JP3792772B2 - Easy-grinding electrolytic nickel - Google Patents

Easy-grinding electrolytic nickel Download PDF

Info

Publication number
JP3792772B2
JP3792772B2 JP06102996A JP6102996A JP3792772B2 JP 3792772 B2 JP3792772 B2 JP 3792772B2 JP 06102996 A JP06102996 A JP 06102996A JP 6102996 A JP6102996 A JP 6102996A JP 3792772 B2 JP3792772 B2 JP 3792772B2
Authority
JP
Japan
Prior art keywords
nickel
electrolytic
powder
electrolytic nickel
aqueous treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06102996A
Other languages
Japanese (ja)
Other versions
JPH09256182A (en
Inventor
忠雄 大倉
守 芦田
英二 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Original Assignee
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GRAPHITE INDUSTRIES,CO.,LTD. filed Critical NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Priority to JP06102996A priority Critical patent/JP3792772B2/en
Publication of JPH09256182A publication Critical patent/JPH09256182A/en
Application granted granted Critical
Publication of JP3792772B2 publication Critical patent/JP3792772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、易粉砕性電解ニッケルに関し、特にニッケル粉の製造用素材として好適なものである。
【0002】
【従来の技術】
近年、導電性塗料の一利用形態として、電磁波シールド用塗料が考えられている。かかる電磁波シールド用塗料中には、導電性材料として、銀、ニッケル、銅および黒鉛等の粉末が使用されているが、その中でも特にニッケル粉は、製造コストおよび耐久性等の点で優れていることから、その需要が高まっている。
【0003】
ニッケル粉としては、溶融状態から直接粉体化したアトマイズ粉、電解ニッケルを粉砕して造る電解粉および化学反応を利用して製造したカルボニルニッケル粉等があるが、電磁波シールド用導電性材料としては電解ニッケル粉が最適とされている。
【0004】
このような電解ニッケル粉を上述したような電磁波シールド用塗料に利用するためには、数〜数十μm の粒度に粉砕する必要があるが、ニッケルは硬度が高く、粉砕するのが困難なため、作業性および粉砕コストの面に問題を残していた。
【0005】
本発明は、上記の問題を有利に解決するもので、数〜数十μm の粒度に容易に粉砕することができる、ニッケル粉製造用素材としての電解ニッケルを提供することを目的とする。
【0006】
【課題を解決するための手段】
さて、本発明者等は、上記目的を達成すべく鋭意研究を重ねた結果、電解ニッケルを製造する際に、処理液中に炭素粉を添加することが、所期した目的の達成に関し、極めて有用であるとの知見を得た。
本発明は、上記知見に立脚するものである。
【0007】
すなわち、本発明は、ニッケル板を陽極として、
硫酸ニッケル: 0.1〜28.4重量%、
塩化ニッケル: 0.1〜40.4重量%、および
平均粒径が0.01〜10μm の炭素粉であって、カーボンブラック、黒鉛粉およびそれらの混合粉からなる群より選ばれる炭素粉: 0.1〜20重量%
を含む水性処理液中で電解処理を施して得たことを特徴とする易粉砕性電解ニッケルである。
【0008】
【発明の実施の形態】
以下、水性処理液中の成分を上記の範囲に限定した理由について説明する。
