WO2022037653A1 - 一种叠层电池 - Google Patents

一种叠层电池 Download PDF

Info

Publication number
WO2022037653A1
WO2022037653A1 PCT/CN2021/113582 CN2021113582W WO2022037653A1 WO 2022037653 A1 WO2022037653 A1 WO 2022037653A1 CN 2021113582 W CN2021113582 W CN 2021113582W WO 2022037653 A1 WO2022037653 A1 WO 2022037653A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole transport
perovskite
order
transport layer
Prior art date
Application number
PCT/CN2021/113582
Other languages
English (en)
French (fr)
Inventor
徐琛
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to US18/016,578 priority Critical patent/US20230200096A1/en
Priority to EP21857744.3A priority patent/EP4203077A4/en
Priority to JP2023512693A priority patent/JP2023538427A/ja
Priority to AU2021329840A priority patent/AU2021329840A1/en
Publication of WO2022037653A1 publication Critical patent/WO2022037653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of photovoltaic technology, and in particular, to a stacked battery.
  • the purpose of the present disclosure is to provide a stacked battery, so as to form a functional layer with a high degree of thin film order on the bottom battery, thereby improving the photoelectric conversion efficiency of the stacked battery.
  • the present disclosure provides a stacked battery.
  • the stacked battery includes: a bottom battery, the bottom battery has a textured surface; a hole transport layer formed on the textured surface of the bottom battery; a second order inducing layer and a perovskite absorption layer formed on the hole transport layer, The second order inducing layer is located between the hole transport layer and the perovskite absorber layer; and a transparent conductive layer formed on the perovskite absorber layer.
  • the inducing material contained in the second order inducing layer is an organic ammonium salt or an inorganic lead compound.
  • the perovskite absorbing layer is grown on the second order inducing layer, and under the buffering effect of the second order inducing layer, the perovskite absorbing layer can avoid the molecular disorder on the surface of the hole transport layer. Negative Effects.
  • the perovskite absorber layer can grow in an orderly manner under the induction of the second order-inducing layer, and has higher crystallinity and larger grain size. At this time, the perovskite absorber layer has fewer defects and higher photoelectric conversion efficiency.
  • the second order-inducing layer acts as an intermediate layer between the hole transport layer and the perovskite absorption layer, which can reduce the energy range between the films, form an energy level match that is conducive to hole transport, and improve the efficiency of the tandem battery. hole transport properties.
  • the inducing material of the second order inducing layer is an organic ammonium salt or an inorganic lead compound
  • the organic ammonium salt and inorganic lead compound and the perovskite material of the perovskite absorption layer have a high degree of crystal structure matching, similar properties, and are easy to use. Induced growth of highly ordered perovskite absorber layers.
  • the above-mentioned inorganic lead compound is one or more of lead oxide, lead bromide, lead iodide, lead chloride, lead acetate, lead thiocyanate and lead sulfide.
  • These inorganic lead compounds are metal oxides and have good compatibility with the metal oxide hole transport layer, so that a better interface contact can be formed between the second order inducing layer and the hole transport layer.
  • both the inorganic lead compound and the perovskite material of the perovskite absorber layer are lead compounds, and the two have good compatibility, which makes it easier to induce the growth of the perovskite absorber layer for the second order inducing layer.
  • the thickness of the second order inducing layer is 1 nm ⁇ 20 nm.
  • the above-mentioned tandem battery further includes a first order inducing layer.
  • the first order inducing layer is located between the bottom cell and the hole transport layer.
  • the hole transport layer can grow in an orderly manner, with higher crystallinity and larger grain size, thereby The defects of the hole transport layer are reduced, and the hole transport performance of the hole transport layer is improved.
  • the first order inducing layer acts as an intermediate layer between the hole transport layer and the bottom cell, which can reduce the energy level difference between the films and form an energy level between the hole transport layer and the bottom cell that is favorable for hole transport. matching, thereby improving the hole transport performance of the tandem battery.
  • the inducing material of the first order inducing layer is a rod-shaped molecular material
  • the rod-shaped molecular material is easy to stand upright on the underlying film through close packing to form a highly ordered geometric channel.
  • the highly ordered geometric channel can induce the oriented growth of the upper organic film along the geometric channel through strong interaction.
  • the first order inducing layer containing the rod-shaped molecular material has a better order growth inducing effect on the upper film.
  • rod-like molecular materials have properties similar to liquid crystals in thin films, and their liquid crystal phase temperature is low, and it is easy to form a large-area highly ordered first order induction through the fluidity of liquid crystals at low temperatures.
  • Floor is easy to form a large-area highly ordered first order induction through the fluidity of liquid crystals at low temperatures.
  • the inducing material contained in the first order inducing layer is a metal oxide
  • the material of the hole transport layer is an inorganic hole transport material
  • the metal oxide is an inorganic material, and the material properties are similar to the inorganic hole transport layer made of the inorganic material, so that a better interface contact can be formed between the first order inducing layer and the hole transport layer.
  • the compatibility is better, and it is easier to induce the orderly growth of the hole transport layer.
  • the thickness of the above-mentioned first order inducing layer is 1 nm ⁇ 20 nm.
  • the rod-like molecular materials and the like in the first order-inducing layer of this thickness are likely to have properties similar to liquid crystals, so that a large-area ordered thin film is easily formed.
  • the above-mentioned rod-shaped molecular material is BPTT
  • the metal oxide is zinc oxide
  • the thickness of the above hole transport layer is 5 nm ⁇ 100 nm.
  • the processes for forming the first order inducing layer, the second order inducing layer and the hole transport layer are magnetron sputtering process, laser pulse deposition process, thermal evaporation coating process, chemical vapor deposition process, solution coating process, gel-sol process, or hydrothermal synthesis of nanoparticles.
  • the method for forming the above-mentioned perovskite absorber layer includes:
  • Lead iodide and cesium bromide are formed on the second order-inducing layer by co-evaporation,
  • the perovskite material film is annealed to form a perovskite absorber layer.
  • FIG. 1 is a schematic structural diagram of a laminated battery according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a p-type crystalline silicon-perovskite tandem battery provided by an embodiment of the present disclosure.
  • FIGS. 4-14 are schematic diagrams of states of various stages of a method for fabricating a p-type crystalline silicon-perovskite tandem battery provided by the implementation of the present disclosure.
  • the perovskite absorber layer is often deposited directly on the hole transport layer described above.
  • the hole transport layer is made of inorganic semiconductor materials
  • the perovskite material of the perovskite absorption layer as an organic-inorganic hybrid material, has a compatibility problem with nickel oxide. If the perovskite material is deposited directly on the inorganic material, the disorder of the inorganic material will increase the crystallization nucleation sites of the perovskite material and lead to the growth of small-sized grains, and the controllability of the film growth is poor. It can be seen that both the hole transport layer and the perovskite absorption layer face the problems of poor interface compatibility, small grain size, and low film order. These defects often affect the performance of each functional layer and reduce the photoelectric conversion efficiency of tandem cells.
  • the stacked battery can be a perovskite battery as a top battery, a crystalline silicon battery, a polycrystalline silicon battery, an ingot monocrystalline silicon battery, a copper indium gallium selenide battery, a perovskite battery, a gallium arsenide battery, or an organic photovoltaic battery. Any one of the tandem batteries is a bottom battery, and is not limited to this.
  • the tandem cell may further include a tunneling recombination layer 20 on the bottom cell 10 , so as to realize the tunneling recombination collection of photogenerated carriers of the bottom cell 10 and the perovskite top cell.
  • the tunneling composite layer 20 can be tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tungsten-doped indium oxide (IWO), titanium-doped indium oxide (ITIO), fluorine-doped tin oxide (FTO), aluminum-doped
  • the tunneling composite layer 20 is made of transparent metal oxides such as zinc oxide (AZO).
  • the first order inducing layer 31 in order to improve the order degree of the first order inducing layer 31 , parameters such as the thickness of the first order inducing layer 31 can be adjusted, so that the inducing material used for making the first order inducing layer 31 has a liquid crystal-like properties. Therefore, a large-area ordered thin film is formed, which is beneficial to improve the order degree of the first order inducing layer 31 .
  • the first order inducing layer 31 has a high degree of order, it is favorable for the orderly growth of the hole transport layer 32 on the upper layer, thereby reducing the defects of the hole transport layer 32 and improving the hole transport performance.
