JP4569727B2 - Silver powder and method for producing the same - Google Patents

Silver powder and method for producing the same Download PDF

Info

Publication number
JP4569727B2
JP4569727B2 JP2000278690A JP2000278690A JP4569727B2 JP 4569727 B2 JP4569727 B2 JP 4569727B2 JP 2000278690 A JP2000278690 A JP 2000278690A JP 2000278690 A JP2000278690 A JP 2000278690A JP 4569727 B2 JP4569727 B2 JP 4569727B2
Authority
JP
Japan
Prior art keywords
silver powder
silver
viscosity
rpm
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278690A
Other languages
Japanese (ja)
Other versions
JP2002080901A (en
Inventor
武 松本
利宗 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2000278690A priority Critical patent/JP4569727B2/en
Publication of JP2002080901A publication Critical patent/JP2002080901A/en
Application granted granted Critical
Publication of JP4569727B2 publication Critical patent/JP4569727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銀粉およびその製造方法に関し、特に、積層コンデンサの内部電極や回路基板の導体パターンなどの電子部品に使用できる導電性ペースト用の銀粉およびその製造方法に関する。
【0002】
【従来の技術】
積層コンデンサの内部電極や回路基板の導体パターンなどの電子部品に使用される導電性ペーストとして、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することにより製造される銀ペーストが使用されている。このような電子部品を小型化したり、銀粉の使用量の低減してコストを削減するため、導電性ペースト用の銀粉は、粒径が適度に小さく、粒度が揃っていることが要求される。
【0003】
このような導電性ペースト用の銀粉を製造する方法として、銀塩含有水溶液にアルカリまたは錯化剤を加えて、酸化銀含有スラリーまたは銀錯塩含有水溶液を生成した後、還元剤を加えることにより銀粉を還元析出させる湿式還元法が知られている。また、所望の粒径を有する導電性ペースト用の銀粉を製造する方法として、銀塩含有水溶液に錯化剤を加えて銀錯塩含有水溶液(銀アンミン錯体水溶液)を生成した後、微量の有機金属化合物の存在下で還元剤を添加することにより、所望の粒径を有する銀粉を製造する方法が知られている(特開平8−176620号参照)。この方法によれば、有機金属化合物の添加量を変えることにより、所望の粒径を有する球状銀粉を得ることができる。
【0004】
【発明が解決しようとする課題】
しかし、従来の銀粉の製造方法によって粒径の小さい銀粉を製造しようとすると、銀粉の粒径を小さくするにしたがって、その銀粉を使用した導電性ペーストの粘度が増大してしまうという問題がある。すなわち、粒径が小さく且つ導電性ペーストに使用した場合の導電性ペーストの粘性が低い銀粉を製造することができないという問題がある。
【0005】
したがって、本発明は、このような従来の問題点に鑑み、銀の粒径や粒度分布を実質的に変化させることなく銀の粒子表面に存在する凹凸や角張った部分を滑らかにすることにより、粒径が小さく且つ導電性ペーストに使用した場合の導電性ペーストの粘性が低い銀粉およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、銀の粒子同士を機械的に衝突させる表面平滑化処理を施すことにより、銀の粒径や粒度分布を実質的に変化させることなく銀の粒子表面に存在する凹凸や角張った部分を滑らかにすることができることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明による銀粉の製造方法は、湿式還元法で製造された銀の粒子同士を機械的に衝突させる表面平滑化処理を施すことを特徴とする。
【0008】
この表面平滑化処理は、粒子を機械的に流動化できる装置、例えばヘンシェルミキサーなどの筒型高速攪拌機を用いて行うことができる。また、表面平滑化処理によって得られる銀粉の平均粒径は、好ましくは0.1乃至10μm、さらに好ましくは5μm以下である。
【0009】
また、本発明による銀粉は、平均粒径が0.1乃至10μmの銀粉であって、この銀粉80重量%に25℃で粘度が0.2乃至0.6Pa・secのエポキシ樹脂20重量%を混練して得られる混練物の粘度をE型粘度計により25℃、1rpmで測定したときの粘度が135Pa・sec以下、または、平均粒径が0.1乃至10μmの銀粉であって、この銀粉80重量%に25℃で粘度が0.2乃至0.6Pa・secのエポキシ樹脂20重量%を混練して得られる混練物の粘度をE型粘度計により25℃、3rpmで測定したときの粘度が90Pa・sec以下であることを特徴とする。
【0010】
【発明の実施の形態】
本発明による銀粉の製造方法の実施の形態では、湿式還元法により銀粉を製造した後、銀の粒子同士を機械的に衝突させる表面平滑化処理を施す。
【0011】
湿式還元法は、銀塩含有水溶液にアルカリまたは錯化剤を加えて、酸化銀含有スラリーまたは銀錯塩含有水溶液を生成した後、還元剤を加えて銀粉を還元析出させる方法である。この湿式還元方法は、二次凝集を防止して単分散した粒子を得ることにより導電性ペーストを使用した電子部品の特性の向上を図るために、還元析出した銀スラリーに対して分散剤を添加する処理、または銀粉を還元析出させる前の銀塩と酸化銀の少なくとも一方を含む水性反応系に対して分散剤を添加する処理を含むことができる。分散剤としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属および保護コロイドのいずれか1種以上を選択して使用することができる。
【0012】
表面平滑化処理は、乾燥した銀粉を、粒子を機械的に流動化させることができる装置に投入して、銀の粒子同士を機械的に衝突させることにより行う。実際には、攪拌機(ミキサー、ミルなど)を使用して、銀粉の投入量、攪拌機の羽根の回転数および種類、処理時間などを、粒子の流動化と衝突による表面形状の平滑化に最適になるように調整する。この表面平滑化処理により、銀粉の粒子表面の凹凸や角張った部分を滑らかにして、銀の粒径や粒度分布を実質的に変えることなく導電性ペーストの粘度を低下させることができる。
【0013】
【実施例】
以下、実施例に基づいて本発明による銀粉およびその製造方法について詳細に説明する。
【0014】
[実施例1]
銀イオンとして21.7g/Lの硝酸銀溶液496.8Lに、工業用のアンモニア35Lを加えて、銀のアンミン錯体溶液を生成した。生成した銀のアンミン錯体溶液に水465Lを加えて希釈し、還元剤としてヒドラジンの80%溶液3.2Lを加えた。また、還元剤を加えた直後に、分散剤としてオレイン酸43.2gを加えた。このようにして得られた銀のスラリーをろ過、水洗した後、乾燥し、乾燥した銀10.3kgを得た。
