WO2022041597A1 - 一种透射电镜高分辨原位流体扰流加热芯片 - Google Patents

一种透射电镜高分辨原位流体扰流加热芯片 Download PDF

Info

Publication number
WO2022041597A1
WO2022041597A1 PCT/CN2020/138781 CN2020138781W WO2022041597A1 WO 2022041597 A1 WO2022041597 A1 WO 2022041597A1 CN 2020138781 W CN2020138781 W CN 2020138781W WO 2022041597 A1 WO2022041597 A1 WO 2022041597A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
fluid
heating
window
layer
Prior art date
Application number
PCT/CN2020/138781
Other languages
English (en)
French (fr)
Inventor
廖洪钢
曲密
江友红
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2022041597A1 publication Critical patent/WO2022041597A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/10Thermal environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment

Definitions

  • the invention relates to the field of fluid chips, in particular to a transmission electron microscope high-resolution in-situ fluid disturbance heating chip.
  • Fluid TEM In situ transmission electron microscopy (TEM) is a powerful and indispensable tool for material characterization, providing critical structural and chemical information for materials. In recent years, significant advances in electron microscopy have made atomic-scale imaging a routine process. Fluid TEM has the unique advantage of directly observing the transformation dynamics of materials in fluids with high spatiotemporal resolution. For example, growth trajectories of individual nanoparticles, electrochemical deposition and lithiation of electrode materials, and imaging of biological materials in liquid water can be tracked. Fluid TEM can not only be used to observe the behavior of nanomaterials in a fluid environment in situ, but also integrate heating and freezing elements on fluid TEM chips and fluid rods for functional testing of nanomaterials, which greatly broadens the research scope of transmission electron microscopy. .
  • the invention aims to provide a transmission electron microscope high-resolution in-situ fluid turbulence heating chip with rapid temperature rise and fall, high resolution, controllable fluid flow direction, precise temperature control and low sample drift rate.
  • a transmission electron microscope high-resolution in-situ fluid turbulence heating chip comprising an upper substrate and a lower substrate, the front and back of the upper substrate are provided with a first insulating layer, and the front and back of the lower substrate are provided with a first insulating layer.
  • Each has a second insulating layer on the top, and the front side of the upper substrate is bonded and fixed on the front side of the lower substrate through a ring-shaped metal bonding layer, and self-sealing to form an ultra-thin chamber,
  • the upper substrate is provided with two sample injection ports and an upper central viewing window, the upper central viewing window is located at the center of the heating area, and the two sample injection ports are symmetrically arranged with respect to the upper central viewing window;
  • the lower substrate is provided with a fluid inlet, a fluid outlet, a fluid flow channel, a lower center window, a micro-turbulence column array, a heating layer and a third insulating layer; wherein, the fluid inlet and the fluid outlet are connected in a straight line through the fluid flow channel; the fluid The width of the flow channel increases at the lower central window and covers the entire heating area; the lower central window is located between the fluid inlet and the fluid outlet; the micro-turbulence column array is a rectangularly arranged column array, which is arranged along the longer side of the lower central window and located in the lower center window, and the arrangement direction of the micro-turbulence column array is consistent with the fluid flow direction; the spiral annular heating wire in the center of the heating layer is placed on the second insulating layer on the front side of the lower substrate, and the center of the lower The center of the viewing window is roughly symmetrically distributed, and the heating wires leave a gap between each other and are not connected to each other; the heating layer also has four contact electrodes that extend
  • the upper and lower central windows on the upper and lower substrates are aligned and arranged, and the long sides of the upper and lower central windows are in the same direction as the fluid flow channel.
  • the lower substrate also has an isolation section and a support section, the isolation section is annularly arranged outside the heating area, and the carrier film of the insulating layer on the front side of the lower substrate is the base; the annular isolation section is divided into multiple sections an isolation segment unit, a support segment is arranged between two adjacent isolation segment units, and the substrate body in the area below the support segment is respectively connected to the two adjacent isolation segment units;
  • the isolation segment is divided into four isolation segment units arranged in a rectangular shape, the support segments are distributed on the four corners of the isolation segment, and the direction is consistent with the diagonal;
  • the length of the isolation section is 0.3mm-0.6mm;
  • the width of the support section is 15um-30um.
  • the upper center window and the lower center window are both rectangular center windows
  • the size of the upper center window or the lower center window is 5um*5um-100um*100um; more preferably, the size of the upper center window or the lower center window is 10um*50um.
  • the size of the fluid inlet and the fluid outlet is 200um*200um-800um*800um;
  • the width of the cross-section of the fluid flow channel at the fluid inlet and the fluid outlet is 10um-200um
  • the width of the cross-section at the heating area is 250um-550um
  • the height is 50nm-1000nm.
  • the thickness of the metal bonding layer is 50 nm-2000 nm; the material of the metal bonding layer is a low melting point metal; preferably, the material of the metal bonding layer is In, Sn or Al.
  • the insulating layer is silicon nitride or silicon oxide, and the thickness is 5nm-200nm;
  • the thickness of the upper substrate or the lower substrate is 50um-500um.
  • each micro-turbulence column in the micro-turbulence column array is a cylinder with a diameter of 1um-20um.
  • the outer diameter of the spiral annular heating wire of the heating layer is 0.2mm-0.5mm, and the thickness is 50nm-500nm;
  • the spiral annular heating wire adopts metal gold, platinum, palladium, rhodium, molybdenum, tungsten, platinum-rhodium, or an alloy or non-metallic molybdenum carbide composed of at least two of the above metals.
  • the preparation method of the upper substrate is:
  • the thickness of silicon nitride or silicon oxide is 20nm-200nm;
  • the photolithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the development time is 50s;
  • the thickness of the insulating layer at the small holes on the front side of the wafer A-3 is etched to 10nm-15nm, and then the front side of the wafer A-3 is immersed in acetone successively, Finally, rinse with acetone to remove the photoresist to obtain wafer A-4;