  • the above hole transport layer 32 is formed on the first order inducing layer 31 .
  • the process of forming the hole transport layer 32 may be a magnetron sputtering process, a laser pulse deposition process, a thermal evaporation coating process, a chemical vapor deposition process, a solution coating process, a gel-sol process or a hydrothermal synthesis nanoparticle process.
  • the thickness of the hole transport layer 32 may be 5 nm ⁇ 100 nm.
  • the thickness of the hole transport layer 32 is 5 nm, 10 nm, 30 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, or the like.
  • the first order inducing layer 31 has weak epitaxial ability, and weak epitaxial interaction (van der Waals effect) can be used to form lattice matching between the first order inducing layer 31 and the hole transport layer 32 Therefore, the orderly growth of the hole transport layer 32 is induced, thereby realizing the regulation of the microstructure of the hole transport layer 32 .
  • a rod-shaped molecular material can be selected as the first order inducing layer 31 .
  • the inductive material of the order inducing layer 31 induces the hole transport layer 32 made of the organic hole transport material.
  • Rod-like molecular materials easily stand upright on the underlying thin film (tunneling composite layer 20 ) by close packing, forming a highly ordered geometric channel.
  • rod-like molecular materials have properties similar to liquid crystals in thin films, and their liquid crystal phase temperature is low, and it is easy to form large-area highly ordered films through the fluidity of liquid crystals at low temperatures.
  • the rod-shaped molecular material is easy to form a highly ordered first order inducing layer 31 , and thus has a better ordered growth induction effect.
  • the rod-shaped molecular material can be selected from dibenzothiophene (BPTT).
  • BPTT can form structurally stable geometric channels, which can induce the growth of highly ordered and stable thin films.
  • a metal oxide can also be selected as the inducing material of the first order inducing layer 31 to induce the hole transporting layer 32 made of inorganic hole transporting material.
  • the metal oxide is an inorganic material, and the material properties are similar to the inorganic hole transport layer 32 made of the inorganic material, so that a better interface contact can be formed between the first order inducing layer 31 and the hole transport layer 32, The compatibility is better, and it is easier to induce the orderly growth of the hole transport layer 32 .
  • the metal oxide can be zinc oxide.
  • the material of the hole transport layer 32 may include one or more of PTAA, Cz2T, Spiro-OMeTAD, Spiro-TTB, copper phthalocyanine, and nickel oxide, and is not limited thereto.
  • the van der Waals effect (weak interaction) of the geometric channel on the surface of the BPTT film can be used to induce the ordered growth of the copper phthalocyanine material.
  • the weak interaction between the BPTT film and the copper phthalocyanine film there is only an orientation relationship between the two, and there is no strict lattice matching relationship. Copper phthalocyanine hole transport layer.
  • the material properties of the hole transport layer 32 to be induced to grow can be further selected according to the material properties of the hole transport layer 32 and the material with strong compatibility and interaction with the hole transport layer 32 is further selected to manufacture the first order inducing layer. 31.
  • the inducing material contained in the first order inducing layer 31 may be zinc oxide.
  • the molecules of the inducing material contained in the first order inducing layer 31 may be BPTT.
  • BPTT is a rigid rod-like molecule, which is easy to form a highly ordered film on the surface of the tunneling composite layer 20, and its terminal benzene rings form geometric channels with specific orientations on the surface of the crystal array.
  • the van der Waals force between Cz2T molecules and BPTT molecules is a weak interaction, and there is an orientation relationship between the growth of Cz2T molecules and the first order inducing layer 31 of BPTT, so that The Cz2T molecules are neatly stacked along the geometric channels formed by the BPTT molecules to form the hole transport layer 32 with a high degree of order.
  • there is no strict lattice matching relationship between the Cz2T molecules and the BPTT molecules so the thickness of the hole transport layer 32 can be prevented from being affected by the first order inducing layer 31 .
  • the hole transport layer 32 can grow in an orderly manner, and has a higher crystallinity and a larger grain size. At this time, the hole transport layer 32 has fewer defects and has better hole transport performance.
  • the first order inducing layer 31 acts as an intermediate layer between the hole transport layer 32 and the tunneling composite layer 20 , which can reduce the energy level difference between the films, between the hole transport layer 32 and the tunneling composite layer 20 The energy level matching that is favorable for hole transport is formed, thereby improving the hole transport performance of the tandem battery.
  • the second order inducing layer 33 is formed on the hole transport layer 32 .
  • the process for forming the second order inducing layer 33 can be a magnetron sputtering process, a laser pulse deposition process, a thermal evaporation coating process, a chemical vapor deposition process, a solution coating process, a gel-sol process or a hydrothermal method to synthesize nanoparticles craft.
  • the thickness of the second order inducing layer 33 fabricated by the above method may be 1 nm ⁇ 20 nm.
  • the thickness of the second order inducing layer 33 is 1 nm, 5 nm, 8 nm, 10 nm, 12 nm, 18 nm, 20 nm and so on.
  • the above-mentioned perovskite absorber layer 34 is formed on the second order inducing layer 33 .
  • the method of forming the perovskite absorber layer 34 may include forming lead iodide and cesium bromide on the hole transport layer 32 using a co-evaporation method. A mixed solution of formamidine hydroiodide and formamidine hydrobromide is coated on lead iodide and cesium bromide to form a perovskite material thin film. The perovskite material thin film is annealed to form the perovskite absorption layer 34 .
  • an organic ammonium salt can be selected as the inducing material or one whose properties are similar to the perovskite material.
  • Inorganic lead compounds are used as inducing materials.
  • the inducing material of the second order inducing layer is an organic ammonium salt or an inorganic lead compound
  • the organic ammonium salt and the inorganic lead compound and the perovskite material of the perovskite absorption layer 34 have a high degree of crystal structure matching and similar properties, The growth of a highly ordered perovskite absorber layer 34 is easily induced.
  • the organic ammonium salt can be ammonium acetate or the like.
  • the inorganic lead compound may be one or more of lead oxide, lead bromide, lead iodide, lead chloride, lead acetate, lead thiocyanate and lead sulfide. These inorganic lead compounds are metal oxides and have good compatibility with the metal oxide hole transport layer 32 , so that a better interface can be formed between the second order induction layer 33 and the hole transport layer 32 touch.
  • the inorganic lead compound and the perovskite material of the perovskite absorption layer 34 are both lead compounds, and the two have good compatibility, so that the second order inducing layer 33 is easier to induce the growth of perovskite absorption Layer 34.
  • an electron transport layer 35 may also be provided between the above-mentioned transparent conductive layer 36 and the perovskite absorption layer 34 to realize the transport of photogenerated carriers.
  • the material of the electron transport layer 35 can be SnO 2 or the like.
  • an n-type heavily doped layer 12 is formed on the surface of the p-type crystalline silicon wafer 11 having a textured surface by a diffusion process such as ion implantation.
  • the p-type crystalline silicon wafer 11 has a pn junction, and the structure obtained in the above steps is defined as the bottom cell 10 .
  • a first order inducing layer 31 with a thickness of 1 nm-20 nm is formed on the through composite layer 20 .
  • a perovskite absorption layer 34 with a thickness of 250 nm to 1000 nm is formed on the second order inducing layer 33 .
  • a perovskite absorption layer 34 with a thickness of 250 nm to 1000 nm is formed on the second order inducing layer 33 .
  • a mixed solution of formamidine hydroiodide (FAI) and formamidine hydrobromide (FABr) is coated on lead iodide and cesium bromide, and the mixed solution of FAI and FABr reacts with lead iodide and cesium bromide.
  • a thin film of perovskite material is formed.
  • the solvent of the mixed solution of FAI and FABr may be ethanol or isopropanol.
  • a magnetron sputtering process is used to form a second order inducing layer (thickness 1 nm) made of lead bromide on the hole transport layer.
  • the tenth step is to use a magnetron sputtering process to form a transparent conductive layer (30 nm) of IWO material on the electron transport layer.
  • the p-type crystalline silicon-perovskite tandem cell includes a p-type crystalline silicon bottom cell, a tunneling composite layer, a first order inducing layer made of zinc oxide, and a hole transport made of nickel oxide, which are stacked in sequence. layer, a second order inducing layer made of lead oxide, a perovskite absorption layer, an electron transport interface layer, a leakage repair layer, an electron transport layer and a transparent conductive layer.
  • the first step is to provide a p-type crystalline silicon wafer.
  • the p-type crystalline silicon wafer is sequentially polished, textured and cleaned to form a p-type crystalline silicon wafer with textured surfaces.
  • an n-type heavily doped layer is formed on the surface of the p-type crystalline silicon wafer with textured surface by using an ion implantation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Primary Cells (AREA)