硫酸ニッケルおよび塩化ニッケルは、いずれもニッケルの電解処理を実施する上で必須の成分であり、それぞれ、その有効性を確保するためには、少なくとも0.1 重量%の含有が不可欠である。しかしながら、硫酸ニッケルについては28.4重量%を超えると、また、塩化ニッケルについては40.4重量%を超えると、いずれの場合にも溶解性に問題を生じ、有効な電解が行われない。
【0009】
それゆえ、本発明では、
硫酸ニッケル: 0.1〜28.4重量%
塩化ニッケル: 0.1〜40.4重量%
の範囲に限定したものである。
【0010】
さらに、本発明では、処理液中に炭素粉を含有させるけれども、この炭素粉の添加が特に重要である。というのは、電解ニッケルの内部に炭素粉が分散していると、ニッケル同士の結合力が弱くなり、乾式粉砕法では粒状に、また湿式粉砕法では扁平状に粉砕されやすく、一般のニッケル粉に比べ、短時間で粉砕することができるからである。
【0011】
しかしながら、炭素粉の平均粒径が10μm を超えると、電解中の炭素粉の沈降が激しくなり、粉砕されやすいニッケル粉が得られなくなる。一方、平均粒径が0.01μm に満たないと、ニッケル同士の結合力が強くなりすぎるため、所定の粒状、粒径などに粉砕する上で問題が生じる。また、炭素粉の含有量が20重量%を超えると、水性処理液の粘度が高くなりすぎて電解の妨げとなり、一方 0.1重量%未満では、粉砕性の改善という所望の目的が達成されない。
なお、本発明で炭素粉とは、カーボンブラックおよび黒鉛粉(天然黒鉛および人造黒鉛いずれも可)さらにはこれらの混合粉を意味するが、特にカーボンブラックを使用する場合にその添加量が上限に近いと水性処理液の粘度が高くなりすぎて電解上不利が生じるので、5重量%以下程度での使用が好適である。
【0012】
次に、本発明にかかる電解条件について説明する。
本発明の電解ニッケルは、次に示すような一般的な電解条件に従って製造し、陰極に好ましくは板状に析出させる。
【0013】
陽極は可溶性とすることが不可欠であるが、不溶性陽極を併用することもできる。可溶性陽極は、製造すべきニッケル粉と同種の原料地金(例えば、粗ニッケル塊)を用いて板状に形成することができる。大きさは、対向する陰極と同等か、またはそれ以上の大きさで、厚いほうが好ましい。この陽極の純度は、製造すべきニッケル粉の純度と同等か、またはそれ以上とするのが好ましい。
【0014】
水性処理液としては、一般に、a)陰極層内の金属イオン濃度の減少、b)化学分極の低いこと、c)水素ガスの発生の少ないこと、d)陰極層内で生産する金属水酸化物の沈析の少ないこと等の条件が必要とされる。したがって、水性処理液の組成において、これらの諸条件を満足するように、硫酸ニッケルや塩化ニッケルの添加量を上記の範囲に定めたものである。なお、所望により、これらの基本的組成以外に、添加剤として有機コロイド等を用いることもできる。
【0015】
水性処理液の温度は、55〜75℃が好ましい。この温度範囲であれば、粉末生成上有利な点が多く、品質管理も容易だからである。また、陰極電流密度は、20〜200A/dm2程度が好ましい。というのは、20A/dm2 未満の場合はめっき状にニッケルが生成するため粉砕した時に粒状のニッケルが得られにくく、一方200A/dm2を超えるとガス発生が多く液温が上昇し、良好な電解ニッケルが得られにくいからである。さらに、ポンプにより水性処理液を攪拌することが有利である。この攪拌により水性処理液の濃度分極が解消され、均一な水性処理液が得られる。
【0016】
好適電解条件をまとめると次のようになる。
1)温度:55〜75℃
2)陰極電流密度:20〜200 A/dm2
(電流: 300〜600 A、電圧:1〜30V)
3)極間距離:20〜80mm
【0017】
なお、陰極の形状は、平板または円筒が好ましく、生成した電解ニッケルの好適厚みは、5〜30mmである。
【0018】
採取した陰極析出ニッケルは、水等を用いて十分洗浄し、水性処理液を除去する。必要に応じて、酸化防止処理を施してもよい。
【0019】
このようにして得られた電解ニッケルを粉砕し、電磁波シールド用導電性材料として必要とされる数〜数十μm 程度の粒度のニッケル粉とする。粉砕法は、湿式または乾式いずれの粉砕法をも用いることができ、前者ではボールミル等、後者ではパルベライザ等の代表的粉砕機がある。
本発明の電解ニッケルは、粉砕に際し、炭素粉を含まない従来の電解ニッケルに比べ、極めて短時間に所望の粒度のニッケル粉とすることができる。
なお、一般に粉砕時には熱が生じることがあるため、発熱による酸化を防止するような適切な手段、例えば粉砕機を氷冷する等の処置を施すことは有利である。
【0020】
【実施例】
以下、本発明の実施例を示す。

