WO2022041870A1 - 电池传输系统、换电站及换电方法 - Google Patents

电池传输系统、换电站及换电方法 Download PDF

Info

Publication number
WO2022041870A1
WO2022041870A1 PCT/CN2021/095152 CN2021095152W WO2022041870A1 WO 2022041870 A1 WO2022041870 A1 WO 2022041870A1 CN 2021095152 W CN2021095152 W CN 2021095152W WO 2022041870 A1 WO2022041870 A1 WO 2022041870A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
carrying
bearing
transmission mechanism
bearing structure
Prior art date
Application number
PCT/CN2021/095152
Other languages
English (en)
French (fr)
Inventor
李永杰
张宁
郑浪
曹佳
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Priority to US18/042,742 priority Critical patent/US20240025290A1/en
Priority to EP21859715.1A priority patent/EP4201758A4/en
Publication of WO2022041870A1 publication Critical patent/WO2022041870A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present application relates to a vehicle power exchange technology, and in particular, to a battery transmission system, a power exchange station and a power exchange method.
  • the swap station is a device for replacing batteries for electric vehicles.
  • the existing power exchange station 1 is mainly composed of a power exchange platform 11 , a rail guided vehicle 12 (Rail Guided Vehicle, RGV) and a battery storage mechanism 13 .
  • the power exchange platform 11 is used to provide parking and positioning of the vehicle, and the battery storage mechanism 13 is used to realize the storage flow and charging operation of the battery.
  • the rail guide trolley 12 is used to transfer the battery between the power exchange platform 11 and the battery storage mechanism 13 in addition to realizing operations such as unlocking and unlocking the battery.
  • the track guiding trolley 12 needs to drive out of the power exchange platform 11 and then dock with the battery storage mechanism 13 to connect the battery, so that the existing power exchange station 1 needs to leave enough space for the power exchange to be performed.
  • the battery connection operation between the platform 11 and the battery storage mechanism 13 results in a larger overall area of the existing power exchange station 1, which is not only unfavorable for the equipment site selection of the power exchange station, but also increases the overall cost of the equipment.
  • the present application provides a battery transmission system, a power exchange station and a power exchange method to overcome the above problems or at least partially solve the above problems.
  • a first aspect of the present application provides a battery transmission system, which includes a first transmission mechanism and a second transmission mechanism, the first transmission mechanism includes a mechanism body; and a first bearing structure movably disposed on the mechanism body It can be lifted and lowered relative to the mechanism body, and the first bearing structure carries the battery; the second transmission mechanism includes a second bearing structure for carrying the battery; and a channel structure formed on the second bearing structure ; wherein, when the first transmission mechanism and the second transmission mechanism are in the docking position, the first carrying structure is vertically aligned with the channel structure, so that the first carrying structure is relative to the mechanism When the body is lifted and lowered, the first bearing structure can pass through the channel structure, so that the bearing surface of the first bearing structure is higher or lower than the bearing surface of the second bearing structure in the horizontal direction, so as to provide all the The battery is connected between the first carrying structure and the second carrying structure.
  • the battery is carried on the carrying surface of the first carrying structure or the carrying surface of the second carrying structure, and wherein, when the carrying surface of the first carrying structure is lower than the second carrying surface
  • the battery carried on the bearing surface of the second bearing structure can be transferred to the position of the bearing surface of the first bearing structure.
  • the bearing surface; when the bearing surface of the first bearing structure is lowered from a position higher than the bearing surface of the second bearing structure to a position lower than the bearing surface of the second bearing structure, the bearing surface of the second bearing structure can be The battery on the bearing surface of the first bearing structure is transferred to the bearing surface of the second bearing structure.
  • the first bearing structure includes a plurality of first bearing members arranged in a comb-like shape
  • the second bearing structure includes a plurality of second bearing members arranged in a comb-like tooth shape
  • the channel structure is arranged by The gap between two adjacent second carriers is naturally formed; and when the first transmission mechanism and the second transmission mechanism are in the docking position, viewed from a top view, each of the first The carrier and each of the second carriers are arranged in a staggered arrangement.
  • the first carrier member and/or the second carrier member further comprises a transfer roller, which is used to provide the first carrier structure and/or the second carrier structure to transfer the battery in a horizontal direction.
  • a transfer roller which is used to provide the first carrier structure and/or the second carrier structure to transfer the battery in a horizontal direction.
  • the second bearing structure further includes an adjustment member for adjusting the size of the gap between the second bearing members in the second bearing structure, so that the channel structure is compatible with the first bearing members of different specifications.
  • the load-bearing structure is adapted.
  • the second transmission mechanism further includes a carrying and moving device, which is used for carrying the second carrying structure and is movable relative to the first transmission mechanism, so that the first transmission mechanism and the first transmission mechanism can be moved together.
  • the two transfer mechanisms are in the docking position.
  • the carrying and moving device includes a track guiding trolley.
  • the second transmission mechanism further includes a battery transmission device, and the second bearing structure is fixed on one end of the battery transmission device adjacent to the first transmission mechanism.
  • the first transmission mechanism further includes a lifting device disposed on the mechanism body and connected to the first bearing structure, for driving the first bearing structure to ascend and descend relative to the mechanism body.
  • a second aspect of the present application provides a power exchange station, which includes: a power exchange platform for performing battery disassembly and assembly operations for a vehicle; a battery storage mechanism for storing batteries; and the battery transmission system described in the first aspect;
  • the first transmission mechanism of the battery transmission system can be docked with the battery storage mechanism to provide battery transmission between the battery storage mechanism and the first transmission mechanism, the battery transmission system
  • the second transmission mechanism can be docked with the power exchange platform for providing the battery to be transported between the power exchange platform and the second transmission mechanism.
  • the battery storage mechanism includes a plurality of battery compartments in a stacked arrangement; when the first carrying structure of the first transmission mechanism is lifted and lowered relative to the mechanism body in a vertical direction, it can be stored with the battery. One of the battery compartments of the mechanism is docked.
  • the battery storage mechanism includes two battery storage racks, and each of the battery storage racks respectively includes a plurality of the battery compartments in a stacked arrangement, and the first transmission mechanism is disposed on the two battery storage racks. between racks.
  • the battery storage mechanism includes a plurality of battery storage racks arranged side by side on one side of the first transmission mechanism, and the first transmission mechanism can move along the horizontal direction of the battery storage rack to be compatible with the battery storage rack.
  • One of the multiple battery storage bays is docked.
  • the battery storage rack is arranged on the side of the first transmission mechanism along a first axis
  • the second transmission mechanism is arranged at the side of the first transmission mechanism along a second axis perpendicular to the first axis.
  • the side of the first transfer mechanism is arranged on the side of the first transmission mechanism along a first axis
  • the second transmission mechanism is arranged at the side of the first transmission mechanism along a second axis perpendicular to the first axis.
  • the power exchange station further includes a charging device disposed in each of the battery compartments, for electrically connecting the batteries stored in each of the battery compartments for charging.
  • a third aspect of the present application provides a power exchange method, which is applied to the power exchange station described in the second aspect above.
  • the method includes: transferring a depleted battery removed from a vehicle from the power exchange platform to the first power exchange platform Two transmission mechanisms; control the second transmission mechanism to be docked with the first transmission mechanism, and the bearing surface of the first bearing structure of the first transmission mechanism is lower than the bearing surface of the second bearing structure along the horizontal direction; Controlling the first bearing structure to rise relative to the mechanism body, so that the bearing surface of the first bearing structure rises from a position lower than the bearing surface of the second bearing structure to a bearing surface higher than the second bearing structure to transfer the depleted battery carried on the carrying surface of the second carrying structure to the carrying surface of the first carrying structure; control the relative relationship of the first carrying structure to the mechanism body lifting and lowering, so that the first bearing structure is docked with an empty battery compartment in the battery storage mechanism, and the depleted battery is transferred from the first bearing structure to the battery compartment for storage; controlling the The first bearing structure is lifted
  • the battery transmission system, the power exchange station and the power exchange method provided by the embodiments of the present application, by setting a first transmission mechanism with a first bearing structure and a second transmission mechanism with a second bearing structure and a channel structure, So that when the first transmission mechanism and the second transmission mechanism are in the docking position, the first bearing structure can pass through the channel structure of the second transmission mechanism when lifting and lowering, so that the bearing surface of the first bearing structure is higher than or equal to the horizontal direction.
  • the bearing surface is lower than the second bearing structure, so as to provide the transfer of the battery between the first bearing structure or the second bearing structure.
  • the present application can reduce or eliminate the difference between the first transmission mechanism and the second transmission mechanism.
  • the battery connection area between them not only shortens the battery flow path in the power exchange station, but also effectively reduces the overall footprint of the power exchange station.
  • Figure 1 is a schematic diagram of the overall structure of the existing power exchange station
  • FIGS. 2A to 2C are schematic diagrams of the overall structure of the battery transmission system of the present application.
  • FIG. 3 is a schematic structural diagram of a first transmission mechanism of the battery transmission system of the present application.
  • FIG. 4 is a schematic structural diagram of a second transmission mechanism of the battery transmission system of the present application.
  • 5A and 5B are schematic structural diagrams of an example of the second transmission mechanism of the present application.
  • 6A and 6B are schematic diagrams of another exemplary structure of the second transmission mechanism of the present application.
  • FIG. 7 is a schematic diagram of the overall structure of the power exchange station of the application.
  • FIG. 8 is a schematic flow chart of the battery swapping method of the present application.
  • 5A, 5B battery storage rack
  • the first embodiment of the present application provides a battery transfer system.
  • the battery transfer system 2 of the present application mainly includes a first transfer mechanism 21 and a second transfer mechanism 22 .
  • the first transmission mechanism 21 mainly includes a mechanism body 211 and a first bearing structure 212 .
  • the first bearing structure 212 is movably disposed on the mechanism body 211 and can rise or fall relative to the mechanism body 211 , and the first bearing structure 212 is used for bearing the battery.
  • the first transmission mechanism 21 further includes a lifting device 213 , which is disposed on the mechanism body 211 and connected to the first bearing structure 212 for driving the first bearing structure 212 relative to the mechanism body 211 goes up or down.
  • the mechanism body 211 is a frame structure
  • the first bearing structure 212 includes a plurality of first bearing members 2121 arranged in a comb-like shape.
  • the lifting device 213 may include a lifting chain and a driving motor.
  • the lifting chain is connected to the first bearing structure 212 and drives the first bearing structure 212 to ascend or descend relative to the mechanism body 211 through the driving force provided by the driving electrodes.
  • the structural arrangement of the lifting device 213 is not limited to the above-mentioned embodiment, and can also be adjusted according to actual needs, which is not limited in this application.
  • the second transmission mechanism 22 includes a second bearing structure 221 and a channel structure 2210 .
  • the second carrying structure 221 is used to carry the battery.
  • the second bearing structure 221 includes a plurality of second bearing members 2211 arranged in a comb-like shape.
  • the channel structure 2210 is formed on the second carrier structure 221 .
  • the channel structure 2210 is naturally formed by a gap between two adjacent second carriers 2211 .
  • the second transmission mechanism 22 can be in a docking position with the first transmission mechanism 21 , so that the battery can be connected between the first transmission mechanism 21 and the second transmission mechanism 22 .
  • the second transfer mechanism 22 may include a carrying device 222 (as shown in FIG. 5A to FIG. 5B ), which is used for carrying the second carrying structure 221 and is movable relative to the first transfer mechanism 21 so as to The first transmission mechanism 21 and the second transmission mechanism 22 are in the docking position.
  • a carrying device 222 as shown in FIG. 5A to FIG. 5B , which is used for carrying the second carrying structure 221 and is movable relative to the first transfer mechanism 21 so as to The first transmission mechanism 21 and the second transmission mechanism 22 are in the docking position.
  • the loading and moving device 222 is, for example, a rail-guided trolley RGV, but it is not limited thereto, and the loading and moving device 222 can also be implemented by other devices having a moving function, which is not limited in this application.
  • the second transmission mechanism 22 may also include a battery transmission device 223 (as shown in FIG. 6A and FIG. 6B ), wherein the second bearing structure 221 is fixed on the battery transmission device 223 adjacent to the first transmission mechanism 21 . one end, and maintains a docking positional relationship with the first bearing structure 212 .
  • the second bearing structure 221 and the battery transmission device 223 may be implemented by an integrally formed structural design, or may be implemented by a fixed connection.
  • the first bearing structure 212 is vertically aligned with the channel structure 2210, so that when the first bearing structure 212 is lifted and lowered relative to the mechanism body 211, The first bearing structure 212 can pass through the channel structure 2210, so that the bearing surface of the first bearing structure 212 is higher or lower than the bearing surface of the second bearing structure 221 in the horizontal direction, so as to provide the battery between the first bearing structure 212 and the second bearing surface.
  • the two bearing structures 221 are connected.
  • the battery 6 can be carried on the carrying surface 212 a of the first carrying structure 212 or on the carrying surface 221 a of the second carrying structure 221 .
  • the bearing surface 212a is raised from a position lower than the bearing surface 221a of the second bearing structure 221 to a position higher than the bearing surface 221a of the second bearing structure 221 (ie, when switching from the state shown in FIG. 5A to the state shown in FIG.
  • the battery 6 carried on the carrying surface 221a of the second carrying structure 221 can be transferred to the carrying surface 212a of the first carrying structure 212; on the contrary, when the carrying surface 212a of the first carrying structure 212 is higher than the second carrying structure
  • the bearing surface 212 of the first bearing structure 212 can be supported.
  • the battery on the bearing surface 212a of the first bearing surface 212a is transferred to the bearing surface 221a of the second bearing structure 221, so as to realize the connection of the battery 6 between the first bearing structure 212 and the second bearing structure 221.
  • the first bearing structure 212 and the second bearing structure 221 are each composed of a plurality of first bearing members 2121 and a plurality of second bearing members 2211 arranged in a comb-like shape, Therefore, it can be clearly seen from FIG. 2B and FIG. 2C , when the first transmission mechanism 21 and the second transmission mechanism 22 are in the docking position, when viewed from a top view, each of the first bearing members 2121 and each of the second bearing members 2211 are in the same shape.
  • the staggered arrangement that is, the state shown in FIG. 2C ), that is to say, with the structural design of the present application, the operation space required for battery connection between the first transmission mechanism 21 and the second transmission mechanism 22 is reduced, and the The overall footprint of the battery transfer system 2 is reduced.
  • the second bearing structure 221 may further include an adjustment member (not shown), which can be used to adjust the size of the gap between the second bearing members 2211 in the second bearing structure 221, so that the adjacent two The channel structure 2210 formed by the size of the gap between the second carriers 2211 is adapted to the first carrier structure 212 , that is, when the first transmission mechanism 21 and the second transmission mechanism 22 are in the docking position, the first carrier structure The positions of the first carriers 2121 in the 212 are aligned with the positions of the gaps in the channel structure 2212 respectively.
  • an adjustment member not shown
  • the channel structure 2210 of the second transmission mechanism 22 can be provided to be suitable for the first bearing structure 212 of different specifications, and the use range of the second transmission mechanism 22 can be expanded.
  • first bearing member 2121 of the first bearing structure 212 and/or the second bearing member 2211 of the second bearing structure 221 further includes a conveying roller, which can provide the first bearing structure 212 and/or the second bearing member 2211.
  • the carrying structure 221 transmits the batteries in a horizontal direction, for example, to provide the first transmission mechanism 21 and the second transmission mechanism 22 and other equipment mechanisms to realize the transmission of the batteries.
  • a second embodiment of the present application provides a power exchange station.
  • the power exchange station of the present application mainly includes a power exchange platform, a battery storage mechanism, and the battery transmission system described in the first embodiment above.
  • the battery swap platform (not shown) is used to perform battery removal and installation operations for the vehicle, that is, removing a depleted battery from the vehicle or installing a fully charged battery on the vehicle.
  • Battery storage mechanisms 5A and 5B are used to store batteries.
  • the battery transfer system includes a first transfer mechanism 21 and a second transfer mechanism 22 for transferring batteries between the battery swap platform and the battery storage mechanisms 5A, 5B.
  • the first transmission mechanism 21 of the battery transmission system 2 can be docked with the battery storage mechanisms 5A, 5B, for providing the battery between the battery storage mechanisms 5A, 5B and the first transmission mechanism 21.
  • the second transmission mechanism 22 of the battery transmission system 2 can be docked with the power exchange platform, so as to provide connection and transmission of batteries between the power exchange platform and the second transmission mechanism 22 .
  • the first bearing structure 212 of the first transmission mechanism 21 may include a plurality of first bearing members 2121 arranged in a comb-like shape. After the first carrying structure 212 is docked with the battery storage mechanism 5 , the battery can be transported between the first carrying structure 212 and the battery storage mechanism 5 in a horizontal direction.
  • the battery storage mechanisms 5A and 5B each include a plurality of battery compartments 51 in a stacked arrangement, wherein when the first carrying structure 212 of the first transmission mechanism 21 is driven by the lifting device 213 to lift relative to the mechanism body 211
  • the battery storage mechanism 5A, 5B is connected to a designated battery compartment 51, the battery can be transported between the first carrying structure 212 and the designated battery compartment 51.
  • the second bearing structure 221 in the second transmission mechanism 22 may also include a plurality of second bearing members 2211 arranged in a comb-tooth shape. After the second carrying structure 221 is docked with the power exchange platform, the battery can be transported between the second carrying structure 221 and the power exchange platform along the horizontal direction.
  • the second transmission mechanism 22 may include a transfer device 222 , wherein the transfer device 222 may be located between the first transfer mechanism 21 and the power exchange platform along a preset traveling track. to provide the second transmission mechanism 22 and the first transmission mechanism 21 to be docked with each other, and for the battery to be connected and transferred between the first supporting structure 212 and the second supporting structure 221, or to provide the second transmission mechanism 22 and the power exchange
  • the battery detachable and detachable structures (not shown) of the platform are butted with each other, so as to provide the connection and transmission of the battery between the second carrying structure 221 and the battery detachable and detachable structure.
  • the second transmission mechanism 22 can also be designed as a whole with the battery disassembly and assembly mechanism of the power exchange platform, so that the battery disassembly and assembly mechanism is not only responsible for the battery disassembly and assembly operation for the vehicle, but also responsible for the power exchange platform and the battery disassembly and assembly operation.
  • the batteries are transferred between the first transfer mechanisms 21 .
  • the second transmission mechanism 22 is, for example, a track-guided trolley including a second bearing structure 221 .
  • the second transmission mechanism 22 may further include a battery transmission device 223 , and the second bearing structure 221 may be fixed on the battery transmission device 223 adjacent to the first transmission mechanism 21 .
  • One end of the battery transmission device 223 away from the first transmission mechanism 21 can be docked with the battery disassembly and assembly mechanism (not shown) of the power exchange platform 4, so as to provide the battery between the second carrying structure 221 and the second carrying structure 221 through the battery transmission device 223.
  • the battery is transferred between the battery disassembly and assembly mechanisms of the power exchange platform 4 .
  • the battery transmission device 223 is, for example, a transmission mechanism such as a roller transmission line, a chain transmission line, and a belt transmission line, which is not limited in this application.
  • the battery transmission device 223 may not be provided, and only the second bearing structure 221 is used to connect with the first transmission mechanism 21 and the battery disassembly and assembly mechanism of the power exchange platform 4 respectively.
  • the battery storage mechanism 5 may include two battery storage racks 5A, 5B, and each of the battery storage racks 5A, 5B respectively includes a plurality of battery compartments 51 in a stacked arrangement,
  • the first transmission mechanism 21 can be disposed between the two battery storage racks 5A, 5B, so that the first carrying structure 212 of the first transmission mechanism 21 can be lifted and lowered relative to the mechanism body 211 in the vertical direction under the driving of the lifting device 213
  • the battery compartment 51 can be docked with each other so as to perform the battery transfer operation between the battery compartment 51 and the first carrying structure 212 .
  • the battery storage mechanism 5 may also include a plurality of battery storage racks 5A, 5B arranged side by side on one side of the first transmission mechanism 21 , wherein the first transmission mechanism 21 may be along the battery storage racks. 5A, 5B are moved horizontally to dock with one of the plurality of battery storage racks 5A, 5B.
  • a guide rail can be installed under the first transmission mechanism 21 so that the first transmission mechanism 21 can move between the plurality of battery storage racks 5A, 5B arranged side by side along the guide rail, so as to expand the capacity of the battery compartment 51 .
  • the battery storage racks 5A and 5B are disposed on one side or opposite to the first transmission mechanism 21 along the first axis (ie, the Y axis shown in FIG. 2B ).
  • the second transmission mechanism 22 is arranged on one side of the first transmission mechanism 21 along the second axis perpendicular to the first axis (ie, the X-axis axis shown in FIG. 2B ).
  • the overall layout of the swap station can be made more compact, thereby reducing the overall footprint of the swap station.
  • the power exchange station further includes a charging device (not shown) disposed in each battery compartment 51 for electrically connecting the batteries stored in each battery compartment 51 for charging.
  • the power exchange station may further include a rest room 7 and a control room 8 , wherein the control room 8 is used for the respective operations of the battery transmission system, the power exchange platform, and the battery storage mechanisms 5A and 5B. , and is also responsible for the cooperative operation between the battery transmission system, the power exchange platform, and the battery storage mechanisms 5A and 5B.
  • the control room 8 can be used to set up equipment rooms, electrical cabinets, cooling devices, power distribution cabinets and other equipment, and is used to be responsible for the motion logic control of each component in the entire power exchange station, such as battery disassembly and assembly operations, transfer operations. , and charging and cooling operations.
  • the rest room 8 is used to provide a rest area for the staff and/or vehicle owners (users) of the power station.
  • a third embodiment of the present application provides a power exchange method, which is applied to the power exchange station described in the second aspect above, and the method includes the following steps:
  • step S81 the depleted battery removed from the vehicle is transferred from the power exchange platform to the second transmission mechanism.
  • the vehicle can be driven into and positioned on the power exchange platform, the depleted battery can be removed from the vehicle by the battery removal mechanism of the power exchange platform, and the disassembled depleted battery can be transferred from the power exchange platform onto the second carrying structure of the second transmission mechanism.
  • Step S82 the second transmission mechanism is controlled to be docked with the first transmission mechanism, and the bearing surface of the first bearing structure of the first transmission mechanism is lower than the bearing surface of the second bearing structure along the horizontal direction.
  • the carrying and moving device when the second carrying structure of the second transmission mechanism is carried on the carrying and moving device (ie, the embodiment shown in FIG. 5A and FIG. 5B ), it is possible to determine the size of the first carrying structure of the first transmission mechanism. Under the condition that the carrying surface is lower than the carrying surface of the second carrying structure in the horizontal direction, the carrying and moving device is made to carry the depleted battery and move from the power exchange platform to the first transmission mechanism, so that the second transmission mechanism and the first transmission mechanism in the docking position.
  • the second bearing structure of the second transmission mechanism when the second bearing structure of the second transmission mechanism is fixed at one end of the battery transmission device adjacent to the first transmission mechanism (ie, the embodiment shown in FIG. 6A and FIG. 6B ) , the second transmission mechanism and the first transmission mechanism are in the default docking state, then there is no need to perform a docking operation, and the bearing surface of the first bearing structure of the first transmission mechanism can be determined to be lower than the bearing surface of the second bearing structure in the horizontal direction. Under the condition of , the depleted battery is directly transferred from the power exchange platform to the second carrying structure by the battery transfer device.
  • Step S83 control the first bearing structure to rise relative to the mechanism body, so that the bearing surface of the first bearing structure rises from a position lower than the bearing surface of the second bearing structure to a position higher than the bearing surface of the second bearing structure, so that the bearing surface
  • the depleted battery on the bearing surface of the second bearing structure is transferred to the bearing surface of the first bearing structure (ie, the state is switched from FIG. 5A to FIG. 5B ).
  • Step S84 control the first transmission mechanism to move up and down relative to the mechanism body, so that the first bearing structure is docked with an empty battery compartment in the battery storage mechanism, and the depleted battery is transferred from the first bearing structure to the battery compartment for storage and charging .
  • Step S85 controlling the first carrying structure to lift relative to the mechanism body, so that the first carrying structure is docked with a battery compartment storing a fully charged battery in the battery storage mechanism, and the fully charged battery is transferred from the battery compartment to the first carrying structure.
  • Step S86 control the first bearing structure to descend relative to the mechanism body, so that the bearing surface of the first bearing structure is lowered from a position higher than the bearing surface of the second bearing structure to a position lower than the bearing surface of the second bearing structure, so that The fully charged battery carried on the carrying surface of the first carrying structure is transferred to the carrying surface of the second carrying structure (ie, the state of FIG. 5B is switched to the state of FIG. 5A ).
  • Step S87 control the second transmission mechanism to transmit the fully charged battery to the power exchange platform, and install the fully charged battery on the vehicle.
  • a second transmission mechanism with a channel structure is provided, so that the first bearing structure of the first transmission mechanism can pass through during lifting and lowering.
  • the channel structure of the second transmission mechanism makes the bearing surface of the first bearing structure higher or lower than the bearing surface of the second bearing structure in the horizontal direction, so as to provide the transfer of the battery between the first bearing structure or the second bearing structure, by
  • the application can greatly reduce or eliminate the connection area between the first transmission mechanism and the second transmission mechanism, so as to reduce the overall footprint of the power exchange station, which is not only conducive to the equipment location operation of the power exchange station, but also reduces the cost of the equipment. overall costs.
  • the present application greatly reduces or eliminates the connection position between the first transmission mechanism and the second transmission mechanism, the distance between the power exchange platform and the battery storage mechanism in the power exchange station can be relatively shortened, thereby The flow path of the battery between the two is shortened, and the efficiency of battery connection and transportation is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请提供一种电池传输系统、换电站及换电方法,所述电池传输系统包括第一传输机构和第二传输机构,其中,当第一传输机构和第二传输机构处于对接位置时,第一传输机构的第一承载结构与第二传输机构的通道结构垂直对齐,以便于第一传输机构的第一承载结构相对于机构本体升降时,第一承载结构可穿过通道结构,而使第一承载结构的承载面沿水平方向高于或低于第二承载结构的承载面,从而提供电池在第一传输机构与第二传输机构之间接驳。借此,本申请可以减小或消除第一传输机构和第二传输机构之间的接驳区域,以满足换电站小型化的发展需求。

Description

电池传输系统、换电站及换电方法 技术领域
本申请涉及车辆换电技术,尤其涉及一种电池传输系统、换电站及换电方法。
背景技术
汽车技术的发展使得新能源汽车成为了汽车行业的主流发展趋势。其中,换电站是给电动汽车更换电池的设备。
如图1所示,现有的换电站1主要由换电平台11、轨道导引小车12(Rail Guided Vehicle,RGV)和电池存储机构13组成。换电平台11用于提供车辆的停放和定位,电池存储机构13用于实现电池的存储流转以及充电操作。轨道导引小车12除用于实现电池的加解锁等操作之外,还用于在换电平台11与电池存储机构13之间传输电池。
由于在换电过程中,轨道导引小车12需要驶出换电平台11后再与电池存储机构13对接以接驳电池,使得现有换电站1需要留出足够的空间,以供执行换电平台11与电池存储机构13之间的电池接驳操作,导致现有换电站1的整体占地面积的较大,不但不利于换电站的设备选址,还会增加设备的综合成本。
发明内容
鉴于上述问题,本申请提供一种电池传输系统、换电站及换电方法,以克服上述问题或者至少部分地解决上述问题。
本申请的第一方面提供一种电池传输系统,其包括第一传输机构和第二传输机构,第一传输机构包括机构本体;以及第一承载结构,其可活动的设置在所述机构本体上并可相对于所述机构本体升降,且所述第一承载结构承载电池;第二传输机构包括第二承载结构,其用于承载电池;以及通道结构,其形成于所述第二承载结构上;其中,当所述第一传输机构与所述第二传输机构处于对接位置时,所述第一承载结构与所述通道结构垂直对准,以供所述第一承载结构相对于所述机构本体升降时,所述第一承载结构可穿过所述通道结构,而使所述第一承载结构的承载面沿水平方向高于或低于所述 第二承载结构的承载面,从而提供所述电池在所述第一承载结构与所述第二承载结构之间接驳。
可选的,所述电池承载于所述第一承载结构的承载面或所述第二承载结构的承载面上,且其中,当所述第一承载结构的承载面由低于所述第二承载结构的承载面的位置上升至高于所述第二承载结构的承载面的位置时,可使承载于所述第二承载结构的承载面上的所述电池转移至所述第一承载结构的承载面上;当所述第一承载结构的承载面由高于所述第二承载结构的承载面的位置下降至低于所述第二承载结构的承载面的位置时,可使承载于所述第一承载结构的承载面上的所述电池转移至所述第二承载结构的承载面上。
可选的,所述第一承载结构包括呈梳齿状排列的多个第一承载件,所述第二承载结构包括呈梳齿状排列的多个第二承载件,所述通道结构借由相邻两个所述第二承载件之间的空隙而自然形成;且当所述第一传输机构与所述第二传输机构处于所述对接位置时,从俯视角度观察,各所述第一承载件与各所述第二承载件呈交错排列设置。
可选的,所述第一承载件和/或所述第二承载件还包括传输辊筒,用于提供第一承载结构和/或第二承载结构沿水平方向传输所述电池。
可选的,所述第二承载结构还包括调节件,用于调节第二承载结构中各所述第二承载件之间的空隙大小,以使所述通道结构与不同规格的所述第一承载结构相适配。
可选的,所述第二传输机构还包括载移装置,其用于承载所述第二承载结构并可相对于所述第一传输机构移动,以使所述第一传输机构与所述第二传输机构处于所述对接位置。
可选的,所述载移装置包括轨道导引小车。
可选的,所述第二传输机构还包括电池传输装置,所述第二承载结构为固设于所述电池传输装置邻近第一传输机构的一端。
可选的,所述第一传输机构还包括升降装置,其设置在所述机构本体上并连接所述第一承载结构,用于驱动所述第一承载结构相对于所述机构本体升降。
本申请的第二方面提供一种换电站,其包括:换电平台,用于针对车辆执行电池拆装操作;电池存储机构,用于存储电池;以及上述第一方面所述的电池传输系统;其中,所述电池传输系统的所述第一传输机构可与所述电池存储机构对接,用于提供电池在所述电池存储机构与所述第一传输机构 之间传输,所述电池传输系统的所述第二传输机构可与所述换电平台对接,用于提供所述电池在所述换电平台与所述第二传输机构之间传输。
可选的,所述电池存储机构包括呈叠设布置的多个电池仓;当所述第一传输机构的第一承载结构沿垂直方向相对于所述机构本体升降时,可与所述电池存储机构的一个所述电池仓对接。
可选的,所述电池存储机构包括两个电池存储架,各所述电池存储架分别包括呈叠设布置的多个所述电池仓,所述第一传输机构设置在所述两个电池存储架之间。
可选的,所述电池存储机构包括并排布设在所述第一传输机构的单侧的多个电池存储架,所述第一传输机构可沿所述电池存储架的水平方向移动以与所述多个电池存储架中的一个对接。
可选的,所述电池存储架沿第一轴向设置在所述第一传输机构的侧部,所述第二传输机构沿垂直于所述第一轴向的第二轴向设置在所述第一传输机构的侧部。
可选的,所述换电站还包括分设于各所述电池仓的充电装置,用于电性连接存储于各所述电池仓内的所述电池以进行充电。
本申请第三方面提供一种换电方法,应用于上述第二方面所述的换电站,所述方法包括:将从车辆上拆卸下的亏电电池由所述换电平台传送至所述第二传输机构;控制所述第二传输机构与所述第一传输机构对接,且所述第一传输机构的第一承载结构的承载面沿水平方向低于所述第二承载结构的承载面;控制所述第一承载结构相对于所述机构本体上升,使得所述第一承载结构的承载面由低于所述第二承载结构的承载面的位置上升至高于所述第二承载结构的承载面的位置,以使承载于所述第二承载结构的承载面上的所述亏电电池转移至所述第一承载结构的承载面上;控制所述第一承载结构相对于所述机构本体升降,使得所述第一承载结构与所述电池存储机构中的一个空置的电池仓对接,并将所述亏电电池由所述第一承载结构传输至所述电池仓内存储;控制所述第一承载结构相对于所述机构本体升降,使得所述第一承载结构与所述电池存储机构中存储有满电电池的一个电池仓对接,并将所述满电电池由所述电池仓传输至所述第一承载结构;控制所述第一承载结构相对于所述机构本体下降,使得所述第一承载结构的承载面由高于所述第二承载结构的承载面的位置下降至低于所述第二承载结构的承载面的位置,以使承载于所述第一承载结构的承载面上的所述满电电池转移至所述第二承 载结构的承载面上;以及控制所述第二传输机构将所述满电电池传输至所述换电平台,并将所述满电电池安装至所述车辆上。
由以上技术方案可见,本申请实施例提供的电池传输系统、换电站及换电方法,通过设置具有第一承载结构的第一传输机构以及具有第二承载结构和通道结构的第二传输机构,以便于第一传输机构和第二传输机构处于对接位置时,第一承载结构可在进行升降时穿过第二传输机构的通道结构,而使第一承载结构的承载面在水平方向高于或低于第二承载结构的承载面,从而提供电池在第一承载结构或第二承载结构之间转运,借由上述结构设计,本申请可以减小或消除第一传输机构和第二传输机构之间的电池接驳区域,不但缩短了换电站中的电池流转路径,且可有效减少换电站的整体占地面积。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为现有换电站的整体架构示意图;
图2A至图2C为本申请的电池传输系统的整体结构示意图;
图3为本申请的电池传输系统的第一传输机构的结构示意图;
图4为本申请的电池传输系统的第二传输机构的结构示意图;
图5A和图5B为本申请的第二传输机构的一示例结构示意图;
图6A和图6B为本申请的第二传输机构的另一示例结构示意图;
图7为本申请的换电站的整体架构示意图;
图8为本申请的换电方法的流程示意图。
元件标号
1:换电站(现有技术);
11:换电平台;
12:轨道导引小车(RGV);
13:电池存储机构;
2:电池传输系统;
21:第一传输机构;
211:机构本体;
212:第一承载结构;
212a:承载面(第一承载结构)
2121:第一承载件;
213:升降装置;
22:第二传输机构;
221:第二承载结构;
221a:承载面(第二承载结构)
2210:通道结构;
2211:第二承载件;
222:载移装置;
223:电池传输装置;
4:换电平台;
5:电池存储机构;
5A,5B:电池存储架;
51:电池仓;
6:电池;
7:休息室:
8:控制室。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例的具体实现。
第一实施例
本申请第一实施例提供一种电池传输系统,如图2A和图2B所示,本申请的电池传输系统2主要包括第一传输机构21和第二传输机构22。
第一传输机构21主要包括机构本体211和第一承载结构212。
其中,第一承载结构212可活动的设置在机构本体211上,并可相对于机构本体211上升或下降,第一承载结构212用于承载电池。
如图3所示,于本实施例中,第一传输机构21还包括升降装置213,其设置在机构本体211上并连接第一承载结构212,用于驱动第一承载结构212相对于机构本体211上升或下降。
可选的,机构本体211为框架结构,
可选的,第一承载结构212包括呈梳齿状排列的多个第一承载件2121。
可选的,升降装置213可包括升降链条和驱动电机,升降链条连接第一承载结构212并通过驱动电极提供的驱动力以带动第一承载结构212相对于机构本体211上升或下降。但升降装置213的结构设置并不以上述实施例为限,亦可根据实际需求进行调整,本申请对此不作限制。
如图4所示,第二传输机构22包括第二承载结构221和通道结构2210。
第二承载结构221用于承载电池。
可选的,第二承载结构221包括呈梳齿状排列的多个第二承载件2211。
通道结构2210形成在第二承载结构221上。
于本实施例中,通道结构2210为借由相邻两个第二承载件2211之间的空隙而自然形成。
于本实施例中,第二传输机构22可与第一传输机构21处于对接位置,以供电池在第一传输机构21和第二传输机构22之间接驳。
于一实施例中,第二传输机构22可以包括载移装置222(如图5A至图5B所示),其用于承载第二承载结构221并可相对于第一传输机构21移动,以使第一传输机构21与第二传输机构22处于对接位置。
具体地,载移装置222例如为轨道导引小车RGV,但并不以此为限,载移装置222也可利用其它具有移动功能的设备予以实现,本申请对此不作限制。
于另一实施例中,第二传输机构22也可包括电池传输装置223(如图6A和图6B所示),其中,第二承载结构221固设于电池传输装置223邻近第一传输机构21的一端,并与第一承载结构212之间保持对接位置关系。
可选的,第二承载结构221与电池传输装置223之间可以为一体成型的结构设计予以实现,亦可采用固定连接方式予以实现。
具体而言,当第一传输机构21与第二传输机构22处于对接位置时,第一承载结构212与通道结构2210垂直对准,以供第一承载结构212在相对于机构本体211升降时,第一承载结构212可穿过通道结构2210,而使第一承载结构212的承载面在水平方向高于或低于第二承载结构221的承载面, 从而提供电池在第一承载结构212与第二承载结构221之间接驳。
如图5A和图5B所示,于本实施例中,电池6可承载于第一承载结构212的承载面212a上或第二承载结构221的承载面221a上,其中,当第一承载结构212的承载面212a由低于第二承载结构221的承载面221a的位置上升至高于第二承载结构221的承载面221a的位置时(即由图5A所示状态切换至图5B所示状态时),可使承载于第二承载结构221的承载面221a上的电池6转移至第一承载结构212的承载面212a上;反之,当第一承载结构212的承载面212a由高于第二承载结构221的承载面221a的位置下降至低于第二承载结构221的承载面221a的位置时(即由图5B所示状态切换至图5A所示状态时),可使承载于第一承载结构212的承载面212a上的电池转移至第二承载结构221的承载面221a上,从而实现电池6在第一承载结构212和第二承载结构221之间接驳。
呈上所述,在本申请的实施例中,第一承载结构212和第二承载结构221各自由呈梳齿状排列的多个第一承载件2121和多个第二承载件2211所构成,因此,由图2B和图2C可以清楚看出,在当第一传输机构21与第二传输机构22处于对接位置时,从俯视角度观察,各第一承载件2121与各第二承载件2211呈交错排列设置(即图2C所示状态),也就是说,借由本申请的结构设计,缩小了第一传输机构21和第二传输机构22之间执行电池接驳所需的操作空间,并减少了电池传输系统2的整体占用面积。
较佳的,第二承载结构221还可包括调节件(未示出),其可用于调节第二承载结构221中各第二承载件2211之间的空隙大小,以使借由相邻两个第二承载件2211之间的空隙大小所形成的通道结构2210与第一承载结构212相适配,也就是,当第一传输机构21与第二传输机构22处于对接位置时,第一承载结构212中各第一承载件2121分别与通道结构2212中的各间隙的位置相互对准。
借由此调节件的设计机制,可提供第二传输机构22的通道结构2210适用于不同规格的第一承载结构212,可以拓展第二传输机构22的使用范围。
于另一实施例中,第一承载结构212的第一承载件2121和/或第二承载结构221的第二承载件2211还包括传输辊筒,可提供第一承载结构212和/或第二承载结构221沿水平方向传输电池,例如,提供第一传输机构21和第二传输机构22与其他设备机构之间实现电池的传输。
第二实施例
本申请第二实施例提供一种换电站。
如图7所示,本申请的换电站主要包括换电平台、电池存储机构和上述第一实施例所述的电池传输系统。
换电平台(未示出)用于针对车辆执行电池拆装操作,亦即,从车辆上拆卸下亏电电池或将满电电池安装至车辆上。
电池存储机构5A和5B用于存储电池。
电池传输系统包括第一传输机构21和第二传输机构22,用于在换电平台和电池存储机构5A、5B之间传输电池。
请结合参考图2A至图2C以及图7,电池传输系统2的第一传输机构21可与电池存储机构5A、5B对接,用于提供电池在电池存储机构5A、5B和第一传输机构21接驳传输,电池传输系统2的第二传输机构22可与换电平台对接,用于提供电池在换电平台与第二传输机构22之间接驳传输。
于本实施例中,第一传输机构21中的第一承载结构212可包括呈梳齿状排列的多个第一承载件2121,其中,各第一承载件2121例如由传输滚筒所构成,以供第一承载结构212在与电池存储机构5对接后,可沿水平方向提供电池在第一承载结构212与电池存储机构5之间传输。
具体而言,电池存储机构5A、5B各自包括呈叠设布置的多个电池仓51,其中,当第一传输机构21的第一承载结构212在升降装置213的驱动下相对于机构本体211升降时,可以与电池存储机构5A、5B中指定的一个电池仓51对接,以供电池在第一承载结构212和指定的电池仓51之间传输。
于本实施例中,第二传输机构22中的第二承载结构221亦可包括呈梳齿状排列的多个第二承载件2211,各第二承载件2211例如由传输滚筒所构成,以供第二承载结构221在与换电平台对接后,可沿水平方向提供电池在第二承载结构221与换电平台之间传输。
如图5A和图5B所示,于一实施例中,第二传输机构22可包括载移装置222,其中,载移装置222可沿预设行驶轨迹在第一传输机构21和换电平台之间移动,以提供第二传输机构22与第一传输机构21相互对接,而供电池在第一承载结构212和第二承载结构221之间接驳转移,或提供第二传输机构22与换电平台的电池拆装结构(未示出)相互对接,而提供电池在第二承载结构221与电池拆装结构之间接驳传输。
可选的,亦可将第二传输机构22与换电平台的电池拆装机构设计为一体,以供电池拆装机构在负责针对车辆进行电池拆装作业之外,还负责在换 电平台和第一传输机构21之间传输电池。其中,第二传输机构22例如为包含有第二承载结构221的轨道导引小车。