Abstract

本公开公开一种叠层电池,涉及光伏技术领域,以在底电池上形成薄膜有序度较高的功能层,从而提高叠层电池的光电转换效率。该叠层电池包括:底电池,底电池具有绒面;形成在底电池的绒面上的空穴传输层;形成在空穴传输层上的第二有序诱导层和钙钛矿吸收层,第二有序诱导层位于空穴传输层和钙钛矿吸收层之间;以及形成在钙钛矿吸收层上的透明导电层。第二有序诱导层含有的诱导材料为有机铵盐或无机铅化合物。本发明提供的叠层电池用于以钙钛矿太阳能电池为顶电池的叠层电池。

Description

一种叠层电池
相关申请的交叉引用
本公开要求在2020年08月20日提交中国专利局、申请号为202010855550.7、名称为“一种叠层电池”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光伏技术领域,尤其涉及一种叠层电池。
背景技术
单结太阳能电池,往往只能吸收固定波长的太阳光。为了提高对太阳光的利用率,可以将多个不同带隙的太阳能电池通过复合层串联起来,以吸收不同波长的太阳光。钙钛矿电池具有较宽的带隙,且可以通过调整组分配比,调控钙钛矿电池吸收光谱的带隙。可见,钙钛矿电池是理想的叠层电池的顶电池。
当钙钛矿电池与具有绒面结构的底电池层叠在一起时,如何在底电池上形成薄膜有序度较高的功能层,成为提高叠层电池光电转换效率的难点。
概述
本公开的目的在于提供一种叠层电池,以在底电池上形成薄膜有序度较高的功能层,从而提高叠层电池的光电转换效率。
为了实现上述目的,本公开提供一种叠层电池。该叠层电池包括:底电池,底电池具有绒面;形成在底电池的绒面上的空穴传输层;形成在空穴传输层上的第二有序诱导层和钙钛矿吸收层,第二有序诱导层位于空穴传输层和钙钛矿吸收层之间;以及形成在钙钛矿吸收层上的透明导电层。第二有序诱导层含有的诱导材料为有机铵盐或无机铅化合物。
采用上述技术方案时,钙钛矿吸收层生长在第二有序诱导层上,在第二有序诱导层的缓冲作用下,钙钛矿吸收层能够避免空穴传输层表面分子无序性的不利影响。与此同时,在第二有序诱导层的诱导作用下钙钛矿吸收层能够有序生长,并具有较高的结晶度、较大的晶粒尺寸。此时,钙钛矿吸收层缺陷较少,具有较高的光电转换效率。并且,第二有序诱导层作为空穴传输 层与钙钛矿吸收层之间的中间层,能够降低薄膜间的能极差,形成有利于空穴传输的能级匹配,提高叠层电池的空穴传输性能。
当第二有序诱导层的诱导材料为有机铵盐或无机铅化合物时,有机铵盐和无机铅化合物与钙钛矿吸收层的钙钛矿材料晶型结构匹配度较高、性质接近,容易诱导生长高度有序的钙钛矿吸收层。
在一些可能的实现方式中,上述无机铅化合物为氧化铅、溴化铅、碘化铅、氯化铅、醋酸铅、硫氰化铅和硫化铅中的一种或多种。这些无机铅化合物为金属氧化物,与金属氧化物空穴传输层之间具有较好的相容性,使得第二有序诱导层与空穴传输层之间能够形成较好的界面接触。同时,无机铅化合物与钙钛矿吸收层的钙钛矿材料均为铅化合物,两者具有较好的相容性,使得第二有序诱导层,更容易诱导生长出钙钛矿吸收层。
在一些可能的实现方式中,上述第二有序诱导层的厚度为1nm~20nm。
在一些可能的实现方式中,上述叠层电池还包括第一有序诱导层。第一有序诱导层位于底电池和空穴传输层之间。
与第二有序诱导层作用机理类似,在第一有序诱导层的界面缓冲和诱导作用下,空穴传输层能够有序生长,具有较高的结晶度、较大的晶粒尺寸,从而减少可以空穴传输层的缺陷,提高空穴传输层的空穴传输性能。并且,第一有序诱导层作为空穴传输层与底电池之间的中间层,可以降低薄膜之间的能级差,在空穴传输层和底电池之间形成有利于空穴传输的能级匹配,进而提高叠层电池的空穴传输性能。
当第一有序诱导层的诱导材料为棒状分子材料时,棒状分子材料容易通过密堆积直立于下层薄膜上,形成高度有序的几何沟道。该高度有序的几何沟道可以通过较强的相互作用,诱导上层有机薄膜沿着几何沟道取向生长。此时,含有棒状分子材料的第一有序诱导层对其上层薄膜,具有较好的有序生长诱导作用。并且,棒状分子材料在厚度较薄的薄膜中具有类似液晶的性质,且其液晶相温度较低,容易在较低的温度下通过液晶的流动性形成大面积高度有序的第一有序诱导层。
在一些可能的实现方式中,上述第一有序诱导层含有的诱导材料为金属氧化物,空穴传输层的材料采用无机空穴传输材料。
采用上述技术方案时,金属氧化物为无机材料,与无机材料制作的无机空穴传输层,材料性质相似,使得第一有序诱导层与空穴传输层之间能够形成较好的界面接触,兼容性较好,更容易诱导空穴传输层有序生长。
在一些可能的实现方式中,上述第一有序诱导层的厚度为1nm~20nm。该厚度的第一有序诱导层中棒状分子材料等容易具有类似液晶的性质,从而容易形成大面积有序薄膜。
在一些可能的实现方式中,上述棒状分子材料为BPTT,金属氧化物为氧化锌。
在一些可能的实现方式中,上述空穴传输层的材料包括PTAA、Cz2T、Spiro-OMeTAD、Spiro-TTB、酞菁铜、氧化镍中的一种或多种。
在一些可能的实现方式中,上述空穴传输层的厚度为5nm~100nm。
在一些可能的实现方式中,形成上述第一有序诱导层、第二有序诱导层以及空穴传输层的工艺为磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺。
在一些可能的实现方式中,形成上述钙钛矿吸收层的方法包括:
采用共蒸法在第二有序诱导层上形成碘化铅和溴化铯,
在碘化铅和溴化铯上涂布甲脒氢碘酸盐及甲脒氢溴酸盐混合溶液,形成钙钛矿材料薄膜;
钙钛矿材料薄膜进行退火处理,形成钙钛矿吸收层。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的一种叠层电池结构示意图;
图2为本公开实施例中提供的BPTT和Cz2T的分子结构示意图,其中,a为BPTT结构示意图,b为Cz2T结构示意;
图3为本公开实施例提供的一种p型晶体硅-钙钛矿叠层电池结构示意图;并且
图4-图14为本公开实施提供的p型晶体硅-钙钛矿叠层电池制作方法的各阶段状态示意图。
详细描述
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本公开的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
目前,晶体硅电池作为光伏领域的主流产品,是一种高效率晶硅光伏电池技术,其电池效率(26.7%)已经接近其理论极限效率(29.4%)。随着光伏技术的不断发展,叠层电池技术被证实是突破传统晶硅光伏电池效率的有效途径。
有机-无机杂化钙钛矿太阳能电池作为新型高效率、低成本太阳能电池在全世界范围内被广泛关注。短短几年时间里,钙钛矿太阳能电池的光电转换效率从2009年的3.8%迅速攀升到25%以上,已接近商业化硅基太阳能电池的效率。钙钛矿电池可以通过调整组份配方在1.5eV-1.8eV范围内调控钙钛矿电池的吸收光谱带隙,使得钙钛矿电池可以成为理想的叠层顶电池。钙钛 矿电池与晶体硅电池结合的晶体硅-钙钛矿叠层电池,有望实现30%以上的光电转换效率。目前,有文献证实晶体硅-钙钛矿叠层电池转换效率可以达到25%以上。
晶体硅-钙钛矿叠层电池以晶体硅电池作为底电池吸收800nm-1200nm波长的太阳光的能量,以钙钛矿电池作为顶电池吸收300nm-800nm波长的太阳光的能量。底电池与顶电池通过复合层连接形成两端串联电池,叠层电池的整体开路电压为顶电池和底电池的电压叠加,而叠层电池的电流为顶电池与底电池的最小电流,此时,需要顶电池与底电池之间具有良好的电流匹配。