【0015】
得られた銀を5kgとり、20Lのヘンシェルミキサー(三井鉱山(株)製のFM20C/I型三井ヘンシェルミキサー)に投入した。このヘンシェルミキサーの上羽根としてST型の羽根を使用するとともに、下羽根としてせん断力の強いSo型の羽根を使用して、2750rpmで20分間回転させて表面平滑化処理を行った。
【0016】
得られた銀粉の粒度(マイクロトラックD50)は1.44μm、比表面積は0.92m/g、タップ密度は4.2g/mlであった。また、得られた銀粉8gにエポキシ樹脂(油化シェルエポキシ(株)製のエピコート(グレード819(25℃で粘度0.2〜0.6Pa・sec))2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ180Pa・sec、130Pa・secおよび82Pa・secであった。また、図1に示す倍率5000倍の電子顕微鏡写真からわかるように、本実施例によって得られた銀粉の粒子形状は、表面の凹凸や角張った部分が滑らかになっていた。
【0017】
[比較例1]
実施例1と同様の方法で得られた乾燥した銀を10kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの上羽根として実施例1と同様にST型の羽根を使用するとともに、下羽根として実施例1で使用したSo型の羽根よりもせん断力の弱いAo型の羽根を使用して、1200rpmで10分間回転させて解砕処理を行った。
【0018】
得られた銀粉の粒度(マイクロトラックD50)は1.94μm、比表面積は0.87m/g、タップ密度は3.8g/ml であった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ210Pa・sec、150Pa・secおよび95Pa・secであった。また、図2に示す倍率5000倍の電子顕微鏡写真からわかるように、本比較例によって得られた銀粉の粒子の表面には、凹凸や角張った部分が残ったままであった。
【0019】
実施例1と比較例1の結果を図9および図10に示す。図9に示すように、実施例1では、銀粉の粒度が比較例1より小さく、ペーストの粘度も比較例1より低くなっている。また、図9および図10に示すように、実施例1では、E型粘度計の回転数が0.5rpm、1rpmおよび3rpmのいずれの場合も、ペーストの粘度が比較例1より低くなっている。
【0020】
[実施例2]
銀イオンとして21.9g/Lの硝酸銀溶液492.6Lに、濃度100g/Lの水酸化ナトリウム溶液4Lを加えてpH調整した上で、工業用のアンモニア45Lを加えて、銀のアンミン錯体溶液を生成した。次いで、濃度100g/Lの水酸化ナトリウム溶液をさらに4L加えてpH調整し、水462.5Lを加えて希釈し、還元剤として工業用のホルマリン48.0Lを加えた。その直後に、含量95%のステアリン酸14.8gをエタノール3Lに溶かした溶液を加えた。このようにして得られた銀のスラリーをろ過、水洗した後、乾燥し、乾燥した銀10.7kgを得た。
【0021】
得られた銀を5kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として実施例1と同じ羽根を使用して、2750rpmで25分間回転させて表面平滑化処理を行った。
【0022】
得られた銀粉の粒度(マイクロトラックD50)は2.87μm、比表面積は0.35m/g、タップ密度は5.4g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ110Pa・sec、103Pa・secおよび85Pa・secであった。また、図3に示す倍率5000倍の電子顕微鏡写真からわかるように、本実施例によって得られた銀粉の粒子形状は、表面の凹凸や角張った部分が滑らかになっていた。
【0023】
[比較例2]
実施例2と同様の方法で得られた乾燥した銀を10kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として比較例1と同じ羽根を使用して、1200rpmで10分間回転させて解砕処理を行った。
【0024】
得られた銀粉の粒度(マイクロトラックD50)は3.73μm、比表面積は0.37m/g、タップ密度は4.4g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ155Pa・sec、139Pa・secおよび110Pa・secであった。 また、図4に示す倍率5000倍の電子顕微鏡写真からわかるように、本比較例によって得られた銀粉の粒子の表面には、凹凸や角張った部分が残ったままであった。
【0025】
実施例2と比較例2の結果を図9および図10に示す。図9に示すように、実施例2では、銀粉の粒度が比較例2より小さく、ペーストの粘度も比較例2より低くなっている。また、図9および図10に示すように、実施例2では、E型粘度計の回転数が0.5rpm、1rpmおよび3rpmのいずれの場合も、ペーストの粘度が比較例2より低くなっている。
【0026】
[実施例3]
銀イオンとして47.8g/Lの硝酸銀溶液452.3Lに、工業用のアンモニア水75Lを加えて、銀のアンミン錯体溶液を生成した。生成した銀のアンミン錯体溶液に濃度100g/Lの水酸化ナトリウム溶液200Lを加えてpH調整し、水350Lを加えて希釈し、還元剤として工業用のホルマリン24.2Lを加えた。その直後に、ステアリン酸のエマルジョン(ステアリン酸含量18%)360gを加えた。このようにして得られた銀のスラリーをろ過、水洗した後、乾燥し、乾燥した銀21.6kgを得た。
【0027】
得られた銀を5kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として実施例1と同じ羽根を使用して、2750rpmで25分間回転させて表面平滑化処理を行った。
【0028】
得られた銀粉の粒度(マイクロトラックD50)は1.41μm、比表面積は0.72m/g、タップ密度は5.0g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ157Pa・sec、121Pa・secおよび83Pa・secであった。また、図5に示す倍率5000倍の電子顕微鏡写真からわかるように、本実施例によって得られた銀粉の粒子形状は、表面の凹凸や角張った部分が滑らかになっていた。
【0029】
[比較例3]
実施例3と同様の方法で得られた乾燥した銀を10kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として比較例1と同じ羽根を使用して、1200rpmで10分間回転させて解砕処理を行った。
【0030】
得られた銀粉の粒度(マイクロトラックD50)は1.90μm、比表面積は0.81m/g、タップ密度は4.0g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ192Pa・sec、146Pa・secおよび100Pa・secであった。また、図6に示す倍率5000倍の電子顕微鏡写真からわかるように、本比較例によって得られた銀粉の粒子の表面には、表面の凹凸や角張った部分が残ったままであった。
【0031】
実施例3と比較例3の結果を図9および図10に示す。図9に示すように、実施例3では、銀粉の粒度が比較例3より小さく、ペーストの粘度も比較例3より低くなっている。また、図9および図10に示すように、実施例3では、E型粘度計の回転数が0.5rpm、1rpmおよび3rpmのいずれの場合も、ペーストの粘度が比較例3より低くなっている。
【0032】
[実施例4]