Figure 0003792772
上記組成の水性処理液を、陽極にニッケル板(寸法、 400mm× 150mm×10mm)、陰極にニッケル板(寸法、 400mm× 150mm×3mm)を用い、両極間の距離を50mmに設定した図1の電解槽中で、電流 500A、電圧20Vにて4時間電気分解して、電解ニッケルを得た。
【0021】
Figure 0003792772
上記組成の水性処理液を、図1の電解槽中で、実施例1と同一の条件にて4時間電気分解して、電解ニッケルを得た。
【0022】
Figure 0003792772
上記組成の水性処理液を、図1の電解槽中で、実施例1と同一の条件にて4時間電気分解して、電解ニッケルを得た。
【0023】
Figure 0003792772
上記組成の水性処理液を、図1の電解槽中で、実施例1と同一の条件にて4時間電気分解して、電解ニッケルを得た。
【0024】
Figure 0003792772
上記組成の水性処理液を、図1の電解槽中で、実施例1と同一の条件にて4時間電気分解して、電解ニッケルを得た。
【0025】
実施例1〜3、比較例および従来例にて得られた電解ニッケルを、湿式ボールミルおよび乾式パルベライザにてそれぞれ粉砕した。湿式ボールミルでは、長さ約37cmのポットミル中で磁性ボールにて48時間粉砕し、乾式パルベライザでは、スクリーン径0.5mm 、供給量50kg/Hvにて粉砕した。
各試料を用いた場合の粉砕状態を表1および2に示す。
【0026】
【表1】
Figure 0003792772
【0027】
【表2】
Figure 0003792772
【0028】
表1および2に示すように、本発明の電解ニッケルは、比較例および従来例に示す電解ニッケル、ならびに参考例として示すアトマイズニッケル粉(+ 350メッシュ)を粉砕した場合に比べ、いずれの粉砕法で粉砕しても+ 635メッシュのニッケル粉の割合が少なく、− 635メッシュのニッケル粉の割合が多いことから、一層容易に粉砕されることがわかる。
【0029】
【発明の効果】
本発明の電解ニッケルは、炭素粉を含有しているため容易に粉砕することができ、ひいては、電磁波シールド用塗料等に用いる導電性材料の素材として製造コストおよび耐久性等の面で極めて有用である。
【図面の簡単な説明】
【図1】電解装置の概略図である。
【符号の説明】
1 陽極
2 陰極
3 水性処理液
4 定電流装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to easily pulverized electrolytic nickel, and is particularly suitable as a raw material for producing nickel powder.
[0002]
[Prior art]
In recent years, electromagnetic shielding coatings have been considered as one form of use of conductive coatings. In such electromagnetic wave shielding paints, powders such as silver, nickel, copper and graphite are used as the conductive material. Among them, nickel powder is particularly excellent in terms of production cost and durability. Therefore, the demand is increasing.
[0003]
Examples of nickel powder include atomized powder directly powdered from a molten state, electrolytic powder produced by pulverizing electrolytic nickel, and carbonyl nickel powder produced using a chemical reaction. Electrolytic nickel powder is considered optimal.
[0004]
In order to use such electrolytic nickel powder for the electromagnetic wave shielding paint as described above, it is necessary to pulverize to a particle size of several to several tens of μm. However, since nickel has high hardness and is difficult to pulverize. The problem was in terms of workability and grinding cost.
[0005]
An object of the present invention is to provide an electrolytic nickel as a raw material for producing nickel powder that can be easily pulverized to a particle size of several to several tens of μm.
[0006]
[Means for Solving the Problems]
Now, as a result of intensive studies to achieve the above object, the present inventors have added carbon powder in the treatment liquid when producing electrolytic nickel. The knowledge that it was useful was obtained.
The present invention is based on the above findings.
[0007]
That is, the present invention uses a nickel plate as an anode,
Nickel sulfate: 0.1-28.4% by weight,
Nickel chloride: 0.1 to 40.4% by weight, and carbon powder having an average particle size of 0.01 to 10 μm, and selected from the group consisting of carbon black, graphite powder and mixed powders thereof : 0.1 to 20% by weight
It is an easily pulverized electrolytic nickel obtained by performing an electrolytic treatment in an aqueous treatment solution containing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the components in the aqueous treatment liquid are limited to the above range will be described.
Both nickel sulfate and nickel chloride are indispensable components for carrying out the electrolytic treatment of nickel. In order to ensure the effectiveness of each of them, the content of at least 0.1% by weight is indispensable. However, if it exceeds 28.4% by weight for nickel sulfate and 40.4% by weight for nickel chloride, in any case, problems arise in solubility, and effective electrolysis is not performed.
[0009]
Therefore, in the present invention,
Nickel sulfate: 0.1-28.4% by weight
Nickel chloride: 0.1-40.4% by weight
It is limited to the range.
[0010]