现有技术中,钙钛矿电池通过溶液旋涂方法制备器件中的各功能层。高效率的晶体硅底电池一般采用双金字塔绒面陷光结构来提高对太阳光的吸收和利用率,进而提升电池转换效率。在绒面结构的晶体硅底电池上制作钙钛矿顶电池时,晶体硅底电池中的微米级金字塔绒面陷光结构对溶液法制备钙钛矿顶电池是一个巨大的挑战。其难点在于,钙钛矿电池各功能层的厚度一般在几百纳米,溶液状态的各功能层材料容易堆积在金字塔绒面的底部,因此,各功能层难以通过溶液旋涂法均匀的沉积在微米级的金字塔绒面上。目前的解决方案是对晶体硅底电池进行抛光加工,降低与钙钛矿顶电池接触的绒面的粗糙度,以使溶液制备钙钛矿顶电池变得可能。这种方法虽然可以在晶体硅底电池上采用溶液旋涂法制作钙钛矿顶电池,却损失了绒面结构及其陷光效应所带来的电池效率增益。同时,抛光加工工艺大大增加了整个电池的制作成本。
在晶体硅底电池绒面上制备钙钛矿顶电池,关键在于如何在绒面上均匀沉积钙钛矿顶电池的各功能层(空穴传输层、钙钛矿吸收层、电子传输层、空穴阻挡层、电极缓冲层、电极等)。与溶液加工方法相比,真空沉积工艺能够均匀地在各种基底上沉积各种可蒸镀功能材料,因而,真空沉积工艺成为在晶体硅底电池绒面上制备钙钛矿顶电池的较佳选择。
在现有的晶体硅-钙钛矿叠层电池制备工艺中,空穴传输层直接在隧穿复合层上生长。隧穿复合层通常采用重掺杂微晶硅等无机材料制成。空穴传输层的材料分两种,一种是有机半导体,比如2,2',7,7'-四(二-对甲苯基氨基)螺-9,9'-二芴(spiro-TTB);另一种是无机半导体,比如氧化镍。直接在无机隧穿复合层上生长不同类型的空穴传输材料时,由于无机材料制作的隧穿复合层表面分子呈现高度无序性,以及有机材料存在的材料性质差异,在隧穿复合层表面,空穴传输层材料分子成核位点较多,容易形成小尺寸岛状的生长 结构。此时,所制作的空穴传输层往往存在晶格匹配度低,晶界缺陷较多,界面接触性能较差,薄膜有序度较差等问题,导致空穴传输层的空穴传输性能较差。产生这些问题的主要原因在于空穴传输层与隧穿复合层兼容性较差以及隧穿复合层无序度高引起的不受控薄膜生长。同样的,钙钛矿吸收层也往往是直接在上述空穴传输层上沉积。当空穴传输层采用无机半导体材料制作时,钙钛矿吸收层的钙钛矿材料作为一种有机无机杂化材料,与氧化镍之间存在兼容性的问题。如果直接在无机材料上沉积钙钛矿材料,无机材料的无序性会增加钙钛矿材料的结晶成核位点,并导致小尺寸晶粒的生长,薄膜生长的可控性较差。可见,无论是空穴传输层,还是钙钛矿吸收层均面临界面兼容性较差、晶粒尺寸偏小、薄膜有序度较低的问题。这些缺陷往往会影响各功能层的性能,降低叠层电池的光电转换效率。
由上可知,如何在底电池上形成薄膜有序度较高的各功能层,成为提高叠层电池光电转换效率的关键。
为了解决上述问题,本公开实施例提供一种叠层电池。该叠层电池可以是以钙钛矿电池为顶电池,以晶体硅电池、多晶硅电池、铸锭单晶硅电池、铜铟镓硒电池、钙钛矿电池、砷化镓电池、有机光伏电池中的任一种为底电池的叠层电池,且不仅限于此。
如图1所示,本公开实施例提供的叠层电池包括依次层叠的底电池10、第一有序诱导层31、空穴传输层32、第二有序诱导层33、钙钛矿吸收层34以及透明导电层36。
如图1所示,底电池10可以为上述可应用于叠层电池的底电池中的任一种。该底电池10可以为n型太阳能电池,也可以为p型太阳能电池。无论何种结构,何种类型的底电池10均可以具有绒面。该绒面可以通过制绒工艺形成于底电池10的正面和背面。具体的,该绒面结构可以是金字塔形貌的绒面,也可以是倒金字塔形貌的绒面等。
以晶体硅电池为例,底电池的结构可以包括形成有pn结的p型晶体硅片或n型晶体硅片。具有pn结的p型晶体硅片或n型晶体硅片为底电池的光吸收层,用以吸收太阳光,将光子转换为光生载流子。具有pn结的p型晶体硅片或n型晶体硅片的正面和背面,可以通过制绒工艺形成绒面结构。
如图1所示,叠层电池还可以包括位于底电池10上的隧穿复合层20,用以实现底电池10和钙钛矿顶电池光生载流子的隧穿复合收集。该隧穿复合层20可以为掺锡氧化铟(ITO)、掺锌氧化铟(IZO)、掺钨氧化铟(IWO)、 掺钛氧化铟(ITIO)、掺氟氧化锡(FTO)、掺铝氧化锌(AZO)等透明金属氧化物制成的隧穿复合层20。
隧穿复合层20也可以为与底电池10的pn结反向的重掺杂微晶硅制作的隧穿复合层20。例如,由n型掺杂微晶硅层与p型掺杂微晶硅层组成的隧穿复合层20。其中,p型掺杂微晶硅层与空穴传输层32直接接触,n型掺杂微晶硅层与底电池10直接接触。具体的,n型掺杂微晶硅层可以为掺杂磷的微晶硅层,p型掺杂微晶硅层可以为掺杂硼的微晶硅层。
如图1所示,在实际应用中,隧穿复合层20可以采用等离子体化学气相沉积(PECVD)工艺、磁控溅射工艺、热丝化学气相沉积工艺、催化化学气相沉积工艺中的一种制作。由于底电池10具有绒面,因此,随形生长在底电池10上的隧穿复合层20也具有绒面结构。
如图1所示,上述第一有序诱导层31形成于隧穿复合层20上。需要说明的是,在实际应用中,第一有序诱导层31也可以省略。形成第一有序诱导层31的工艺可以为磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺。
如图1所示,为了提高第一有序诱导层31的有序度,可以调节第一有序诱导层31的厚度等参数,使得制作第一有序诱导层31的诱导材料具有类似液晶的性质,从而形成大面积有序薄膜,有利于提高第一有序诱导层31的有序度。当第一有序诱导层31具有较高的有序度时,有利于其上层的空穴传输层32有序生长,从而可以减少空穴传输层32的缺陷,提高空穴传输性能。
例如:当第一有序诱导层31的厚度为1nm-20nm时,第一有序诱导层31为超薄薄膜,第一有序诱导层31的诱导材料在超薄薄膜中容易具有类似液晶的性质,从而容易通过液晶的流动性形成大面积有序薄膜,有利于提高第一有序诱导层31的有序度。第一有序诱导层31的厚度可以为1nm、5nm、8nm、10nm、12nm、18nm、20nm等。
如图1所示,上述空穴传输层32形成于第一有序诱导层31上。形成空穴传输层32的工艺可以为磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺。应理解,空穴传输层32的厚度可以为5nm~100nm。例如,空穴传输层32的厚度为5nm、10nm、30nm、50nm、60nm、70nm、80nm、90nm、100nm等。
如图1所示,空穴传输层32受第一有序诱导层31的范德华作用诱导, 形成于第一有序诱导层31上,并具有特定取向、相态以及有序凝聚态结构。
如图1所示,上述第一有序诱导层31具有弱外延能力,可以利用弱外延相互作用(范德华作用),使得第一有序诱导层31与空穴传输层32之间形成晶格匹配关系,诱导空穴传输层32的有序生长,从而实现对空穴传输层32微观结构调控。
如图1所示,在实际应用中,为了形成高度有序的第一有序诱导层31,使得第一有序诱导层31具有较好的有序诱导作用,可以选择棒状分子材料作为第一有序诱导层31的诱导材料,诱导有机空穴传输材料制作的空穴传输层32。棒状分子材料容易通过密堆积直立于下层薄膜(隧穿复合层20)上,形成高度有序的几何沟道。并且,棒状分子材料在厚度较薄的薄膜中具有类似液晶的性质,且其液晶相温度较低,容易在较低的温度下通过液晶的流动性形成大面积高度有序的薄膜。可见,由于棒状分子材料的分子特性和液晶特性,使得棒状分子材料容易形成高度有序的第一有序诱导层31,进而具有较好的有序生长诱导作用。具体的,棒状分子材料可以选择二联苯并噻吩(BPTT)。BPTT能够形成结构稳定的几何沟道,从而可以诱导生长高度有序、且稳定性较好的薄膜。
在实际应用中,还可以选择金属氧化物作为第一有序诱导层31的诱导材料,诱导无机空穴传输材料制作的空穴传输层32。此时,金属氧化物为无机材料,与无机材料制作的无机空穴传输层32,材料性质相似,使得第一有序诱导层31与空穴传输层32之间能够形成较好的界面接触,兼容性较好,更容易诱导空穴传输层32有序生长。具体的,金属氧化物可以为氧化锌。
上述空穴传输层32的材料可以包括PTAA、Cz2T、Spiro-OMeTAD、Spiro-TTB、酞菁铜、氧化镍中的一种或多种,且不仅限于此。
示例性的,当第一有序诱导层31的诱导材料分子为BPTT时,可以利用BPTT薄膜表面的几何沟道的范德华作用(弱相互作用),诱导酞菁铜材料有序生长。并且,由于BPTT薄膜与酞菁铜薄膜之间的弱相互作用,两者仅存在取向关系,无严格的晶格匹配关系,因此,可以制作出与第一有序诱导层31无公度关系的酞菁铜空穴传输层。