銀イオンとして22.0g/Lの硝酸銀溶液489.2Lに、工業用のアンモニア水45Lを加えて、銀のアンミン錯体溶液を生成した。生成した銀のアンミン錯体溶液に濃度100g/Lの水酸化ナトリウム溶液8Lを加えてpH調整し、水462Lを加えて希釈し、還元剤として工業用のホルマリン48.0Lを加えた。その直後に、オレイン酸を34.5g加えた。このようにして得られた銀のスラリーをろ過、水洗した後、乾燥し、乾燥した銀10.0kgを得た。
【0033】
得られた銀を5kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として実施例1と同じ羽根を使用して、2750rpmで25分間回転させて表面平滑化処理を行った。
【0034】
得られた銀粉の粒度(マイクロトラックD50)は1.85μm、比表面積は0.59m/g、タップ密度は5.2g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ133Pa・sec、112Pa・secおよび84Pa・secであった。また、図7に示す倍率5000倍の電子顕微鏡写真からわかるように、本実施例によって得られた銀粉の粒子形状は、表面の凹凸や角張った部分が滑らかになっていた。
【0035】
[比較例4]
実施例4と同様の方法で得られた乾燥した銀を10kgとり、実施例1と同じ20Lのヘンシェルミキサーに投入した。このヘンシェルミキサーの羽根として比較例1と同じ羽根を使用して、1200rpmで10分間回転させて解砕処理を行った。
【0036】
得られた銀粉の粒度(マイクロトラックD50)は2.51μm、比表面積は0.56m/g、タップ密度は4.2g/mlであった。また、得られた銀粉8gに実施例1と同じエポキシ樹脂2gを加えてペーストを調整し、このペーストの粘度をE型粘度計により25℃、0.5rpm、1rpmおよび3rpmで測定したところ、それぞれ173Pa・sec、143Pa・secおよび105Pa・secであった。また、図8に示す倍率5000倍の電子顕微鏡写真からわかるように、本比較例によって得られた銀粉の粒子の表面には、表面の凹凸や角張った部分が残ったままであった。
【0037】
実施例4と比較例4の結果を図9および図10に示す。図9に示すように、実施例4では、銀粉の粒度が比較例4より小さく、ペーストの粘度も比較例4より低くなっている。また、図9および図10に示すように、実施例4では、E型粘度計の回転数が0.5rpm、1rpmおよび3rpmのいずれの場合も、ペーストの粘度が比較例4より低くなっている。
【0038】
なお、図9および図10に示すように、実施例1〜4では、E型粘度計の回転数が1rpmの場合にペーストの粘度が135Pa・sec以下、E型粘度計の回転数が3rpmの場合にペーストの粘度が90Pa・sec以下であり、いずれの場合も比較例1〜4よりペーストの粘度が低くなっている。
【0039】
【発明の効果】
上述したように、本発明によれば、銀の粒子同士を機械的に衝突させる表面平滑化処理を施すことにより、銀の粒径や粒度分布を実質的に変化させることなく銀の粒子表面に存在する凹凸や角張った部分を滑らかにすることができ、それによって粒径が小さく且つ導電性ペーストに使用した場合のペーストの粘性が低い銀粉を得ることができる。
【図面の簡単な説明】
【図1】実施例1によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図2】比較例1によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図3】実施例2によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図4】比較例2によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図5】実施例3によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図6】比較例3によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図7】実施例4によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図8】比較例4によって得られた銀粉の粒子の表面を示す電子顕微鏡写真。
【図9】実施例1〜4および比較例1〜4の結果を示す表。
【図10】実施例1〜4および比較例1〜4におけるE型粘度計の回転数とペーストの粘度との関係を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silver powder and a method for producing the same, and more particularly to a silver powder for conductive paste that can be used for electronic components such as internal electrodes of multilayer capacitors and conductor patterns of circuit boards, and a method for producing the same.
[0002]
[Prior art]
As a conductive paste used for electronic parts such as an internal electrode of a multilayer capacitor and a conductor pattern of a circuit board, a silver paste manufactured by adding silver powder together with glass frit into an organic vehicle and kneading is used. In order to reduce the cost by reducing the size of such electronic components or reducing the amount of silver powder used, the silver powder for conductive paste is required to have an appropriately small particle size and uniform particle size.
[0003]
As a method for producing such silver powder for conductive paste, an alkali or complexing agent is added to a silver salt-containing aqueous solution to form a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and then a reducing agent is added to the silver powder. A wet reduction method for reducing and precipitating is known. In addition, as a method for producing silver powder for a conductive paste having a desired particle size, a complexing agent is added to a silver salt-containing aqueous solution to form a silver complex salt-containing aqueous solution (silver ammine complex aqueous solution), and then a trace amount of organic metal A method for producing a silver powder having a desired particle size by adding a reducing agent in the presence of a compound is known (see JP-A-8-176620). According to this method, spherical silver powder having a desired particle size can be obtained by changing the amount of the organometallic compound added.