  • the pore size of the small hole is 0.5um-5um;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 80°C, and the time is 1.5h-4h;
  • the time of etching is 2h;
  • the lithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the wafer A-6 is evaporated with a metal bonding material to form a metal bonding layer, and the wafer A-7 is obtained;
  • the metal is a low melting point metal; the thickness of the metal bonding layer is 50nm-2000nm;
  • the metal is In, Sn or Al;
  • the preparation method of the lower substrate is:
  • the thickness of silicon nitride or silicon oxide is 5nm-200nm;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist used in the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the silicon nitride layer on the back of the wafer B-1 is etched away corresponding to the lower center window, the fluid inlet, and the insulating layer at the fluid outlet, and then the back of the wafer is placed in order Soak in acetone, and finally rinse with acetone to remove the photoresist to obtain wafer B-2;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 70°C-90°C, and the etching time is 1.5h-4h;
  • the etching temperature is 80°C; the etching time is 2h;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist of the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the potassium hydroxide solution is a potassium hydroxide solution with a mass percentage concentration of 20%; the etching temperature is 70°C-90°C, and the etching time is 1h-3h;
  • the etching temperature is 80°C, and the etching time is 2h;
  • the heating wire pattern is transferred from the photolithography mask to the front side of the wafer B-6, and then developed in a positive gel developer, and then rinsed with deionized water to clean the surface to obtain the wafer B- 7;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine, and the photoresist used in the lithography process is AZ5214E; the development time is 50s;
  • the exposure time is 15s
  • the metal of the metal heating wire is metal gold, platinum, palladium, rhodium, molybdenum, tungsten, platinum-rhodium, or an alloy composed of at least two of the above metals, or non-metallic molybdenum carbide; the The thickness of the metal heating wire is 50nm-500nm;
  • the thickness of the insulating layer is 30nm-150nm;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine, the photoresist used in the lithography process is AZ5214E, and the development time is 50s;
  • the exposure time is 15s
  • the thickness of the non-precious metal material is 50nm-500nm; the non-precious metal material is Cr, Ti, Al, Zn or Cu; the width of the fluid flow channel is 10um-200um, and the height is 50nm-1um;
  • the transmission electron microscope high-resolution in-situ fluid disturbance heating chip provided by the present invention has the following advantages: the microfluidic channel and the micro-disturbance column of the transmission electron microscope high-resolution in-situ fluid disturbance heating chip provided by the present invention are Its unique micro-scale characteristics can directly observe the fluid motion characteristics at the micro-scale, study the fluid change behavior at the micro-scale, reveal the fluid motion mechanism, and deepen the relevant research basis and applications. Moreover, the micro-turbulent column in the microchannel has a larger surface area, which can better promote fluid disturbance, amplify the fluid behavior at the micro-scale, and can observe and control various fluid motion states at the micro-scale.
  • the present invention adds temperature control on the basis of fluid turbulence, and realizes the functions of precise temperature control, rapid temperature rise and fall, etc., and an isolation section is designed to effectively isolate the temperature and heat conduction out of the heating area, so that the central temperature control area is accurate and concentrated.
  • the present invention can also realize high-resolution observation of fluid turbulence, and the fluid flow direction is controllable, the shape is controllable, and the sample drift rate is low.
  • FIG. 1 is a cross-sectional view of a high-resolution in-situ fluid turbulence heating chip for transmission electron microscopy.
  • Figure 2 shows a top view of the upper substrate.
  • Figure 3 shows a top view of the lower substrate.
  • Figure 4 shows an enlarged view of the heating area and its surroundings.
  • Figure 5 shows an enlarged view of the lower center window.
  • the invention provides a preparation method of a transmission electron microscope high-resolution in-situ fluid disturbance heating chip.
  • the preparation method includes the following steps:
  • the photolithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the development time is 50s;
  • the thickness of the insulating layer at the small holes on the front side of the wafer A-3 is etched to 10nm-15nm, and then the front side of the wafer A-3 is immersed in acetone successively, Finally, rinse with acetone to remove the photoresist to obtain wafer A-4;
  • the pore size of the small hole is 0.5um-5um;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 80°C, and the time is 1.5h-4h;
  • the time of etching is 2h;
  • the lithography process is exposure in the hard contact mode of the UV lithography machine; the development time is 50s;
  • the exposure time is 15s
  • the wafer A-6 is evaporated with a metal bonding material to form a metal bonding layer, and the wafer A-7 is obtained;
  • the metal is a low melting point metal; the thickness of the metal bonding layer is 50nm-2000nm;
  • the metal is In, Sn or Al;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist used in the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the silicon nitride layer on the back of the wafer B-1 is etched away corresponding to the lower center window, the fluid inlet, and the insulating layer at the fluid outlet, and then the back of the wafer is placed in order Soak in acetone, and finally rinse with acetone to remove the photoresist to obtain wafer B-2;
  • the mass percentage concentration of the potassium hydroxide solution is 20%; the etching temperature is 70°C-90°C, and the etching time is 1.5h-4h;
  • the etching temperature is 80°C; the etching time is 2h;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine; the photoresist of the lithography process is AZ5214E; the development time is 65s;
  • the exposure time is 20s;
  • the potassium hydroxide solution is a potassium hydroxide solution with a mass percentage concentration of 20%; the etching temperature is 70°C-90°C, and the etching time is 1h-3h;
  • the etching temperature is 80°C, and the etching time is 2h;
  • the heating wire pattern is transferred from the photolithography mask to the front side of the wafer B-6, and then developed in a positive gel developer, and then rinsed with deionized water to clean the surface to obtain the wafer B- 7;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine, and the photoresist used in the lithography process is AZ5214E; the development time is 50s;