如图1所示,在实际应用中,可以根据需要诱导生长的空穴传输层32的材料性质,进一步选择与空穴传输层32兼容性和相互作用较强的材料制造第一有序诱导层31。例如,当空穴传输层32的材料为氧化镍时,第一有序诱导层31含有的诱导材料可以为氧化锌。当空穴传输层32的材料为Cz2T时,第 一有序诱导层31含有的诱导材料分子可以为BPTT。
为了便于理解,以BPTT为例,说明第一有序诱导层31诱导空穴传输层32有序生长的过程。图2示出BPTT和Cz2T的分子结构图。如图2所示,BPTT是一种刚性棒状分子,容易在隧穿复合层20表面形成高有序薄膜,其端基苯环在晶体阵列的表面形成特定取向的几何沟道。当在BPTT材质的第一有序诱导层31表面生长Cz2T材质的空穴传输层32时,Cz2T分子外围苯环上的氢原子与BPTT材料形成的几何沟道中的苯环之间具有范德华作用,从而诱导Cz2T分子沿着BPTT的几何沟道生长。Cz2T分子沿着BPTT的几何沟道生长的过程中,Cz2T分子与BPTT分子之间的范德华作用力为弱相互作用,Cz2T分子的生长与BPTT第一有序诱导层31之间存在取向关系,使得Cz2T分子沿着BPTT分子形成的几何沟道整齐堆叠,形成有序度较高的空穴传输层32。同时,Cz2T分子与BPTT分子之间无严格的晶格匹配关系,因此,可以避免空穴传输层32的厚度受到第一有序诱导层31的影响。
由上可见,在第一有序诱导层31的缓冲作用和诱导作用下,空穴传输层32能够有序生长,具有较高的结晶度、较大的晶粒尺寸。此时,空穴传输层32缺陷较少,具有较好的空穴传输性能。此外,第一有序诱导层31作为空穴传输层32与隧穿复合层20之间的中间层,可以降低薄膜之间的能级差,在空穴传输层32和隧穿复合层20之间形成有利于空穴传输的能级匹配,进而提高叠层电池的空穴传输性能。
在此基础之上,如图1所示,第二有序诱导层33形成在空穴传输层32上。形成第二有序诱导层33的工艺可以为磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺。
采用上述方法制作的第二有序诱导层33的厚度可以为1nm~20nm。例如:第二有序诱导层33的厚度为1nm、5nm、8nm、10nm、12nm、18nm、20nm等。
如图1所示,上述钙钛矿吸收层34形成在第二有序诱导层33上。形成钙钛矿吸收层34的方法可以包括:采用共蒸法在空穴传输层32上形成碘化铅和溴化铯。在碘化铅和溴化铯上涂布甲脒氢碘酸盐及甲脒氢溴酸盐混合溶液,形成钙钛矿材料薄膜。对钙钛矿材料薄膜进行退火处理,形成钙钛矿吸收层34。
上述钙钛矿吸收层34的厚度可以为250nm-1000nm,但也可以根据实际 情况设定。钙钛矿吸收层34的厚度可以为250nm、350nm、500nm、700nm、800nm、900nm、1000nm等。
钙钛矿吸收层34的材料可以包括一种或多种钙钛矿材料。钙钛矿材料的化学通式为ABX 3,其中,A为CH 3NH 3阳离子、C 4H 9NH 3阳离子、NH 2=CHNH 2阳离子、Cs阳离子中的一种或多种;B为Pb 2+、Sn 2+中的一种或两种;X为Cl -、Br -、I -中的一种或多种。
如图1所示,钙钛矿吸收层34形成于第二有序诱导层33上,并具有特定取向、相态以及有序凝聚态结构。第二有序诱导层33用于提供界面缓冲,诱导其上层的钙钛矿吸收层34有序生长,从而制得有序度较高的钙钛矿吸收层34,并改善空穴传输层32与钙钛矿吸收层34之间的能级匹配,提高空穴传输性能。
为了形成有序度较高的第二有序诱导层33,使得第二有序诱导层33具有较好的有序诱导作用,可以选择有机铵盐作为诱导材料或与钙钛矿材料性质接近的无机铅化合物作为诱导材料。
当第二有序诱导层的诱导材料为有机铵盐或无机铅化合物时,有机铵盐和无机铅化合物与钙钛矿吸收层34的钙钛矿材料晶型结构匹配度较高、性质接近,容易诱导生长高度有序的钙钛矿吸收层34。
如图1所示,在实际应用中,有机铵盐可以为醋酸铵等。无机铅化合物可以为氧化铅、溴化铅、碘化铅、氯化铅、醋酸铅、硫氰化铅和硫化铅中的一种或多种。这些无机铅化合物为金属氧化物,与金属氧化物空穴传输层32之间具有较好的相容性,可以使第二有序诱导层33与空穴传输层32之间形成较好的界面接触。同时,无机铅化合物与钙钛矿吸收层34的钙钛矿材料均为铅化合物,两者具有较好的相容性,使得第二有序诱导层33,更容易诱导生长出钙钛矿吸收层34。
由上可见,钙钛矿吸收层34生长在第二有序诱导层33上,在第二有序诱导层33的缓冲作用下,钙钛矿吸收层34能够避免空穴传输层32表面分子无序性的不利影响。与此同时,在第二有序诱导层33的诱导作用下钙钛矿吸收层34能够有序生长,具有较高的结晶度、较大的晶粒尺寸。此时,钙钛矿吸收层34缺陷较少,具有较高的光电转换效率。并且,第二有序诱导层33作为空穴传输层32与钙钛矿吸收层34之间的中间层,能够降低薄膜间的能极差,形成有利于空穴传输的能级匹配,提高叠层电池的空穴传输性能。
如图1所示,上述透明导电层36和钙钛矿吸收层34之间还可以具有电 子传输层35,以实现光生载流子的传输。该电子传输层35的材质可以为SnO 2等。
如图1所示,上述透明导电层36形成在电子传输层35上,以实现光生载流子的收集。当然,在省略电子传输层35的情况下,透明导电层36可以直接形成在钙钛矿吸收层34上。透明导电层36的材料可以为掺锡氧化铟(ITO)、掺锌氧化铟(IZO)、掺钨氧化铟(IWO)、掺钛氧化铟(ITIO)、掺氟氧化锡(FTO)、掺铝氧化锌(AZO)等透明金属氧化物中的一种或多种。
以上为本公开实施例提供的一种叠层电池,应理解,叠层电池的正面和背面,也就是透明导电层36和底电池10背离钙钛矿顶电池一面上应当形成有电极37。
本公开实施例还提供上述叠层电池的制作方法。具体的,下面以图3示出的p型晶体硅-钙钛矿叠层电池为例,描述其制作方法,具体步骤如下:
如图4所示,提供一p型晶体硅片11。p型晶体硅片11依次经过抛光、制绒及清洗处理,形成具有绒面的p型晶体硅片11。
如图5所示,利用离子注入等扩散工艺在具有绒面的p型晶体硅片11表面形成n型重掺杂层12。此时,p型晶体硅片11上具有pn结,上述步骤获得的结构定义为底电池10。
如图6所示,采用PECVD工艺、磁控溅射工艺、热丝化学气相沉积工艺或催化化学气相沉积工艺,在p型晶体硅片11上具有pn结的一面(底电池10)上形成透明金属氧化物材质的隧穿复合层20。
如图7所示,采用磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺中,在隧穿复合层20上形成1nm-20nm厚的第一有序诱导层31。
如图8所示,采用磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺,在第一有序诱导层31上形成5nm~100nm厚的空穴传输层32。
如图9所示,采用磁控溅射工艺、激光脉冲沉积工艺、热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺中,在空穴传输层32上形成1nm~20nm厚的第二有序诱导层33。
如图10所示,在第二有序诱导层33上形成250nm-1000nm厚的钙钛矿吸收层34。具体包括:
采用共蒸法在第二有序诱导层33上形成碘化铅和溴化铯;其中溴化铯(CsBr)速率为
Figure PCTCN2021113582-appb-000001
碘化铅(PbI 2)速率为
Figure PCTCN2021113582-appb-000002
总厚度250nm-1000nm。
在碘化铅和溴化铯上涂布甲脒氢碘酸盐(FAI)及甲脒氢溴酸盐(FABr)混合溶液,FAI及FABr的混合溶液与碘化铅和溴化铯发生反应可以形成钙钛矿材料薄膜。FAI及FABr的混合溶液的溶剂可以为乙醇或异丙醇。