[0004]
[Problems to be solved by the invention]
However, when silver powder having a small particle size is manufactured by a conventional silver powder manufacturing method, there is a problem that the viscosity of the conductive paste using the silver powder increases as the particle size of the silver powder is reduced. That is, there is a problem that silver powder having a small particle size and low viscosity of the conductive paste when used in the conductive paste cannot be produced.
[0005]
Therefore, in view of such a conventional problem, the present invention smoothes irregularities and angular portions present on the surface of silver particles without substantially changing the particle size or particle size distribution of silver, An object of the present invention is to provide a silver powder having a small particle size and a low viscosity of the conductive paste when used in the conductive paste, and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the inventors of the present invention substantially change the particle size and particle size distribution of silver by applying a surface smoothing treatment that mechanically collides silver particles. The present inventors have found that the irregularities and the angular portions present on the surface of the silver particles can be smoothed, and the present invention has been completed.
[0007]
That is, the method for producing silver powder according to the present invention is characterized in that a surface smoothing treatment is performed to mechanically collide silver particles produced by a wet reduction method.
[0008]
This surface smoothing treatment can be performed using an apparatus capable of mechanically fluidizing particles, for example, a cylindrical high-speed stirrer such as a Henschel mixer. Moreover, the average particle diameter of the silver powder obtained by the surface smoothing treatment is preferably 0.1 to 10 μm, more preferably 5 μm or less.
[0009]
Further, the silver powder according to the present invention is a silver powder having an average particle diameter of 0.1 to 10 μm, and 80% by weight of this silver powder is added with 20% by weight of an epoxy resin having a viscosity of 0.2 to 0.6 Pa · sec at 25 ° C. A silver powder having a viscosity of 135 Pa · sec or less or an average particle size of 0.1 to 10 μm when the viscosity of the kneaded product obtained by kneading is measured with an E-type viscometer at 25 ° C. and 1 rpm, Viscosity of a kneaded product obtained by kneading 20% by weight of an epoxy resin having a viscosity of 0.2 to 0.6 Pa · sec at 25 ° C. to 80% by weight with an E-type viscometer at 25 ° C. and 3 rpm. Is 90 Pa · sec or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In embodiment of the manufacturing method of the silver powder by this invention, after manufacturing silver powder by the wet reduction method, the surface smoothing process which makes silver particles collide mechanically is performed.