  • the exposure time is 15s
  • the metal of the metal heating wire is metal gold, platinum, palladium, rhodium, molybdenum, tungsten, platinum-rhodium, or an alloy composed of at least two of the above metals, or non-metallic molybdenum carbide; the The thickness of the metal heating wire is 50nm-500nm;
  • the thickness of the insulating layer is 30nm-150nm;
  • the lithography process is exposure in the hard contact mode of an ultraviolet lithography machine, the photoresist used in the lithography process is AZ5214E, and the development time is 50s;
  • the exposure time is 15s
  • the thickness of the non-precious metal material is 50nm-500nm; the non-precious metal material is Cr, Ti, Al, Zn or Cu; the width of the fluid flow channel is 10um-200um, and the height is 50nm-1um;
  • Assembly Assemble the prepared upper substrate and lower substrate under a microscope, align the upper center window of the upper substrate and the lower center window of the lower substrate, and bond and fix the upper substrate and the lower substrate.
  • a high-resolution in-situ gas-phase heating chip was formed into a transmission electron microscope.
  • the present invention provides a high-resolution in-situ fluid turbulence heating chip for transmission electron microscopy.
  • the in-situ fluid turbulence heating chip includes an upper substrate 1 and a lower substrate 2.
  • the upper substrate The opposite sides of 1 and the lower substrate 2 are respectively defined as front and back; wherein, the front and back of the upper substrate 1 both have a first insulating layer 10, and the front and back of the lower substrate 2 have a first insulating layer 10.
  • Two insulating layers 20 are made of silicon substrates, and the first and second insulating layers are silicon nitride or silicon oxide insulating layers.
  • the front side of the upper substrate 1 is bonded and fixed on the front side of the lower substrate 2 through a ring-shaped metal bonding layer 30, and an ultra-thin chamber 40 is formed by self-sealing. as the height of the chamber.
  • the upper substrate 1 is provided with two sample injection ports 11 and an upper central viewing window 12 , the upper central viewing window 12 is located at the center of the heating area, and the two sample injection ports 11 are symmetrically arranged with respect to the upper central viewing window 12 .
  • the two sample injection ports 11 communicate with the chamber 40 , and the upper substrate 1 and the insulating layer on the back side are etched away in the area of the upper central viewing window 12 , and only the insulating layer on the front side is left.
  • the present invention will further design a plurality of small holes in the existing square window, and use a thinner window film in the small holes to achieve higher resolution.
  • the shape of the small hole is not limited, and is not limited to circular, nearly circular, and the like.
  • the lower substrate 2 is provided with a fluid inlet 21 , a fluid outlet 22 , a fluid flow channel 23 , a lower central window 24 , a micro-turbulence column array 25 , a heating layer 26 , a third insulating layer 27 , an isolation section 28 and a support section 29 .
  • the fluid inlet 21 and the fluid outlet 22 are connected in a straight line through the fluid flow channel 23; the width of the fluid flow channel 23 at the lower central window 24 increases and covers the entire heating area; the lower central window 24 is located in the middle of the fluid inlet 21 and the fluid outlet 22.
  • the micro-turbulence column array 25 is a rectangularly arranged column array, which is arranged along the longer side of the lower central window 24 and is located in the lower central window 24, and the arrangement direction of the micro-turbulence column array 25 is consistent with the fluid flow direction .
  • the spiral annular heating wire 261 in the center of the heating layer 26 is placed on the second insulating layer 20 on the front side of the lower substrate 2, and is approximately symmetrically distributed in the center of the lower central viewing window 24, and the heating wires 261 have a gap between them and are not connected to each other;
  • the heating layer 26 also has four contact electrodes 262 extending to the edge of the lower substrate 2 and exposed, and the four contact electrodes 262 form two pairs, one of which is used as a heating electrode and the other pair is used as a monitoring electrode, so that the heating layer It is set as two sets of equivalent circuits, and the two sets of equivalent circuits are controlled by separate current source meters and voltage source meters; one set of circuits in the two sets of equivalent circuits is responsible for power supply and heat generation, and the other set of circuits is responsible for real-time monitoring of the heating wire
  • the resistance value after heating according to the relationship between the resistance (R) and the temperature (T) in the design program, the resistance of the test circuit is adjusted in real time through the feedback circuit to
  • the isolation section 28 is arranged in a ring outside the heating area, and the carrier film of the insulating layer 20 on the front side of the substrate 2 is the base, that is, the silicon substrate under the isolation section 28 area and the insulating layer on the back side are etched away, and only the insulating layer on the front side is left.
  • Silicon nitride or silicon oxide acts as a supporting film to isolate the silicon substrate in the heating area from the silicon substrate of the entire chip to block the heat transfer effect, reduce heat loss in the heating area, and avoid thermal expansion of the silicon substrate. Improve sample drift in electron microscopy tests.
  • the annular isolation segment 28 is divided into multiple isolation segment units, and a support segment 29 is arranged between two adjacent isolation segment units, and the silicon substrate in the area below the support segment 29 is not etched away, There is a silicon substrate connection between two adjacent isolation segment units, so as to ensure the mechanical strength of the support film of the isolation segment 28 and avoid the occurrence of rupture of the support film.
  • the isolation section 28 is divided into four isolation section units arranged in a rectangular shape, and the support sections 29 are distributed on the four corners of the isolation section.
  • the upper and lower central viewing windows in this embodiment are both rectangular, and the long sides of the two are consistent with the direction of the fluid flow channel.
  • the upper center window 12 of the upper substrate 1 and the lower center window 24 of the lower substrate 2 are required to be aligned, and the slanted alignment will cause the observation window to be too small, and the window may not be found.
  • the electron beam cannot pass through.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Micromachines (AREA)