在100℃-200℃的温度下,对钙钛矿材料薄膜进行退火处理5min-30min,形成钙钛矿吸收层34。钙钛矿吸收层34的材料组分为Cs xFA 1-xPb(Br yI 1-y) 3,钙钛矿吸收层34的厚度可以为100nm-1000nm。
如图11所示,采用热蒸镀工艺,在钙钛矿吸收层34上形成0.1nm-10nm厚的电子传输界面层351和1nm-20nm厚的漏电修复层352。电子传输界面层351的材料可以为LiF。漏电修复层352的材料可以为C 60或富勒烯衍生物(PCBM)。
如图12所示,采用化学气相沉积工艺、物理气相沉积工艺、原子层沉积工艺、溶液涂布工艺中的任一种工艺,在漏电修复层352上形成1nm-30nm厚的电子传输层35。电子传输层35的材料可以为SnO 2
如图13所示,采用磁控溅射工艺在电子传输层35上形成透明金属氧化物材质30nm-200nm的透明导电层36。
如图14所示,采用丝印印刷或者掩膜蒸镀工艺,在底电池10和透明导电层36上形成材质为银的电极37(厚度100nm-500nm)。
为了验证本公开实施例提供的叠层电池的性能,下面以实施例和对比例相互比较的方式进行说明。
实施例一
本实施例提供的p型晶体硅-钙钛矿叠层电池包括依次层叠的p型晶体硅底电池、隧穿复合层、BPTT材质的第一有序诱导层、Cz2T材质的空穴传输层、溴化铅材质的第二有序诱导层、钙钛矿吸收层、电子传输界面层、漏电修复层、电子传输层及透明导电层。
本实施例提供的p型晶体硅-钙钛矿叠层电池的制作方法,具体如下所述:
第一步,提供一p型晶体硅片。p型晶体硅片依次经过抛光、制绒及清洗处理,形成具有绒面的p型晶体硅片。
第二步,采用离子注入工艺在具有绒面的p型晶体硅片表面形成n型重掺杂层。
第三步,采用磁控溅射工艺在p型晶体硅片上具有pn结的一面(底电池)上形成ITO材质的隧穿复合层。
第四步,采用热蒸发镀膜工艺在隧穿复合层上形成BPTT材质的第一有序诱导层(厚度1nm)。
第五步,采用热蒸发镀膜工艺在第一有序诱导层上形成Cz2T材质的空穴传输层(厚度5nm)。
第六步,采用磁控溅射工艺在空穴传输层上形成溴化铅材质的第二有序诱导层(厚度1nm)。
第七步,在第二有序诱导层上形成钙钛矿吸收层。具体包括:
采用共蒸法在第二有序诱导层上形成碘化铅和溴化铯;其中溴化铯(CsBr)速率为
Figure PCTCN2021113582-appb-000003
碘化铅(PbI2)速率为
Figure PCTCN2021113582-appb-000004
总厚度250nm。
在碘化铅和溴化铯上涂布甲脒氢碘酸盐(FAI)及甲脒氢溴酸盐(FABr)混合溶液,FAI及FABr的混合溶液与碘化铅和溴化铯发生反应可以形成钙钛矿材料薄膜。FAI及FABr的混合溶液的溶剂可以为乙醇或异丙醇。
在100℃的温度下,对钙钛矿材料薄膜进行退火处理30min,形成钙钛矿吸收层。钙钛矿吸收层的材料组分为Cs xFA 1-xPb(Br yI 1-y) 3,钙钛矿吸收层的厚度可以为250nm。
第八步,采用热蒸镀工艺在钙钛矿吸收层上形成LiF材质的电子传输界面层(厚度0.1nm)和C 60材质的漏电修复层(厚度1nm)。
第九步,采用原子层沉积工艺在漏电修复层上形成SnO 2材质的电子传输层(厚度1nm)。
第十步,采用磁控溅射工艺在电子传输层上形成IWO材质的透明导电层(30nm)。
第十一步,采用丝印印刷在底电池和透明导电层上形成材质为银的电极(厚度100nm)。
实施例二
本实施例提供的p型晶体硅-钙钛矿叠层电池包括依次层叠的p型晶体硅底电池、隧穿复合层、氧化锌材质的第一有序诱导层、氧化镍材质的空穴传输层、氧化铅材质的第二有序诱导层、钙钛矿吸收层、电子传输界面层、漏电修复层、电子传输层及透明导电层。
本实施例提供的p型晶体硅-钙钛矿叠层电池的制作方法,具体如下所述:
第一步,提供一p型晶体硅片。p型晶体硅片依次经过抛光、制绒及清洗 处理,形成具有绒面的p型晶体硅片。
第二步,采用离子注入工艺在具有绒面的p型晶体硅片表面形成n型重掺杂层。
第三步,采用磁控溅射工艺在p型晶体硅片上具有pn结的一面(底电池)上形成FTO材质的隧穿复合层。
第四步,采用磁控溅射工艺在隧穿复合层上形成氧化锌材质的第一有序诱导层(厚度20nm)。
第五步,采用磁控溅射工艺在第一有序诱导层上形成氧化镍材质的空穴传输层(厚度100nm)。
第六步,采用磁控溅射工艺在空穴传输层上形成氧化铅材质的第二有序诱导层(厚度20nm)。
第七步,在第二有序诱导层上形成钙钛矿吸收层。具体包括:
采用共蒸法在第二有序诱导层上形成碘化铅和溴化铯;其中溴化铯(CsBr)速率为
Figure PCTCN2021113582-appb-000005
碘化铅(PbI2)速率为
Figure PCTCN2021113582-appb-000006
总厚度1000nm。
在碘化铅和溴化铯上涂布甲脒氢碘酸盐(FAI)及甲脒氢溴酸盐(FABr)混合溶液,FAI及FABr的混合溶液与碘化铅和溴化铯发生反应可以形成钙钛矿材料薄膜。FAI及FABr的混合溶液的溶剂可以为乙醇或异丙醇。
在200℃的温度下,对钙钛矿材料薄膜进行退火处理5min,形成钙钛矿吸收层。钙钛矿吸收层的材料组分为Cs xFA 1-xPb(Br yI 1-y) 3,钙钛矿吸收层的厚度可以为1000nm。
第八步,采用热蒸镀工艺在钙钛矿吸收层上形成LiF材质的电子传输界面层(厚度10nm)和PCBM材质的漏电修复层(厚度20nm)。
第九步,采用原子层沉积工艺在漏电修复层上形成SnO 2材质的电子传输层(厚度30nm)。
第十步,采用磁控溅射工艺在电子传输层上形成IzO材质的透明导电层(200nm)。
第十一步,采用丝印印刷在底电池和透明导电层上形成材质为银的电极(厚度500nm)。
实施例三
本实施例提供的p型晶体硅-钙钛矿叠层电池包括依次层叠的p型晶体硅底电池、隧穿复合层、氧化锌材质的第一有序诱导层、氧化镍材质的空穴传输层、碘化铅材质的第二有序诱导层、钙钛矿吸收层、电子传输界面层、漏 电修复层、电子传输层及透明导电层。
本实施例提供的p型晶体硅-钙钛矿叠层电池的制作方法,具体如下所述:
第一步,提供一p型晶体硅片。p型晶体硅片依次经过抛光、制绒及清洗处理,形成具有绒面的p型晶体硅片。
第二步,采用离子注入工艺在具有绒面的p型晶体硅片表面形成n型重掺杂层。
第三步,采用PECVD工艺在p型晶体硅片上具有pn结的一面(底电池)上形成ITO材质的隧穿复合层。
第四步,采用激光脉冲沉积工艺在隧穿复合层上形成氧化锌材质的第一有序诱导层(厚度8nm)。
第五步,采用磁控溅射工艺在第一有序诱导层上形成氧化镍材质的空穴传输层(厚度60nm)。
第六步,采用激光脉冲沉积工艺在空穴传输层上形成碘化铅材质的第二有序诱导层(厚度8nm)。
第七步,在第二有序诱导层上形成钙钛矿吸收层。具体包括:
采用共蒸法在第二有序诱导层上形成碘化铅和溴化铯;其中溴化铯(CsBr)速率为
Figure PCTCN2021113582-appb-000007
碘化铅(PbI2)速率为
Figure PCTCN2021113582-appb-000008
总厚度500nm。
在碘化铅和溴化铯上涂布甲脒氢碘酸盐(FAI)及甲脒氢溴酸盐(FABr)混合溶液,FAI及FABr的混合溶液与碘化铅和溴化铯发生反应可以形成钙钛矿材料薄膜。FAI及FABr的混合溶液的溶剂可以为乙醇或异丙醇。
在120℃的温度下,对钙钛矿材料薄膜进行退火处理20min,形成钙钛矿吸收层。钙钛矿吸收层的材料组分为Cs xFA 1-xPb(Br yI 1-y) 3,钙钛矿吸收层的厚度可以为500nm。
第八步,采用热蒸镀工艺在钙钛矿吸收层上形成LiF材质的电子传输界面层(厚度5nm)和PCBM材质的漏电修复层(厚度10nm)。
第九步,采用化学气相沉积工艺在漏电修复层上形成SnO 2材质的电子传输层(厚度12nm)。
第十步,采用磁控溅射工艺在电子传输层上形成IZO材质的透明导电层(50nm)。