[0011]
The wet reduction method is a method in which an alkali or a complexing agent is added to a silver salt-containing aqueous solution to form a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and then a reducing agent is added to reduce and precipitate silver powder. In this wet reduction method, a dispersing agent is added to the reduced silver slurry to improve the characteristics of electronic components using conductive paste by preventing secondary aggregation and obtaining monodispersed particles. Or a treatment of adding a dispersant to an aqueous reaction system containing at least one of a silver salt and silver oxide before reducing and precipitating silver powder. As the dispersant, any one or more of fatty acids, fatty acid salts, surfactants, organometallics and protective colloids can be selected and used.
[0012]
The surface smoothing treatment is performed by putting the dried silver powder into an apparatus capable of mechanically fluidizing the particles and mechanically colliding the silver particles. In practice, using a stirrer (mixer, mill, etc.), the amount of silver powder charged, the rotation speed and type of stirrer blades, and the processing time are optimal for fluidizing particles and smoothing the surface shape by collision. Adjust so that By this surface smoothing treatment, irregularities and angular portions on the surface of silver powder particles can be smoothed, and the viscosity of the conductive paste can be reduced without substantially changing the particle size or particle size distribution of silver.
[0013]
【Example】
Hereinafter, based on an Example, the silver powder by this invention and its manufacturing method are demonstrated in detail.
[0014]
[Example 1]
35L of industrial ammonia was added to 496.8L of a silver nitrate solution of 21.7 g / L as silver ions to form a silver ammine complex solution. The resulting silver ammine complex solution was diluted by adding 465 L of water, and 3.2 L of an 80% hydrazine solution was added as a reducing agent. Immediately after adding the reducing agent, 43.2 g of oleic acid was added as a dispersant. The silver slurry thus obtained was filtered, washed with water and then dried to obtain 10.3 kg of dried silver.
[0015]
5 kg of the obtained silver was taken and introduced into a 20 L Henschel mixer (FM20C / I type Mitsui Henschel mixer manufactured by Mitsui Mining Co., Ltd.). An ST-type blade was used as the upper blade of this Henschel mixer, and a So-type blade having a strong shearing force was used as the lower blade, and the surface was smoothed by rotating at 2750 rpm for 20 minutes.
[0016]
The particle size (Microtrac D 50 ) of the obtained silver powder was 1.44 μm, the specific surface area was 0.92 m 2 / g, and the tap density was 4.2 g / ml. In addition, 2 g of epoxy resin (Epicoat (Grade 819 (viscosity 0.2 to 0.6 Pa · sec at 25 ° C.) at 25 ° C.)) 2 g was added to 8 g of the obtained silver powder to prepare a paste. The viscosity of the paste was measured at 25 ° C., 0.5 rpm, 1 rpm, and 3 rpm with an E-type viscometer, and found to be 180 Pa · sec, 130 Pa · sec, and 82 Pa · sec, respectively, and the magnification of 5000 times shown in FIG. As can be seen from the electron micrograph, the particle shape of the silver powder obtained by this example had smooth surface irregularities and angular portions.
[0017]
[Comparative Example 1]
10 kg of dried silver obtained by the same method as in Example 1 was taken and placed in a 20 L Henschel mixer as in Example 1. As an upper blade of this Henschel mixer, an ST-type blade is used in the same manner as in Example 1, and an Ao-type blade having a lower shearing force than the So-type blade used in Example 1 is used as a lower blade. The crushing process was performed by rotating at 1200 rpm for 10 minutes.
[0018]
The particle size (Microtrac D 50 ) of the obtained silver powder was 1.94 μm, the specific surface area was 0.87 m 2 / g, and the tap density was 3.8 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 210 Pa · sec, 150 Pa · sec and 95 Pa · sec. In addition, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 2, the surface of the silver dust particles obtained by this comparative example remained uneven and angular.
[0019]
The results of Example 1 and Comparative Example 1 are shown in FIGS. As shown in FIG. 9, in Example 1, the particle size of silver powder is smaller than that of Comparative Example 1, and the viscosity of the paste is also lower than that of Comparative Example 1. Further, as shown in FIGS. 9 and 10, in Example 1, the viscosity of the paste is lower than that in Comparative Example 1 when the rotational speed of the E-type viscometer is 0.5 rpm, 1 rpm, and 3 rpm. .
[0020]
[Example 2]
After adjusting pH by adding 4L of 100g / L sodium hydroxide solution to 492.6L of 21.9g / L silver nitrate solution as silver ion, 45L of industrial ammonia was added to prepare silver ammine complex solution. Generated. Next, 4 L of a sodium hydroxide solution having a concentration of 100 g / L was added to adjust the pH, and 462.5 L of water was added for dilution, and 48.0 L of industrial formalin was added as a reducing agent. Immediately thereafter, a solution of 14.8 g of 95% stearic acid in 3 L of ethanol was added. The silver slurry thus obtained was filtered, washed with water, and then dried to obtain 10.7 kg of dried silver.
[0021]
5 kg of the obtained silver was taken and put into a 20 L Henschel mixer as in Example 1. The same blade as in Example 1 was used as the blade of this Henschel mixer, and the surface was smoothed by rotating at 2750 rpm for 25 minutes.
