JPH0327602B2 - - Google Patents

Info

Publication number
JPH0327602B2
JPH0327602B2 JP62095525A JP9552587A JPH0327602B2 JP H0327602 B2 JPH0327602 B2 JP H0327602B2 JP 62095525 A JP62095525 A JP 62095525A JP 9552587 A JP9552587 A JP 9552587A JP H0327602 B2 JPH0327602 B2 JP H0327602B2
Authority
JP
Japan
Prior art keywords
silver
sulfite
particles
alkali metal
metallic silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62095525A
Other languages
Japanese (ja)
Other versions
JPS63274705A (en
Inventor
Akizo Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANEMATSU GOOSHOO DO BURAJIRU SA
Original Assignee
KANEMATSU GOOSHOO DO BURAJIRU SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANEMATSU GOOSHOO DO BURAJIRU SA filed Critical KANEMATSU GOOSHOO DO BURAJIRU SA
Priority to JP9552587A priority Critical patent/JPS63274705A/en
Publication of JPS63274705A publication Critical patent/JPS63274705A/en
Publication of JPH0327602B2 publication Critical patent/JPH0327602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は亜硫酸銀を原料として用い、これに還
元剤として亜硫酸ナトリウム、一般的には亜硫酸
アルカリ金属塩(亜硫酸アンモニウム塩も包含す
る)を、亜硫酸アルカリ塩が還元作用を示す温度
で水中で反応させ、亜硫酸銀を金属銀に還元し、
これによつて、特に球形超微粒子状の金属銀、こ
とに極めて微細な形の金属銀を製造する方法に関
する。本発明の方法によると、粒子の形状が球形
で超微粒子状の銀粉を簡便に短時間で大量に効率
良く製造できる。 (従来の技術と解決すべき問題点) 従来より知られ実施されている銀粉の製造方法
では、硝酸銀水溶液中の銀イオンをホルマリン、
ヒドラジン等の還元剤で金属銀に還元させる。し
かし、このような還元剤によつて製造できる銀粒
子は、粒子形状が六角形のクリスタリンか歯形状
のデントリチツクと称するもので、その他にでき
る銀粒子も、すべて結晶形で、その粒度も10〜40
ミクロン程度の粗粒子である。ところが半導体関
連産業としての銀粉製造工業に於て製造、提供さ
れる銀粉は、その使用の最大の目的が電気的、導
電性の付与剤として使用することにある。このた
め、その良好な導電性を得るためには、互いに隣
接する銀粒子同志の電気的接点(接融点)をでき
るだけ増加させることが必要である。 そのための手段として、(1)銀粒子をできるだけ
微細にして単位重量当りの銀粒子数及び表面積を
大にし、接点を増加させるか、あるいは、(2)銀粒
子の形をできるだけ接点が増加できるような形状
のものとしてつくることが行われる。このことか
ら、従来の製造方法では、一度できた素粒子状の
銀粉を、更にボール・ミル、スタンプ・ミル等で
機械的に長時間粉砕して、微粒子の銀粉を製造す
るのが通例である。しかしながら、この粉砕によ
つてできる銀粉は、粒子が微細になるだけで粒子
形状は、鱗片状、薄片状で粒子の大小のバラツキ
巾が大きい。つまり粒度分布の巾が大で、粗粒子
と微粒子が共存する銀粉しか得られない。従つて
このような銀粉を合成樹脂と練り合せて、銀粉ペ
ースト、導電インクを調製して、セラミツクコン
デンサー、その他の用途で塗着して使用した場
合、銀粒子の形状に原因して塗着層中の粒子の配
列は不規則で複雑なものになり、銀粒子の最密充
填が達成できず、飛躍的に銀粒子同志間の接点
を、従つて導電性を増大させることが困難であつ
た。 更に、従来技術は、銀粉の製造に当つて、機械
的に長時間粉砕することを要するので、銀粒子の
微細化に粉砕費がかかり、コスト高になる。ひい
てはこれが微細銀粉の量産のネツクとなり、更に
不純物の混入、製造ロス、騒音を伴う極めて煩雑
で不能率な方法である短所がある。 (問題点を解決するための手段) 今般、本発明者は、これら従来技術の短所を解
消するために研究を行つた。その結果、全く驚く
べきことに、技術革新の現代に至るまで、銀粉製
造用としては全く顧りみられなかつた、安価な還
元剤の無水亜硫酸ナトリウムを硝酸銀水溶液に加
え、先ず複分解反応によつて中間体化合物として
亜硫酸銀を水中に生成させ、これを亜硫酸ナトリ
ウムの還元力と加温によつて、次に亜硫酸銀の銀
イオンを完全に金属銀に還元できることを見出し
た。更に、この還元法によつて得られる銀粒子が
球状で粒径0.5〜1ミクロンの超微粒子であるこ
とを見出した。そして亜硫酸銀を生成させてこれ
を金属銀に転化する還元に要する時間は僅か12分
間程度又はそれ以下であることも知見した。 更に、本発明者は研究を続けた結果、原料とし
て硝酸銀水溶液から出発することは必らずしも必
要でなく、何らかの方法で生成された亜硫酸銀で
も水溶液とした亜硫酸ナトリウムでこれが必要な
還元作用を示す温度で亜硫酸銀を還元すれば、所
期の性状をもつ微細な銀粉を製造できることを見
出した。また、還元剤としては亜硫酸ナトリウム
に限定されず、亜硫酸カリウム、亜硫酸リチウム
の如き、一般の水溶液の亜硫酸アルカリ金属塩の
みならず、亜硫酸アンモニウム塩も使用できるこ
とを見出した。亜硫酸銀は、水には難溶性である
ので、攪拌、又はその他の適当な手段で、微細な
固体粒子として水に分散している状態で亜硫酸ナ
トリウムの還元作用を受けると、所望の微細な金
属銀を生成、沈澱できることが知見された。ま
た、亜硫酸銀を金属銀に還元する亜硫酸アルカリ
金属塩(アンモニウム塩)の還元作用は、余り低
温度では強くないので、好ましくは70℃以上、特
に74℃以上の反応温度で還元反応を行なうことが
良いと知見された。 従つて、第1の本発明によると、水に微細な粒
子として分散された亜硫酸銀に対して、亜硫酸銀
の全部又は実質的に全部を金属銀に還元するに足
る量の又はそれよりやや過剰の量の水溶性の亜硫
酸アルカリ金属塩又は亜硫酸アンモニウム塩を、
亜硫酸アルカリ金属塩又はアンモニウム塩が還元
作用を示す温度で反応させ、これにより亜硫酸銀
の還元を行つて、球形超微粒子状の金属銀及び
(又は)球形超微粒子状の金属銀の凝集物を沈澱
させることを特徴とする、球形超微粒子状のの金
属銀の製造法が提供される。 更に、第2の本発明によると、硝酸銀水溶液
へ、その硝酸銀の全部又は実質的に全部を複分解
により亜硫酸銀に転化させるに足る量の又はそれ
よりやや過剰の量の水溶性の亜硫酸アルカリ金属
塩又は亜硫酸アンモニウムを固体状又は水溶液と
して添加して反応させ、これにより生成、析出さ
れて水に微細な粒子として分散された亜硫酸銀に
対して、亜硫酸銀の全部又は実質的に全部を還元
して金属銀に転化するに足る量の又はやや過剰の
量の水溶性の亜硫酸アルカリ金属塩又は亜硫酸ア
ンモニウム塩を固体状又は水溶液として添加し
て、亜硫酸アルカリ金属塩又は亜硫酸アンモニウ
ム塩が還元作用を示す温度で反応させ、これによ
り亜硫酸銀の還元を行つて、球形超微粒子状の金
属銀及び(又は)球形超微粒子状の金属銀の凝集
物を沈澱させることを特徴とする、球形超微粒子
状の金属銀の製造法が提供される。 第1の本発明の方法において用いる亜硫酸アル
カリ金属塩(又はアンモニウム塩)が示す還元作
用の機構は化学上知られている。亜硫酸銀は、こ
れ自体は水と煮沸するだけで金属銀と硫酸銀と亜
硫酸ガスを生ずるから、水の沸点まで反応温度を
上げるのは避けるのが良い。原料の亜硫酸銀は約
4重量%又はそれ以下の濃度で水に分散してある
のがよい。還元剤の亜硫酸アルカリ塩(アンモニ
ウム塩)は化学量論的に必要な量で反応させれば
よく、それよりやや過剰でも差支えない。この還
元剤は固体状のまま亜硫酸銀水分散液に添加して
もよいが、水溶液として溶かしてから添加するの
がよい。 本発明の方法の実施は従来の製造方法に比して
甚だ容易で、経済的である。 第2の本発明の方法においては、硝酸銀水溶液
中の全銀イオン量と反応して亜硫酸銀に転化さ