第十一步,采用丝印印刷在底电池和透明导电层上形成材质为银的电极(厚度250nm)。
实施例四
本实施例提供的p型晶体硅-钙钛矿叠层电池包括依次层叠的p型晶体硅底电池、隧穿复合层、BPTT材质的第一有序诱导层、酞菁铜材质的空穴传输层、醋酸铵材质的第二有序诱导层、钙钛矿吸收层、电子传输界面层、漏电修复层、电子传输层及透明导电层。
本实施例提供的p型晶体硅-钙钛矿叠层电池的制作方法,具体如下所述:
第一步,提供一p型晶体硅片。p型晶体硅片依次经过抛光、制绒及清洗处理,形成具有绒面的p型晶体硅片。
第二步,采用离子注入工艺在具有绒面的p型晶体硅片表面形成n型重掺杂层。
第三步,采用PECVD工艺在p型晶体硅片上具有pn结的一面(底电池)上形成AZO材质的隧穿复合层。
第四步,采用磁控溅射工艺工艺在隧穿复合层上形成BPTT材质的第一有序诱导层(厚度16nm)。
第五步,采用热蒸发镀膜工艺在第一有序诱导层上形成酞菁铜材质的空穴传输层(厚度80nm)。
第六步,采用激光脉冲沉积工艺在空穴传输层上形成醋酸铵材质的第二有序诱导层(厚度16nm)。
第七步,在第二有序诱导层上形成钙钛矿吸收层。具体包括:
采用共蒸法在第二有序诱导层上形成碘化铅和溴化铯;其中溴化铯(CsBr)速率为
Figure PCTCN2021113582-appb-000009
碘化铅(PbI2)速率为
Figure PCTCN2021113582-appb-000010
总厚度800nm。
在碘化铅和溴化铯上涂布甲脒氢碘酸盐(FAI)及甲脒氢溴酸盐(FABr)混合溶液,FAI及FABr的混合溶液与碘化铅和溴化铯发生反应可以形成钙钛矿材料薄膜。FAI及FABr的混合溶液的溶剂可以为乙醇或异丙醇。
在180℃的温度下,对钙钛矿材料薄膜进行退火处理20min,形成钙钛矿吸收层。钙钛矿吸收层的材料组分为Cs xFA 1-xPb(Br yI 1-y) 3,钙钛矿吸收层的厚度可以为800nm。
第八步,采用热蒸镀工艺在钙钛矿吸收层上形成LiF材质的电子传输界面层(厚度9nm)和C 60材质的漏电修复层(厚度18nm)。
第九步,采用物理气相沉积工艺在漏电修复层上形成SnO 2材质的电子传输层(厚度17nm)。
第十步,采用磁控溅射工艺在电子传输层上形成ITO材质的透明导电层(100nm)。
第十一步,采用丝印印刷在底电池和透明导电层上形成材质为银的电极(厚度300nm)。
对比例一
本对比例提供的p型晶体硅-钙钛矿叠层电池与实施例一记载的叠层电池结构基本相同,区别仅在于:省略了BPTT材质的第一有序诱导层和溴化铅材质的第二有序诱导层。
本对比例提供的p型晶体硅-钙钛矿叠层电池的制作方法与实施例一相同,在此不再赘述。
对比例二
本对比例提供的p型晶体硅-钙钛矿叠层电池与实施例一记载的叠层电池结构基本相同,区别仅在于:省略了BPTT材质的第一有序诱导层。
本对比例提供的p型晶体硅-钙钛矿叠层电池的制作方法与实施例一相同,在此不再赘述。
对比例三
本对比例提供的p型晶体硅-钙钛矿叠层电池与实施例一记载的叠层电池结构基本相同,区别仅在于:省略了溴化铅材质的第二有序诱导层。
本对比例提供的p型晶体硅-钙钛矿叠层电池的制作方法与实施例一相同,在此不再赘述。
为验证叠层电池的性能,对实施例一至四以及对比例一至三所制备的器件的光电转换效率、填充因子(FF)、开路电压(V OC)、短路电流(J SC)等性能参数进行测试,性能参数对比见表1。
表1不同叠层电池的性能参数对比表
Figure PCTCN2021113582-appb-000011
由上述实施例、对比例及表1可知,单独设置第一有序诱导层或单独设置第二有序诱导层,光电转换效率有所提升,同时设置第一有序诱导层和第二有序诱导层的叠层电池光电转换效率得到大幅提升,其驱动力主要来自填充因子(FF)和开路电压(Voc)的提升。可见,第一有序诱导层和第二有序诱导层的使用,提高了空穴传输层和钙钛矿吸收层的结晶性能,有利于光生载流子的分离和传输,减少了电子和空穴在叠层电池中的累积及复合。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种叠层电池,其特征在于,包括:
    底电池,所述底电池具有绒面;
    形成在所述底电池的绒面上的空穴传输层;
    形成在所述空穴传输层上的第二有序诱导层和钙钛矿吸收层,所述第二有序诱导层位于所述空穴传输层和所述钙钛矿吸收层之间;以及
    形成在所述钙钛矿吸收层上的透明导电层;
    其中,所述第二有序诱导层含有的诱导材料为有机铵盐或无机铅化合物。
  2. 根据权利要求1所述的叠层电池,其特征在于,所述无机铅化合物为氧化铅、溴化铅、碘化铅、氯化铅、醋酸铅、硫氰化铅和硫化铅中的一种或多种。
  3. 根据权利要求1所述的叠层电池,其特征在于,所述第二有序诱导层的厚度为1nm~20nm。
  4. 根据权利要求1所述的叠层电池,其特征在于,所述叠层电池还包括第一有序诱导层,所述第一有序诱导层位于所述底电池和所述空穴传输层之间;
    所述第一有序诱导层含有的诱导材料为棒状分子材料,所述空穴传输层的材料采用有机空穴传输材料,或,
    所述第一有序诱导层含有的诱导材料为金属氧化物,所述空穴传输层的材料采用无机空穴传输材料;
    所述第一有序诱导层的厚度为1nm~20nm。
  5. 根据权利要求4所述的叠层电池,其特征在于,所述棒状分子材料为BPTT,所述金属氧化物为氧化锌。
  6. 根据权利要求1~5任一项所述的叠层电池,其特征在于,所述空穴传输层的材料包括PTAA、Cz2T、Spiro-OMeTAD、Spiro-TTB、酞菁铜、氧化镍中的一种或多种。
  7. 根据权利要求1~5任一项所述的叠层电池,其特征在于,所述空穴传输层的厚度为5nm~100nm。
  8. 根据权利要求1~5任一项所述的叠层电池,其特征在于,形成所述第二有序诱导层以及空穴传输层的工艺为磁控溅射工艺、激光脉冲沉积工艺、 热蒸发镀膜工艺、化学气相沉积工艺、溶液涂布工艺、凝胶-溶胶工艺或水热法合成纳米粒子工艺。
  9. 根据权利要求1~5任一项所述的叠层电池,所述钙钛矿材料的化学通式为ABX3,其中,A为CH3NH3阳离子、C4H9NH3阳离子、NH2=CHNH2阳离子、Cs阳离子中的一种或多种;B为Pb2+、Sn2+中的一种或两种;X为Cl-、Br-、I-中的一种或多种。
  10. 根据权利要求1~5任一项所述的叠层电池,其特征在于,形成所述钙钛矿吸收层的方法包括:
    采用共蒸法在所述第二有序诱导层上形成碘化铅和溴化铯,
    在所述碘化铅和溴化铯上涂布甲脒氢碘酸盐及甲脒氢溴酸盐混合溶液,形成钙钛矿材料薄膜;
    对所述钙钛矿材料薄膜进行退火处理,形成钙钛矿吸收层。
PCT/CN2021/113582 2020-08-20 2021-08-19 一种叠层电池 WO2022037653A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/016,578 US20230200096A1 (en) 2020-08-20 2021-08-19 Tandem cell
EP21857744.3A EP4203077A4 (en) 2020-08-20 2021-08-19 LAMINATED BATTERY
JP2023512693A JP2023538427A (ja) 2020-08-20 2021-08-19 タンデム型太陽電池
AU2021329840A AU2021329840A1 (en) 2020-08-20 2021-08-19 Laminated battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010855550.7 2020-08-20
CN202010855550.7A CN112086535B (zh) 2020-08-20 2020-08-20 一种叠层电池