[0022]
The particle size (Microtrac D 50 ) of the obtained silver powder was 2.87 μm, the specific surface area was 0.35 m 2 / g, and the tap density was 5.4 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 110 Pa · sec, 103 Pa · sec, and 85 Pa · sec. Moreover, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 3, the particle shape of the silver powder obtained by this example had smooth surface irregularities and angular portions.
[0023]
[Comparative Example 2]
10 kg of dried silver obtained in the same manner as in Example 2 was taken and charged into a 20 L Henschel mixer as in Example 1. The same blade as that of Comparative Example 1 was used as a blade of this Henschel mixer, and the crushing treatment was performed by rotating at 1200 rpm for 10 minutes.
[0024]
The obtained silver powder had a particle size (Microtrac D 50 ) of 3.73 μm, a specific surface area of 0.37 m 2 / g, and a tap density of 4.4 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 155 Pa · sec, 139 Pa · sec, and 110 Pa · sec. Moreover, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 4, irregularities and angular portions remained on the surface of the silver powder particles obtained in this comparative example.
[0025]
The results of Example 2 and Comparative Example 2 are shown in FIGS. As shown in FIG. 9, in Example 2, the particle size of the silver powder is smaller than that of Comparative Example 2, and the viscosity of the paste is also lower than that of Comparative Example 2. Moreover, as shown in FIGS. 9 and 10, in Example 2, the viscosity of the paste is lower than that in Comparative Example 2 when the rotational speed of the E-type viscometer is 0.5 rpm, 1 rpm, and 3 rpm. .
[0026]
[Example 3]
Industrial silver water 75L was added to 452.3L of 47.8 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. To the resulting silver ammine complex solution, 200 L of a sodium hydroxide solution having a concentration of 100 g / L was added to adjust the pH, 350 L of water was added for dilution, and 24.2 L of industrial formalin was added as a reducing agent. Immediately thereafter, 360 g of a stearic acid emulsion (stearic acid content 18%) was added. The silver slurry thus obtained was filtered, washed with water, and then dried to obtain 21.6 kg of dried silver.
[0027]
5 kg of the obtained silver was taken and put into a 20 L Henschel mixer as in Example 1. The same blade as in Example 1 was used as the blade of this Henschel mixer, and the surface was smoothed by rotating at 2750 rpm for 25 minutes.
[0028]
The particle size (Microtrac D 50 ) of the obtained silver powder was 1.41 μm, the specific surface area was 0.72 m 2 / g, and the tap density was 5.0 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 157 Pa · sec, 121 Pa · sec, and 83 Pa · sec. Further, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 5, the particle shape of the silver powder obtained by this example had smooth surface irregularities and angular portions.
[0029]
[Comparative Example 3]
10 kg of dried silver obtained by the same method as in Example 3 was taken and put into a 20 L Henschel mixer as in Example 1. The same blade as that of Comparative Example 1 was used as a blade of this Henschel mixer, and the crushing treatment was performed by rotating at 1200 rpm for 10 minutes.
[0030]
The obtained silver powder had a particle size (Microtrac D 50 ) of 1.90 μm, a specific surface area of 0.81 m 2 / g, and a tap density of 4.0 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 192 Pa · sec, 146 Pa · sec, and 100 Pa · sec. Moreover, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 6, the surface of the silver powder particles obtained by this comparative example remained uneven and angular.
[0031]
The results of Example 3 and Comparative Example 3 are shown in FIGS. As shown in FIG. 9, in Example 3, the particle size of the silver powder is smaller than that of Comparative Example 3, and the viscosity of the paste is also lower than that of Comparative Example 3. Moreover, as shown in FIGS. 9 and 10, in Example 3, the viscosity of the paste is lower than that of Comparative Example 3 when the rotational speed of the E-type viscometer is 0.5 rpm, 1 rpm, and 3 rpm. .
[0032]
[Example 4]
45L of industrial ammonia water was added to 489.2L of a 22.0 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. The resulting silver ammine complex solution was adjusted to pH by adding 8 L of a sodium hydroxide solution having a concentration of 100 g / L, diluted by adding 462 L of water, and 48.0 L of industrial formalin was added as a reducing agent. Immediately thereafter, 34.5 g of oleic acid was added. The silver slurry thus obtained was filtered, washed with water, and then dried to obtain 10.0 kg of dried silver.
[0033]
5 kg of the obtained silver was taken and put into a 20 L Henschel mixer as in Example 1. The same blade as in Example 1 was used as the blade of this Henschel mixer, and the surface was smoothed by rotating at 2750 rpm for 25 minutes.
[0034]
The resulting silver powder of particle size (Microtrac D 50) of 1.85, a specific surface area of 0.59 m 2 / g, a tap density of 5.2 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 133 Pa · sec, 112 Pa · sec, and 84 Pa · sec. Further, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 7, the particle shape of the silver powder obtained by this example had smooth surface irregularities and angular portions.
[0035]
[Comparative Example 4]
10 kg of dried silver obtained by the same method as in Example 4 was taken and put into a 20 L Henschel mixer as in Example 1. The same blade as that of Comparative Example 1 was used as a blade of this Henschel mixer, and the crushing treatment was performed by rotating at 1200 rpm for 10 minutes.
[0036]
The obtained silver powder had a particle size (Microtrac D 50 ) of 2.51 μm, a specific surface area of 0.56 m 2 / g, and a tap density of 4.2 g / ml. Moreover, the same epoxy resin 2g as Example 1 was added to the obtained silver powder 8g, the paste was adjusted, and when the viscosity of this paste was measured at 25 degreeC, 0.5 rpm, 1 rpm, and 3 rpm with the E-type viscosity meter, They were 173 Pa · sec, 143 Pa · sec, and 105 Pa · sec. Moreover, as can be seen from the electron micrograph at a magnification of 5000 shown in FIG. 8, the surface of the silver powder particles obtained by this comparative example remained uneven and angular.
[0037]
The results of Example 4 and Comparative Example 4 are shown in FIGS. As shown in FIG. 9, in Example 4, the particle size of silver powder is smaller than that of Comparative Example 4, and the viscosity of the paste is also lower than that of Comparative Example 4. Moreover, as shown in FIGS. 9 and 10, in Example 4, the viscosity of the paste is lower than that of Comparative Example 4 when the rotational speed of the E-type viscometer is 0.5 rpm, 1 rpm, and 3 rpm. .
[0038]
9 and 10, in Examples 1 to 4, when the rotation speed of the E-type viscometer is 1 rpm, the viscosity of the paste is 135 Pa · sec or less, and the rotation speed of the E-type viscometer is 3 rpm. In some cases, the viscosity of the paste is 90 Pa · sec or less, and in any case, the viscosity of the paste is lower than those of Comparative Examples 1 to 4.
[0039]
【The invention's effect】
As described above, according to the present invention, the surface of the silver particles is substantially changed without changing the particle size or particle size distribution of the silver by performing a surface smoothing process that mechanically collides the silver particles. Existing unevenness and angular portions can be smoothed, whereby a silver powder having a small particle size and low paste viscosity when used in a conductive paste can be obtained.
[Brief description of the drawings]
1 is an electron micrograph showing the surface of silver powder particles obtained in Example 1. FIG.
2 is an electron micrograph showing the surface of silver powder particles obtained in Comparative Example 1. FIG.
3 is an electron micrograph showing the surface of silver powder particles obtained in Example 2. FIG.
4 is an electron micrograph showing the surface of silver powder particles obtained in Comparative Example 2. FIG.
5 is an electron micrograph showing the surface of silver powder particles obtained in Example 3. FIG.
6 is an electron micrograph showing the surface of silver powder particles obtained in Comparative Example 3. FIG.
7 is an electron micrograph showing the surface of silver powder particles obtained in Example 4. FIG.
8 is an electron micrograph showing the surface of silver powder particles obtained in Comparative Example 4. FIG.
FIG. 9 is a table showing the results of Examples 1 to 4 and Comparative Examples 1 to 4.
10 is a graph showing the relationship between the rotational speed of the E-type viscometer and the viscosity of the paste in Examples 1 to 4 and Comparative Examples 1 to 4. FIG.

Claims (4)

平均粒径が0.1乃至10μmの銀粉であって、この銀粉80重量%に25℃で粘度が0.2乃至0.6Pa・secのエポキシ樹脂20重量%を混練して得られる混練物の粘度をE型粘度計により25℃、1rpmで測定したときの粘度が135Pa・sec以下であることを特徴とする、導電性ペースト用銀粉。  A silver powder having an average particle size of 0.1 to 10 μm, which is obtained by kneading 80% by weight of this silver powder with 20% by weight of an epoxy resin having a viscosity of 0.2 to 0.6 Pa · sec at 25 ° C. A silver powder for conductive paste, wherein the viscosity is 135 Pa · sec or less when the viscosity is measured at 25 ° C. and 1 rpm with an E-type viscometer. 平均粒径が0.1乃至10μmの銀粉であって、この銀粉80重量%に25℃で粘度が0.2乃至0.6Pa・secのエポキシ樹脂20重量%を混練して得られる混練物の粘度をE型粘度計により25℃、3rpmで測定したときの粘度が90Pa・sec以下であることを特徴とする、導電性ペースト用銀粉。  A silver powder having an average particle size of 0.1 to 10 μm, which is obtained by kneading 80% by weight of this silver powder with 20% by weight of an epoxy resin having a viscosity of 0.2 to 0.6 Pa · sec at 25 ° C. A silver powder for conductive paste, wherein the viscosity is 90 Pa · sec or less when the viscosity is measured at 25 ° C. and 3 rpm with an E-type viscometer. 前記銀粉の平均粒径が5μm以下であることを特徴とする、請求項またはに記載の導電性ペースト用銀粉。The silver powder for conductive paste according to claim 1 or 2 , wherein an average particle diameter of the silver powder is 5 µm or less. 銀塩含有水溶液にアルカリまたは錯化剤を加えて、酸化銀含有スラリーまたは銀錯塩含有水溶液を生成した後、還元剤を加えて銀粉を還元析出させる湿式還元法において、還元析出した銀スラリーに対して分散剤を添加する処理、または銀粉を還元析出させる前の銀塩と酸化銀の少なくとも一方を含む水性反応系に対して分散剤を添加する処理を行うことにより製造した銀粉に、粒径および粒度分布を実質的に変化させることなく且つ導電性ペーストに使用した場合の導電性ペーストの粘性が低くなるように粒子同士を機械的に衝突させる表面平滑化処理を施すことを特徴とする、請求項1〜3のいずれか一項に記載の導電性ペースト用銀粉の製造方法。In a wet reduction method in which an alkali or complexing agent is added to a silver salt-containing aqueous solution to produce a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and then a reducing agent is added to reduce and precipitate silver powder, process for adding a dispersing agent, or a silver powder silver powder produced by performing a process of adding a dispersing agent to an aqueous reaction system containing at least one silver salt and silver oxide prior to reduction precipitation Te, particle size and and the viscosity of the conductive paste when used in the conductive paste is characterized by subjecting to a surface smoothing treatment for mechanically colliding particles with each other to be lower without substantially changing the particle size distribution, wherein The manufacturing method of the silver powder for conductive pastes as described in any one of claim | item 1 -3 .