せ、且つこれを金属銀に還元させるだけの量の亜
硫酸アルカリ塩、好ましくは無水亜硫酸ナトリウ
ムを硝酸銀溶液に一時に、又は連続的に均等に添
加して、加熱すれば銀イオンは容易に金属銀に還
元され、銀微粒子として沈澱する。又、本発明の
好ましい実施態様に於ては、予め約90℃に加温し
た硝酸銀水溶液を攪拌しながら、反応させるべき
無水亜硫酸ナトリウムの全量を、始めの10分間に
連続的に均等に添加していくと溶液中に亜硫酸銀
はコロイド様に生成、析出して行き、先ず全体が
白色凝乳状を呈する亜硫酸銀の水分散液が生成す
る。その後、攪拌を続けながら、この亜硫酸銀は
添加された亜硫酸ナトリウムの還元力と液中の熱
によつて還元作用を受けると、銀微粒子として析
出する。あと2分間は攪拌だけを続け、亜硫酸銀
の完全な還元を終える。この間、反応液は白色か
ら種々に変色して灰白色を経て灰色になる色の変
化を見せる。この最終時の液温が還元可能温度で
74℃か又は僅かにそれ以上、例えば76℃であれ
ば、失敗なく製造することができる。従つて、こ
の手法では、還元操作を始める前に予め硝酸銀水
溶液を所定の温度に上げるのが好ましい。これを
反応容器(槽)と共に加熱して大量の溶液の液温
を上げることは実際問題として時間がかかり過ぎ
る。従つて、予め煮沸し約100℃に加熱した熱湯
を反応槽内の硝酸銀原液に注加することにより所
定の濃度の稀薄硝酸銀水溶液(銀量計算で4%溶
液が適当)にすると同時に所定の液温に上げるこ
とが一度にできる。この方法によつて所定の硝酸
銀濃度、液温に調整してから、還元操作を開始す
る。この場合、還元剤の添加を始めてから、時間
の経過と共に、次第に液温が降下するが、反応時
間12分間が過ぎ、還元が終つた時の液温が還元可
能温度、好ましくは74℃、又はそれ以上であれ
ば、硝酸銀水溶液中の全銀イオンが亜硫酸銀とな
り、その亜硫酸銀が完全に銀に還元されるため、
74℃〜76℃を還元完了温度とするのが便利であ
る。 本発明の方法によつて得られる銀粒子は機械的
粉砕をせず単に上記の還元反応だけでその形状が
球形で粒径0.5〜1ミクロンの超微粒子である。
従つて銀の単位重量当りに見る表面積が格段に大
きく、更に球形粒子は球という丸い形の上から、
所謂、球の最密充填配列が可能であり、すなわち
粒子配列が規則的に均一的にムラなく並び易く、
1個の粒子は隣接する他の粒子と理想的状態では
12の接点で接触することになる。従つて、球形の
銀粒子同志の電気的接点は粒子の微細さとあいま
つて飛躍的に増加するため、金属銀の本来有する
導電性を最大限に利用し得られる。従来、銀粉粒
子として球形粒子の製造は極めて困難か又は不可
能に近いものと考えられて居たが、本発明の方法
によつて容易に製造可能になつた。 本発明の方法における還元反応により生成した
金属銀は当初はスポンジ状に析出した銀粒子であ
つて第一次的に凝集して居り、これを化学処理に
より、銀粒子表面の性質を化学的に変化させるこ
とにより銀粒子間の凝集力を減少させる薬品処理
を更に施すと、銀粒子の分散を良好にすることが
できる。 元来、粒子は微細になればなる程、粒子が凝集
し易い性質がある。このため、顔料、塗料製造業
界に於ては、顔料粒子の分散の良い塗料を製造す
るために、古くから粒子分散の問題が研究され、
例えば酸化チタンを、ナフテン酸、或はフタル酸
で処理して、その粒子表面にナフテン酸チタン或
はフタル酸チタンの膜をつくると粒子分散が良く
なる。また水中で沈澱した顔料は粒子が細かくで
きていても、これを乾燥すると第一次粒子が第二
次的に凝集して、大きい塊になる。これを粉砕
機、その他の方法で幾度も粉砕を繰り返しても、
元の第一次粒子の状態にまで、なかなか分散し難
い。そこで、顔料の分散の良い印刷インク、塗料
を得るために、水に濡れたままの顔料を油類合成
樹脂類と混合して練り合せることにより、水相か
ら油相に置き換える方法が行なわれるようにな
り、これをフラツシングという。この方法は、乾
燥、粉砕工程を経ないで、第二次凝集体を含ま
ず、分散が良い。このように粒子分散の問題がい
ろいろ研究され顔料、塗料、粉体を扱う産業界に
於ては、分散技術として、一つの独立した技術と
なつている。従つて、本発明の球形超微粒子銀粉
製造方法に於ても粒子分散を良くするため、すな
わち解粒のための追加の化学処理工程を行うこと
が好ましい。 本発明者は、本法で析出、沈澱した銀粒子の化
学処理による分散方法について研究した。反応槽
で還元、生成して析出したスポンジ状の金属銀沈
澱の上澄液を捨て、この沈澱に新しく水を加え、
攪拌しながら稀塩酸(10%)を小量加え液を弱酸
性にすると、粒子は益々凝集することを認めた。
しかし、逆に、アルカリ添加でアルカリ性にする
と、スポンジ状に凝集した銀粒子沈澱が分散して
全体が泥状を呈する銀粉沈澱になる。この現象を
発見したので、分散剤としてアルカリを主体にし
た化学(薬品)処理方法を考え、下記の処理方法
によつてスポンジ状沈澱銀粒子を分散させると、
良い結果が得られることを認めた。 すなわち、そのような化学(薬品)処理方法と
しては反応槽に沈澱したスポンジ状の銀粒子沈澱
の上澄液を捨て、銀量が例えば1Kgの場合には、
新しく水15を加え、攪拌しながら、先づ下記の
第1表に示した化学薬品として、NaOHの10%
水溶液を加えてから所定時間攪拌を続け、終つた
ら沈澱を持ち上澄液を捨て、次にまた、水15を
加え攪拌する。このような処理を下記の第1表に
示した手順の通り、終りまで繰返すのが好まし
い。
(Industrial Application Field) The present invention uses silver sulfite as a raw material, and sodium sulfite as a reducing agent, generally an alkali metal sulfite salt (including ammonium sulfite salt).The alkali sulfite salt has a reducing effect. React in water at the indicated temperature to reduce silver sulfite to metallic silver,
This relates in particular to a method for producing metallic silver in the form of spherical ultrafine particles, in particular in extremely fine form. According to the method of the present invention, silver powder having spherical particles and ultrafine particles can be easily produced in a large quantity and efficiently in a short period of time. (Prior art and problems to be solved) In the conventionally known and practiced method for producing silver powder, silver ions in a silver nitrate aqueous solution are mixed with formalin,
It is reduced to metallic silver using a reducing agent such as hydrazine. However, the silver particles that can be produced using such reducing agents are called hexagonal crystalline particles or tooth-shaped dendritic particles, and all other silver particles that are produced are crystalline, and their particle size is 10 to 10. 40
They are coarse particles on the order of microns. However, the silver powder produced and provided in the silver powder manufacturing industry, which is a semiconductor-related industry, is primarily used as an electrically conductive agent. Therefore, in order to obtain good electrical conductivity, it is necessary to increase the electrical contact points (contact melting points) between adjacent silver particles as much as possible. As a means to achieve this, (1) the silver particles can be made as fine as possible to increase the number of silver particles per unit weight and the surface area to increase the number of contact points, or (2) the shape of the silver particles can be changed so that the number of contact points can be increased as much as possible. The process is to create something with a specific shape. For this reason, in conventional manufacturing methods, it is customary to produce silver powder in the form of fine particles by mechanically crushing the once-formed silver powder in the form of elementary particles for a long time using a ball mill, stamp mill, etc. . However, the silver powder produced by this pulverization has only fine particles, and the particle shape is scale-like or flaky, and the size of the particles varies widely. In other words, only silver powder with a wide particle size distribution and a coexistence of coarse particles and fine particles can be obtained. Therefore, when such silver powder is kneaded with a synthetic resin to prepare a silver powder paste or conductive ink and used for coating on ceramic capacitors or other applications, the shape of the silver particles causes problems in the coating layer. The arrangement of the particles inside became irregular and complex, making it impossible to achieve close packing of silver particles, and it was difficult to dramatically increase the contact points between silver particles and therefore the conductivity. . Furthermore, in the conventional technology, when producing silver powder, it is necessary to mechanically grind the silver powder for a long period of time, so that grinding costs are required to make the silver particles finer, resulting in high costs. In turn, this becomes a bottleneck for mass production of fine silver powder, and has the disadvantage of being an extremely complicated and impractical method that involves contamination with impurities, production loss, and noise. (Means for Solving the Problems) The present inventors have recently conducted research in order to eliminate the shortcomings of these conventional techniques. As a result, it was quite surprising that an inexpensive reducing agent, anhydrous sodium sulfite, which had not been considered for silver powder production until the present day of technological innovation, was added to an aqueous solution of silver nitrate. We have discovered that by generating silver sulfite as a body compound in water, and then applying the reducing power of sodium sulfite and heating, the silver ions of silver sulfite can be completely reduced to metallic silver. Furthermore, it has been found that the silver particles obtained by this reduction method are spherical and ultrafine particles with a particle size of 0.5 to 1 micron. It has also been found that the time required for reduction to produce silver sulfite and convert it to metallic silver is only about 12 minutes or less. Furthermore, as a result of continued research, the present inventor found that it is not always necessary to start from an aqueous solution of silver nitrate as a raw material, and even if silver sulfite is produced by some method, it is possible to use sodium sulfite in an aqueous solution to achieve the necessary reducing effect. We have discovered that fine silver powder with the desired properties can be produced by reducing silver sulfite at a temperature of . It has also been found that the reducing agent is not limited to sodium sulfite, and that not only common alkali metal sulfite salts such as potassium sulfite and lithium sulfite, but also ammonium sulfite salts can be used. Silver sulfite is sparingly soluble in water, so when it is dispersed in water as fine solid particles and subjected to