Publications (1)

Publication Number Publication Date
WO2022037653A1 true WO2022037653A1 (zh) 2022-02-24

Family

ID=73727965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113582 WO2022037653A1 (zh) 2020-08-20 2021-08-19 一种叠层电池

Country Status (6)

Country Link
US (1) US20230200096A1 (zh)
EP (1) EP4203077A4 (zh)
JP (1) JP2023538427A (zh)
CN (1) CN112086535B (zh)
AU (1) AU2021329840A1 (zh)
WO (1) WO2022037653A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497287A (zh) * 2022-04-15 2022-05-13 浙江爱旭太阳能科技有限公司 一种太阳电池复合组件及其制备方法和光伏系统
CN114937717A (zh) * 2022-05-30 2022-08-23 江苏日托光伏科技股份有限公司 一种钙钛矿-hbc叠层双面电池制备方法
CN115312665A (zh) * 2022-07-28 2022-11-08 兰州大学 太阳能电池及其制备方法
WO2024021939A1 (zh) * 2022-07-29 2024-02-01 青海黄河上游水电开发有限责任公司 基于MXene材料互联的两端式叠层太阳能电池及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086535B (zh) * 2020-08-20 2022-08-09 隆基绿能科技股份有限公司 一种叠层电池
CN112736202B (zh) * 2020-12-30 2024-02-13 无锡极电光能科技有限公司 提高钙钛矿墨水与电性传输层间浸润性的方法及其应用
CN113540291B (zh) * 2021-07-15 2023-03-14 浙江爱旭太阳能科技有限公司 两端钙钛矿叠层电池的制作方法以及两端钙钛矿叠层电池
CN113659080B (zh) * 2021-08-13 2023-07-25 江苏盛开高新材料有限公司 一种钙钛矿叠层电池及其制备方法
CN115360303B (zh) * 2022-08-17 2023-07-25 南京邮电大学 一种界面原位诱导层及其光伏器件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
CN104795499A (zh) * 2015-04-09 2015-07-22 中国乐凯集团有限公司 有机无机杂化钙钛矿基太阳能电池及其制备方法
CN107611281A (zh) * 2017-09-26 2018-01-19 中国科学院长春光学精密机械与物理研究所 一种近红外到可见光上转换器及其制备方法
CN108155181A (zh) * 2016-12-02 2018-06-12 Lg电子株式会社 叠层太阳能电池及其制造方法
CN108807682A (zh) * 2018-06-27 2018-11-13 南京邮电大学 一种诱导钙钛矿薄膜结晶取向的方法及制备的太阳能电池
KR20190021135A (ko) * 2017-08-22 2019-03-05 엘지전자 주식회사 태양전지의 제조 방법
CN112086535A (zh) * 2020-08-20 2020-12-15 隆基绿能科技股份有限公司 一种叠层电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631721B (zh) * 2013-08-06 2018-08-01 新南革新股份有限公司 高效率堆疊太陽電池
US20170330693A1 (en) * 2016-05-11 2017-11-16 Board Of Trustees Of Michigan State University Interlayer Additives For Highly Efficient And Hysteresis-Free Perovskite-Based Photovoltaic Devices
WO2018007586A1 (en) * 2016-07-07 2018-01-11 Technische Universiteit Eindhoven Perovskite contacting passivating barrier layer for solar cells
KR20180007585A (ko) * 2016-07-13 2018-01-23 엘지전자 주식회사 텐덤 태양전지, 이를 포함하는 텐덤 태양전지 모듈 및 이의 제조방법
CN106410039A (zh) * 2016-11-07 2017-02-15 大连理工大学 一种钙钛矿叠层太阳电池及其制备方法
KR102525426B1 (ko) * 2017-11-15 2023-04-26 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지의 제조 방법
CN108565342A (zh) * 2018-05-04 2018-09-21 湖北大学 一种钙钛矿太阳能电池及其制备方法
CN109103331A (zh) * 2018-08-15 2018-12-28 四川省新材料研究中心 一种基于介孔无机空穴传输材料的钙钛矿太阳能电池及其制备方法
CN109411607B (zh) * 2018-09-27 2021-01-19 西安交通大学 太阳能电池及其制备方法和改善钙钛矿层传输特性的方法
CN110970562A (zh) * 2018-09-28 2020-04-07 东泰高科装备科技有限公司 一种钙钛矿/晶硅叠层太阳能电池及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
CN104795499A (zh) * 2015-04-09 2015-07-22 中国乐凯集团有限公司 有机无机杂化钙钛矿基太阳能电池及其制备方法
CN108155181A (zh) * 2016-12-02 2018-06-12 Lg电子株式会社 叠层太阳能电池及其制造方法
KR20190021135A (ko) * 2017-08-22 2019-03-05 엘지전자 주식회사 태양전지의 제조 방법
CN107611281A (zh) * 2017-09-26 2018-01-19 中国科学院长春光学精密机械与物理研究所 一种近红外到可见光上转换器及其制备方法
CN108807682A (zh) * 2018-06-27 2018-11-13 南京邮电大学 一种诱导钙钛矿薄膜结晶取向的方法及制备的太阳能电池
CN112086535A (zh) * 2020-08-20 2020-12-15 隆基绿能科技股份有限公司 一种叠层电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203077A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497287A (zh) * 2022-04-15 2022-05-13 浙江爱旭太阳能科技有限公司 一种太阳电池复合组件及其制备方法和光伏系统
CN114937717A (zh) * 2022-05-30 2022-08-23 江苏日托光伏科技股份有限公司 一种钙钛矿-hbc叠层双面电池制备方法
CN114937717B (zh) * 2022-05-30 2023-09-01 江苏日托光伏科技股份有限公司 一种钙钛矿-hbc叠层双面电池制备方法
CN115312665A (zh) * 2022-07-28 2022-11-08 兰州大学 太阳能电池及其制备方法
WO2024021939A1 (zh) * 2022-07-29 2024-02-01 青海黄河上游水电开发有限责任公司 基于MXene材料互联的两端式叠层太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN112086535B (zh) 2022-08-09
EP4203077A1 (en) 2023-06-28
AU2021329840A1 (en) 2023-03-02
CN112086535A (zh) 2020-12-15
US20230200096A1 (en) 2023-06-22
EP4203077A4 (en) 2024-02-21
JP2023538427A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2022037653A1 (zh) 一种叠层电池
US10944017B2 (en) Stacked photoelectric conversion device and method for producing same
GB2559800B (en) Multijunction photovoltaic device
US10333016B2 (en) Multi-junction photoelectric conversion device and photoelectric conversion module
Raza et al. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives
WO2022073518A1 (zh) 一种叠层电池及其制作方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
US20180019361A1 (en) Photoelectric conversion device, manufacturing method for photoelectric conversion device, and photoelectric conversion module
AU2019398727A1 (en) Multi-junction optoelectronic device comprising device interlayer
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN113013277A (zh) 一种叠层太阳电池及其制备方法
WO2023082584A1 (zh) 一种钙钛矿-硅基叠层太阳能电池及其制作方法
WO2023077763A1 (zh) 金属氧化物掺杂层、太阳能电池及其制备方法
JP2017126737A (ja) 光電変換素子および光電変換素子の製造方法
CN112086534B (zh) 一种叠层电池及其制作方法
CN214505521U (zh) 一种叠层太阳电池
WO2021196606A1 (zh) 叠层光伏器件及生产方法
Sahli et al. Hybrid sequential deposition process for fully textured perovskite/silicon tandem solar cells
US20230223205A1 (en) Multijunction photovoltaic devices with metal oxynitride layer
CN210668381U (zh) 一种硅基叠层太阳电池
WO2024082991A1 (zh) 一种二维三维体相混合钙钛矿太阳能电池及其制备方法
CN117580416A (zh) 一种太阳能电池及其制备方法
CN115411064A (zh) 一种太阳能电池
CN116404062A (zh) 一种三结叠层太阳能电池及其制备方法
CN118175907A (zh) 钙钛矿光吸收层的制备方法、太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512693

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021329840

Country of ref document: AU

Date of ref document: 20210819

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857744

Country of ref document: EP

Effective date: 20230320