JP2000278690A 2000-09-08 2000-09-08 Silver powder and method for producing the same Expired - Fee Related JP4569727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278690A JP4569727B2 (en) 2000-09-08 2000-09-08 Silver powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278690A JP4569727B2 (en) 2000-09-08 2000-09-08 Silver powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002080901A JP2002080901A (en) 2002-03-22
JP4569727B2 true JP4569727B2 (en) 2010-10-27

Family

ID=18763815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278690A Expired - Fee Related JP4569727B2 (en) 2000-09-08 2000-09-08 Silver powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4569727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914514A (en) * 2012-11-08 2013-02-06 苏州大学 Hollow gold nano particle sensing membrane and preparation method thereof
CN105855562A (en) * 2016-03-30 2016-08-17 湖南华信稀贵科技有限公司 Method for preparing nanometer silver powder

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320447B2 (en) * 2004-02-03 2009-08-26 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
JP2006002228A (en) 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method
KR20050122498A (en) * 2004-06-24 2005-12-29 삼성에스디아이 주식회사 A photosensitive paste composition, the pdp electrode prepared therefrom and a pdp comprising the pdp electrode
EP1804987A2 (en) * 2004-10-29 2007-07-11 NanoDynamics, Inc. Aqueous-based method for producing ultra-fine metal powders
JP2006193795A (en) * 2005-01-14 2006-07-27 Dowa Mining Co Ltd Spherical silver powder and its production method
JP5119526B2 (en) * 2007-03-07 2013-01-16 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
JP2010180471A (en) * 2009-02-09 2010-08-19 Dowa Electronics Materials Co Ltd Flaky silver powder and method for producing the same, and conductive paste
KR20140024829A (en) * 2011-06-16 2014-03-03 스미토모 긴조쿠 고잔 가부시키가이샤 Silver powder and method for producing same
JP6856350B2 (en) 2015-10-30 2021-04-07 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914514A (en) * 2012-11-08 2013-02-06 苏州大学 Hollow gold nano particle sensing membrane and preparation method thereof
CN105855562A (en) * 2016-03-30 2016-08-17 湖南华信稀贵科技有限公司 Method for preparing nanometer silver powder

Also Published As

Publication number Publication date
JP2002080901A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
EP2614904B1 (en) Method of manufacturing copper powder for conductive paste
JP5415708B2 (en) Silver powder manufacturing method
KR101424369B1 (en) Fine silver-plated copper powder and method for producing same
JP4569727B2 (en) Silver powder and method for producing the same
US8231704B2 (en) Silver particles and processes for making them
KR101045186B1 (en) Method For Manufacturing Cupper Nanoparticles and Cupper Nanoparticles Using The Same
US8366799B2 (en) Silver particles and a process for making them
TW201619400A (en) Silver powder, method for producing the same, and electrically conductive paste
WO2007034810A1 (en) Process for producing flaky silver powder and flaky silver powder produced by the process
JP4012960B2 (en) Silver powder manufacturing method
JP2005240092A (en) Silver powder and its production method
DE60017710T2 (en) METHOD FOR PRODUCING A NICKEL POWDER
CN112605394B (en) Preparation method of silver powder for conductive paste
EP1151814A1 (en) Nickel powder and conductive paste
JP2000129318A (en) Silver powder and its production
JP4109520B2 (en) Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder
CN116422896A (en) Conductive silver paste, silver powder and method for preparing silver powder by utilizing ionic dispersing agent
JP4100244B2 (en) Nickel powder and method for producing the same
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP5119526B2 (en) Silver powder and method for producing the same
JP2017101268A (en) Spherical silver powder and manufacturing method and conductive paste
JP3934869B2 (en) Fine copper powder for circuit formation
JP2017025380A (en) Silver-coated copper powder and method for producing the same
JP2007224422A (en) Silver powder and paste using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080801

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees