WO2022039003A1 - アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ - Google Patents

アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ Download PDF

Info

Publication number
WO2022039003A1
WO2022039003A1 PCT/JP2021/028336 JP2021028336W WO2022039003A1 WO 2022039003 A1 WO2022039003 A1 WO 2022039003A1 JP 2021028336 W JP2021028336 W JP 2021028336W WO 2022039003 A1 WO2022039003 A1 WO 2022039003A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
burst strength
conductive polymer
capacitor
mass
Prior art date
Application number
PCT/JP2021/028336
Other languages
English (en)
French (fr)
Inventor
正樹 石ケ休
拓也 村岡
貴史 越智
弘倫 熊岡
Original Assignee
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッポン高度紙工業株式会社 filed Critical ニッポン高度紙工業株式会社
Priority to DE112021004345.5T priority Critical patent/DE112021004345T5/de
Priority to KR1020237001562A priority patent/KR20230051658A/ko
Priority to US18/014,329 priority patent/US20230245835A1/en
Priority to CN202180057697.4A priority patent/CN116261762A/zh
Publication of WO2022039003A1 publication Critical patent/WO2022039003A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a separator for an aluminum electrolytic capacitor and an aluminum electrolytic capacitor using the separator.
  • non-solid electrolytic capacitor an aluminum electrolytic capacitor (hereinafter referred to as “non-solid electrolytic capacitor”) that uses an electrolytic solution as a cathode material. Therefore, an aluminum electrolytic capacitor (hereinafter referred to as “solid electrolytic capacitor”) using a conductive polymer as a cathode material has been put on the market.
  • the solid electrolytic capacitor has a feature that the ESR (equivalent series resistance) is low and the high frequency characteristic is excellent as compared with the non-solid electrolytic capacitor.
  • hybrid electrolytic capacitor an aluminum electrolytic capacitor (hereinafter referred to as “hybrid electrolytic capacitor”) using both a conductive polymer and an electrolytic solution as a cathode material has been put on the market.
  • Hybrid electrolytic capacitors have the characteristics of both non-solid electrolytic capacitors and solid electrolytic capacitors. That is, it is characterized by having a capacitance characteristic comparable to that of a non-solid electrolytic capacitor, but having a low ESR comparable to that of a solid electrolytic capacitor.
  • conductive polymer capacitors that use conductive polymers as the cathode material (hereinafter, solid electrolytic capacitors and hybrid electrolytic capacitors are collectively referred to as "conductive polymer capacitors") are more than non-solid electrolytic capacitors. Can also have a low ESR.
  • solid electrolytic capacitors do not use an electrolytic solution as a cathode material, and the electrolytic solution does not evaporate from the sealing portion, so that the life of the solid electrolytic capacitor can be extended.
  • Solid electrolytic capacitors are widely used in applications such as wireless communication base stations and servers for data centers, which require less frequent maintenance.
  • the hybrid electrolytic capacitor is used for various purposes from the viewpoint of reducing the number of parts, saving space, and reducing the weight.
  • safety and reliability are emphasized for the parts used. Therefore, the loaded parts are required to reach the end of their life safely in the event of failure. Since the failure mode of hybrid electrolytic capacitors is open, their adoption in automobile applications is expanding.
  • a conductive polymer layer of the conductive polymer capacitor There are two methods for forming the conductive polymer layer of the conductive polymer capacitor. One is to impregnate an element in which an electrode foil and a separator are wound together with a polymer solution of a conductive polymer (monomer and oxidant solution) and then polymerize in the element to form a conductive polymer layer. (Hereinafter referred to as "polymerized liquid type"). The other is that the wound element is impregnated with a dispersion liquid of a conductive polymer (a dispersion liquid containing a conductive polymer as a dispersoid) and then dried to remove the dispersion medium. This is a method for forming a polymer layer (hereinafter referred to as "dispersion liquid type").
  • the dispersion liquid type conductive polymer capacitor is said to have better withstand voltage characteristics than the polymer liquid type conductive polymer capacitor, and is used in applications where a rated voltage of about 50 to 60 V is required.
  • both the polymerization liquid type and the dispersion liquid type have circuits that cannot be applied due to insufficient withstand voltage, and a conductive polymer capacitor having a higher rated voltage than the conventional one is required. From these facts, it is required that the conductive polymer capacitor has improved withstand voltage characteristics, that is, suppresses the occurrence of short circuit defects, while maintaining the low ESR characteristic of non-solid electrolytic capacitors. Has been done. Further, the separator used is required to improve short-circuit resistance while having good impregnation property and retention of a polymerized solution or a dispersion liquid of a conductive polymer.
  • a separator used for conductive polymer capacitors there is a cellulose separator.
  • a cellulose separator is used after being carbonized after the device is manufactured. This has two main purposes. One is to suppress the reaction between the hydroxyl group of cellulose and the oxidizing agent by carbonizing the cellulose separator. The other is to improve the impregnation property and retention of the polymerized solution and the dispersion liquid of the conductive polymer because the voids between the fibers constituting the separator are increased by the carbonization treatment.
  • the carbonization treatment of the cellulose separator has the above-mentioned effects
  • the heat applied by the carbonization treatment causes thermal decomposition of cellulose, and this thermal decomposition reduces the mechanical strength of the separator.
  • the mechanical strength of the separator is significantly reduced by impregnating the element with a polymerized solution or a dispersion liquid of an acidic conductive polymer.
  • Japanese Unexamined Patent Publication No. 2004-235293 Japanese Unexamined Patent Publication No. 2018-73895 Japanese Unexamined Patent Publication No. 2019-176074 Japanese Unexamined Patent Publication No. 2004-146137
  • Patent Document 1 discloses a separator containing a non-fibrillated organic fiber, a fibrillated polymer having a melting point or a pyrolysis temperature of 250 ° C. or higher, and a water absorption rate of 5 mm / min or higher as synthetic fibers. It is said that by using this separator, the formation of the conductive polymer in the solid electrolytic capacitor becomes uniform, and the ESR of the solid electrolytic capacitor can be reduced.
  • the separator of Patent Document 1 uses a fibrillated polymer that is extremely thin and has a large aspect ratio. Therefore, the number of fibers in the separator can be significantly increased, and the frequency of entanglement between the fibrillated polymers and other fibers can be increased, so that the separator can be made denser.
  • Patent Document 2 describes synthetic fibers having an average pore size in the range of 0.5 to 15 ⁇ m and a wet tensile strength of 0.30 kN / m or more after being immersed in ion-exchanged water at 70 ° C. for 30 minutes. Wet non-woven fabrics are disclosed.
  • the separator is dense. Is guaranteed, and it is said that the shape of the separator in the re-chemical formation process can be maintained. Therefore, it is possible to suppress the occurrence of short-circuit defects in the aluminum electrolytic capacitor.
  • Patent Document 3 contains a polyester-based fiber, a polyester binder, and a polyvinyl alcohol binder, and has a pore diameter frequency in the range of 5.0 to 20.0 ⁇ m and 5.0 to 15.0 ⁇ m, which is 70 of the total pore diameter.
  • a wet non-woven fabric having a pore diameter of 20.0 ⁇ m or more and a pore diameter frequency of 10% or less is disclosed.
  • the separators described in Patent Documents 2 and 3 can suppress the occurrence of short-circuit defects by controlling the average pore size of the separators. However, even with these separators, it was difficult to suppress the occurrence of short-circuit defects while suppressing the deterioration of ESR.
  • the separators described in Patent Document 2 and Patent Document 3 are said to have high denseness and homogeneity and can contribute to reduction of short circuit defects of capacitors, but mechanical strength such as tensile strength and tear strength of the separator is weak.
  • the voids for impregnating and holding the polymerized liquid or the dispersion liquid of the conductive polymer were narrow. Therefore, it has been found that it is not possible to achieve both the impregnation property and the retention property of the polymerized solution or the dispersion liquid of the conductive polymer and the short-circuit resistance only by controlling the average pore size of the separator.
  • Patent Document 4 describes a fibrillated polymer having a melting point or a thermal decomposition temperature of 250 ° C. or higher, at least a part having a fiber diameter of 1 ⁇ m or less, and a weight average fiber length in the range of 0.2 to 2 mm, and fineness 3.
  • a separator for an electrochemical element which is a nonwoven fabric containing organic fibers of 3 dtex or less and has a volume resistivity of 1 ⁇ 10 11 ⁇ ⁇ cm or more, is disclosed. It is said that this configuration can obtain a separator having a high density and a high volume resistivity. It is described that the aluminum electrolytic capacitor using this separator has low internal resistance and excellent high-speed charge / discharge characteristics.
  • the separator is made dense or the bonding area between the fibers is increased in order to suppress the occurrence of partial defects of the separator as described above, the voids between the fibers constituting the separator become narrower. Therefore, even if it is possible to suppress the occurrence of short-circuit defects in the capacitor, the impregnation property and retention of the polymerized solution and the dispersion liquid of the conductive polymer are deteriorated, and the deterioration of ESR cannot be suppressed.
  • the element winding is performed. It has been found that it is important to enhance the stability against various forces in various directions applied to the separator at times and inside the element winding after winding. That is, by increasing the stability against various forces in various directions, the occurrence of partial defects can be suppressed.
  • the present invention has been made in view of the above problems, and the inside of the element winding during and after the element winding is maintained while maintaining the impregnation property and retention of the polymerized solution and the dispersion liquid of the conductive polymer.
  • the purpose of the present invention is to improve the stability of the separator against various forces in various directions, thereby suppressing partial defects in the separator and improving the short-circuit resistance of the separator.
  • Another object of the present invention is to suppress the occurrence of short circuit defects without deteriorating the ESR of the conductive polymer capacitor using this separator as compared with the conventional conductive polymer capacitor.
  • the separator according to the present invention is made for the purpose of solving the above-mentioned problems, and has, for example, the following configurations. That is, it is a separator for an aluminum electrolytic capacitor that is interposed between a pair of electrodes and is used for an aluminum electrolytic capacitor having a conductive polymer as a cathode material.
  • the separator is composed of a synthetic fiber and a binder and has a burst strength. Is 40 to 180 kPa, and the specific burst strength is 3.5 to 7.5 kPa / (g / m 2 ).
  • the synthetic fiber is characterized in that it is composed of a fibrillated synthetic fiber and a non-fibrillated synthetic fiber.
  • the separator contains 70 to 95% by mass of the synthetic fiber and 5 to 30% by mass of the binder, and 20 to 70% by mass of the fibrillated synthetic fiber in the total mass of the separator. It is characterized by containing 10 to 75% by mass of non-fibrillated synthetic fibers.
  • the tensile elastic modulus is 500 to 2000 MPa.
  • the aluminum electrolytic capacitor of the present invention is characterized in that a conductive polymer is used as a cathode material and the above-mentioned separator of the present invention is used as a separator.
  • the element during and after the element is wound while maintaining the impregnation property and the retention property of the polymerized solution or the dispersion liquid of the conductive polymer.
  • a separator having stability against various forces in various directions applied to the separator inside the winding can be obtained.
  • the conductive polymer capacitor using the separator of the present invention can suppress the occurrence of short circuit defects while having a low ESR. Furthermore, it can contribute to increasing the withstand voltage of the conductive polymer capacitor.
  • the separator of the present invention improves stability against various forces in various directions applied to the separator, so as to prevent short circuit resistance without impairing the impregnation property and retention of the polymerized solution or dispersion of the conductive polymer. Improvement of sex can be achieved.
  • the conductive polymer capacitor using the separator of the present invention can simultaneously achieve low ESR and suppress the occurrence of short circuit defects, and have reached the present invention.
  • the burst strength and the burst strength are used as indicators of stability against various forces in various directions applied to the separator during and after winding the element.
  • the burst strength is different from the mechanical strength when a force is applied in a certain direction, such as tensile strength and tear strength, and it is possible to measure the resistance when a force is applied from multiple directions at the same time. Even if the separator has strong mechanical strength in a certain direction such as tensile strength and tear strength, the burst strength is not always strong, and when a force is applied from other directions, the fibers constituting the separator are used. Partial defects may occur due to the breakage of the bond, the movement of the fiber from the place where the fiber should originally be, and the like.
  • the specific burst strength in addition to the burst strength, it can be used as an index of the bond strength between the fibers constituting the separator. Since the specific burst strength represents the burst strength per basis weight, it is possible to compare the degree of entanglement between the fibers constituting the separator and the magnitude of the bonding area by comparing the specific burst strength. It can be seen that if the specific burst strength is within a certain range, the degree of entanglement between the fibers constituting the separator and the bonding area are controlled.
  • the separator of the embodiment of the present invention is, for example, a separator for an aluminum electrolytic capacitor which is interposed between a pair of electrodes and is used for an aluminum electrolytic capacitor having a conductive polymer as a cathode material, and the separator is a separator.
  • the burst strength is 40 to 180 kPa, and the specific burst strength is 3.5 to 7.5 kPa / (g / m 2 ).
  • the burst strength is preferably 50 to 160 kPa and the specific burst strength is 4.0 to 7.0 kPa / (g / m 2 ).
  • the burst strength is 40 to 180 kPa and the specific burst strength is 3.5 to 7.5 kPa / (g / m 2 ), so that the element can be wound and the device can be wound. It is possible to improve the stability against various forces in various directions applied to the separator inside the element winding after winding. Further, it is possible to have voids between the fibers constituting the separator, which are necessary for impregnating and holding the polymerization liquid or dispersion liquid of the conductive polymer. As a result, it is possible to maintain the impregnation property and retention of the polymerized solution or the dispersion liquid of the conductive polymer and improve the short-circuit resistance without causing a partial defect of the separator.
  • the burst strength When the burst strength is less than 40 kPa, it cannot withstand various forces in various directions applied to the separator during and after winding the element, and the fibers constituting the separator are bonded to each other. Partial defects occur in the separator due to cutting, movement of fibers, uneven density, and the like. Therefore, the isolation between the anode foil and the cathode foil becomes insufficient, and for example, burrs of the electrode foil penetrate the separator, or the tab compresses and breaks the separator, resulting in a short circuit defect. Judging from the thickness and density of the separator applicable to the conductive polymer capacitor, the burst strength is limited to 180 kPa. When the burst strength exceeds 180 kPa, the ESR tends to increase.