Abstract

一种透射电镜高分辨原位流体扰流加热芯片,其结构为上基片(1)和下基片(2)通过金属键合层(30)组合,自封闭形成一个超薄的腔室(40);上基片(1)有两个注样口(11)和一个上中心视窗(12);下基片(2)设置有流体入口(21)、流体出口(22)、流体流道(23)、下中心视窗(24)、微扰流柱阵列(25)、加热层(26)和绝缘层(27);加热层(26)有四个接触电极(262)及螺旋环形加热丝(261);在以下中心视窗(24)为中心,且在螺旋环形加热丝(261)中心区域内;流体入口(21)与流体出口(22)关于中心视窗对称布置,下中心视窗(24)位于加热层(26)的中心处;下中心视窗(24)上有微扰流柱阵列(25),芯片具有快速升降温,分辨率高,温度控制精准、流体流向可控,样品漂移率低的优点。

Description

一种透射电镜高分辨原位流体扰流加热芯片 技术领域
本发明涉及流体芯片领域,具体是涉及一种透射电镜高分辨原位流体扰流加热芯片。
背景技术
原位透射电子显微镜(TEM)是表征材料的一种强大而不可缺少的工具,它为材料提供了关键的结构和化学信息。近年来,电子显微镜学取得了重大进展,使原子尺度成像成为常规过程。流体TEM具有独特的优势,可以直接观察材料在流体中的转化动态,具有很高的时空分辨率。例如,可以跟踪单个纳米颗粒的生长轨迹,电极材料的电化学沉积和锂化,以及生物材料在液态水中的成像等。流体TEM不仅可以用来原位观察流体环境中纳米材料的行为,还可以在流体TEM芯片和流体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。
随着纳米技术的不断发展,研究人员试图将纳米材料结合流体传输来研究新一代高效传热技术,并且已有研究表明将纳米颗粒均匀分布在传热流体中可以明显提高其导热性能。然而,由于纳米尺度下流体运动行为和宏观运动行为差异较大,对于纳米流体的运动行为原位研究还十分缺乏,纳米流体的导热机理尚不清楚。利用原位扰流加热TEM技术,研究者可以实时跟踪纳米流体结构动态变化、纳米颗粒的动态分布等变化信息,来加深人们对纳米流体的认知,对纳米流体的工程应用具有指导意义。
发明内容
本发明旨在提供一种具有快速升降温、分辨率高、流体流向可控、温度控制精准、样品漂移率低的透射电镜高分辨原位流体扰流加热芯片。
具体方案如下:
一种透射电镜高分辨原位流体扰流加热芯片,包括上基片和下基片,所述上基片的正面和背面上均具有一第一绝缘层,所述下基片的正面和背面上均具有一第二绝缘层,上基片正面的通过一环形的金属键合层键合固定在下基片的正面上,并自封闭形成一个超薄的腔室,
所述上基片上设置有两个注样口和一个上中心视窗,上中心视窗位于加热区域的中心处,两个注样口关于上中心视窗对称布置;
所述下基片上设置有流体入口、流体出口、流体流道、下中心视窗、微扰流柱阵列、加热层和第三绝缘层;其中,流体入口和流体出口通过流体流道直线连接;流体流道在下中心视窗处的宽度增加,并包涵整个加热区域;下中心视窗位于流体入口和流体出口中间;微扰 流柱阵列为矩形布设的柱形阵列,其沿下中心视窗的较长边排布并且位于下中心视窗内,且该微扰流柱阵列排布方向与流体流动方向一致;所述加热层中心的螺旋环形加热丝置于下基片正面的第二绝缘层上,并以下中心视窗的中心大致对称分布,加热丝相互间留有间隙,互不连接;该加热层还具有延伸至下基片的边缘并裸露的四个接触电极;该第三绝缘层覆盖除四个接触电极以外的整个加热层区域;
上、下基片上的上、下中心视窗对齐设置,且上、下中心视窗的长边与流体流道方向一致。
进一步的,所述下基片上还具有隔绝段和支撑段,所述隔绝段环设于加热区域外,其以下基片正面上绝缘层的载膜为基底;该环形的隔绝段被分割为多段隔绝段单元,相邻两隔绝段单元之间具有一支撑段,该支撑段下方区域的基片本体分别连接相邻的两隔绝段单元;
优选的,隔绝段被分割成四个呈矩形布设的隔绝段单元,支撑段分布在隔绝段的四边角上,方向与对角线一致;
优选的,所述隔绝段长度为0.3mm-0.6mm;
任选的,支撑段宽度为15um-30um。
进一步的,所述上中心视窗和下中心视窗均为矩形中心视窗;
优选的,所述上中心视窗或下中心视窗的大小为5um*5um-100um*100um;更优选的,所述上中心视窗或下中心视窗的大小为10um*50um。
进一步的,所述流体入口和流体出口的尺寸为200um*200um-800um*800um;
任选的,所述流体流道在流体入口和流体出口处横截面的宽度为10um-200um,在加热区域处横截面的宽度为250um-550um,高度为50nm-1000nm。
5.根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述下基片的尺寸为2mm*2mm-10mm*10mm;优选的,所述下基片的外形尺寸为4mm*8mm;
任选的,金属键合层的厚度为50nm-2000nm;金属键合层的材料为低熔点金属;优选的,金属键合层的材料为In、Sn或Al。
进一步的,所述绝缘层为氮化硅或氧化硅,厚度为5nm-200nm;
任选的,所述上基片或下基片的厚度为50um-500um。
进一步的,所述微扰流柱阵列中的每一微扰流柱均为圆柱,其直径为1um-20um。
进一步的,所述加热层的螺旋环形加热丝的外径为0.2mm-0.5mm,厚度为50nm-500nm;
任选的,所述螺旋环形加热丝采用的是金属金、铂、钯、铑、钼、钨、铂铑、或上述金 属的至少两种组合成的合金或非金属的碳化钼。
进一步的,所述上基片的制备方法为:
S101.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆A;
优选的,氮化硅或氧化硅的厚度为20nm-200nm;
S102.利用光刻工艺,将上中心视窗以及注样口图案从光刻掩膜版转移到晶圆A的背面上,然后在正胶显影液中显影得到晶圆A-1;
优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;显影的时间为50s;
更优选的,曝光的时间为15s;
S103.利用反应离子刻蚀工艺,在所述晶圆A-1的背面的绝缘层上刻蚀出上中心视窗以及注样口,然后将晶圆A-1的背面朝上放入丙酮中浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
S104.利用紫外激光直写工艺,将上中心视窗的小孔图案转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
优选的,所述显影的时间为50s;
S105.利用反应离子刻蚀工艺,将晶圆A-3的正面的小孔处的绝缘层厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
优选的,所述小孔的孔径大小为0.5um-5um;
S106.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至上中心窗口的正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5h-4h;
更优选的,刻蚀的时间为2h;
S107.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
更优选的,所述曝光时间为15s;
S108.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
优选的,所述金属为低熔点金属;所述金属键合层的厚度为50nm-2000nm;
更优选的,所述金属为In、Sn或Al;
S109.将晶圆A-7进行激光划片,分成的独立芯片即为上基片。
进一步的,所述下基片的制备方法为:
S201.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆B;
优选的,氮化硅或氧化硅的厚度为5nm-200nm;
S202.利用光刻工艺,将流体出、入口和下中心视窗图案从掩膜版转移到晶圆B的背面上,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S203.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层对应下中心视窗、流体入口、流体出口处的绝缘层刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
S204.将晶圆B-2的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆B-2用大量去离子水冲洗后吹干,得到晶圆B-3;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;刻蚀的温度为70℃-90℃,刻蚀的时间为1.5h-4h;