Furthermore, in this invention, although carbon powder is contained in a process liquid, addition of this carbon powder is especially important. This is because when carbon powder is dispersed inside electrolytic nickel, the bonding strength between the nickel is weakened, and it is easy to be pulverized in the dry pulverization method and flat in the wet pulverization method. It is because it can grind | pulverize in a short time compared with.
[0011]
However, if the average particle size of the carbon powder exceeds 10 μm, the carbon powder is strongly precipitated during electrolysis, and nickel powder that is easily pulverized cannot be obtained. On the other hand, if the average particle size is less than 0.01 μm, the bonding force between nickel becomes too strong, and thus a problem arises when pulverizing into a predetermined granularity, particle size, and the like. On the other hand, if the content of the carbon powder exceeds 20% by weight, the viscosity of the aqueous treatment liquid becomes too high and hinders electrolysis.
In the present invention, the carbon powder means carbon black and graphite powder (both natural graphite and artificial graphite are acceptable), and also a mixed powder thereof. However, particularly when carbon black is used, the amount added is limited to the upper limit. If it is close, the viscosity of the aqueous treatment liquid becomes too high, resulting in disadvantages in electrolysis.
[0012]
Next, the electrolysis conditions according to the present invention will be described.
The electrolytic nickel of the present invention is produced according to the following general electrolysis conditions, and is preferably deposited in a plate shape on the cathode.
[0013]
Although it is essential that the anode be soluble, an insoluble anode can also be used in combination. The soluble anode can be formed into a plate shape using the same kind of raw metal ingot as the nickel powder to be manufactured (for example, crude nickel lump). The size is equal to or greater than that of the opposing cathode and is preferably thicker. The purity of the anode is preferably equal to or higher than that of the nickel powder to be produced.
[0014]
As aqueous treatment liquids, in general, a) reduction of metal ion concentration in the cathode layer, b) low chemical polarization, c) low generation of hydrogen gas, d) metal hydroxide produced in the cathode layer Conditions such as a small amount of precipitation are required. Therefore, in the composition of the aqueous treatment liquid, the addition amount of nickel sulfate or nickel chloride is determined in the above range so as to satisfy these various conditions. If desired, an organic colloid can be used as an additive in addition to these basic compositions.
[0015]
The temperature of the aqueous treatment liquid is preferably 55 to 75 ° C. This is because within this temperature range, there are many advantages in powder production and quality control is easy. The cathode current density is preferably about 20 to 200 A / dm2. When less than 20A / dm 2 , nickel is produced in the form of plating, so it is difficult to obtain granular nickel when pulverized. On the other hand, when it exceeds 200A / dm 2 , gas generation increases and the liquid temperature rises and is good This is because it is difficult to obtain simple electrolytic nickel. Furthermore, it is advantageous to stir the aqueous treatment liquid with a pump. By this stirring, the concentration polarization of the aqueous treatment liquid is eliminated, and a uniform aqueous treatment liquid is obtained.
[0016]
The preferred electrolysis conditions are summarized as follows.
1) Temperature: 55-75 ° C
2) Cathode current density: 20-200 A / dm 2
(Current: 300-600 A, Voltage: 1-30V)
3) Distance between electrodes: 20-80mm
[0017]
The shape of the cathode is preferably a flat plate or a cylinder, and a suitable thickness of the produced electrolytic nickel is 5 to 30 mm.
[0018]
The collected cathode-deposited nickel is sufficiently washed with water or the like to remove the aqueous treatment liquid. You may perform an antioxidant process as needed.
[0019]
The electrolytic nickel thus obtained is pulverized to obtain nickel powder having a particle size of about several to several tens of μm required as a conductive material for electromagnetic wave shielding. As the pulverization method, either a wet pulverization method or a dry pulverization method can be used, and there are typical pulverizers such as a ball mill in the former and a pulverizer in the latter.
When the electrolytic nickel of the present invention is pulverized, it can be made into a nickel powder having a desired particle size in a very short time compared to conventional electrolytic nickel containing no carbon powder.
In general, since heat may be generated during pulverization, it is advantageous to take appropriate measures to prevent oxidation due to heat generation, such as cooling the pulverizer with ice.
[0020]
【Example】
Examples of the present invention will be described below.
Figure 0003792772
The aqueous treatment liquid having the above composition is shown in FIG. 1, in which a nickel plate (dimension, 400 mm × 150 mm × 10 mm) is used for the anode and a nickel plate (dimension, 400 mm × 150 mm × 3 mm) is used for the cathode, and the distance between the two electrodes is set to 50 mm. Electrolysis was performed in an electrolytic cell at a current of 500 A and a voltage of 20 V for 4 hours to obtain electrolytic nickel.
[0021]
Figure 0003792772
The aqueous treatment liquid having the above composition was electrolyzed in the electrolytic cell of FIG. 1 for 4 hours under the same conditions as in Example 1 to obtain electrolytic nickel.
[0022]
Figure 0003792772
The aqueous treatment liquid having the above composition was electrolyzed in the electrolytic cell of FIG. 1 for 4 hours under the same conditions as in Example 1 to obtain electrolytic nickel.
[0023]
Figure 0003792772
The aqueous treatment liquid having the above composition was electrolyzed in the electrolytic cell of FIG. 1 for 4 hours under the same conditions as in Example 1 to obtain electrolytic nickel.
[0024]
Figure 0003792772
The aqueous treatment liquid having the above composition was electrolyzed in the electrolytic cell of FIG. 1 for 4 hours under the same conditions as in Example 1 to obtain electrolytic nickel.
[0025]
The electrolytic nickel obtained in Examples 1 to 3, the comparative example, and the conventional example was pulverized by a wet ball mill and a dry pulverizer, respectively. The wet ball mill was pulverized with a magnetic ball for 48 hours in a pot mill having a length of about 37 cm, and the dry pulverizer was pulverized with a screen diameter of 0.5 mm and a supply amount of 50 kg / Hv.
Tables 1 and 2 show the pulverized state when each sample was used.
[0026]
[Table 1]
Figure 0003792772
[0027]
[Table 2]
Figure 0003792772
[0028]
As shown in Tables 1 and 2, the electrolytic nickel of the present invention has any pulverization method as compared with the case where the electrolytic nickel shown in the comparative example and the conventional example and the atomized nickel powder (+350 mesh) shown as the reference example are pulverized. It can be seen that even if pulverized with, the ratio of the +635 mesh nickel powder is small and the ratio of the −635 mesh nickel powder is large, so that it is more easily pulverized.
[0029]
【The invention's effect】
Since the electrolytic nickel of the present invention contains carbon powder, it can be easily pulverized, and as a result, it is extremely useful in terms of manufacturing cost and durability as a material for conductive materials used for electromagnetic wave shielding paints and the like. is there.
[Brief description of the drawings]
FIG. 1 is a schematic view of an electrolysis apparatus.
[Explanation of symbols]
1 Anode 2 Cathode 3 Aqueous Treatment Solution 4 Constant Current Device