the reducing action of sodium sulfite by stirring or other suitable means, the desired fine metal particles can be obtained. It was discovered that silver can be produced and precipitated. In addition, the reducing action of alkali metal sulfite salts (ammonium salts) that reduce silver sulfite to metallic silver is not very strong at low temperatures, so the reduction reaction should preferably be carried out at a reaction temperature of 70°C or higher, especially 74°C or higher. was found to be good. Therefore, according to the first aspect of the present invention, the amount of silver sulfite dispersed in water as fine particles is sufficient to reduce all or substantially all of the silver sulfite to metallic silver, or in a slightly excess amount. water-soluble alkali metal sulfite salt or ammonium sulfite salt in an amount of
A reaction is carried out at a temperature at which an alkali metal sulfite salt or an ammonium salt exhibits a reducing action, thereby reducing silver sulfite to precipitate spherical ultrafine particles of metallic silver and/or aggregates of spherical ultrafine particles of metallic silver. A method for producing metallic silver in the form of spherical ultrafine particles is provided. Furthermore, according to the second invention, a water-soluble alkali metal sulfite salt is added to the aqueous silver nitrate solution in an amount sufficient or slightly in excess to convert all or substantially all of the silver nitrate to silver sulfite by metathesis. Alternatively, ammonium sulfite is added as a solid or an aqueous solution and reacted, and all or substantially all of the silver sulfite that is produced and precipitated and dispersed in water as fine particles is reduced. The temperature at which the alkali metal sulfite or ammonium sulfite exhibits a reducing effect when a sufficient amount or a slightly excessive amount of a water-soluble alkali metal sulfite or ammonium sulfite is added as a solid or an aqueous solution to convert it into metallic silver. A metal in the form of spherical ultrafine particles, which is characterized by reducing silver sulfite and precipitating spherical ultrafine metal silver particles and/or aggregates of spherical ultrafine metal silver particles. A method for producing silver is provided. The mechanism of the reducing action exhibited by the alkali metal sulfite salt (or ammonium salt) used in the first method of the present invention is chemically known. Since silver sulfite itself produces metallic silver, silver sulfate, and sulfur dioxide gas just by boiling it with water, it is best to avoid raising the reaction temperature to the boiling point of water. The raw material silver sulfite is preferably dispersed in water at a concentration of about 4% by weight or less. The alkali sulfite salt (ammonium salt) as a reducing agent may be reacted in a stoichiometrically necessary amount, and may be used in a slightly excess amount. This reducing agent may be added to the aqueous silver sulfite dispersion in a solid state, but it is preferable to dissolve it as an aqueous solution before adding it. Implementation of the method of the invention is significantly easier and more economical than conventional manufacturing methods. In the second method of the present invention, an alkali sulfite salt, preferably anhydrous sodium sulfite, is added in an amount sufficient to react with the total amount of silver ions in the silver nitrate aqueous solution and convert it to silver sulfite, and reduce this to metallic silver. When added uniformly to a silver nitrate solution all at once or continuously and heated, silver ions are easily reduced to metallic silver and precipitated as fine silver particles. Further, in a preferred embodiment of the present invention, the entire amount of anhydrous sodium sulfite to be reacted is continuously and evenly added during the first 10 minutes while stirring the silver nitrate aqueous solution that has been preheated to about 90°C. As the solution progresses, silver sulfite forms and precipitates in a colloid-like manner, and first, an aqueous dispersion of silver sulfite is formed which takes the form of a white curdled milk. Thereafter, while stirring is continued, this silver sulfite is subjected to a reducing action by the reducing power of the added sodium sulfite and the heat in the liquid, and is precipitated as fine silver particles. Continue stirring for another 2 minutes to complete the reduction of silver sulfite. During this time, the reaction solution changes color from white to grayish-white to gray. The final liquid temperature is the reducible temperature.
A temperature of 74°C or slightly higher, for example 76°C, can be produced without failure. Therefore, in this method, it is preferable to raise the silver nitrate aqueous solution to a predetermined temperature in advance before starting the reduction operation. In practice, it takes too much time to heat this together with the reaction vessel (tank) to raise the temperature of a large amount of solution. Therefore, by pouring boiling water that has been pre-boiled and heated to approximately 100°C into the silver nitrate stock solution in the reaction tank, a dilute silver nitrate aqueous solution with a predetermined concentration (a 4% solution is appropriate when calculating the amount of silver) is made, and at the same time, the predetermined solution is added. You can heat it up all at once. After adjusting the silver nitrate concentration and liquid temperature to predetermined values using this method, the reduction operation is started. In this case, after the addition of the reducing agent starts, the liquid temperature gradually decreases over time, but when the reaction time of 12 minutes has passed and the reduction has finished, the liquid temperature is the reducible temperature, preferably 74°C, or If it is more than that, all the silver ions in the silver nitrate aqueous solution become silver sulfite, and the silver sulfite is completely reduced to silver.
It is convenient to set the reduction completion temperature at 74°C to 76°C. The silver particles obtained by the method of the present invention are ultrafine particles having a spherical shape and a particle size of 0.5 to 1 micron, simply by the above-mentioned reduction reaction without being mechanically pulverized.
Therefore, the surface area per unit weight of silver is significantly large, and spherical particles have a round shape called a sphere.
A so-called close-packed arrangement of spheres is possible, that is, the particles are easily arranged regularly, uniformly, and evenly.
In an ideal state, one particle and other adjacent particles
There will be 12 points of contact. Therefore, the number of electrical contacts between spherical silver particles increases dramatically in combination with the fineness of the particles, so that the inherent electrical conductivity of metallic silver can be utilized to the fullest. Conventionally, it was thought that it was extremely difficult or almost impossible to produce spherical particles as silver powder particles, but the method of the present invention has made it possible to produce them easily. The metallic silver produced by the reduction reaction in the method of the present invention is initially silver particles precipitated in the form of a sponge, and is primarily aggregated. If a chemical treatment is further applied to reduce the cohesive force between silver particles by changing it, the dispersion of the silver particles can be improved. Originally, the finer the particles, the more easily they aggregate. For this reason, in the pigment and paint manufacturing industry, the problem of particle dispersion has been studied for a long time in order to produce paints with good pigment particle dispersion.