  • the fibers constituting the separator are bonded to each other as compared with the separator having a specific burst strength of 3.5 kPa / (g / m 2 ) or more. weak. From this, it can be seen that there is little entanglement between the fibers or the bonding area between the fibers is small. Therefore, it cannot withstand various forces in various directions applied to the separator at the time of winding the element and inside the element winding after winding, and the fibers constituting the separator move, and the fiber starts from the place where the fiber originally existed. Is eliminated, and a partial defect occurs in the separator. As a result, the isolation between the anode foil and the cathode foil becomes insufficient, and short-circuit defects occur.
  • the bonds between the fibers constituting the separator are higher than those of the separator having a specific burst strength of 7.5 kPa / (g / m 2 ) or less. Too strong. From this, it can be seen that the fibers are often entangled with each other and become excessively dense, or the bonding area between the fibers is large. Therefore, the impregnation of the polymerized liquid or the dispersion liquid of the conductive polymer becomes non-uniform, and the ESR deteriorates.
  • the separator according to the embodiment of the present invention contains synthetic fibers from the viewpoint of chemical stability and also contains a binder from the viewpoint of mechanical strength.
  • any synthetic fiber can be selected as long as the burst strength and the specific burst strength can be satisfied.
  • the synthetic fiber used include polyamide fiber, acrylic fiber, polyester fiber, and vinylon fiber.
  • the synthetic fiber of the embodiment of the present invention is fibrillated and synthesized in order to enhance the denseness and mechanical strength of the separator, and further to enhance the impregnation property and retention of the polymerized solution or dispersion of the conductive polymer. It is preferably composed of fibers and non-fibrillated synthetic fibers.
  • Fibrilized synthetic fibers are synthetic fibers produced by generating fine fibrils in the form of branches and leaves from the main part by treatment such as beating, or in the state of having fibrils in the form of branches and leaves like pulp. That is.
  • the fibrillated synthetic fiber is preferably a fibrillated polyamide fiber from the viewpoint of heat resistance and chemical resistance. Specifically, fibrillated aramid fibers are preferred.
  • Non-fibrilized synthetic fiber is a synthetic fiber without foliage-like fibrils.
  • the non-fibrillated synthetic fiber may be a fiber composed of a single component, a fiber composed of a plurality of components, or may have a structure such as a composite fiber.
  • polyamide fiber, acrylic fiber, polyester fiber, vinylon fiber and the like can be used as the non-fibrillated synthetic fiber.
  • Polyamide fibers, acrylic fibers, and polyester fibers are preferable from the viewpoint of chemical resistance and impregnation property of the polymerizing solution or dispersion liquid of the conductive polymer.
  • the binder of the embodiment of the present invention is used for bonding between fibers constituting the separator. Any binder can be selected as long as the burst strength and the specific burst strength are satisfied. Further, when the binder forms a film, burrs of the electrode foil do not easily penetrate the separator, tabs compress the separator and it is less likely to be damaged, and the short circuit resistance of the separator can be improved. can.
  • the film here is a film-like substance formed by the binder under moist heat conditions and existing at the entanglement points of the fibers constituting the separator and between the fibers. It is preferable to use polyvinyl alcohol or a vinyl alcohol copolymer as the binder because the mechanical strength is improved and the film can be easily formed.
  • the synthetic fiber is contained in an amount of 70 to 95% by mass and the binder is contained in an amount of 5 to 30% by mass, and the fibrillated synthetic fiber is contained in an amount of 20 to 70% of the total mass of the separator. It is preferable to contain 10 to 75% by mass and 10 to 75% by mass of non-fibrillated synthetic fibers.
  • the synthetic fiber is less than 70% by mass and the binder is more than 30% by mass, the ESR of the conductive polymer capacitor may be deteriorated. This is because the area of the film formed increases as the number of binders increases, the voids between the fibers constituting the separator are excessively filled, and the impregnation property and retention of the polymerizing solution and dispersion liquid of the conductive polymer are improved. It is thought that the cause is worsening.
  • the synthetic fiber exceeds 95% by mass and the binder is less than 5% by mass, the mechanical strength of the separator is low, the short-circuit resistance cannot be improved, and the occurrence of short-circuit defects of the conductive polymer capacitor cannot be suppressed. In some cases.
  • the fibrillated synthetic fiber When the fibrillated synthetic fiber is less than 20% by mass and the non-fibrillated synthetic fiber is more than 75% by mass, the denseness of the separator tends to be low, and it is difficult to obtain the effect of suppressing the occurrence of short circuit defects of the separator. Further, since the density is low, the holding amount of the conductive polymer tends to be small, and it becomes difficult to reduce the ESR. On the other hand, when the amount of fibrillated synthetic fiber exceeds 70% by mass and the amount of non-fibrillated synthetic fiber is less than 10% by mass, the denseness of the separator tends to be high, and the impregnation of the polymer solution or dispersion of the conductive polymer is not possible. It tends to be uniform and the ESR characteristics tend to vary.
  • the burst strength and the specific burst strength can be kept in a certain range, and the separator of the present invention can be used. If the fiber length is shorter than the above value, there is a concern that the tensile strength will be insufficient. If the fiber length is longer than the above value, there is a concern that the homogeneity such as the texture of the separator may be impaired.
  • the tensile elastic modulus was used as an index of the elasticity of the separator.
  • the tensile modulus can indicate the ease of deformation in the elastic deformation region, and the lower the tensile modulus, the weaker the force, the easier it is to deform. Further, the higher the tensile elastic modulus, the stronger the force required for deformation.
  • the tensile elastic modulus of the separator of the present invention is preferably 500 to 2000 MPa.
  • the separator has appropriate elasticity, and is subjected to various forces in various directions applied to the separator during and after winding the device. It becomes possible to show flexible responsiveness.
  • the followability to the electrode foil is improved, and the separator having high adhesion to the electrode foil can be obtained.
  • the continuity of the formed conductive polymer can be maintained at the interface between the electrode foil and the separator, and the ESR of the conductive polymer capacitor can be reduced.
  • the separator When the tensile elastic modulus is less than 500 MPa, the separator is easily deformed by various forces in various directions applied to the separator during and after winding the element. Therefore, the electrode foil and the separator are in an excessively close contact state, and the separator acts like a sealing material, so that the impregnation of the polymerized liquid or the dispersion liquid of the conductive polymer becomes non-uniform, and the conductive polymer capacitor ESR reduction effect may not be obtained.
  • the tensile elastic modulus exceeds 2000 MPa, the elasticity of the separator is low and the adhesion to the electrode foil is deteriorated. As a result, the continuity of the conductive polymer may be impaired at the interface between the electrode foil and the separator, and the ESR reducing effect of the conductive polymer capacitor may not be obtained.
  • the thickness and density of the separator according to the embodiment of the present invention those satisfying the characteristics of the desired conductive polymer capacitor can be adopted without particular limitation.
  • a separator for a conductive polymer capacitor a separator having a thickness of 20 to 100 ⁇ m and a density of about 0.20 to 0.60 g / cm 3 is used, but the separator is limited to this range. It's not something.
  • the method for producing the separator is not particularly limited, but a papermaking method in which fibers dispersed in water are deposited on a wire, dehydrated and dried to make a paper is preferable from the viewpoint of homogeneity such as the texture of the separator.
  • a wet non-woven fabric formed by a papermaking method was adopted as the separator.
  • the papermaking format of the separator is not particularly limited as long as the bursting strength and the specific bursting strength can be satisfied, and papermaking formats such as long net papermaking, short net papermaking, and circular net papermaking can be adopted, and formed by these papermaking methods. It may be a combination of a plurality of layers.
  • additives such as a dispersant, a defoaming agent, and a paper strength enhancer may be added as long as the impurity content does not affect the separator for a conductive polymer capacitor, and the paper layer may be added.
  • post-processing such as paper strength enhancement processing, parental liquid processing, calendering processing, and embossing processing may be performed.
  • the separator of the form for carrying out the present invention can be used during device winding and while maintaining the impregnation property and retention of a good conductive polymer polymer solution or dispersion solution. It has stability against various forces in various directions applied to the separator inside the element winding after winding, and can improve short-circuit resistance without causing a partial defect in the separator.
  • this separator for a conductive polymer capacitor it is possible to suppress the occurrence of short-circuit defects while having a low ESR. As a result, it can contribute to increasing the withstand voltage of the conductive polymer capacitor.
  • the capacitor element was impregnated with a polymer solution of a conductive polymer, then heated and polymerized, and the solvent was dried to form a conductive polymer layer.
  • a polymer solution of a conductive polymer As the conductive polymer polymerization solution, 3,4-ethylenedioxythiophene was used as a monomer, and an iron paratoluenesulfonate solution was used as an oxidizing agent solution.
  • a solid electrolytic capacitor having a rated voltage of 80 V was formed by impregnating a capacitor element with a conductive polymer dispersion and then heating and drying the capacitor element to form a conductive polymer layer.
  • a dispersion containing PEDOT / PSS (a composite composed of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid) as a dispersoid was used.
  • PEDOT / PSS a composite composed of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid
  • a capacitor element was placed in a predetermined case, the opening was closed, and then aging was performed to obtain each solid electrolytic capacitor.
  • Hybrid electrolytic capacitor manufacturing process Using the separators of each example, comparative example, and conventional example, there are two types, a rated voltage of 35 V and a capacitance of 270 ⁇ F with a diameter of 10.0 x a height of 10.5 mm, and a rated voltage of 160 V and a capacitance of 6.8 ⁇ F. A hybrid electrolytic capacitor was manufactured.
  • the specific production method is as follows.
  • the capacitor element was impregnated with a polymer solution of a conductive polymer, then heated and polymerized, and the solvent was dried to form a conductive polymer layer.
  • a polymer solution of a conductive polymer As the conductive polymer polymerization solution, 3,4-ethylenedioxythiophene was used as a monomer, and an iron paratoluenesulfonate solution was used as an oxidizing agent solution.
  • the capacitor element was impregnated with a conductive polymer dispersion and then heated and dried to form a conductive polymer layer.
  • a dispersion containing PEDOT / PSS (a composite composed of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid) as a dispersoid was used.
  • the capacitor element was impregnated with a driving electrolytic solution, the capacitor element was placed in a predetermined case, the opening was closed, and then aging was performed to obtain each hybrid electrolytic capacitor.
  • ESR The ESR of the manufactured capacitor element was measured using an LCR meter under the conditions of a temperature of 20 ° C. and a frequency of 100 kHz.
  • Example 1 Fibrilized acrylic fiber (length load average fiber length 0.8 mm) 60% by mass, aramid fiber (fiber length 2.0 mm) 30% by mass, and polyvinyl alcohol 10% by mass are mixed and made into a circular mesh paper. Then, the separator of Example 1 was obtained. The thickness of the completed separator of Example 1 is 50 ⁇ m, the density is 0.55 g / cm 3 , the burst strength is 120 kPa, the specific burst strength is 4.4 kPa / (g / m 2 ), and the tensile modulus is 2030 MPa. there were.
  • Example 2 Using a raw material in which 45% by mass of fibrillated polyester fiber (length load average fiber length 0.5 mm), 50% by mass of vinylon fiber (fiber length 5.0 mm), and 5% by mass of ethylene vinyl alcohol copolymer are mixed. The paper was drawn in a circular net to obtain a separator of Example 2. The thickness of the completed separator of Example 2 is 20 ⁇ m, the density is 0.45 g / cm 3 , the burst strength is 52 kPa, the specific burst strength is 5.8 kPa / (g / m 2 ), and the tensile modulus is 480 MPa. there were.
  • Example 3 Fibrilized aramid fiber (length load average fiber length 0.4 mm) 60% by mass, acrylic fiber (fiber length 5.0 mm) 10% by mass, and polyvinyl alcohol 30% by mass are mixed and made into a circular net. Then, the separator of Example 3 was obtained. The thickness of the completed separator of Example 3 is 50 ⁇ m, the density is 0.60 g / cm 3 , the burst strength is 178 kPa, the specific burst strength is 5.9 kPa / (g / m 2 ), and the tensile modulus is 1320 MPa. there were.
  • Example 4 Fibrilized aramid fiber (length load average fiber length 0.8 mm) 70% by mass, nylon fiber (fiber length 3.0 mm) 10% by mass, and polyvinyl alcohol 20% by mass are mixed and made into a circular net. Then, the separator of Example 4 was obtained. The thickness of the completed separator of Example 4 is 40 ⁇ m, the density is 0.50 g / cm 3 , the burst strength is 135 kPa, the specific burst strength is 6.8 kPa / (g / m 2 ), and the tensile modulus is 1710 MPa. there were.
  • Example 5 Fibrilized acrylic fiber (length load average fiber length 1.2 mm) 45% by mass, nylon fiber (fiber length 3.0 mm) 30% by mass, and polyvinyl alcohol 25% by mass are mixed and made into a circular net. Then, the separator of Example 5 was obtained. The thickness of the completed separator of Example 5 is 80 ⁇ m, the density is 0.40 g / cm 3 , the burst strength is 155 kPa, the specific burst strength is 4.8 kPa / (g / m 2 ), and the tensile modulus is 1620 MPa. there were.
  • Example 6 Fibrilized aramid fiber (length load average fiber length 1.8 mm) 30% by mass, polyester fiber (fiber length 3.0 mm) 40% by mass, and polyvinyl alcohol 30% by mass are mixed and used as a circular net papermaking. Then, the separator of Example 6 was obtained. The thickness of the completed separator of Example 6 is 100 ⁇ m, the density is 0.45 g / cm 3 , the burst strength is 163 kPa, the specific burst strength is 3.6 kPa / (g / m 2 ), and the tensile modulus is 870 MPa. there were.
  • Example 7 Fibrilized aramid fiber (length load average fiber length 0.6 mm) 45% by mass, acrylic fiber (fiber length 3.0 mm) 40% by mass, and polyvinyl alcohol 15% by mass are mixed and made into a circular net. Then, the separator of Example 7 was obtained. The thickness of the completed separator of Example 7 is 50 ⁇ m, the density is 0.35 g / cm 3 , the burst strength is 100 kPa, the specific burst strength is 5.7 kPa / (g / m 2 ), and the tensile modulus is 1270 MPa. there were.
  • Example 8 Using a raw material in which 20% by mass of fibrillated aramid fiber (length load average fiber length 0.3 mm), 50% by mass of acrylic fiber (fiber length 2.0 mm), and 30% by mass of ethylene vinyl alcohol copolymer are mixed. The paper was drawn in a circular net to obtain a separator of Example 8. The thickness of the completed separator of Example 8 is 45 ⁇ m, the density is 0.35 g / cm 3 , the burst strength is 116 kPa, the specific burst strength is 7.4 kPa / (g / m 2 ), and the tensile modulus is 1112 MPa. there were.