如图6A和图6B所示,于另一实施例中,第二传输机构22也可还包括电池传输装置223,第二承载结构221可固设于电池传输装置223邻近第一传输机构21的一端,而电池传输装置223远离第一传输机构21的一端则可与换电平台4的电池拆装机构(未示出)相互对接,借以经由电池传输装置223提供电池在第二承载结构221和换电平台4的电池拆装机构之间传输。
电池传输装置223例如为辊筒传输线、链条传输线、皮带传输线等传输机构,本申请对此不作限制。
于其他实施例中,亦可不设置电池传输装置223,仅利用第二承载结构221分别与第一传输机构21和换电平台4的电池拆装机构相互对接。
如图2A所示,于本申请的一实施例中,电池存储机构5可以包括两个电池存储架5A,5B,各电池存储架5A,5B分别包括呈叠设布置的多个电池仓51,其中,第一传输机构21可设置在两个电池存储架5A,5B之间,以供第一传输机构21的第一承载结构212在升降装置213的驱动下沿垂直方向相对于机构本体211升降时,可以与电池存储架5A或5B中的一个指定的电池仓51相互对接从而在电池仓51和第一承载结构212之间进行电池的传输操作。
于本申请的另一实施例中,电池存储机构5也可包括并排布设在第一传输机构21的单侧的多个电池存储架5A,5B,其中,第一传输机构21可沿电池存储架5A,5B的水平方向移动以与多个电池存储架5A,5B中的一个对接。
例如,可在第一传输机构21的下方加装导轨,以供第一传输机构21可沿着导轨在并排设置的多个电池存储架5A,5B之间移动,借以拓展电池仓51的容量。
请配合参阅图2B和图7,于本实施例中,电池存储架5A,5B沿第一轴向(即图2B所示的Y轴轴向)设置在第一传输机构21的一侧或相对两侧,第二传输机构22则沿垂直于第一轴向的第二轴向(即图2B所示的X轴轴向)设置在第一传输机构21的一侧,借由此设计机制,可令换电站的整体布局更为紧凑,从而缩小换电站的整体占地面积。
在另一实施例中,换电站还包括分设于各电池仓51的充电装置(未示出),用于电性连接存储于各电池仓51内的电池以进行充电。
如图7所示,于其他实施例中,换电站还可包括休息室7和控制室8, 其中,控制室8用于负责电池传输系统、换电平台、电池存储机构5A、5B各自的运作,还负责电池传输系统与换电平台、电池存储机构5A、5B之间的协同运作。具体而言,控制室8可用于设置设备间、电气柜、冷却装置、配电柜等设备,用于负责整个换电站中各组成构件的运动逻辑控制,例如电池的拆装作业、转运传输作业,以及充电冷却作业等。休息室8用于为换电站工作人员和/或车主(用户)提供休息区域。
第三实施例
本申请第三实施例提供一种换电方法,其应用于上述第二方面所述的换电站,所述方法包括以下步骤:
步骤S81,将从车辆上拆卸下的亏电电池由换电平台传送至第二传输机构。
具体而言,可令车辆驶入并定位于换电平台上,以借由换电平台的电池拆装机构从车辆上拆卸下亏电电池,并将拆卸下的亏电电池由换电平台传输至第二传输机构的第二承载结构上。
步骤S82,控制第二传输机构与第一传输机构对接,且第一传输机构的第一承载结构的承载面沿水平方向低于第二承载结构的承载面。
于一实施例中,当第二传输机构的第二承载结构为承载于载移装置上时(即图5A和图5B所示实施例),可在确定第一传输机构的第一承载结构的承载面沿水平方向低于第二承载结构的承载面的条件下,令载移装置承载所述亏电电池由换电平台朝第一传输机构移动,以使第二传输机构与第一传输机构处于对接位置。
还需说明的是,于另一实施例中,当第二传输机构的第二承载结构为固设于电池传输装置邻近第一传输机构的一端时(即图6A和图6B所示实施例),第二传输机构与第一传输机构之间处于默认对接状态,则无需执行对接操作,可在确定第一传输机构的第一承载结构的承载面沿水平方向低于第二承载结构的承载面的条件下,直接借由电池传输装置将亏电电池由换电平台传送至第二承载结构。
步骤S83,控制第一承载结构相对于机构本体上升,使得第一承载结构的承载面由低于第二承载结构的承载面的位置上升至高于第二承载结构的承载面的位置,以使承载于第二承载结构的承载面上的亏电电池转移至第一承载结构的承载面上(即由图5A切换至图5B的状态)。
步骤S84,控制第一传输机构相对于机构本体升降,使得第一承载结 构与电池存储机构中的一个空置的电池仓对接,并将亏电电池由第一承载结构传输至电池仓内存储并充电。
步骤S85,控制第一承载结构相对于机构本体升降,使得第一承载结构与电池存储机构中存储有满电电池的一个电池仓对接,并将满电电池由电池仓传输至第一承载结构。
步骤S86,控制第一承载结构相对于机构本体下降,使得第一承载结构的承载面由高于第二承载结构的承载面的位置下降至低于第二承载结构的承载面的位置,以使承载于第一承载结构的承载面上的满电电池转移至第二承载结构的承载面上(即由图5B切换至图5A的状态)。
步骤S87,控制第二传输机构将满电电池传输至换电平台,并将满电电池安装至车辆上。
综上所述,本申请实施例提供的电池传输系统、换电站及换电方法,通过设置具有通道结构的第二传输机构,以供第一传输机构的第一承载结构可在升降时穿过第二传输机构的通道结构,使得第一承载结构的承载面沿水平方向高于或低于第二承载结构的承载面,从而提供电池在第一承载结构或第二承载结构之间转运,借由此设计机制,当第一传输机构和第二传输机构处于对接位置时,从俯视角度观察,第一传输机构的第一承载结构与第二传输机构的第二承载结构呈交错排列布置,因此,本申请可以大幅缩小或消除第一传输机构和第二传输机构之间的接驳区域,从而实现换电站整体占地面积的减小,不仅利于换电站的设备选址操作亦可降低设备的综合成本。
再者,由于本申请大幅缩小或消除了第一传输机构和第二传输机构之间的接驳位置,因此,可以使得换电站内换电平台和电池存储机构之间的设置距离相对缩短,从而缩短了电池在二者之间的流转路径,提高了电池接驳转运的效率。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种电池传输系统,其特征在于,包括:
    第一传输机构,其包括:
    机构本体;以及
    第一承载结构,其可活动的设置在所述机构本体上并可相对于所述机构本体升降,所述第一承载结构用于承载电池;以及
    第二传输机构,其包括:
    第二承载结构,其用于承载电池;以及
    通道结构,其形成于所述第二承载结构上;
    其中,当所述第一传输机构与所述第二传输机构处于对接位置时,所述第一承载结构与所述通道结构垂直对准,以供所述第一承载结构相对于所述机构本体升降时,所述第一承载结构可穿过所述通道结构,而使所述第一承载结构的承载面沿水平方向高于或低于所述第二承载结构的承载面,从而提供所述电池在所述第一承载结构与所述第二承载结构之间接驳传输。
  2. 根据权利要求1所述的电池传输系统,其特征在于,
    所述电池承载于所述第一承载结构的承载面或所述第二承载结构的承载面上,且其中,
    当所述第一承载结构的承载面由低于所述第二承载结构的承载面的位置上升至高于所述第二承载结构的承载面的位置时,可使承载于所述第二承载结构的承载面上的所述电池转移至所述第一承载结构的承载面上;
    当所述第一承载结构的承载面由高于所述第二承载结构的承载面的位置下降至低于所述第二承载结构的承载面的位置时,可使承载于所述第一承载结构的承载面上的所述电池转移至所述第二承载结构的承载面上。
  3. 根据权利要求1所述的电池传输系统,其特征在于,所述第一承载结构包括呈梳齿状排列的多个第一承载件,所述第二承载结构包括呈梳齿状排列的多个第二承载件,所述通道结构借由相邻两个所述第二承载件之间的空隙而自然形成;
    且当所述第一传输机构与所述第二传输机构处于所述对接位置时,从俯视角度观察,各所述第一承载件与各所述第二承载件呈交错排列设置。
  4. 根据权利要求3所述的电池传输系统,其特征在于,所述第一承载件和/或所述第二承载件还包括传输辊筒,用于提供第一承载结构和/或第二承载结构沿水平方向传输所述电池。
  5. 根据权利要求3所述的电池传输系统,其特征在于,所述第二承载结构还包括调节件,用于调节第二承载结构中各所述第二承载件之间的空隙大小,以使所述通道结构与不同规格的所述第一承载结构相适配。
  6. 根据权利要求1所述的电池传输系统,其特征在于,所述第二传输机构还包括载移装置,其用于承载所述第二承载结构并可相对于所述第一传输机构移动,以使所述第一传输机构与所述第二传输机构处于所述对接位置。
  7. 根据权利要求6所述的电池传输系统,其特征在于,所述载移装置包括轨道导引小车。
  8. 根据权利要求1所述的电池传输系统,其特征在于,所述第二传输机构还包括电池传输装置,所述第二承载结构连接所述电池传输装置邻近所述第一传输机构的一端。
  9. 根据权利要求1所述的电池传输系统,其特征在于,所述第一传输机构还包括升降装置,其设置在所述机构本体上并连接所述第一承载结构,用于驱动所述第一承载结构相对于所述机构本体升降。
  10. 一种换电站,其特征在于,包括:
    换电平台,用于针对车辆执行电池拆装操作;
    电池存储机构,用于存储电池;以及
    根据权利要求1至9中任一项所述的电池传输系统;其中,
    所述电池传输系统的所述第一传输机构可与所述电池存储机构对接,用于提供电池在所述电池存储机构与所述第一传输机构之间传输,所述电池传输系统的所述第二传输机构可与所述换电平台对接,用于提供所述电池在所述换电平台与所述第二传输机构之间传输。
PCT/CN2021/095152 2020-08-24 2021-05-21 电池传输系统、换电站及换电方法 WO2022041870A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/042,742 US20240025290A1 (en) 2020-08-24 2021-05-21 Battery conveying system, battery swapping station, and battery swapping method
EP21859715.1A EP4201758A4 (en) 2020-08-24 2021-05-21 BATTERY TRANSPORT SYSTEM, BATTERY CHANGE STATION AND BATTERY SWAPING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010868352.4A CN111959341A (zh) 2020-08-24 2020-08-24 电池传输系统、换电站及换电方法
CN202010868352.4 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022041870A1 true WO2022041870A1 (zh) 2022-03-03

Family

ID=73390945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095152 WO2022041870A1 (zh) 2020-08-24 2021-05-21 电池传输系统、换电站及换电方法

Country Status (5)

Country Link
US (1) US20240025290A1 (zh)
EP (1) EP4201758A4 (zh)
CN (1) CN111959341A (zh)
TW (1) TWI759070B (zh)
WO (1) WO2022041870A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435179A (zh) * 2022-04-07 2022-05-06 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959341A (zh) * 2020-08-24 2020-11-20 武汉蔚来能源有限公司 电池传输系统、换电站及换电方法
CN115723617A (zh) * 2021-08-31 2023-03-03 比亚迪股份有限公司 轨道车辆自动换电控制方法、系统、电子设备及存储介质
CN117465283A (zh) * 2023-12-27 2024-01-30 宁波格劳博智能工业有限公司 一种电池包快换支架、电池包换电站以及换电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154190A (ja) * 2017-03-16 2018-10-04 三菱自動車工業株式会社 バッテリパック交換装置
CN110027518A (zh) * 2018-10-19 2019-07-19 上海蔚来汽车有限公司 运输装置、交接机构和换电系统
CN210116392U (zh) * 2019-03-20 2020-02-28 上海蔚来汽车有限公司 接驳站及具有该接驳站的充换电站
CN111301360A (zh) * 2020-03-04 2020-06-19 博众精工科技股份有限公司 简易换电系统、换电方法和换电站
CN111301358A (zh) * 2020-03-04 2020-06-19 博众精工科技股份有限公司 单缓存换电系统、换电方法和换电站
CN111959341A (zh) * 2020-08-24 2020-11-20 武汉蔚来能源有限公司 电池传输系统、换电站及换电方法
CN213056772U (zh) * 2020-08-24 2021-04-27 武汉蔚来能源有限公司 电池传输系统及换电站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226372A1 (de) * 2014-12-18 2016-06-23 Kuka Systems Gmbh Verfahren zum Wechseln von Fahrzeugenergiespeichern und Energiespeicherwechseleinrichtung
CN207860149U (zh) * 2017-11-22 2018-09-14 蔚来汽车有限公司 电动汽车的自动换电平台和换电站
CN110789394B (zh) * 2019-09-27 2020-12-15 王丹 一种动力电池自动换电方法
CN111267789B (zh) * 2020-01-31 2022-08-05 山东蓝擎重工科技有限公司 一种新能源车换电系统
CN111469706B (zh) * 2020-04-30 2021-09-14 博众精工科技股份有限公司 一种电池缓存装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154190A (ja) * 2017-03-16 2018-10-04 三菱自動車工業株式会社 バッテリパック交換装置
CN110027518A (zh) * 2018-10-19 2019-07-19 上海蔚来汽车有限公司 运输装置、交接机构和换电系统
CN210116392U (zh) * 2019-03-20 2020-02-28 上海蔚来汽车有限公司 接驳站及具有该接驳站的充换电站
CN111301360A (zh) * 2020-03-04 2020-06-19 博众精工科技股份有限公司 简易换电系统、换电方法和换电站
CN111301358A (zh) * 2020-03-04 2020-06-19 博众精工科技股份有限公司 单缓存换电系统、换电方法和换电站
CN111959341A (zh) * 2020-08-24 2020-11-20 武汉蔚来能源有限公司 电池传输系统、换电站及换电方法
CN213056772U (zh) * 2020-08-24 2021-04-27 武汉蔚来能源有限公司 电池传输系统及换电站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4201758A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435179A (zh) * 2022-04-07 2022-05-06 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法
CN114435179B (zh) * 2022-04-07 2022-06-17 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法

Also Published As

Publication number Publication date
TWI759070B (zh) 2022-03-21
CN111959341A (zh) 2020-11-20
EP4201758A4 (en) 2024-02-28
EP4201758A1 (en) 2023-06-28
US20240025290A1 (en) 2024-01-25
TW202208202A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022041870A1 (zh) 电池传输系统、换电站及换电方法
WO2019105458A1 (zh) 换电站及其控制方法
WO2019100658A1 (zh) 电动汽车的自动换电平台和换电站
EP3760500A1 (en) Battery compartment, new energy automobile battery swap station and battery storage and transfer method
WO2019114546A1 (zh) 充换电站
CN106891865B (zh) 用于电动汽车的底盘式换电站及其换电方法
WO2019114549A1 (zh) 充换电站
WO2019100659A1 (zh) 电动汽车的自动换电平台和换电站
TWI758067B (zh) 電池傳輸系統及其換電站
TW202200415A (zh) 換電平臺、換電站和換電方法
JP7334192B2 (ja) コンテナ車両および充電システムを備える自動保管システム
CN212667171U (zh) 电池传输系统及其换电站
CN210422015U (zh) 换电系统
KR20220092981A (ko) 레일 시스템으로부터 고장 운반체를 회수하기 위한 구조 시스템 및 방법
WO2023186125A1 (zh) 模块化的换电装置
WO2023098727A1 (zh) 可升降平台、换电站以及换电控制方法
TWM570253U (zh) Automatic power exchange platform for electric vehicles and its power station
WO2024140534A1 (zh) 一种电池转运装置和换电站
WO2024139980A1 (zh) 一种电池包存放装置、电连接装置及电池仓位内电池包转运方法
CN213056772U (zh) 电池传输系统及换电站
CN112959917A (zh) 一种模块化换电站
CN216300840U (zh) 优化仓位布设的换电站
CN216101642U (zh) 一种换电站
CN217804393U (zh) 模块化的换电装置及换电站
CN218505676U (zh) 一种换电站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18042742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021859715

Country of ref document: EP

Effective date: 20230324