更优选的,刻蚀的温度为80℃;刻蚀的时间为2h;
S205.利用光刻工艺,将隔绝段、隔绝段支撑段图案从光刻掩膜版转移到晶圆B-3背面,然后在正胶显影液中显影,再用去离子水清洗表面,得到晶圆B-4;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述光刻工艺的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S206.利用反应离子刻蚀工艺,将晶圆B-4的背面隔绝段和隔绝段支撑段处的绝缘层刻蚀掉,然后将晶圆背面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-5;
S207.将晶圆B-5的背面朝上将放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆用大量去离子水冲洗后吹干,得到晶圆B-6;
优选的,所述氢氧化钾溶液为质量百分比浓度为20%的氢氧化钾溶液;刻蚀的温度为70℃-90℃,刻蚀的时间为1h-3h;
更优选的,刻蚀的温度为80℃,刻蚀的时间为2h;
S208.利用光刻工艺,将加热丝图案从光刻掩膜版转移到晶圆B-6的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-7;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E;显影的时间为50s;
更优选的,曝光的时间为15s;
S209.利用电子束蒸发工艺,在晶圆B-7的正面蒸镀一层金属加热丝,然后将晶圆B-7的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属加热丝,得到晶圆B-8;
优选的,所述金属加热丝的金属为金属金、铂、钯、铑、钼、钨、铂铑、或由上述金属的至少两种组合而成的合金、或非金属的碳化钼;所述金属加热丝的厚度为50nm-500nm;
S210.利用PECVD工艺,在晶圆B-8的金属加热丝上生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-9;
优选的,所述绝缘层的厚度为30nm-150nm;
S211.利用光刻工艺将流体通道和微扰流柱阵列图案从光刻掩膜版转移到晶圆B-9的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-10;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E,显影的时间为50s;
更优选的,曝光的时间为15s;
S212.利用电子束蒸发将晶圆B-10的上蒸镀一层非贵金属材料,然后将晶圆正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下流体通道和微扰流柱阵列,得到晶圆B-11;
优选的,所述非贵金属材料的厚度为50nm-500nm;非贵金属材料为Cr、Ti、Al、Zn或Cu;流体流道的宽度为10um-200um,高度为50nm-1um;
S213.将晶圆B-11进行激光划片,分成的独立芯片即为下基片。
本发明提供的透射电镜高分辨原位流体扰流加热芯片与现有技术相比较具有以下优点:本发明提供的透射电镜高分辨原位流体扰流加热芯片的微流体通道和微扰流柱以其独特的微尺度特性,能够在微尺度下直接观测流体运动特性,研究微观尺度下流体变化行为规律,揭示流体运动机理,加深相关研究基础与应用。且微通道内的微扰流柱具有更大的表面积,更好的促进流体扰动,放大微尺度下流体行为,可观测和控制微尺度下多种流体运动状态。同时,本发明在流体扰流基础上添加了温度控制,并且实现精准控温,快速升降温等功能,并设计隔绝段,有效隔绝温度热传导出加热区域,实现中心控温区域准确,集中。同时,本发明还可以实现流体扰流高分辨观测,并且流体流向可控,形态可控,样品漂移率低。
附图说明
图1为透射电镜高分辨原位流体扰流加热芯片的剖视图。
图2示出了上基片的俯视图。
图3示出了下基片的俯视图。
图4示出了加热区域及其周围的放大图。
图5示出了下中心视窗的放大图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。
实施例1
本发明提供了一种透射电镜高分辨原位流体扰流加热芯片的制备方法,该制备方法包括以下步骤,
上基片制作:
S101.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆A,氮化硅或氧化硅的厚度为20nm-200nm;
S102.利用光刻工艺,将上中心视窗以及注样口图案从光刻掩膜版转移到晶圆A的背面上,然后在正胶显影液中显影得到晶圆A-1;
优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;显影的时间为50s;
更优选的,曝光的时间为15s;
S103.利用反应离子刻蚀工艺,在所述晶圆A-1的背面的绝缘层上刻蚀出上中心视窗以及注样口,然后将晶圆A-1的背面朝上放入丙酮中浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
S104.利用紫外激光直写工艺,将上中心视窗的小孔图案转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
优选的,所述显影的时间为50s;
S105.利用反应离子刻蚀工艺,将晶圆A-3的正面的小孔处的绝缘层厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
优选的,所述小孔的孔径大小为0.5um-5um;
S106.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至上中心窗口的正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5h-4h;
更优选的,刻蚀的时间为2h;
S107.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
更优选的,所述曝光时间为15s;
S108.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
优选的,所述金属为低熔点金属;所述金属键合层的厚度为50nm-2000nm;
更优选的,所述金属为In、Sn或Al;
S109.将晶圆A-7进行激光划片,分成独立芯片即为上基片。
下基片制作:
S201.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆B,氮化硅或氧化硅的厚度为5nm-200nm;
S202.利用光刻工艺,将流体出、入口和下中心视窗图案从掩膜版转移到晶圆B的背面上,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S203.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层对应下中心视窗、流体入口、流体出口处的绝缘层刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
S204.将晶圆B-2的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆B-2用大量去离子水冲洗后吹干,得到晶圆B-3;
优选的,所述氢氧化钾溶液的质量百分比浓度为20%;刻蚀的温度为70℃-90℃,刻蚀的时间为1.5h-4h;
更优选的,刻蚀的温度为80℃;刻蚀的时间为2h;
S205.利用光刻工艺,将隔绝段、隔绝段支撑段图案从光刻掩膜版转移到晶圆B-3背面,然后在正胶显影液中显影,再用去离子水清洗表面,得到晶圆B-4;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述光刻工艺的光刻胶为AZ5214E;显影的时间为65s;
更优选的,曝光的时间为20s;
S206.利用反应离子刻蚀工艺,将晶圆B-4的背面隔绝段和隔绝段支撑段处的绝缘层刻蚀掉,然后将晶圆背面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-5;
S207.将晶圆B-5的背面朝上将放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆用大量去离子水冲洗后吹干,得到晶圆B-6;
优选的,所述氢氧化钾溶液为质量百分比浓度为20%的氢氧化钾溶液;刻蚀的温度为70℃-90℃,刻蚀的时间为1h-3h;
更优选的,刻蚀的温度为80℃,刻蚀的时间为2h;