  • Example 9 Using a raw material in which 30% by mass of fibrillated acrylic fiber (length load average fiber length 1.4 mm), 50% by mass of aramid fiber (fiber length 4.0 mm), and 20% by mass of ethylene vinyl alcohol copolymer are mixed. The paper was drawn in a circular net to obtain a separator of Example 9. The thickness of the completed separator of Example 9 is 70 ⁇ m, the density is 0.40 g / cm 3 , the burst strength is 117 kPa, the specific burst strength is 4.2 kPa / (g / m 2 ), and the tensile modulus is 1960 MPa. there were.
  • Example 10 Fibrilized polyester fiber (length load average fiber length 1.6 mm) 20% by mass, acrylic fiber (fiber length 6.0 mm) 75% by mass, and polyvinyl alcohol 5% by mass are mixed and made into a circular mesh paper. Then, the separator of Example 10 was obtained. The thickness of the completed separator of Example 10 is 40 ⁇ m, the density is 0.20 g / cm 3 , the burst strength is 41 kPa, the specific burst strength is 5.1 kPa / (g / m 2 ), and the tensile modulus is 533 MPa. there were.
  • Comparative Example 4 Using a raw material in which 15% by mass of fibrillated aramid fiber (length load average fiber length 0.5 mm), 60% by mass of acrylic fiber (fiber length 2.0 mm), and 25% by mass of ethylene vinyl alcohol copolymer are mixed. The paper was drawn in a circular net to obtain a separator of Comparative Example 4. The thickness of the completed separator of Comparative Example 4 is 35 ⁇ m, the density is 0.35 g / cm 3 , the burst strength is 94 kPa, the specific burst strength is 7.7 kPa / (g / m 2 ), and the tensile modulus is 980 MPa. there were.
  • Comparative Example 5 Circular net making using a raw material in which 15% by mass of fibrillated acrylic fiber (length load average fiber length 0.9 mm), 80% by mass of acrylic fiber (fiber length 6.0 mm), and 5% by mass of polyvinyl alcohol are mixed. Then, the separator of Comparative Example 5 was obtained. The thickness of the completed separator of Comparative Example 5 is 50 ⁇ m, the density is 0.30 g / cm 3 , the burst strength is 43 kPa, the specific burst strength is 2.9 kPa / (g / m 2 ), and the tensile modulus is 2060 MPa. there were.
  • Comparative Example 6 Using a raw material in which 45% by mass of fibrillated polyester fiber (length load average fiber length 0.4 mm), 52% by mass of vinylon fiber (fiber length 3.0 mm), and 3% by mass of ethylene vinyl alcohol copolymer are mixed. The paper was drawn in a circular net to obtain a separator of Comparative Example 6. The thickness of the completed separator of Comparative Example 6 is 20 ⁇ m, the density is 0.45 g / cm 3 , the burst strength is 35 kPa, the specific burst strength is 3.9 kPa / (g / m 2 ), and the tensile modulus is 460 MPa. there were.
  • Table 1 shows the raw materials and formulations of the separators of Examples 1 to 10, Comparative Examples 1 to 6, and Conventional Examples 1 to 4 described above.
  • Table 2 shows the evaluation results of the separators of Examples 1 to 10, Comparative Examples 1 to 6, and Conventional Examples 1 to 4 described above.
  • the conductive polymer capacitor manufactured by using the separators of each example, each comparative example, and each conventional example will be described.
  • a solid electrolytic capacitor having a rated voltage of 35 V, a capacitance of 150 ⁇ F, a rated voltage of 80 V, and a capacitance of 22 ⁇ F, and a rated voltage of 35 V, a capacitance of 270 ⁇ F, and a rating.
  • a hybrid electrolytic capacitor with a voltage of 160 V and a capacitance of 6.8 ⁇ F was manufactured. Table 3 shows the performance evaluation results of each capacitor.
  • the capacitors using the separators of Example 1 and Example 2 have the same ESR as the capacitors using the separators of Conventional Example 1 to Conventional Example 4, but the short-circuit defect rate is low.
  • capacitors using the separators of Examples 3 to 10 have the same short defect rate as the capacitors using the separators of Examples 1 and 2, but the ESR is low.
  • the reason why the ESR of the separators of Examples 3 to 10 was low was that the tensile elastic modulus of the separator was 533 to 1960 MPa, the adhesion to the electrode foil was good, and the conductivity was high at the interface between the electrode foil and the separator. This is probably because the continuity of the molecule can be maintained. From this, it can be seen that the ESR can be lowered by having an appropriate elasticity of the separator. That is, it has been clarified that when the tensile elastic modulus of the separator is in the range of 500 to 2000 MPa, the ESR of the conductive polymer capacitor can be reduced.
  • the separator of Comparative Example 1 has the same thickness, density, and burst strength as those of each example, but the specific burst strength is 7.9 kPa / (g / m 2 ), which is higher than that of each example. ..
  • the capacitor using the separator of Comparative Example 1 has a higher ESR than that of each embodiment.
  • the conductive polymer capacitor can have a low ESR. Further, it can be seen that the impregnation property of the polymerized solution or the dispersion liquid of the conductive polymer can be maintained by setting the content of the non-fibrillated synthetic fiber to 10% by mass or more.
  • the separator of Comparative Example 2 has the same thickness, density, and burst strength as those of each example, but the specific burst strength is 3.4 kPa / (g / m 2 ), which is lower than that of each example. ..
  • the capacitor using the separator of Comparative Example 2 has a higher short-circuit defect rate than that of each embodiment.
  • the ESR is slightly higher than that of the conventional example.
  • the reason why the short-circuit defect rate of the capacitor using the separator of Comparative Example 2 was high was that the specific burst strength of the separator was as low as 3.4 kPa / (g / m 2 ), and the bonds between the fibers constituting the separator were weak. It is thought that this is the cause. Since the specific burst strength is low, it cannot withstand various forces in various directions applied to the separator during and after winding the element, and the separator is partially damaged, resulting in a short circuit defect. Is considered to have occurred. Further, it is considered that the reason why the ESR of the capacitor using the separator of Comparative Example 2 was high is that the content of the fibrillated aramid was 75% by mass.
  • the separator of Comparative Example 3 has the same thickness, density, and specific burst strength as those of each example, but the burst strength is 187 kPa, which is higher than that of each example.
  • the capacitor using the separator of Comparative Example 3 has a higher ESR than that of each embodiment.
  • the reason why the ESR of the capacitor using the separator of Comparative Example 3 is high is that the burst strength of the separator is as high as 187 kPa. Since the separator of Comparative Example 3 has a polyvinyl alcohol content of 35% by mass, it is considered that the burst strength of the separator is excessively high and the voids between the fibers constituting the separator are filled. Therefore, it is considered that the separator of Comparative Example 3 has deteriorated impregnation property and retention property of the polymerized solution and the dispersion liquid of the conductive polymer. From this, it can be seen that the ESR deteriorates when the burst strength exceeds 180 kPa.
  • the burst strength is 180 kPa or less, it can be used as a separator applicable to a conductive polymer capacitor, and it is possible to obtain a low ESR. Further, by setting the content of the binder to 30% by mass or less, it is possible to provide voids between the fibers constituting the separator, which are necessary for impregnating and holding the polymerization liquid or dispersion liquid of the conductive polymer. , It can be seen that the low ESR can be achieved.
  • the separator of Comparative Example 4 has the same thickness, density, and burst strength as those of each example, but the specific burst strength is as high as 7.7 kPa / (g / m 2 ).
  • the capacitor using the separator of Comparative Example 4 has a higher ESR than that of each embodiment. Further, the short-circuit failure rate of the solid electrolytic capacitor having a rated voltage of 80 V and the hybrid electrolytic capacitor having a rated voltage of 160 V is high.
  • the reason why the ESR of the capacitor using the separator of Comparative Example 4 was high is that the specific burst strength of the separator was as high as 7.7 kPa / (g / m 2 ), and the bonds between the fibers constituting the separator were excessively strong. It is thought that this is the cause. Since the specific burst strength is high, it can be seen that the bonding area between the fibers constituting the separator is large, and it is considered that the impregnation of the polymerized solution or the dispersion liquid of the conductive polymer is non-uniform. Further, it is considered that the separator of Comparative Example 4 had a content of fibrillated aramid of 15% by mass, so that the precision of the separator was low and the short-circuit defect rate in the capacitor having a high rated voltage was high.
  • the evaluation of the capacitor using the separator of Comparative Example 4 also shows that if the specific burst strength of the separator is 7.5 kPa / (g / m 2 ) or less, It has become clear that it is possible to reduce the ESR of a conductive polymer capacitor. Further, it can be seen that when the content of the fibrillated synthetic fiber is 20% by mass or more, the denseness of the separator can be enhanced and the occurrence of short-circuit defects can be suppressed.
  • the separator of Comparative Example 5 has the same thickness, density, and burst strength as those of each example, but the specific burst strength is as low as 2.9 kPa / (g / m 2 ).
  • the capacitor using the separator of Comparative Example 5 has a higher short defect rate and ESR as compared with each example.
  • the reason why the short-circuit defect rate of the capacitor using the separator of Comparative Example 5 was high was that the specific burst strength of the separator was as low as 2.9 kPa / (g / m 2 ), and the bonds between the fibers constituting the separator were weak. It is thought that this is the cause. Further, in the separator of Comparative Example 5, since the content of the fibrillated aramid was 15% by mass and the content of the acrylic was 80% by mass, it is considered that the denseness of the separator was excessively low and the short defect rate was high. .. Further, it is considered that since the separator has low denseness, the holding amount of the conductive polymer is small and the ESR is high.
  • the evaluation of the capacitor using the separator of Comparative Example 5 also shows that if the specific burst strength of the separator is 3.5 kPa / (g / m 2 ) or more, It has been clarified that the occurrence of short-circuit defects in conductive polymer capacitors can be suppressed. Further, when the content of the fibrillated synthetic fiber is 20% by mass or more and the content of the non-fibrillated synthetic fiber is 75% by mass or less, the denseness of the separator can be improved and the ESR of the capacitor is not deteriorated. , It can be seen that the occurrence of short circuit defects can be suppressed.
  • the separator of Comparative Example 6 has the same thickness, density, and specific burst strength as those of each example, but the burst strength is as low as 35 kPa.
  • the capacitor using the separator of Comparative Example 6 has a higher short-circuit defect rate than that of each embodiment.
  • the short-circuit defect rate of the capacitor using the separator of Comparative Example 6 was high because the burst strength of the separator was as low as 35 kPa, and various directions applied to the separator during device winding and inside the device winding. It is considered that the reason was that the separator could not withstand the force, the separator was partially damaged, and the separation between the anode foil and the cathode foil was insufficient. Further, it is considered that the separator of Comparative Example 6 had a low burst strength because the content of the ethylene vinyl alcohol copolymer was 3% by mass.
  • the burst strength of the separator is 40 kPa or more, it is possible to suppress the occurrence of short-circuit defects of the conductive polymer capacitor. Further, it can be seen that when the content of the binder is 5% by mass or more, the burst strength of the separator can be increased and the short-circuit resistance of the separator can be enhanced.
  • the separator of Conventional Example 1 is the same as the separator described in Example 1 of Patent Document 1.
  • the separator of Conventional Example 1 has a low specific burst strength of 2.8 kPa / (g / m 2 ). Therefore, even in the evaluation result of the capacitor, the short-circuit defect rate is high.
  • the separator of Conventional Example 2 is the same as the separator described in Example 1 of Patent Document 2.
  • the separator of Conventional Example 2 has a low specific burst strength of 3.3 kPa / (g / m 2 ). Therefore, the short circuit defect rate is high even in the evaluation result of the capacitor.
  • the separator contains 20 to 70% by mass of fibrillated synthetic fiber and 10 to 75% by mass of non-fibrillated synthetic fiber. It can be seen that the occurrence of short-circuit defects cannot be suppressed only by containing the binder, and it is necessary to contain the binder. Further, it was clarified that if the specific burst strength of the separator is 3.5 kPa / (g / m 2 ) or more, the occurrence of short-circuit defects can be suppressed.
  • the separator of Conventional Example 2 is a separator whose wet tensile strength is controlled, and is resistant to a force from one direction, but is weakly resistant to various forces in various directions, resulting in short circuit failure. It is considered that the outbreak could not be suppressed. From this, it can be seen that by setting the burst strength and the specific burst strength within a certain range, the stability against various forces in various directions can be improved and the occurrence of short circuit defects can be suppressed.
  • the separator of Conventional Example 3 is the same as the separator described in Example 1 of Patent Document 3.
  • the separator of Conventional Example 3 has a high specific burst strength of 7.8 kPa / (g / m 2 ).
  • the short-circuit defect rate is high and the ESR is also high.
  • the separator of Conventional Example 3 is composed of non-fibrillated synthetic fiber and polyvinyl alcohol, it is considered that the precision of the separator is low and the short-circuit defect rate of the capacitor is high. Further, it is considered that the reason why the ESR of each capacitor using the separator of the conventional example 3 is high is that the specific burst strength is as high as 7.8 kPa / (g / m 2 ).
  • the separator of Conventional Example 4 is the same as the separator described in Example 1 of Patent Document 4.
  • the short-circuit defect rate is high and the ESR is also high.
  • the short-circuit defect rate of the capacitor using the separator of the conventional example 4 was high because the burst strength of the separator of the conventional example 4 was as low as 37 kPa and the specific burst strength was as low as 2.0 kPa / (g / m 2 ). It is considered that the cause was that the element could not withstand various forces in various directions applied to the separator at the time of winding the element and inside the element winding. Further, since the separator of Conventional Example 4 has a cellulose content of 15% by mass, the burst strength of the separator is lowered by impregnating and holding the polymerized liquid or the dispersion liquid of the conductive polymer, and the short-circuit defect rate is reduced. I think that became higher. Further, since it contains cellulose, it is considered that the impregnation property and retention of the polymerized solution and the dispersion liquid of the conductive polymer are lowered, and the ESR is increased.
  • the burst strength of the separator composed of the synthetic fiber and the binder is 40 to 180 kPa, and the specific burst strength is 3.5 to 7.5 kPa / (g / m).
  • the separator is applied to the separator during and after winding the element in various directions. , Stability against various forces can be enhanced. Therefore, it is possible to suppress the occurrence of partial loss of the separator. Then, the occurrence of short circuit defects can be suppressed without deteriorating the ESR of the conductive polymer capacitor using the separator of the present invention.
  • the adhesion between the electrode foil and the separator can be controlled, and it becomes possible to realize a low ESR of the conductive polymer capacitor. ..
  • the conductive polymer capacitor using the separator of the present embodiment can suppress the occurrence of short circuit defects without deteriorating the ESR. Furthermore, it can contribute to increasing the withstand voltage of the conductive polymer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