Claims (1)

ニッケル板を陽極として、
硫酸ニッケル: 0.1〜28.4重量%、
塩化ニッケル: 0.1〜40.4重量%、および
平均粒径が0.01〜10μm の炭素粉であって、カーボンブラック、黒鉛粉およびそれらの混合粉からなる群より選ばれる炭素粉: 0.1〜20重量%
を含む水性処理液中で電解処理を施して得たことを特徴とする易粉砕性電解ニッケル。
Nickel plate as anode,
Nickel sulfate: 0.1-28.4% by weight,
Nickel chloride: 0.1 to 40.4% by weight, and carbon powder having an average particle size of 0.01 to 10 μm, and selected from the group consisting of carbon black, graphite powder and mixed powders thereof : 0.1 to 20% by weight
An easily pulverizable electrolytic nickel obtained by performing an electrolytic treatment in an aqueous treatment solution containing
JP06102996A 1996-03-18 1996-03-18 Easy-grinding electrolytic nickel Expired - Fee Related JP3792772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06102996A JP3792772B2 (en) 1996-03-18 1996-03-18 Easy-grinding electrolytic nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06102996A JP3792772B2 (en) 1996-03-18 1996-03-18 Easy-grinding electrolytic nickel

Publications (2)

Publication Number Publication Date
JPH09256182A JPH09256182A (en) 1997-09-30
JP3792772B2 true JP3792772B2 (en) 2006-07-05

Family

ID=13159469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06102996A Expired - Fee Related JP3792772B2 (en) 1996-03-18 1996-03-18 Easy-grinding electrolytic nickel

Country Status (1)

Country Link
JP (1) JP3792772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348729A (en) * 2020-02-27 2020-06-30 南昌航空大学 Electrochemical method for recovering nickel from nickel-containing wastewater
CN114411205B (en) * 2022-01-21 2023-10-27 中国人民解放军陆军勤务学院 Preparation method of graphene-loaded nickel particle composite powder

Also Published As

Publication number Publication date
JPH09256182A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
CN113880580B (en) High-entropy carbide ultra-high temperature ceramic powder and preparation method thereof
CN103273056A (en) Flake-shaped copper powder and preparing method thereof
KR102136619B1 (en) Porous Ni-Al-Mo Cathode for Alkaline Water Electrolysis, Preparation Method thereof and Ni-Al-Mo Coating Material for Thermal Spray
CN108044125B (en) Method for preparing Ag nano particles by using liquid diaphragm discharge plasma
US2157699A (en) Electrolytic metal powders
CN102925929A (en) Method for producing metal titanium by molten salt electrolysis
JP2008223096A (en) Method for manufacturing flaky silver powder
JP3792772B2 (en) Easy-grinding electrolytic nickel
WO1989004736A1 (en) Process for producing particulate metal powder
CN111515408A (en) NiTi alloy powder and preparation method and application thereof
CN100477044C (en) Contact consisted of silver, nickel, rare-earth oxide and carbon, and method for producing same
CN109234767B (en) Preparation method of superfine spherical copper powder
JP7018551B1 (en) Silver-coated flake-shaped copper powder and its manufacturing method
JPS62199705A (en) Production of fine-grained copper powder
US2538991A (en) Process for producing brittle iron plate
RU2459015C2 (en) Method for obtaining nanodisperse powders of double tungsten and molybdenum carbides
Luo et al. Electrocatalysis of CO2 reduction on nano silver cathode in ionic liquid BMIMBF4: synthesis of dimethylcarbonate
JP6318719B2 (en) Sulfuric acid copper electrolyte and method for producing dendritic copper powder using this electrolyte
JP2000080408A (en) Production of fine copper powder
Pinchuk et al. Peculiarities of producing an electrolytic iron powder from rolling manufacture waste
JP6318718B2 (en) Sulfuric acid copper electrolyte and method for producing granular copper powder using the electrolyte
JP2000036304A (en) Manufacture of electrolytic manganese dioxide
JP2018076222A (en) Electrolytic manganese dioxide, and use thereof
JP4049212B2 (en) Palladium powder and method for producing the same
KR20090085229A (en) Manufacturing method of high purity nikel powder using nickel ingot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees