method thereof, and conductive paste
JP2016035098A (en) 2014-07-31 2016-03-17 Dowaエレクトロニクス株式会社 Silver-coated flake type copper powder and production method of the same, and conductive paste using the silver-coated flake type copper powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4205886A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116117136A (en) * 2023-02-16 2023-05-16 安靖盛(江苏)电子新材料有限公司 Silver-coated copper powder and application thereof

Also Published As

Publication number Publication date
JP7018551B1 (en) 2022-02-10
EP4205886A1 (en) 2023-07-05
KR20230057342A (en) 2023-04-28
CN116075380A (en) 2023-05-05
JPWO2022044676A1 (en) 2022-03-03
EP4205886A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
KR101671324B1 (en) Copper powder
TWI518038B (en) Flaky silver powder, conductive paste composition and producing method for flaky silver powder
JP5415708B2 (en) Silver powder manufacturing method
US20050183543A1 (en) Silver powder made of silver particles, each to which fine silver particles adhere and process of producing the same
EP3162466A1 (en) Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
WO2017099076A1 (en) Silver-coated graphite particles, silver-coated graphite mixed powder and production method therefor, and conductive paste
DE60017710T2 (en) METHOD FOR PRODUCING A NICKEL POWDER
JP7018551B1 (en) Silver-coated flake-shaped copper powder and its manufacturing method
JP7288133B1 (en) Silver powder, method for producing silver powder, and conductive paste
EP3275570A1 (en) Copper powder and copper paste, conductive coating material, and conductive sheet using same
JP4223754B2 (en) Silver-coated copper powder and method for producing the same
JP6096143B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste
JP4569727B2 (en) Silver powder and method for producing the same
JP2008223096A (en) Method for manufacturing flaky silver powder
JP6549924B2 (en) Silver-coated copper powder and method for producing the same
JP7261946B2 (en) Silver powder, method for producing the same, and conductive resin composition
CN113832500A (en) Preparation method of electronic-grade high-purity low-apparent-density dendritic copper powder
JP3792772B2 (en) Easy-grinding electrolytic nickel
JP4682074B2 (en) Composite oxide particles exhibiting black color
JP2023070566A (en) Nickel powder, conductive composition containing the same, and conductive film
JPH0327602B2 (en)
CN117440868A (en) Copper powder and method for producing same
TW201634601A (en) Copper powder and copper paste using the same, conductive paint and conductive sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861104

Country of ref document: EP

Effective date: 20230327