For example, particle dispersion can be improved by treating titanium oxide with naphthenic acid or phthalic acid to form a film of titanium naphthenate or titanium phthalate on the particle surface. Furthermore, even if the pigment precipitated in water has fine particles, when it is dried, the primary particles coagulate secondary, forming large lumps. No matter how many times this is crushed using a crusher or other methods,
It is difficult to disperse it back to its original state of primary particles. Therefore, in order to obtain printing inks and paints with good pigment dispersion, a method has been developed in which the water phase is replaced with an oil phase by mixing the wet pigment with oil-based synthetic resins and kneading the mixture. This is called flushing. This method does not involve drying or pulverizing steps, does not contain secondary aggregates, and has good dispersion. In this way, various studies have been conducted on the problem of particle dispersion, and it has become an independent dispersion technology in industries that handle pigments, paints, and powders. Therefore, in the method for producing ultrafine spherical silver particles of the present invention, it is preferable to carry out an additional chemical treatment step for improving particle dispersion, that is, for disintegration. The present inventor conducted research on a method for dispersing silver particles precipitated and precipitated by this method by chemical treatment. Discard the supernatant liquid of the spongy metal silver precipitate that was reduced and formed in the reaction tank, and add new water to this precipitate.
When the solution was made weakly acidic by adding a small amount of dilute hydrochloric acid (10%) while stirring, it was observed that the particles became more agglomerated.
However, on the other hand, if the material is made alkaline by adding alkali, the sponge-like aggregated silver particle precipitate will be dispersed, resulting in a silver powder precipitate that has a mud-like appearance as a whole. Having discovered this phenomenon, we considered a chemical treatment method using an alkali as the main dispersant, and dispersed spongy precipitated silver particles using the treatment method below.
I agree that good results can be obtained. In other words, such a chemical treatment method involves discarding the supernatant liquid of the spongy silver particles precipitated in the reaction tank, and when the amount of silver is, for example, 1 kg,
Add 15% fresh water and while stirring, first add 10% NaOH as the chemicals shown in Table 1 below.
After adding the aqueous solution, continue stirring for a predetermined period of time. When finished, hold the precipitate and discard the supernatant liquid. Next, add 15 ml of water and stir. It is preferable to repeat this process until the end according to the procedure shown in Table 1 below.

【表】 このように化学(薬品)処理の終つたあと、銀
粒子を濾取し、乾燥し、軽く叩解するなどで解粒
すると、所望の性状の銀微粉が収得できた。 従つて、本発明の方法においては、沈澱された
超微粒子状の金属銀又は、これの凝集物を母液液
体から分け取り、更に、順次、アルカリ金属水酸
化物好ましくは水酸化ナトリウムの稀薄水溶液と
水酸化アンモニウムの稀薄水溶液とで攪拌下に処
理し、これにより金属銀粒子同志間の凝集性を低
減して金属銀粒子の分散性を向上させて分散させ
る追加の化学薬品処理工程を行うことが好まし
い。つぎに本発明の実施例によつてさらに説明す
る。 実施例 1 硝酸銀水溶液は、純銀1000gと、硝酸
(Be′36°)1250c.c.と、純水(硝酸量×1.5)1875c.c
.
とをこの比率で定量してから混合し、更に加熱し
て銀を溶解して調整した。この硝酸銀の濃厚水溶
液は微弱酸性であるが中性にする必要はない。こ
の硝酸銀濃厚水溶液(液量約2)を反応槽(容
量約40)に入れ、これに100℃の熱湯を23加
え、全量を25とすると銀量計算で、4%の硝酸
銀稀薄水溶液が得られた。これの液温は90℃であ
つた。 この直後、上記の硝酸銀水溶液へ攪拌機を廻転
させながら、無水亜硫酸ナトリウムを粉末のま
ま、チユーブを通して砂時計式に落下させて継続
的に添加した。この時、予めチユーブの口径を調
節して、10分間に無水亜硫酸ナトリウムの全量
1450gが反応槽に添加できるようにした。10分間
で攪拌下に添加が終つたあと、白色を呈する亜硫
酸銀水分散液が得られた。そのまま2分間攪拌を
続け、亜硫酸ナトリウムによる亜硫酸銀の完全な
還元を終えた。この時の液温が74℃であつた。還
元工程が終つたあと、上澄液を除いた。この上澄
液に稀塩酸1滴を入れたが、塩化銀の白色沈澱は
認められなかつた。その後、同一反応槽で前期の
第1表に示した化学薬品処理方法による分散工程
に入つた。 粒径0.5〜1ミクロンの微細な球形銀粉の995g
が得られた。
[Table] After completing the chemical treatment as described above, the silver particles were collected by filtration, dried, and pulverized by light beating, etc., to obtain fine silver powder with the desired properties. Therefore, in the method of the present invention, the precipitated ultrafine metallic silver or its aggregates are separated from the mother liquor liquid, and then sequentially treated with a dilute aqueous solution of an alkali metal hydroxide, preferably sodium hydroxide. An additional chemical treatment step can be performed in which the metal silver particles are treated with a dilute aqueous solution of ammonium hydroxide under stirring, thereby reducing the agglomeration between the metal silver particles and improving the dispersibility of the metal silver particles. preferable. Next, the present invention will be further explained using examples. Example 1 Silver nitrate aqueous solution consists of 1000 g of pure silver, 1250 c.c. of nitric acid (Be′36°), and 1875 c.c. of pure water (amount of nitric acid x 1.5).
.
were determined in this ratio, mixed, and further heated to dissolve the silver. This concentrated aqueous solution of silver nitrate is slightly acidic, but there is no need to make it neutral. Put this concentrated silver nitrate aqueous solution (liquid volume approximately 2) into a reaction tank (capacity approximately 40), add 23 cm of boiling water at 100℃ to this, and make the total volume 25. Calculating the amount of silver, you will obtain a 4% dilute silver nitrate aqueous solution. Ta. The liquid temperature was 90°C. Immediately after this, anhydrous sodium sulfite was continuously added to the silver nitrate aqueous solution in powder form by dropping it in an hourglass manner through the tube while rotating the stirrer. At this time, adjust the diameter of the tube in advance and add the entire amount of anhydrous sodium sulfite in 10 minutes.
1450g could be added to the reaction tank. After the addition was completed under stirring for 10 minutes, a white silver sulfite aqueous dispersion was obtained. Stirring was continued for 2 minutes to complete the reduction of silver sulfite by sodium sulfite. The liquid temperature at this time was 74°C. After the reduction step was completed, the supernatant was removed. One drop of dilute hydrochloric acid was added to this supernatant, but no white precipitate of silver chloride was observed. Thereafter, a dispersion process using the chemical treatment method shown in Table 1 in the previous period was started in the same reaction tank. 995g of fine spherical silver powder with a particle size of 0.5-1 micron
was gotten.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法によつて製造された球形超
微粒子の銀粉の10000倍の電子顕微鏡写真である。
The drawing is an electron micrograph of spherical ultrafine particle silver powder produced by the method of the present invention at a magnification of 10,000 times.

Claims (1)

【特許請求の範囲】 1 水に微細な粒子として分散された亜硫酸銀に
対して、亜硫酸銀の全部又は実質的に全部を金属
銀に還元するに足る量の又はそれよりやや過剰の
量の水溶性の亜硫酸アルカリ金属塩又は亜硫酸ア
ンモニウム塩を、亜硫酸アルカリ金属塩又はアン
モニウム塩が還元作用を示す温度で反応させ、こ
れにより亜硫酸銀の還元を行つて、球形超微粒状
の金属銀及び(又は)球形超微粒子状の金属銀の
凝集物を沈澱させることを特徴とする、球形超微
粒子状の金属銀の製造法。 2 亜硫酸銀は約4重量%又はそれ以下の濃度で
水に攪拌下に分散されてある特許請求の範囲第1
項記載の方法。 3 亜硫酸アルカリ金属塩としては、亜硫酸ナト
リウムを用いる特許請求の範囲第1項記載の方
法。 4 沈澱された超微粒子状の金属銀又はこれの凝
集物を母液液体から分け取り、更に、アルカリ金
属水酸化物、好ましくは水酸化ナトリウムの稀薄
水溶液と水酸化アンモニウムの稀薄水溶液とで攪
拌下に処理し、これにより金属粒子同志間の凝集
性を低減して金属銀粒子の分散性を向上させて分
散させる追加の化学処理工程を有する特許請求の
範囲第1項の方法。 5 硝酸銀水溶液へ、その硝酸銀の全部又は実質
的に全部を複分解により亜硫酸銀に転化させるに
足る量の又はそれよりやや過剰の量の水溶性の亜
硫酸アルカリ金属塩又は亜硫酸アンモニウム塩を
固体状又は水溶液として添加して反応させ、これ
により生成、析出されて、水に微細な粒子として
分散された亜硫酸銀に対して、亜硫酸銀の全部又
は実質的に全部を還元して金属銀に転化するに足
る量の、又はやや過剰の量の水溶性の亜硫酸アル
カリ金属塩、又は亜硫酸アンモニウム塩を固体状
又は水溶液として添加して、亜硫酸アルカリ金属
塩又は亜硫酸アンモニウム塩が還元作用を示す温
度で反応させ、これにより亜硫酸銀の還元を行つ
て、球形超微粒子状の金属銀及び(又は)球形超
微粒子状の金属銀の凝集物を沈澱させることを特
徴とする、球形超微粒子状の金属銀の製造法。 6 亜硫酸銀は約4重量%又はそれ以下の濃度で
水に攪拌下に分散されてある特許請求の範囲第5
項記載の方法。 7 亜硫酸アルカリ金属塩としては、亜硫酸ナト
リウムを用いる特許請求の範囲第5項記載の方
法。 8 沈澱された超微粒子状の金属銀又はこれの凝
集物を母液液体から分け取り、更に、アルカリ金
属水酸化物、好ましくは水酸化ナトリウムの稀薄
水溶液と水酸化アンモニウムの稀薄水溶液とで攪
拌下に処理し、これにより金属粒子同志間の凝集
性を低減して金属銀粒子の分散性を向上させて分
散させる追加の化学処理工程を有する特許請求の
範囲第5項の方法。
[Claims] 1. Silver sulfite dispersed in water as fine particles is dissolved in water in an amount sufficient or slightly in excess to reduce all or substantially all of the silver sulfite to metallic silver. The alkali metal sulfite or ammonium sulfite salt is reacted at a temperature at which the alkali metal sulfite or ammonium salt exhibits a reducing action, thereby reducing the silver sulfite to form spherical ultrafine particles of metallic silver and/or A method for producing metallic silver in the form of spherical ultrafine particles, characterized by precipitating aggregates of metallic silver in the form of spherical ultrafine particles. 2. Silver sulfite is dispersed in water under stirring at a concentration of about 4% by weight or less.