S208.利用光刻工艺,将加热丝图案从光刻掩膜版转移到晶圆B-6的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-7;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E;显影的时间为50s;
更优选的,曝光的时间为15s;
S209.利用电子束蒸发工艺,在晶圆B-7的正面蒸镀一层金属加热丝,然后将晶圆7的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属加热丝,得到晶圆B-8;
优选的,所述金属加热丝的金属为金属金、铂、钯、铑、钼、钨、铂铑、或由上述金属的至少两种组合而成的合金、或非金属的碳化钼;所述金属加热丝的厚度为50nm-500nm;
S210.利用PECVD工艺,在晶圆B-8的金属加热丝上生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-9;
优选的,所述绝缘层的厚度为30nm-150nm;
S211.利用光刻工艺将流体通道和微扰流柱阵列图案从光刻掩膜版转移到晶圆B-9的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-10;
优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E,显影的时间为50s;
更优选的,曝光的时间为15s;
S212.利用电子束蒸发将晶圆B-10的上蒸镀一层非贵金属材料,然后将晶圆正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下流体通道和微扰流柱阵列,得到晶圆B-11;
优选的,所述非贵金属材料的厚度为50nm-500nm;非贵金属材料为Cr、Ti、Al、Zn或Cu;流体流道的宽度为10um-200um,高度为50nm-1um;
S213.将晶圆B-11进行激光划片,分成独立芯片即为下基片。
组装:将制得上基片和下基片在显微镜下进行组装,使上基片的上中心视窗和下基片的下中心视窗对齐,并将上基片和下基片键合固定即制成透射电镜高分辨原位气相加热芯片。
实施例2
如图1-图4所示的,本发明提供了一种透射电镜高分辨原位流体扰流加热芯片,该原位流体扰流加热芯片包括上基片1和下基片2,上基片1和下基片2均的相对两面分别定义为正面和背面;其中,上基片1的正面和背面上均具有一第一绝缘层10,下基片2的正面和背面上均具有一第二绝缘层20。在本实施例中,上基片1和下基片2的材质均为硅基片,第一、 第二绝缘层为氮化硅或氧化硅绝缘层。
上基片1正面的通过一环形的金属键合层30键合固定在下基片2的正面上,自封闭形成一个超薄的腔室40,该腔室40以金属键合层30的膜厚作为该腔室的高度。
其中,上基片1上设置有两个注样口11和一个上中心视窗12,上中心视窗12位于加热区域的中心处,两个注样口11关于上中心视窗12对称布置。其中两注样口11与腔室40连通,上中心视窗12的区域将上基片1以及背面的绝缘层均刻蚀掉,仅留存正面的绝缘层。此外,本发明在上中心视窗12的绝缘层上刻蚀出开口位于正面侧的多个盲孔,以使上中心视窗12的窗口薄膜可以更薄,而较薄的中心视窗薄膜可以实现更高的分辨率,因此本发明为达到更高的分辨率将采用在已有的方形视窗中进一步设计多个小孔,并在小孔中使用更薄的视窗薄膜以实现更高分辨率。小孔形状不限定,不限于圆形,近圆形等。
下基片2上设置有流体入口21、流体出口22、流体流道23、下中心视窗24、微扰流柱阵列25、加热层26、第三绝缘层27、隔绝段28和支撑段29。其中,流体入口21和流体出口22通过流体流道23直线连接;流体流道23在下中心视窗24处的宽度增加,并包涵整个加热区域;下中心视窗24位于流体入口21和流体出口22中间。
微扰流柱阵列25为矩形布设的柱形阵列,其沿下中心视窗24的较长边排布并且位于下中心视窗24内,且该微扰流柱阵列25排布方向与流体流动方向一致。加热层26中心的螺旋环形加热丝261置于下基片2正面的第二绝缘层20上,并以下中心视窗24的中心大致对称分布,加热丝261相互间留有间隙,互不连接;该加热层26还具有延伸至下基片2的边缘并裸露的四个接触电极262,四个接触电极262形成两对,其中一对作为加热电极,另一对作为监控电极,以使该加热层设置为两组等效电路,两组等效电路分别使用单独的电流源表和电压源表控制;两组等效电路中的一组回路负责供电产热,另一组回路负责实时监控加热丝发热后的电阻值,根据设计程序中的电阻(R)-温度(T)之间的相互关系,通过反馈电路进行实时调节测试电路的电阻以达到设置的温度。该在加热层上面设置有第三绝缘层27,该第三绝缘层27覆盖除四个接触电极262以外的整个加热层区域。
隔绝段28环设于加热区域外,其以下基片2正面上绝缘层20的载膜为基底,即隔绝段28区域下方的硅基底以及背面的绝缘层刻蚀掉,仅留存正面的绝缘层20,氮化硅或氧化硅作用支撑膜将加热区域的硅基片与整个芯片的硅基片隔绝开的方式来阻隔热传递效应,减小加热区域的热散失,避免硅基片受热膨胀,改善电镜测试中的样品漂移现象。为增加隔绝段28的强度,该环形的隔绝段28被分割为多段隔绝段单元,相邻两隔绝段单元之间具有一支撑段29,该支撑段29下方区域的硅基底未被蚀刻掉,以使相邻两隔绝段单元之间具有一段的硅基 底连接,以保证隔绝段28支撑膜的机械强度,避免支撑膜破裂的发生。如本实施例中,隔绝段28被分割成四个呈矩形布设的隔绝段单元,支撑段29分布在隔绝段的四边角上。
此外,本实施例中的上、下中心视窗均为矩形,两者的长边与流体流道方向一致。将上基片和下基片键合成一体时,要求上基片1的上中心视窗12和下基片2的下中心视窗24对齐,对歪会导致观察视窗太小,可能无法找到窗口,没有对上则会导致电子束无法透过。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种透射电镜高分辨原位流体扰流加热芯片,包括上基片和下基片,所述上基片的正面和背面上均具有一第一绝缘层,所述下基片的正面和背面上均具有一第二绝缘层,上基片正面的通过一环形的金属键合层键合固定在下基片的正面上,并自封闭形成一个超薄的腔室,其特征在于:
    所述上基片上设置有两个注样口和一个上中心视窗,上中心视窗位于加热区域的中心处,两个注样口关于上中心视窗对称布置;
    所述下基片上设置有流体入口、流体出口、流体流道、下中心视窗、微扰流柱阵列、加热层和第三绝缘层;其中,流体入口和流体出口通过流体流道直线连接;流体流道在下中心视窗处的宽度增加,并包涵整个加热区域;下中心视窗位于流体入口和流体出口中间;微扰流柱阵列为矩形布设的柱形阵列,其沿下中心视窗的较长边排布并且位于下中心视窗内,且该微扰流柱阵列排布方向与流体流动方向一致;所述加热层中心的螺旋环形加热丝置于下基片正面的第二绝缘层上,并以下中心视窗的中心大致对称分布,加热丝相互间留有间隙,互不连接;该加热层还具有延伸至下基片的边缘并裸露的四个接触电极;该第三绝缘层覆盖除四个接触电极以外的整个加热层区域;
    上、下基片上的上、下中心视窗对齐设置,且上、下中心视窗的长边与流体流道方向一致。
  2. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述下基片上还具有隔绝段和支撑段,所述隔绝段环设于加热区域外,其以下基片正面上绝缘层的载膜为基底;该环形的隔绝段被分割为多段隔绝段单元,相邻两隔绝段单元之间具有一支撑段,该支撑段下方区域的基片本体分别连接相邻的两隔绝段单元;
    优选的,隔绝段被分割成四个呈矩形布设的隔绝段单元,支撑段分布在隔绝段的四边角上,方向与对角线一致;
    优选的,所述隔绝段长度为0.3mm-0.6mm;
    任选的,支撑段宽度为15um-30um。
  3. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述上中心视窗和下中心视窗均为矩形中心视窗;
    优选的,所述上中心视窗或下中心视窗的大小为5um*5um-100um*100um;更优选的,所述上中心视窗或下中心视窗的大小为10um*50um。
  4. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述流体入 口和流体出口的尺寸为200um*200um-800um*800um;
    任选的,所述流体流道在流体入口和流体出口处横截面的宽度为10um-200um,在加热区域处横截面的宽度为250um-550um,高度为50nm-1000nm。
  5. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述下基片的尺寸为2mm*2mm-10mm*10mm;优选的,所述下基片的外形尺寸为4mm*8mm;
    任选的,金属键合层的厚度为50nm-2000nm;金属键合层的材料为低熔点金属;优选的,金属键合层的材料为In、Sn或Al。