導電性高分子を有するアルミニウム電解コンデンサに用いるセパレータにおいて、耐ショート性を向上させる。一対の電極の間に介在し、陰極材料として導電性高分子を有するアルミニウム電解コンデンサに用いる、アルミニウム電解コンデンサ用セパレータを、合成繊維とバインダーとからなり、破裂強さが40~180kPa、比破裂強さが3.5~7.5kPa/(g/m)である構成とする。

Description

アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
 本発明は、アルミニウム電解コンデンサ用セパレータ及び該セパレータを用いたアルミニウム電解コンデンサに関する。
 近年、電子機器や自動車電装機器の高機能化が進んでいる。そのため、これらの機器に用いられるコンピュータの高速化が求められている。コンピュータの高速化の鍵となるのがCPUの処理速度の高速化である。CPUの処理速度の高速化により、動作周波数が一段と高くなっている。そのため、電源回路に使用されるコンデンサには、高周波での特性向上が求められている。
 陰極材料に電解液を用いたアルミニウム電解コンデンサ(以下、「非固体電解コンデンサ」と称す)では、高周波特性の向上が難しい。そのため、陰極材料に導電性高分子を用いたアルミニウム電解コンデンサ(以下、「固体電解コンデンサ」と称す)が上市されている。固体電解コンデンサは、非固体電解コンデンサに比べて、ESR(等価直列抵抗)が低く、また高周波特性に優れる、という特徴がある。
 また近年、陰極材料に導電性高分子と電解液とを共に使用したアルミニウム電解コンデンサ(以下、「ハイブリッド電解コンデンサ」と称す)が上市されている。ハイブリッド電解コンデンサは、非固体電解コンデンサと固体電解コンデンサの両方の特徴を備えている。つまり、非固体電解コンデンサ並の容量特性でありながら、固体電解コンデンサ並の低ESRであることが特徴である。
 導電性高分子の伝導機構は電子伝導であり、伝導機構がイオン伝導である電解液と比べ高伝導度を示す。そのため、陰極材料に導電性高分子を用いた固体電解コンデンサ及びハイブリッド電解コンデンサ(以下、固体電解コンデンサ及びハイブリッド電解コンデンサを総称して「導電性高分子コンデンサ」とする)は、非固体電解コンデンサよりも低ESRとすることができる。
 固体電解コンデンサは、非固体電解コンデンサと異なり、陰極材料に電解液を使用しておらず、電解液が封口部より蒸散することがないため、長寿命とすることができる。固体電解コンデンサは特に、メンテナンスの頻度を少なくすることが求められる、無線通信基地局やデータセンター向けサーバー等の用途での採用が広がっている。
 また、ハイブリッド電解コンデンサは、部品点数の削減、省スペース化、軽量化の観点から、様々な用途に使用されている。なかでも、電動パワーステアリングや先進運転支援システム等の自動車用途では、使用する部品に対して、安全性や信頼性が重視されている。そのため、装填部品には、故障した場合に安全に寿命を迎えることが求められる。ハイブリッド電解コンデンサは、故障モードがオープンであることから、自動車用途での採用が拡大している。
 導電性高分子コンデンサの導電性高分子層の形成方法には、二つの手法がある。一つは、電極箔とセパレータとを共に巻回した素子に、導電性高分子の重合液(モノマーと酸化剤溶液)を含浸させた後、素子中で重合し、導電性高分子層を形成する手法(以下、「重合液タイプ」と称す)である。もう一つは、巻回した素子に、導電性高分子の分散液(導電性高分子を分散質とした分散液)を含浸させた後、乾燥させ、分散媒を除去することで、導電性高分子層を形成する手法(以下、「分散液タイプ」と称す)である。
 分散液タイプの導電性高分子コンデンサは、重合液タイプの導電性高分子コンデンサに比べ、耐電圧特性が良好といわれており、50~60V程度の定格電圧が求められる用途に使用されている。しかし、重合液タイプ、分散液タイプともに、耐電圧が不足するために適用できない回路があり、従来よりも定格電圧の高い導電性高分子コンデンサが求められている。
 これらのことから、導電性高分子コンデンサには、非固体電解コンデンサと比べたときの特徴である低ESRを維持しながら、耐電圧特性の向上、つまり、ショート不良の発生を抑制することが求められている。そして、使用されるセパレータには、導電性高分子の重合液や分散液の含浸性、保持性が良好でありながら、耐ショート性を向上することが求められている。
 導電性高分子コンデンサに用いられるセパレータとして、セルロース製セパレータがある。一般に、セルロース製セパレータは、素子作製後に炭化処理を施して使用される。これには、主に二つの目的がある。一つは、セルロース製セパレータに炭化処理を施すことで、セルロースの水酸基と酸化剤との反応を抑制することである。もう一つは、炭化処理によりセパレータを構成する繊維間の空隙が増加するため、導電性高分子の重合液や分散液の含浸性、保持性を向上させることである。
 セルロース製セパレータの炭化処理には、上記の効果がある一方で、炭化処理でかかる熱によりセルロースの熱分解が起こり、この熱分解によってセパレータの機械的強度が低下してしまう。さらに、セルロース分子は酸性条件下で徐々に分解されるため、酸性である導電性高分子の重合液や分散液を素子に含浸することによっても、セパレータの機械的強度の低下が顕著となる。
 このようなセルロース製セパレータの問題点を回避するために、合成繊維を配合したセパレータが使用されており、例えば、特許文献1乃至4の技術が開示されている。
特開2004-235293号公報 特開2018-73895号公報 特開2019-176074号公報 特開2004-146137号公報
 特許文献1には、合成繊維として、非フィブリル化有機繊維、融点または熱分解温度が250℃以上のフィブリル化高分子を含有し、吸水速度5mm/min以上であるセパレータが開示されている。このセパレータを用いることで、固体電解コンデンサ内の導電性高分子の形成が均一になり、固体電解コンデンサのESRを低減することができるとされている。
 特許文献1のセパレータは、非常に細く且つアスペクト比の大きいフィブリル化高分子を用いている。そのため、セパレータ中の繊維本数を大幅に増加させ、フィブリル化高分子同士や他の繊維との絡み合う頻度を高めることで、セパレータを緻密にすることができる。
 しかしながら、特許文献1のような緻密なセパレータであっても、引張強さや引裂強さ等の機械的強度が弱く、ショート不良の発生を抑制できない場合があった。特許文献1のセパレータの耐ショート性を向上するために、フィブリル化高分子の含有率を高めると、セパレータの緻密性が過度に高くなり、導電性高分子の重合液や分散液の含浸性が悪化し、ESRを低減することができない。
 特許文献2には、平均孔径が0.5~15μmの範囲であり、かつ、70℃のイオン交換水に30分間浸漬した後の湿潤引張強さが0.30kN/m以上である合成繊維からなる湿式不織布が開示されている。平均孔径を0.5~15μmの範囲内に制御し、かつ、70℃のイオン交換水に30分間浸漬した後の湿潤引張強さを0.3kN/m以上とすることで、セパレータの緻密性が担保され、再化成工程でのセパレータの形状が維持できるとされている。そのため、アルミニウム電解コンデンサのショート不良の発生を抑制することができる。
 特許文献3には、ポリエステル主体繊維、ポリエステルバインダー、ポリビニルアルコールバインダーを含有し、かつ、平均孔径が5.0~20.0μm、5.0~15.0μmの範囲の孔径頻度が全孔径の70%以上、20.0μm以上の孔径頻度が10%以下の湿式不織布が開示されている。この構成により、セパレータを構成する繊維同士の間隙を均質化できるため、セパレータの耐ショート性を高めつつ、導電性高分子の重合液や分散液の含浸性を高めることができるとされている。そのため、このセパレータを用いたアルミニウム電解コンデンサでは、静電容量の向上とショート不良率の低減とを同時に達成できるとある。
 特許文献2及び特許文献3に記載されたセパレータは、セパレータの平均孔径の制御によって、ショート不良の発生を抑制することが可能である。しかし、これらのセパレータであっても、ESRの悪化を抑えながら、ショート不良の発生を抑制することが困難であった。
 特許文献2及び特許文献3に記載されたセパレータは、緻密性や均質性が高く、コンデンサのショート不良の低減に寄与できるとあるが、セパレータの引張強さや引裂強さ等の機械的強度が弱い場合や、導電性高分子の重合液や分散液を含浸、保持するための空隙が狭い場合があった。そのため、セパレータの平均孔径を制御するだけでは、導電性高分子の重合液や分散液の含浸性、保持性と、耐ショート性とを両立させることができないことが判明した。
 特許文献4には、融点または熱分解温度が250℃以上で、少なくとも一部が繊維径1μm以下、且つ、重量平均繊維長が0.2~2mmの範囲にあるフィブリル化高分子、繊度3.3dtex以下の有機繊維を含有する不織布であり、体積抵抗率が1×1011Ω・cm以上である電気化学素子用セパレータが開示されている。この構成により、緻密で体積抵抗率の高いセパレータが得られるとある。そして、このセパレータを用いたアルミニウム電解コンデンサは、内部抵抗が低く、高速充放電特性に優れると記載されている。
 しかしながら、特許文献4に記載されたセパレータのように、緻密で、コンデンサの内部抵抗を低減できるセパレータであっても、引張強さや引裂強さ等の機械的強度が弱く、低ESRとしながら、ショート不良の発生を抑制することができない。
 導電性高分子コンデンサを含むアルミニウム電解コンデンサの素子巻回時、及び巻回後の素子巻内部では、セパレータに様々な方向の、種々の力が加わっている。例えば、セパレータの縦方向(MD方向:抄紙機で抄造する場合、進行方向に並行なセパレータの方向)にかかる力、巻回物である素子の中心部から外縁部に向かって広がろうとする力、タブや電極箔のバリ等の凹凸から圧迫される力、などがある。ここで、アルミニウム電解コンデンサの耐電圧を高める手段として、陽極箔表面に形成する酸化皮膜の厚さを厚くすることが知られている。酸化皮膜が厚くなると、陽極箔自体の厚さが厚くなるため、セパレータにかかる上記のような力はより大きくなる。
 従来のセパレータでは、これらの様々な方向の、種々の力が加わることで、セパレータを構成する繊維間の結合が切れる場合や、繊維が動くことで粗密のムラができ、本来繊維があった箇所に繊維がなくなる等の部分的な欠損が生じる問題があった。この欠損により、部分的に陽極箔と陰極箔との隔離が不十分となり、ショート不良が発生することがわかった。
 上記のようなセパレータの部分的な欠損の発生を抑制するために、セパレータを緻密にする、または、繊維同士の結合面積を大きくすると、セパレータを構成する繊維間の空隙が狭くなる。そのため、コンデンサのショート不良の発生を抑制することができても、導電性高分子の重合液や分散液の含浸性、保持性が悪化し、ESRの悪化を抑制することができなかった。
 本発明の発明者らが鋭意検討した結果、導電性高分子の重合液や分散液の含浸性、保持性の維持と、セパレータの耐ショート性の向上とを両立するためには、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を高めることが重要であることを見出した。つまり、様々な方向の、種々の力に対する安定性を高めることで、部分的な欠損の発生を抑制することができる。
 本発明は、上記の課題に鑑みてなされたものであり、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を向上することで、セパレータに生じる部分的な欠損を抑制し、セパレータの耐ショート性を向上させることを目的とする。また、このセパレータを用いた導電性高分子コンデンサのESRを従来の導電性高分子コンデンサより悪化させずに、ショート不良の発生を抑制することを目的とする。
 本発明に係るセパレータは、上記課題を解決することを目的としてなされたものであり、例えば、以下の構成を備える。
 即ち、一対の電極の間に介在し、陰極材料として導電性高分子を有するアルミニウム電解コンデンサに用いる、アルミニウム電解コンデンサ用セパレータであって、該セパレータは、合成繊維とバインダーとからなり、破裂強さが40~180kPa、比破裂強さが3.5~7.5kPa/(g/m)であることを特徴とする。
 そして例えば、前記合成繊維はフィブリル化合成繊維と非フィブリル化合成繊維とからなることを特徴とする。
 また例えば、前記セパレータは前記合成繊維を70~95質量%、前記バインダーを5~30質量%含有し、かつ、前記セパレータの全体質量のうち、前記フィブリル化合成繊維を20~70質量%、前記非フィブリル化合成繊維を10~75質量%含有することを特徴とする。
 さらに例えば、引張弾性率が500~2000MPaであることを特徴とする。
 また、本発明のアルミニウム電解コンデンサは、陰極材料として導電性高分子を用い、セパレータとして上記本発明のセパレータを用いたことを特徴とする。
 本発明によれば、上記した課題を解決する構成を備えることにより、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を有したセパレータが得られる。
 本発明のセパレータを用いた導電性高分子コンデンサは、低ESRでありながらショート不良の発生を抑制できる。さらに、導電性高分子コンデンサの高耐電圧化に寄与できる。
 以下、本発明を実施するための形態について、詳細に説明する。
 本発明では、素子巻回時、及び巻回後の素子巻内部で生じる、セパレータの部分的な欠損に注目し、合成繊維とバインダーとを用いて、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を向上した。
 セパレータの緻密性や均質性を向上させることで耐ショート性を高めてきた、従来のセパレータでは、低ESRとショート不良の発生を抑制することとの両立に限界があった。本発明のセパレータは、セパレータにかかる様々な方向の、種々の力に対する安定性を向上することで、導電性高分子の重合液や分散液の含浸性、保持性を阻害することなく、耐ショート性の向上を達成することができる。
 本発明の発明者らが鋭意検討した結果、セパレータの破裂強さ及び比破裂強さを一定の範囲に制御することで、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、部分的な欠損が発生することなく、耐ショート性を高めることが可能であることがわかった。また、本発明のセパレータを用いた導電性高分子コンデンサは、低ESRとショート不良の発生を抑制することとを同時に達成できることを見出し、本発明に至った。
 本発明を実施するための形態では、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性の指標として、破裂強さ、及び破裂強さをセパレータの坪量で除した比破裂強さ、を用いた。
 破裂強さは、引張強さや引裂強さのように、一定方向の力をかけた場合の機械的強度とは異なり、同時に複数方向から力をかけた場合の耐性を測ることができる。引張強さや引裂強さのような一定方向の機械的強度が強いセパレータであっても、破裂強さが強いとは限らず、他の方向から力が加わった場合に、セパレータを構成する繊維同士の結合が切れる、本来繊維があるべき箇所から繊維が移動する、等により、部分的な欠損が生じる場合がある。
 また、破裂強さに加えて、比破裂強さを用いることで、セパレータを構成する繊維同士の結合の強さの指標とすることができる。比破裂強さは坪量当りの破裂強さを表すため、比破裂強さを比較することで、セパレータを構成する繊維同士の絡みの程度や結合面積の大小を比較することができる。比破裂強さが一定の範囲内であれば、セパレータを構成する繊維同士の絡みの程度や結合面積が制御されていることがわかる。
 繊維同士の絡みが少ないほど、または、結合面積が小さいほど、セパレータを構成する繊維同士の結合が切れやすくなり、本来繊維があるべき箇所から繊維が移動する等により部分的な欠損が生じる場合がある。反対に、繊維同士の絡みが多くなるほど、または、結合面積が大きくなるほど、導電性高分子の重合液や分散液がセパレータ内部に浸透しにくくなる。
 上記のことから、破裂強さと、比破裂強さとを一定の範囲に制御することで、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力への安定性を向上したセパレータを提供できる。
 本発明を実施するための形態のセパレータは、例えば一対の電極の間に介在し、陰極材料として導電性高分子を有するアルミニウム電解コンデンサに用いる、アルミニウム電解コンデンサ用セパレータであって、該セパレータは、破裂強さが40~180kPa、比破裂強さが3.5~7.5kPa/(g/m)とする。好ましくは破裂強さ50~160kPa、比破裂強さ4.0~7.0kPa/(g/m)とする。
 本発明を実施するための形態のセパレータでは、破裂強さを40~180kPa、比破裂強さを3.5~7.5kPa/(g/m)とすることで、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を向上することができる。また、導電性高分子の重合液や分散液を含浸、保持するために必要な、セパレータを構成する繊維間の空隙を有することができる。
 これにより、セパレータの部分的な欠損が生じることなく、導電性高分子の重合液や分散液の含浸性、保持性の維持と、耐ショート性の向上とを両立することができる。
 破裂強さが40kPa未満の場合、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に耐えることができず、セパレータを構成する繊維同士の結合が切れる、繊維が動き粗密のムラができる、等によって、セパレータに部分的な欠損が生じる。そのため、陽極箔と陰極箔との隔離が不十分となり、例えば、電極箔のバリがセパレータを貫通することや、タブがセパレータを圧縮し、破損することにより、ショート不良が発生する。
 導電性高分子コンデンサに適用可能なセパレータの厚さ、密度から判断すると、破裂強さは180kPaが上限となる。破裂強さが180kPaを超えると、ESRが高くなる傾向がある。
 比破裂強さが3.5kPa/(g/m)未満の場合、比破裂強さが3.5kPa/(g/m)以上のセパレータと比べて、セパレータを構成する繊維同士の結合が弱い。このことから、繊維同士の絡みが少ない、または、繊維同士の結合面積が小さいことがわかる。そのため、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に耐えることができず、セパレータを構成する繊維が動き、本来繊維があった箇所から繊維がなくなり、セパレータに部分的な欠損が生じる。これにより、陽極箔と陰極箔との隔離が不十分となり、ショート不良が発生する。
 比破裂強さが7.5kPa/(g/m)を超える場合、比破裂強さが7.5kPa/(g/m)以下のセパレータと比べて、セパレータを構成する繊維同士の結合が過度に強い。このことから、繊維同士の絡みが多く過度に緻密になる、または、繊維同士の結合面積が大きいことがわかる。そのため、導電性高分子の重合液や分散液の含浸が不均一となり、ESRが悪化する。
 本発明の実施の形態のセパレータは、化学的安定性の観点から合成繊維を含有し、また、機械的強度の観点からバインダーを含有する。
 本発明の実施の形態の合成繊維は、破裂強さ、及び比破裂強さを満足できれば、任意の合成繊維を選択することができる。耐酸性、耐酸化性、及び導電性高分子の重合液や分散液の含浸性の観点から、使用する合成繊維として、ポリアミド繊維、アクリル繊維、ポリエステル繊維、ビニロン繊維等が挙げられる。
 また、本発明の実施の形態の合成繊維は、セパレータの緻密性及び機械的強度を高めるため、さらに、導電性高分子の重合液や分散液の含浸性、保持性を高めるため、フィブリル化合成繊維と非フィブリル化合成繊維とからなることが好ましい。
 フィブリル化合成繊維とは、叩解等の処理により、主体となる部分から枝葉状に微細なフィブリルを発生させたものや、パルプのように枝葉状のフィブリルを有した状態で製造された合成繊維のことである。
 フィブリル化合成繊維は、耐熱性、耐薬品性の観点から、フィブリル化ポリアミド繊維が好ましい。具体的には、フィブリル化アラミド繊維が好ましい。
 非フィブリル化合成繊維とは、枝葉状のフィブリルの無い合成繊維のことである。非フィブリル化合成繊維は、単一成分からなる繊維であっても、複数成分からなる繊維であってもよく、また、複合繊維のような構造であってもよい。非フィブリル化合成繊維は、ポリアミド繊維、アクリル繊維、ポリエステル繊維、ビニロン繊維等を使用することができる。耐薬品性や導電性高分子の重合液や分散液の含浸性の観点から、ポリアミド繊維、アクリル繊維、ポリエステル繊維が好ましい。
 本発明の実施の形態のバインダーは、セパレータを構成する繊維間の結合に用いるものである。破裂強さ、及び比破裂強さを満足できれば、任意のバインダーを選択することができる。さらに、バインダーが皮膜を形成することにより、電極箔のバリがセパレータを貫通することや、タブがセパレータを圧縮し、破損すること、等が起こり難くなり、セパレータの耐ショート性を向上することができる。ここでの皮膜とは、湿熱条件下でバインダーによって形成された、セパレータを構成する繊維の交絡点や繊維間に存在する膜状物のことである。
 機械的強度を向上し、かつ、容易に皮膜を形成できることから、バインダーとしては、ポリビニルアルコールまたはビニルアルコール共重合体を用いることが好ましい。
 また、本発明の実施の形態のセパレータの構成として、合成繊維を70~95質量%、バインダーを5~30質量%含有し、かつ、セパレータの全体質量のうち、フィブリル化合成繊維を20~70質量%、非フィブリル化合成繊維を10~75質量%含有することが好ましい。
 合成繊維が70質量%未満、バインダーが30質量%を超える場合、導電性高分子コンデンサのESRが悪化する場合がある。これは、バインダーが増えることで、形成される皮膜の面積が増え、セパレータを構成する繊維間の空隙が過度に埋まってしまい、導電性高分子の重合液や分散液の含浸性、保持性が悪化することが原因として考えられる。
 合成繊維が95質量%を超え、バインダーが5質量%未満の場合は、セパレータの機械的強度が低く、耐ショート性を高めることができず、導電性高分子コンデンサのショート不良の発生を抑制できない場合がある。
 フィブリル化合成繊維が20質量%未満、非フィブリル化合成繊維が75質量%を超える場合、セパレータの緻密性が低い傾向となり、セパレータのショート不良の発生を抑制する効果を得難い。また、緻密性が低いため、導電性高分子の保持量も少なくなる傾向となり、ESRを低減しにくくなる。
 一方、フィブリル化合成繊維が70質量%を超え、非フィブリル化合成繊維が10質量%未満の場合は、セパレータの緻密性が高い傾向となり、導電性高分子の重合液や分散液の含浸が不均一になりやすく、ESR特性がばらつく傾向がある。
 例えば、長さ荷重平均繊維長が0.3~2.0mmの範囲のフィブリル化合成繊維を20~70質量%、繊維長1.5~6.5mmの範囲の非フィブリル化合成繊維を10~75質量%、バインダーを5~30質量%含有することで、破裂強さ及び比破裂強さを一定の範囲とすることができ、本願発明のセパレータとすることができる。
 繊維長が上記の値より短い場合、引張強さの不足が懸念される。繊維長が上記の値より長い場合、セパレータの地合等の均質性が損なわれるという懸念がある。
 本発明では、引張弾性率をセパレータの伸縮性の指標として用いた。引張弾性率は、弾性変形領域における変形しやすさを示すことができ、引張弾性率が低いほど、弱い力で伸縮し、変形しやすくなる。また、引張弾性率が高いほど、変形に至るまでに強い力が必要となる。
 本発明のセパレータの引張弾性率は、500~2000MPaであることが好ましい。引張弾性率が500~2000MPaの範囲内であれば、セパレータが適度な伸縮性を持ち、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対して柔軟な応答性を示すことが可能になる。これにより、電極箔への追従性が良好となり、電極箔への密着性が高いセパレータとすることができる。その結果、電極箔とセパレータとの界面で、形成した導電性高分子の連続性を維持でき、導電性高分子コンデンサのESRを低減することが可能になる。
 引張弾性率が500MPa未満の場合、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力により、セパレータが変形しやすい。そのため、電極箔とセパレータとが過度に密着した状態となり、セパレータがシール材のような働きをすることで、導電性高分子の重合液や分散液の含浸が不均一となり、導電性高分子コンデンサのESR低減効果が得られない場合がある。
 引張弾性率が2000MPaを超える場合は、セパレータの伸縮性が低く、電極箔への密着性が悪化する。これにより、電極箔とセパレータとの界面で、導電性高分子の連続性が損なわれ、導電性高分子コンデンサのESR低減効果が得られない場合がある。
 本発明を実施するための形態に係るセパレータの厚さ及び密度は、所望の導電性高分子コンデンサの特性を満足するものを、特に限定なく採用できる。一般的に、導電性高分子コンデンサ用セパレータは、厚さ20~100μm、密度0.20~0.60g/cm程度の厚さ及び密度のセパレータが使用されているが、この範囲に限定されるものではない。
 セパレータの作製方法に特に限定はないが、水中に分散させた繊維をワイヤー上に堆積させ、脱水、乾燥して抄き上げる抄紙法が、セパレータの地合等の均質性の観点から好ましい。
 本発明を実施するための形態では、セパレータは抄紙法を用いて形成した湿式不織布を採用した。セパレータの抄紙形式は、破裂強さや比破裂強さを満足することができれば、特に限定はなく、長網抄紙や短網抄紙、円網抄紙といった抄紙形式が採用でき、またこれらの抄紙法によって形成された層を複数合わせたものであってもよい。また、抄紙に際しては、導電性高分子コンデンサ用セパレータに影響を与えない程度の不純物含有量であれば、分散剤や消泡剤、紙力増強剤などの添加剤を加えてもよく、紙層形成後に紙力増強加工、親液加工、カレンダ加工、エンボス加工等の後加工を施してもよい。
 以上の構成を採用することにより、本発明を実施するための形態のセパレータは、良好な導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を有し、セパレータに部分的な欠損を生じることなく、耐ショート性を高めたものとできる。そして、このセパレータを、導電性高分子コンデンサに用いることで、低ESRでありながら、ショート不良の発生を抑制することができる。ひいては、導電性高分子コンデンサの高耐電圧化に寄与できる。
〔セパレータ及び導電性高分子コンデンサの特性の測定方法〕
 本実施の形態のセパレータ及び導電性高分子コンデンサの各特性の具体的な測定は、以下の条件及び方法で行った。
〔厚さ〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 5.1 厚さ」に規定された、「5.1.1 測定器及び測定方法 a外側マイクロメータを用いる場合」のマイクロメータを用いて、「5.1.3 紙を折り重ねて厚さを測る場合」の10枚に折り重ねる方法で、セパレータの厚さを測定した。
〔密度〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 7.0A密度」のB法に規定された方法で、絶乾状態のセパレータの密度を測定した。
〔破裂強さ〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』11.破裂強さ」に規定された方法で、セパレータの破裂強さを測定した。
〔比破裂強さ〕
 比破裂強さは、上記試験方法で測定した破裂強さの値を、「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』6.坪量」に規定された方法で測定したセパレータの坪量で除すことで算出した。
〔引張弾性率〕
 「JIS P 8113 『紙及び板紙-引張特性の試験方法-第2部:定速伸張法』」に規定された方法で、セパレータの縦方向(MD方向)の引張弾性率を測定した。
〔フィブリル化合成繊維の長さ荷重平均繊維長〕
 「JIS P 8226-2『パルプ-光学的自動分析法による繊維長測定方法-第2部:非偏光法』」(ISO16065-2『Pulps-Determination of Fibre length by automated optical analysis-Part2:Unpolarized light method』)に記載された装置、ここではFiber Tester PLUS(Lorentzen&Wettre製)を用いて測定し、長さ荷重平均繊維長をフィブリル化合成繊維の繊維長とした。
〔非フィブリル化合成繊維の繊維長〕
 市販されている各種の非フィブリル化合成繊維を購入し、そのカット長を非フィブリル化合成繊維の繊維長とした。
〔固体電解コンデンサの作製工程〕
 以下に示す各実施例、比較例、従来例のセパレータを用い、直径10.0mm×高さ10.0mmの定格電圧35V、静電容量150μFと、定格電圧80V、静電容量22μFとの二種類の固体電解コンデンサを作製した。
 具体的な作製方法は、以下の通りである。
 エッチング処理及び酸化皮膜形成処理をそれぞれ行った、厚さ115μmの陽極箔と厚さ50μmの陰極箔とが接触しないように、セパレータを介在させて巻回し、素子巻の外周をテープで固定して、コンデンサ素子を作製した。作製したコンデンサ素子は、再化成処理後、乾燥した。
 定格電圧35Vの固体電解コンデンサは、コンデンサ素子に導電性高分子の重合液を含浸後、加熱・重合させ、溶媒を乾燥させて、導電性高分子層を形成した。導電性高分子重合液は、モノマーとして3,4‐エチレンジオキシチオフェンを用い、酸化剤溶液としてパラトルエンスルホン酸鉄溶液を用いた。
 定格電圧80Vの固体電解コンデンサは、コンデンサ素子に導電性高分子分散液を含浸後、加熱・乾燥させて、導電性高分子層を形成した。導電性高分子分散液として、PEDOT/PSS(ポリ(3,4‐エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる複合物)を分散質とした分散液を用いた。
 次に、所定のケースにコンデンサ素子を入れ、開口部を封口後、エージングを行い、それぞれの固体電解コンデンサを得た。
〔ハイブリッド電解コンデンサの作製工程〕
 各実施例、比較例、従来例のセパレータを用い、直径10.0×高さ10.5mmの定格電圧35V、静電容量270μFと、定格電圧160V、静電容量6.8μFとの二種類のハイブリッド電解コンデンサを作製した。
 具体的な作製方法は以下の通りである。
 エッチング処理及び酸化皮膜形成処理をそれぞれ行った、厚さ115μmの陽極箔と厚さ50μmの陰極箔とが接触しないように、セパレータを介在させて巻回し、素子巻の外周をテープで固定して、コンデンサ素子を作製した。作製したコンデンサ素子は、再化成処理後、乾燥した。
 定格電圧35Vのハイブリッド電解コンデンサは、コンデンサ素子に導電性高分子の重合液を含浸後、加熱・重合させ、溶媒を乾燥させて、導電性高分子層を形成した。導電性高分子重合液は、モノマーとして3,4‐エチレンジオキシチオフェンを用い、酸化剤溶液としてパラトルエンスルホン酸鉄溶液を用いた。
 定格電圧160Vのハイブリッド電解コンデンサは、コンデンサ素子に導電性高分子分散液を含浸後、加熱・乾燥させて、導電性高分子層を形成した。導電性高分子分散液として、PEDOT/PSS(ポリ(3,4‐エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる複合物)を分散質とした分散液を用いた。
 続けて、上記コンデンサ素子に駆動用電解液を含浸させ、所定のケースにコンデンサ素子を入れ、開口部を封口後、エージングを行い、それぞれのハイブリッド電解コンデンサを得た。
〔導電性高分子コンデンサの評価方法〕
 本実施の形態の導電性高分子コンデンサの具体的な性能評価は、以下の条件及び方法で行った。
〔ショート不良率〕
 巻回したコンデンサ素子を1000個用意し、エージング中に生じたショート不良数を計数し、ショート不良となった素子数を、エージングを実施したコンデンサ素子数で除して、百分率を持ってショート不良率とした。
〔ESR〕
 作製したコンデンサ素子のESRは、温度20℃、周波数100kHzの条件にて、LCRメータを用いて測定した。
〔実施例〕
 以下、本発明の実施の形態に係るセパレータの具体的な実施例等について説明する。
〔実施例1〕
 フィブリル化アクリル繊維(長さ荷重平均繊維長0.8mm)60質量%と、アラミド繊維(繊維長2.0mm)30質量%と、ポリビニルアルコール10質量%とを混合した原料を用いて円網抄紙し、実施例1のセパレータを得た。
 完成した実施例1のセパレータの厚さは50μm、密度は0.55g/cm、破裂強さは120kPa、比破裂強さは4.4kPa/(g/m)、引張弾性率は2030MPaであった。
〔実施例2〕
 フィブリル化ポリエステル繊維(長さ荷重平均繊維長0.5mm)45質量%と、ビニロン繊維(繊維長5.0mm)50質量%と、エチレンビニルアルコール共重合体5質量%とを混合した原料を用いて円網抄紙し、実施例2のセパレータを得た。
 完成した実施例2のセパレータの厚さは20μm、密度は0.45g/cm、破裂強さは52kPa、比破裂強さは5.8kPa/(g/m)、引張弾性率は480MPaであった。
〔実施例3〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.4mm)60質量%と、アクリル繊維(繊維長5.0mm)10質量%と、ポリビニルアルコール30質量%とを混合した原料を用いて円網抄紙し、実施例3のセパレータを得た。
 完成した実施例3のセパレータの厚さは50μm、密度は0.60g/cm、破裂強さは178kPa、比破裂強さは5.9kPa/(g/m)、引張弾性率は1320MPaであった。
〔実施例4〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.8mm)70質量%と、ナイロン繊維(繊維長3.0mm)10質量%と、ポリビニルアルコール20質量%とを混合した原料を用いて円網抄紙し、実施例4のセパレータを得た。
 完成した実施例4のセパレータの厚さは40μm、密度は0.50g/cm、破裂強さは135kPa、比破裂強さは6.8kPa/(g/m)、引張弾性率は1710MPaであった。
〔実施例5〕
 フィブリル化アクリル繊維(長さ荷重平均繊維長1.2mm)45質量%と、ナイロン繊維(繊維長3.0mm)30質量%と、ポリビニルアルコール25質量%とを混合した原料を用いて円網抄紙し、実施例5のセパレータを得た。
 完成した実施例5のセパレータの厚さは80μm、密度は0.40g/cm、破裂強さは155kPa、比破裂強さは4.8kPa/(g/m)、引張弾性率は1620MPaであった。
〔実施例6〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長1.8mm)30質量%と、ポリエステル繊維(繊維長3.0mm)40質量%と、ポリビニルアルコール30質量%とを混合した原料を用いて円網抄紙し、実施例6のセパレータを得た。
 完成した実施例6のセパレータの厚さは100μm、密度は0.45g/cm、破裂強さは163kPa、比破裂強さは3.6kPa/(g/m)、引張弾性率は870MPaであった。
〔実施例7〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.6mm)45質量%と、アクリル繊維(繊維長3.0mm)40質量%と、ポリビニルアルコール15質量%とを混合した原料を用いて円網抄紙し、実施例7のセパレータを得た。
 完成した実施例7のセパレータの厚さは50μm、密度は0.35g/cm、破裂強さは100kPa、比破裂強さは5.7kPa/(g/m)、引張弾性率は1270MPaであった。
〔実施例8〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.3mm)20質量%と、アクリル繊維(繊維長2.0mm)50質量%と、エチレンビニルアルコール共重合体30質量%とを混合した原料を用いて円網抄紙し、実施例8のセパレータを得た。
 完成した実施例8のセパレータの厚さは45μm、密度は0.35g/cm、破裂強さは116kPa、比破裂強さは7.4kPa/(g/m)、引張弾性率は1112MPaであった。
〔実施例9〕
 フィブリル化アクリル繊維(長さ荷重平均繊維長1.4mm)30質量%と、アラミド繊維(繊維長4.0mm)50質量%と、エチレンビニルアルコール共重合体20質量%とを混合した原料を用いて円網抄紙し、実施例9のセパレータを得た。
 完成した実施例9のセパレータの厚さは70μm、密度は0.40g/cm、破裂強さは117kPa、比破裂強さは4.2kPa/(g/m)、引張弾性率は1960MPaであった。
〔実施例10〕
 フィブリル化ポリエステル繊維(長さ荷重平均繊維長1.6mm)20質量%と、アクリル繊維(繊維長6.0mm)75質量%と、ポリビニルアルコール5質量%とを混合した原料を用いて円網抄紙し、実施例10のセパレータを得た。
 完成した実施例10のセパレータの厚さは40μm、密度は0.20g/cm、破裂強さは41kPa、比破裂強さは5.1kPa/(g/m)、引張弾性率は533MPaであった。
〔比較例1〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.4mm)65質量%と、アクリル繊維(繊維長5.0mm)5質量%と、ポリビニルアルコール30質量%とを混合した原料を用いて円網抄紙し、比較例1のセパレータを得た。
 完成した比較例1のセパレータの厚さは40μm、密度は0.50g/cm、破裂強さは158kPa、比破裂強さは7.9kPa/(g/m)、引張弾性率は1420MPaであった。
〔比較例2〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.3mm)75質量%と、ナイロン繊維(繊維長2.0mm)10質量%と、ポリビニルアルコール15質量%とを混合した原料を用いて円網抄紙し、比較例2のセパレータを得た。
 完成した比較例2のセパレータの厚さは60μm、密度は0.60g/cm、破裂強さは121kPa、比破裂強さは3.4kPa/(g/m)、引張弾性率は1750MPaであった。
〔比較例3〕
 フィブリル化アクリル繊維(長さ荷重平均繊維長1.9mm)25質量%と、ポリエステル繊維(繊維長3.0mm)40質量%と、ポリビニルアルコール35質量%とを混合した原料を用いて円網抄紙し、比較例3のセパレータを得た。
 完成した比較例3のセパレータの厚さは80μm、密度は0.35g/cm、破裂強さは187kPa、比破裂強さは6.7kPa/(g/m)、引張弾性率は570MPaであった。
〔比較例4〕
 フィブリル化アラミド繊維(長さ荷重平均繊維長0.5mm)15質量%と、アクリル繊維(繊維長2.0mm)60質量%と、エチレンビニルアルコール共重合体25質量%とを混合した原料を用いて円網抄紙し、比較例4のセパレータを得た。
 完成した比較例4のセパレータの厚さは35μm、密度は0.35g/cm、破裂強さは94kPa、比破裂強さは7.7kPa/(g/m)、引張弾性率は980MPaであった。
〔比較例5〕
 フィブリル化アクリル繊維(長さ荷重平均繊維長0.9mm)15質量%と、アクリル繊維(繊維長6.0mm)80質量%と、ポリビニルアルコール5質量%とを混合した原料を用いて円網抄紙し、比較例5のセパレータを得た。
 完成した比較例5のセパレータの厚さは50μm、密度は0.30g/cm、破裂強さは43kPa、比破裂強さは2.9kPa/(g/m)、引張弾性率は2060MPaであった。
〔比較例6〕
 フィブリル化ポリエステル繊維(長さ荷重平均繊維長0.4mm)45質量%と、ビニロン繊維(繊維長3.0mm)52質量%と、エチレンビニルアルコール共重合体3質量%とを混合した原料を用いて円網抄紙し、比較例6のセパレータを得た。
 完成した比較例6のセパレータの厚さは20μm、密度は0.45g/cm、破裂強さは35kPa、比破裂強さは3.9kPa/(g/m)、引張弾性率は460MPaであった。
〔従来例1〕
 特許文献1の実施例1に記載の方法と同様の方法で製造したセパレータを作製し、従来例1のセパレータを得た。
 従来例1のセパレータの厚さは45μm、密度は0.36g/cm、破裂強さは46kPa、比破裂強さは2.8kPa/(g/m)、引張弾性率は720MPaであった。
〔従来例2〕
 特許文献2の実施例1に記載の方法と同様の方法で製造したセパレータを作製し、従来例2のセパレータを得た。
 従来例2のセパレータの厚さは30μm、密度は0.55g/cm、破裂強さは54kPa、比破裂強さは3.3kPa/(g/m)、引張弾性率は1560MPaであった。
〔従来例3〕
 特許文献3の実施例1に記載の方法と同様の方法で製造したセパレータを作製し、従来例3のセパレータを得た。
 従来例3のセパレータの厚さは60μm、密度は0.20g/cm、破裂強さは94kPa、比破裂強さは7.8kPa/(g/m)、引張弾性率は540MPaであった。
〔従来例4〕
 特許文献4の実施例1に記載の方法と同様の方法で製造したセパレータを作製し、従来例4のセパレータを得た。
 従来例4のセパレータの厚さは55μm、密度は0.33g/cm、破裂強さは37kPa、比破裂強さは2.0kPa/(g/m)、引張弾性率は630MPaであった。
 以上に記載した実施例1~10、比較例1~6、従来例1~4の各セパレータの原材料と配合について、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表2は、以上に説明した実施例1~10、比較例1~6、従来例1~4の各セパレータの評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 各実施例、各比較例、各従来例のセパレータを用いて作製した導電性高分子コンデンサについて説明する。各実施例、各比較例、各従来例のセパレータを用いて、定格電圧35V、静電容量150μF、定格電圧80V、静電容量22μFの固体電解コンデンサ、及び定格電圧35V、静電容量270μF、定格電圧160V、静電容量6.8μFのハイブリッド電解コンデンサを作製した。各コンデンサの性能評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 以下、各実施例、各比較例、各従来例のセパレータを用いた、導電性高分子コンデンサの評価結果を詳細に説明する。
 実施例1及び実施例2のセパレータを用いたコンデンサは、従来例1から従来例4のセパレータを用いたコンデンサと比較して、ESRは同程度であるが、ショート不良率が低い。
 また、実施例3~10のセパレータを用いたコンデンサは、実施例1及び実施例2のセパレータを用いたコンデンサに比べ、ショート不良率は同程度であるが、ESRが低い。
 実施例3~10のセパレータのESRが低くなったのは、セパレータの引張弾性率が533~1960MPaであり、電極箔への密着性が良好で、電極箔とセパレータとの界面で、導電性高分子の連続性を維持できているためと考えられる。
 このことから、セパレータが適度な伸縮性を持つことで、ESRを低くできることがわかる。即ち、セパレータの引張弾性率が500~2000MPaの範囲であれば、導電性高分子コンデンサの低ESR化が実現できることが明らかになった。
 比較例1のセパレータは、厚さ、密度、破裂強さは各実施例と同レベルであるが、比破裂強さは7.9kPa/(g/m)と、各実施例と比べて高い。比較例1のセパレータを用いたコンデンサは、各実施例と比べてESRが高い。
 比較例1のセパレータを用いたコンデンサのESRが高くなったのは、セパレータの比破裂強さが7.9kPa/(g/m)と高く、セパレータを構成する繊維同士の結合が過度に強いことが原因と考えられる。比較例1のセパレータは、非フィブリル化合成繊維の含有量が5質量%であるため、過度に緻密になり、比破裂強さが過度に高く、導電性高分子の重合液や分散液の含浸が不均一になったと考えられる。
 このことから、セパレータの比破裂強さが7.5kPa/(g/m)以下であれば、導電性高分子コンデンサを低ESRとすることが可能であることが明らかとなった。また、非フィブリル化合成繊維の含有量を10質量%以上とすることで、導電性高分子の重合液や分散液の含浸性を維持できることがわかる。
 比較例2のセパレータは、厚さ、密度、破裂強さは各実施例と同レベルであるが、比破裂強さは3.4kPa/(g/m)と、各実施例と比べて低い。比較例2のセパレータを用いたコンデンサは、各実施例と比べてショート不良率が高い。また、ESRが従来例と比べて若干高い。
 比較例2のセパレータを用いたコンデンサのショート不良率が高くなったのは、セパレータの比破裂強さが3.4kPa/(g/m)と低く、セパレータを構成する繊維同士の結合が弱いことが原因と考えられる。比破裂強さが低いため、素子巻回時、及び巻回後の素子内部でセパレータにかかる様々な方向の、種々の力に耐えることができず、セパレータに部分的な欠損が生じ、ショート不良が発生したと考えられる。また、比較例2のセパレータを用いたコンデンサのESRが高くなったのは、フィブリル化アラミドの含有量が75質量%であるため、と考えられる。
 このことから、比破裂強さが3.5kPa/(g/m)以上であれば、導電性高分子コンデンサのショート不良の発生を抑制することができることが明らかになった。また、フィブリル化合成繊維の含有量を70質量%以下とすることで、ESRの悪化を抑えることができることがわかる。
 比較例3のセパレータは、厚さ、密度、比破裂強さは各実施例と同レベルであるが、破裂強さは187kPaと、各実施例と比べて高い。比較例3のセパレータを用いたコンデンサは、各実施例と比べてESRが高い。
 比較例3のセパレータを用いたコンデンサのESRが高くなったのは、セパレータの破裂強さが187kPaと高いことが原因と考えられる。比較例3のセパレータは、ポリビニルアルコールの含有量が35質量%であるため、セパレータの破裂強さが過度に高く、また、セパレータを構成する繊維間の空隙を埋めたと考えられる。そのため、比較例3のセパレータは、導電性高分子の重合液や分散液の含浸性、保持性が悪くなったと考えられる。
 このことから、破裂強さが180kPaを超えると、ESRが悪化することがわかる。つまり、破裂強さが180kPa以下であれば、導電性高分子コンデンサに適用可能なセパレータとすることができ、低ESRとすることが可能であることが明らかとなった。また、バインダーの含有量を30質量%以下とすることで、導電性高分子の重合液や分散液を含浸、保持するために必要な、セパレータを構成する繊維間の空隙を持たせることができ、低ESRとすることができることがわかる。
 比較例4のセパレータは、厚さ、密度、破裂強さは各実施例と同レベルであるが、比破裂強さは7.7kPa/(g/m)と高い。比較例4のセパレータを用いたコンデンサは、各実施例と比べてESRが高い。また、定格電圧80Vの固体電解コンデンサ、定格電圧160Vのハイブリッド電解コンデンサのショート不良率が高い。
 比較例4のセパレータを用いたコンデンサのESRが高くなったのは、セパレータの比破裂強さが7.7kPa/(g/m)と高く、セパレータを構成する繊維同士の結合が過度に強いことが原因と考えられる。比破裂強さが高いことから、セパレータを構成する繊維同士の結合面積が大きいことがわかり、導電性高分子の重合液や分散液を含浸が不均一になったことが考えられる。また、比較例4のセパレータは、フィブリル化アラミドの含有量が15質量%であるため、セパレータの緻密性が低く、定格電圧の高いコンデンサでのショート不良率が高くなったと考えられる。
 比較例1のセパレータを用いたコンデンサの評価に加え、比較例4のセパレータを用いたコンデンサの評価からも、セパレータの比破裂強さが7.5kPa/(g/m)以下であれば、導電性高分子コンデンサを低ESRとすることが可能であることが明らかとなった。また、フィブリル化合成繊維の含有量が20質量%以上であれば、セパレータの緻密性を高めることができ、ショート不良の発生を抑制できることがわかる。
 比較例5のセパレータは、厚さ、密度、破裂強さは各実施例と同レベルであるが、比破裂強さは2.9kPa/(g/m)と低い。比較例5のセパレータを用いたコンデンサは、各実施例と比べて、ショート不良率、ESRが高い。
 比較例5のセパレータを用いたコンデンサのショート不良率が高くなったのは、セパレータの比破裂強さが2.9kPa/(g/m)と低く、セパレータを構成する繊維同士の結合が弱いことが原因と考えられる。また、比較例5のセパレータは、フィブリル化アラミドの含有量が15質量%、アクリルの含有量が80質量%であるため、セパレータの緻密性が過度に低く、ショート不良率が高くなったと考えられる。さらに、セパレータの緻密性が低いため、導電性高分子の保持量が少なくなり、ESRが高くなったと考えられる。
 比較例2のセパレータを用いたコンデンサの評価に加え、比較例5のセパレータを用いたコンデンサの評価からも、セパレータの比破裂強さが3.5kPa/(g/m)以上であれば、導電性高分子コンデンサのショート不良の発生を抑制できることが明らかとなった。また、フィブリル化合成繊維の含有量が20質量%以上、非フィブリル化合成繊維の含有量が75質量%以下であれば、セパレータの緻密性を高めることができ、コンデンサのESRを悪化させずに、ショート不良の発生を抑制できることがわかる。
 比較例6のセパレータは、厚さ、密度、比破裂強さは各実施例と同レベルであるが、破裂強さは35kPaと低い。比較例6のセパレータを用いたコンデンサは、各実施例と比べてショート不良率が高い。
 比較例6のセパレータを用いたコンデンサのショート不良率が高くなったのは、セパレータの破裂強さが35kPaと低く、素子巻回時、及び素子巻内部でセパレータにかかる様々な方向の、種々の力に耐えることができず、セパレータに部分的な欠損が生じ、陽極箔と陰極箔との隔離が不十分となったためと考える。また、比較例6のセパレータは、エチレンビニルアルコール共重合体の含有量が3質量%であるため、セパレータの破裂強さが低くなったと考える。
 このことから、セパレータの破裂強さが40kPa以上であれば、導電性高分子コンデンサのショート不良の発生を抑制することが可能であることが明らかとなった。また、バインダーの含有量が5質量%以上であれば、セパレータの破裂強さを高めることができ、セパレータの耐ショート性を高めることができることがわかる。
 従来例1のセパレータは、特許文献1の実施例1に記載のセパレータと同様である。従来例1のセパレータは、比破裂強さが2.8kPa/(g/m)と低い。このため、コンデンサの評価結果でも、ショート不良率が高い。
 従来例2のセパレータは、特許文献2の実施例1に記載のセパレータと同様である。従来例2のセパレータは、比破裂強さが3.3kPa/(g/m)と低い。このため、コンデンサの評価結果でもショート不良率が高い。
 従来例1、従来例2のセパレータを用いたコンデンサの評価結果と、各実施例との比較から、セパレータにフィブリル化合成繊維を20~70質量%、非フィブリル化合成繊維を10~75質量%含有しているだけでは、ショート不良の発生を抑制することができず、バインダーを含有する必要があることがわかる。また、セパレータの比破裂強さが3.5kPa/(g/m)以上であれば、ショート不良の発生を抑制できることが明らかとなった。
 さらに、従来例2のセパレータは、湿潤引張強さを制御したセパレータであり、一方向からの力に対しての耐性はあるが、様々な方向の、種々の力に対する耐性が弱く、ショート不良の発生を抑制できなかったと考える。このことから、破裂強さ、比破裂強さを一定の範囲とすることで、様々な方向の、種々の力に対する安定性を高めることができ、ショート不良の発生を抑制できることがわかる。
 従来例3のセパレータは、特許文献3の実施例1に記載のセパレータと同様である。従来例3のセパレータは、比破裂強さが7.8kPa/(g/m)と高い。従来例3のセパレータを用いたコンデンサの評価結果では、ショート不良率が高く、ESRも高い。
 従来例3のセパレータは、非フィブリル化合成繊維とポリビニルアルコールから構成されているため、セパレータの緻密性が低く、コンデンサのショート不良率が高くなったと考えられる。また、従来例3のセパレータを用いた各コンデンサのESRが高くなったのは、比破裂強さが7.8kPa/(g/m)と高いことが原因と考えられる。
 従来例2及び従来例3のコンデンサ評価結果と、各実施例との比較から、セパレータの平均孔径を制御するだけでは、導電性高分子コンデンサのショート不良の発生を抑制することができず、素子巻回時、及び素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を高める必要がある。つまり、セパレータの破裂強さ、比破裂強さを一定の範囲とすることが必要であることが明らかとなった。
 従来例4のセパレータは、特許文献4の実施例1に記載のセパレータと同様である。従来例4のセパレータを用いたコンデンサの評価結果では、ショート不良率が高く、ESRも高い。
 従来例4のセパレータを用いたコンデンサのショート不良率が高くなったのは、従来例4のセパレータの破裂強さが37kPa、比破裂強さが2.0kPa/(g/m)と低く、素子巻回時、及び素子巻内部でセパレータにかかる様々な方向の、種々の力に耐えることができなかったことが原因と考えられる。また、従来例4のセパレータは、セルロース含有量が15質量%であるため、導電性高分子の重合液や分散液を含浸、保持させることにより、セパレータの破裂強さが低下し、ショート不良率が一段と高くなったと考える。さらに、セルロースを含有しているため、導電性高分子の重合液や分散液の含浸性、保持性が低くなり、ESRが高くなったと考える。
 従来例4のコンデンサ評価結果と各実施例との比較から、セルロースを含有したセパレータでは、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、耐ショート性を高めることができず、合成繊維とバインダーのみで構成する必要があることがわかる。
 以上説明したように、本発明の実施の形態によれば、合成繊維とバインダーとからなるセパレータの破裂強さを40~180kPa、比破裂強さを3.5~7.5kPa/(g/m)に制御することで、導電性高分子の重合液や分散液の含浸性、保持性を維持しながら、素子巻回時、及び巻回後の素子巻内部でセパレータにかかる様々な方向の、種々の力に対する安定性を高めることができる。そのため、セパレータの部分的な欠損の発生を抑制することができる。そして、本発明のセパレータを用いた導電性高分子コンデンサのESRを悪化させずに、ショート不良の発生を抑制できる。
 また、セパレータの引張弾性率を500~2000MPaの範囲とすることで、電極箔とセパレータとの密着性を制御することができ、導電性高分子コンデンサの低ESR化を実現することが可能になる。
 以上記載したように、本実施の形態のセパレータを用いた導電性高分子コンデンサは、ESRを悪化させずに、ショート不良の発生を抑制することができる。さらには、導電性高分子コンデンサの高耐電圧化にも寄与できる。

Claims (5)

  1.  一対の電極の間に介在し、陰極材料として導電性高分子を有するアルミニウム電解コンデンサに用いる、アルミニウム電解コンデンサ用セパレータであって、
     該セパレータは、合成繊維とバインダーとからなり、破裂強さが40~180kPa、比破裂強さが3.5~7.5kPa/(g/m)である
     ことを特徴とするアルミニウム電解コンデンサ用セパレータ。
  2.  前記合成繊維は、フィブリル化合成繊維と非フィブリル化合成繊維とからなることを特徴とする請求項1に記載のアルミニウム電解コンデンサ用セパレータ。
  3.  前記セパレータは、前記合成繊維を70~95質量%、前記バインダーを5~30質量%含有し、かつ、前記セパレータの全体質量のうち、前記フィブリル化合成繊維を20~70質量%、前記非フィブリル化合成繊維を10~75質量%含有することを特徴とする請求項2に記載のアルミニウム電解コンデンサ用セパレータ。
  4.  引張弾性率が500~2000MPaであることを特徴とする請求項1乃至3のいずれか1項に記載のアルミニウム電解コンデンサ用セパレータ。
  5.  陰極材料として導電性高分子を用いたアルミニウム電解コンデンサであって、
     請求項1乃至4のいずれか1項に記載のセパレータを用いたことを特徴とするアルミニウム電解コンデンサ。
PCT/JP2021/028336 2020-08-20 2021-07-30 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ WO2022039003A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021004345.5T DE112021004345T5 (de) 2020-08-20 2021-07-30 Separator für aluminium-elektrolytkondensator, und aluminiumelektrolytkondensator
KR1020237001562A KR20230051658A (ko) 2020-08-20 2021-07-30 알루미늄 전해 컨덴서용 세퍼레이터 및 알루미늄 전해 컨덴서
US18/014,329 US20230245835A1 (en) 2020-08-20 2021-07-30 Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN202180057697.4A CN116261762A (zh) 2020-08-20 2021-07-30 铝电解电容器用分隔件和铝电解电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-139532 2020-08-20
JP2020139532A JP7554599B2 (ja) 2020-08-20 2020-08-20 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ

Publications (1)

Publication Number Publication Date
WO2022039003A1 true WO2022039003A1 (ja) 2022-02-24

Family

ID=80322651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028336 WO2022039003A1 (ja) 2020-08-20 2021-07-30 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ

Country Status (7)

Country Link
US (1) US20230245835A1 (ja)
JP (1) JP7554599B2 (ja)
KR (1) KR20230051658A (ja)
CN (1) CN116261762A (ja)
DE (1) DE112021004345T5 (ja)
TW (1) TW202222949A (ja)
WO (1) WO2022039003A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980076B1 (en) * 2000-05-19 2005-12-27 Mcgraw Edison Company Electrical apparatus with synthetic fiber and binder reinforced cellulose insulation paper
JP2006019094A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd アルカリ乾電池およびアルカリ乾電池用セパレータの評価方法
JP2014183235A (ja) * 2013-03-19 2014-09-29 Nippon Kodoshi Corp コンデンサ用セパレータおよび該セパレータよりなるコンデンサ
JP2019149457A (ja) * 2018-02-27 2019-09-05 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146137A (ja) 2002-10-23 2004-05-20 Mitsubishi Paper Mills Ltd 電気化学素子用セパレーター
JP4163523B2 (ja) 2003-01-29 2008-10-08 三菱製紙株式会社 固体電解コンデンサ用セパレーター
KR101122500B1 (ko) * 2004-04-16 2012-03-15 미쓰비시 세이시 가부시키가이샤 전기 화학 소자용 세퍼레이터
WO2011118189A1 (ja) * 2010-03-23 2011-09-29 日本ケミコン株式会社 固体電解コンデンサ
HUE049641T2 (hu) * 2015-09-17 2020-09-28 Nippon Kodoshi Corp Szeparátor elektrokémiai elemhez és elektrokémiai elem
JP6265567B1 (ja) 2016-10-26 2018-01-24 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ
EP3608991B1 (en) * 2017-04-06 2024-10-02 Maxell, Ltd. Separator and non-aqueous electrolyte battery
JP6932534B2 (ja) 2017-04-19 2021-09-08 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子
JP6442097B1 (ja) 2018-03-29 2018-12-19 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータおよび該セパレータを用いたアルミニウム電解コンデンサ
JP2020088089A (ja) * 2018-11-21 2020-06-04 三菱製紙株式会社 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及びそれを用いてなる固体電解コンデンサ又はハイブリッド電解コンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980076B1 (en) * 2000-05-19 2005-12-27 Mcgraw Edison Company Electrical apparatus with synthetic fiber and binder reinforced cellulose insulation paper
JP2006019094A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd アルカリ乾電池およびアルカリ乾電池用セパレータの評価方法
JP2014183235A (ja) * 2013-03-19 2014-09-29 Nippon Kodoshi Corp コンデンサ用セパレータおよび該セパレータよりなるコンデンサ
JP2019149457A (ja) * 2018-02-27 2019-09-05 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子

Also Published As

Publication number Publication date
TW202222949A (zh) 2022-06-16
KR20230051658A (ko) 2023-04-18
CN116261762A (zh) 2023-06-13
DE112021004345T5 (de) 2023-06-01
JP2022035309A (ja) 2022-03-04
US20230245835A1 (en) 2023-08-03
JP7554599B2 (ja) 2024-09-20

Similar Documents

Publication Publication Date Title
KR101417539B1 (ko) 세퍼레이터 및 고체 전해 콘덴서
TWI745480B (zh) 鋁電解電容器用隔膜以及鋁電解電容器
JP5800658B2 (ja) 固体電解コンデンサ用セパレーター
TWI778238B (zh) 鋁電解電容器用隔膜及使用該隔膜的鋁電解電容器
JP4794914B2 (ja) 電解コンデンサ
TWI744399B (zh) 鋁電解電容器用隔膜以及鋁電解電容器
WO2019188659A1 (ja) アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ
JP6411620B1 (ja) 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハイブリッド電解コンデンサ。
WO2022039003A1 (ja) アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
WO2022202190A1 (ja) アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
JP2024122009A (ja) 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハイブリッド電解コンデンサ
CN115136266B (zh) 铝电解电容器用分隔件及铝电解电容器
WO2020137674A1 (ja) アルミニウム電解コンデンサ用セパレータおよびアルミニウム電解コンデンサ
JP2024122008A (ja) 固体電解コンデンサ又はハイブリッド電解コンデンサ用セパレータ及び固体電解コンデンサ又はハイブリッド電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858151

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21858151

Country of ref document: EP

Kind code of ref document: A1