The method described in section. 3. The method according to claim 1, wherein sodium sulfite is used as the alkali metal sulfite salt. 4. The precipitated ultrafine metallic silver or its aggregates are separated from the mother liquid and further stirred with a dilute aqueous solution of an alkali metal hydroxide, preferably sodium hydroxide, and a dilute aqueous solution of ammonium hydroxide. 2. The method of claim 1, further comprising an additional chemical treatment step for dispersing the metallic silver particles by reducing agglomeration between them and improving dispersibility of the metallic silver particles. 5 Adding a water-soluble alkali metal sulfite or ammonium sulfite salt in solid form or in an aqueous solution to an aqueous silver nitrate solution in an amount sufficient to convert all or substantially all of the silver nitrate to silver sulfite by double decomposition, or in an amount slightly in excess thereof. This is sufficient to reduce all or substantially all of the silver sulfite that is produced, precipitated, and dispersed in water as fine particles and convert it into metallic silver. Adding an amount or a slightly excessive amount of a water-soluble alkali metal sulfite salt or ammonium sulfite salt in a solid state or as an aqueous solution and allowing the reaction to occur at a temperature at which the alkali metal sulfite salt or ammonium sulfite exhibits a reducing action; A method for producing metallic silver in the form of spherical ultrafine particles, which comprises reducing silver sulfite to precipitate spherical ultrafine particles of metallic silver and/or an aggregate of spherical ultrafine particles of metallic silver. 6. Silver sulfite is dispersed in water under stirring at a concentration of about 4% by weight or less.
The method described in section. 7. The method according to claim 5, in which sodium sulfite is used as the alkali metal sulfite salt. 8. The precipitated ultrafine metallic silver or its aggregates are separated from the mother liquid and further stirred with a dilute aqueous solution of an alkali metal hydroxide, preferably sodium hydroxide and a dilute aqueous solution of ammonium hydroxide. 6. The method of claim 5, comprising an additional chemical treatment step of treating and thereby reducing agglomeration between metal particles and improving the dispersibility of the metal silver particles.
JP9552587A 1987-04-20 1987-04-20 Production of globular ultrafine particulate metal silver Granted JPS63274705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9552587A JPS63274705A (en) 1987-04-20 1987-04-20 Production of globular ultrafine particulate metal silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9552587A JPS63274705A (en) 1987-04-20 1987-04-20 Production of globular ultrafine particulate metal silver

Publications (2)

Publication Number Publication Date
JPS63274705A JPS63274705A (en) 1988-11-11
JPH0327602B2 true JPH0327602B2 (en) 1991-04-16

Family

ID=14139972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9552587A Granted JPS63274705A (en) 1987-04-20 1987-04-20 Production of globular ultrafine particulate metal silver

Country Status (1)

Country Link
JP (1) JPS63274705A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885535A (en) * 1997-05-27 1999-03-23 Sumitomo Metal Mining Company, Limited Process for extracting and recovering silver
JP5457944B2 (en) * 2010-06-03 2014-04-02 富士フイルム株式会社 Silver tabular grain and method for producing the same, silver tabular grain-containing composition containing silver tabular grain, and film made of silver tabular grain-containing composition
JP5814720B2 (en) * 2011-09-29 2015-11-17 アサヒプリテック株式会社 Silver powder manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035497A (en) * 1973-06-21 1975-04-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035497A (en) * 1973-06-21 1975-04-04

Also Published As

Publication number Publication date
JPS63274705A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
JP4340160B2 (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JP4992003B2 (en) Method for producing metal oxide fine particles
US20080305025A1 (en) Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby
TWI273936B (en) Slurry of ultrafine copper powder and method for producing the slurry
CN101897061A (en) Homogeneous nanoparticle core doping of cathode material precursors
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
KR20070044817A (en) A method for producing iron oxide nano particles
WO2013021974A1 (en) Nickel oxide micropowder and method for producing same
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
CN100427395C (en) Preparation method of mono dispersion nano-alpha aluminium oxide particle powder
CN108137345A (en) FeOOH nano dispersion fluid
JPH0327602B2 (en)
JPH02145422A (en) Production of fine copper oxide powder
JP2001519453A (en) Generation of free-flowing particulate materials using partially neutralized fatty acids
JP2602436B2 (en) Method for producing highly dispersible magnesium hydroxide
JPS59100167A (en) Coated talc and production thereof
JP7018551B1 (en) Silver-coated flake-shaped copper powder and its manufacturing method
JPH05163022A (en) Spherical anatase titanium oxide and its production
KR101313045B1 (en) Process for production of granular cobalt oxide black pigment, and granular cobalt oxide black pigment
JP2834199B2 (en) Method for producing ultrafine tungsten particles
KR20020026019A (en) Method for making super-fine metal powders
JP2023553197A (en) Amorphous tungstic acid fusion and tungsten oxide produced using the same
JP2698873B2 (en) Manufacturing method of metallic pigment with good weather resistance
JPH03237020A (en) Nickel hydroxide
JP2001114514A (en) Method for producing fusiform calcium carbonate with high dispersibility