  6. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述绝缘层为氮化硅或氧化硅,厚度为5nm-200nm;
    任选的,所述上基片或下基片的厚度为50um-500um。
  7. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述微扰流柱阵列中的每一微扰流柱均为圆柱,其直径为1um-20um。
  8. 根据权利要求1所述的透射电镜高分辨原位流体扰流加热芯片,其特征在于:所述加热层的螺旋环形加热丝的外径为0.2mm-0.5mm,厚度为50nm-500nm;
    任选的,所述螺旋环形加热丝采用的是金属金、铂、钯、铑、钼、钨、铂铑、或上述金属的至少两种组合成的合金或非金属的碳化钼。
  9. 如权利要求1所述透射电镜高分辨原位流体扰流加热芯片,其特征在于,所述上基片的制备方法为:
    S101.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆A;
    优选的,氮化硅或氧化硅的厚度为20nm-200nm;
    S102.利用光刻工艺,将上中心视窗以及注样口图案从光刻掩膜版转移到晶圆A的背面上,然后在正胶显影液中显影得到晶圆A-1;
    优选的,光刻工艺为在紫外光刻机的hard contact模式下曝光;显影的时间为50s;
    更优选的,曝光的时间为15s;
    S103.利用反应离子刻蚀工艺,在所述晶圆A-1的背面的绝缘层上刻蚀出上中心视窗以及注样口,然后将晶圆A-1的背面朝上放入丙酮中浸泡,最后用大量去离子水冲洗,去除光刻胶,得到晶圆A-2;
    S104.利用紫外激光直写工艺,将上中心视窗的小孔图案转移到晶圆A-2的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-3;
    优选的,所述显影的时间为50s;
    S105.利用反应离子刻蚀工艺,将晶圆A-3的正面的小孔处的绝缘层厚度刻蚀至10nm-15nm,然后将晶圆A-3的正面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆A-4;
    优选的,所述小孔的孔径大小为0.5um-5um;
    S106.将晶圆A-4的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,刻蚀直至上中心窗口的正面只留下薄膜窗口,取出晶圆A-4用大量去离子水冲洗,得到晶圆A-5;
    优选的,所述氢氧化钾溶液的质量百分比浓度为20%;所述刻蚀的温度为80℃,时间为1.5h-4h;
    更优选的,刻蚀的时间为2h;
    S107.利用光刻工艺,将键合层图案从光刻掩膜版转移到晶圆A-5的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆A-6;
    优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述显影的时间为50s;
    更优选的,所述曝光时间为15s;
    S108.利用热蒸发镀膜工艺,将晶圆A-6蒸镀金属键合材料形成金属键合层,得到晶圆A-7;
    优选的,所述金属为低熔点金属;所述金属键合层的厚度为50nm-2000nm;
    更优选的,所述金属为In、Sn或Al;
    S109.将晶圆A-7进行激光划片,分成的独立芯片即为上基片。
  10. 如权利要求1所述透射电镜高分辨原位流体扰流加热芯片,其特征在于,所述下基片的制备方法为:
    S201.准备正反两面均具有氮化硅或氧化硅绝缘层的Si(100)晶圆B;
    优选的,氮化硅或氧化硅的厚度为5nm-200nm;
    S202.利用光刻工艺,将流体出、入口和下中心视窗图案从掩膜版转移到晶圆B的背面上,然后在正胶显影液中显影,再用去离子水清洗表面得到晶圆B-1;
    优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;光刻工艺中使用的光刻胶为AZ5214E;显影的时间为65s;
    更优选的,曝光的时间为20s;
    S203.利用反应离子刻蚀工艺,在晶圆B-1的背面的氮化硅层对应下中心视窗、流体入口、流体出口处的绝缘层刻蚀掉,然后将晶圆背面朝上先后放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-2;
    S204.将晶圆B-2的背面朝上放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆B-2用大量去离子水冲洗后吹干,得到晶圆B-3;
    优选的,所述氢氧化钾溶液的质量百分比浓度为20%;刻蚀的温度为70℃-90℃,刻蚀的时间为1.5h-4h;
    更优选的,刻蚀的温度为80℃;刻蚀的时间为2h;
    S205.利用光刻工艺,将隔绝段、隔绝段支撑段图案从光刻掩膜版转移到晶圆B-3背面,然后在正胶显影液中显影,再用去离子水清洗表面,得到晶圆B-4;
    优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光;所述光刻工艺的光刻胶为AZ5214E;显影的时间为65s;
    更优选的,曝光的时间为20s;
    S206.利用反应离子刻蚀工艺,将晶圆B-4的背面隔绝段和隔绝段支撑段处的绝缘层刻蚀掉,然后将晶圆背面朝上放入丙酮中浸泡,最后用丙酮冲洗,去掉光刻胶,得到晶圆B-5;
    S207.将晶圆B-5的背面朝上将放入氢氧化钾溶液中进行湿法刻蚀,直至裸漏的基底硅完全腐蚀完,取出晶圆用大量去离子水冲洗后吹干,得到晶圆B-6;
    优选的,所述氢氧化钾溶液为质量百分比浓度为20%的氢氧化钾溶液;刻蚀的温度为70℃-90℃,刻蚀的时间为1h-3h;
    更优选的,刻蚀的温度为80℃,刻蚀的时间为2h;
    S208.利用光刻工艺,将加热丝图案从光刻掩膜版转移到晶圆B-6的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-7;
    优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E;显影的时间为50s;
    更优选的,曝光的时间为15s;
    S209.利用电子束蒸发工艺,在晶圆B-7的正面蒸镀一层金属加热丝,然后将晶圆B-7的正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下金属加热丝,得到晶圆B-8;
    优选的,所述金属加热丝的金属为金属金、铂、钯、铑、钼、钨、铂铑、或由上述金属 的至少两种组合而成的合金、或非金属的碳化钼;所述金属加热丝的厚度为50nm-500nm;
    S210.利用PECVD工艺,在晶圆B-8的金属加热丝上生长一层氮化硅或氧化硅或氧化铝作为绝缘层,得到晶圆B-9;
    优选的,所述绝缘层的厚度为30nm-150nm;
    S211.利用光刻工艺将流体通道和微扰流柱阵列图案从光刻掩膜版转移到晶圆B-9的正面,然后在正胶显影液中显影,再用去离子水冲洗清洗表面,得到晶圆B-10;
    优选的,所述光刻工艺为在紫外光刻机的hard contact模式下曝光,光刻工艺所用光刻胶为AZ5214E,显影的时间为50s;
    更优选的,曝光的时间为15s;
    S212.利用电子束蒸发将晶圆B-10的上蒸镀一层非贵金属材料,然后将晶圆正面朝上先后放入丙酮中浸泡剥离,最后用去离子水冲洗,去除光刻胶,留下流体通道和微扰流柱阵列,得到晶圆B-11;
    优选的,所述非贵金属材料的厚度为50nm-500nm;非贵金属材料为Cr、Ti、Al、Zn或Cu;流体流道的宽度为10um-200um,高度为50nm-1um;
    S213.将晶圆B-11进行激光划片,分成的独立芯片即为下基片。
PCT/CN2020/138781 2020-08-26 2020-12-24 一种透射电镜高分辨原位流体扰流加热芯片 WO2022041597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010869758.4A CN111879797A (zh) 2020-08-26 2020-08-26 一种透射电镜高分辨原位流体扰流加热芯片
CN202010869758.4 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041597A1 true WO2022041597A1 (zh) 2022-03-03

Family

ID=73200132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138781 WO2022041597A1 (zh) 2020-08-26 2020-12-24 一种透射电镜高分辨原位流体扰流加热芯片

Country Status (2)

Country Link
CN (1) CN111879797A (zh)
WO (1) WO2022041597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612975A (zh) * 2022-10-13 2023-01-17 四川美呀意斐医疗科技有限公司 一种钛合金超亲水处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879797A (zh) * 2020-08-26 2020-11-03 厦门大学 一种透射电镜高分辨原位流体扰流加热芯片
CN112516936B (zh) * 2020-12-18 2022-02-08 厦门大学 一种热电耦合微型流动反应器及其制备方法
CN114235195A (zh) * 2021-11-18 2022-03-25 厦门大学 一种超高时空分辨率流体温度传感芯片及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057309A (zh) * 2004-09-13 2007-10-17 代夫特工业大学 用于透射电子显微镜和加热元件的微反应器及其制造方法
US20120298883A1 (en) * 2011-05-24 2012-11-29 The Trustees Of The University Of Pennsylvania Flow Cells for Electron Microscope Imaging With Multiple Flow Streams
CN109326513A (zh) * 2018-09-13 2019-02-12 厦门芯极科技有限公司 一种超薄氮化硅微栅芯片的制作方法
CN210279006U (zh) * 2019-03-14 2020-04-10 湖北工程学院 一种高效的微混合装置
CN111312573A (zh) * 2020-03-12 2020-06-19 厦门超新芯科技有限公司 一种透射电镜高分辨原位液相加热芯片及其制备方法
CN111879797A (zh) * 2020-08-26 2020-11-03 厦门大学 一种透射电镜高分辨原位流体扰流加热芯片
CN212932449U (zh) * 2020-08-26 2021-04-09 厦门大学 一种透射电镜高分辨原位流体扰流加热芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014100237B4 (de) * 2014-01-10 2016-06-02 Stiftung Caesar Center Of Advanced European Studies And Research Verfahren zum Erzeugen einer freistehenden, abgeschirmten Metallelektrode durch einen Einzelmaskenprozess und ein Verfahren zum Freilegen einer Elektrodenspitze
CN110736760B (zh) * 2019-10-28 2021-11-09 厦门超新芯科技有限公司 一种透射电镜原位电化学检测芯片及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057309A (zh) * 2004-09-13 2007-10-17 代夫特工业大学 用于透射电子显微镜和加热元件的微反应器及其制造方法
US20120298883A1 (en) * 2011-05-24 2012-11-29 The Trustees Of The University Of Pennsylvania Flow Cells for Electron Microscope Imaging With Multiple Flow Streams
CN109326513A (zh) * 2018-09-13 2019-02-12 厦门芯极科技有限公司 一种超薄氮化硅微栅芯片的制作方法
CN210279006U (zh) * 2019-03-14 2020-04-10 湖北工程学院 一种高效的微混合装置
CN111312573A (zh) * 2020-03-12 2020-06-19 厦门超新芯科技有限公司 一种透射电镜高分辨原位液相加热芯片及其制备方法
CN111879797A (zh) * 2020-08-26 2020-11-03 厦门大学 一种透射电镜高分辨原位流体扰流加热芯片
CN212932449U (zh) * 2020-08-26 2021-04-09 厦门大学 一种透射电镜高分辨原位流体扰流加热芯片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612975A (zh) * 2022-10-13 2023-01-17 四川美呀意斐医疗科技有限公司 一种钛合金超亲水处理方法

Also Published As

Publication number Publication date
CN111879797A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022041597A1 (zh) 一种透射电镜高分辨原位流体扰流加热芯片
CN111312573B (zh) 一种透射电镜高分辨原位液相加热芯片及其制备方法
US9449787B2 (en) Liquid flow cells having graphene on nitride for microscopy
CN111370280B (zh) 一种透射电镜高分辨原位气相加热芯片及其制备方法
US6982519B2 (en) Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates
WO2022082991A1 (zh) 一种透射电镜高分辨原位悬空式温差加压芯片及其制备方法
CN105136822A (zh) 一种纳米材料透射电镜原位测试芯片、芯片制备方法及其应用
CN110736760B (zh) 一种透射电镜原位电化学检测芯片及其制作方法
CN212932449U (zh) 一种透射电镜高分辨原位流体扰流加热芯片
CN108706543A (zh) 一种精确控制的纳米孔制造方法
CN111613661A (zh) 隧道结、其制备方法和应用
US10379075B2 (en) Sample collection device and manufacturing method thereof
CN111879796A (zh) 一种透射电镜高分辨原位流体冷冻芯片及其制备方法
US20230072075A1 (en) Transmission electron microscope in-situ chip and preparation method therefor
WO2022040967A1 (zh) 一种透射电镜高分辨原位温差芯片及其制备方法
WO2022082989A1 (zh) 一种透射电镜高分辨原位温差加压芯片及其制备方法
US6461528B1 (en) Method of fabricating lateral nanopores, directed pore growth and pore interconnects and filter devices using the same
CN111812125A (zh) 一种透射电镜高分辨原位液相变温芯片及其制备方法
WO2020182184A1 (zh) 一种透射电镜原位电化学检测芯片、原位液体池芯片、原位加热芯片及其制备方法
JP5757515B2 (ja) 撥水層を有する液滴保持ツールの製造方法
JP5548925B2 (ja) 液滴保持ツールの製造方法
CN214150510U (zh) 一种透射电镜高分辨原位温差加压芯片
CN114225975B (zh) 一种电镜流体微元控温芯片及其制作方法
CN212321475U (zh) 一种透射电镜高分辨原位液相变温芯片
CN109824012B (zh) 一种纳米孔精确制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951263

Country of ref document: EP

Kind code of ref document: A1