WO2023077763A1 - 金属氧化物掺杂层、太阳能电池及其制备方法 - Google Patents

金属氧化物掺杂层、太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2023077763A1
WO2023077763A1 PCT/CN2022/092273 CN2022092273W WO2023077763A1 WO 2023077763 A1 WO2023077763 A1 WO 2023077763A1 CN 2022092273 W CN2022092273 W CN 2022092273W WO 2023077763 A1 WO2023077763 A1 WO 2023077763A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal oxide
doped layer
oxide doped
thickness
Prior art date
Application number
PCT/CN2022/092273
Other languages
English (en)
French (fr)
Inventor
王永磊
何博
何永才
董鑫
丁蕾
顾小兵
Original Assignee
西安隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基乐叶光伏科技有限公司 filed Critical 西安隆基乐叶光伏科技有限公司
Publication of WO2023077763A1 publication Critical patent/WO2023077763A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of solar cells, in particular to a metal oxide doped layer, a solar cell and a preparation method thereof.
  • Organic-inorganic hybrid perovskite solar cells have attracted worldwide attention as a new type of high-efficiency and low-cost solar cells.
  • the photoelectric conversion efficiency of single-junction small-area perovskite cells has risen rapidly from 3.8% in 2009 to more than 25%, and the photoelectric conversion efficiency of perovskite/silicon heterojunction stacked cells has also reached 29% or more.
  • the rapid development of efficiency makes it the key focus of current photovoltaic research institutions and enterprises.
  • perovskite solar cells Compared with traditional thin-film solar cells (copper indium gallium selenide, cadmium telluride, etc.), perovskite solar cells have the advantages of high conversion efficiency, simple preparation process, and low-cost potential, and have become the most industrialized thin-film solar cells technology.
  • the composition ratio of the precursor solution By adjusting the composition ratio of the precursor solution, the solar cell spectral response cut-off wavelength can be adjusted, making it the most ideal top cell absorber material.
  • Silicon heterojunction solar cell technology has simple process (texture cleaning ⁇ amorphous silicon deposition ⁇ TCO deposition ⁇ silver electrode printing), low preparation temperature ( ⁇ 220°C), high conversion efficiency (>25%), symmetrical structure (can be Double-sided) and other advantages, it is considered to be the third-generation battery technology after PERC batteries.
  • Silicon heterojunction cells have high infrared absorption, strong weak light effect, and structural advantages that can match p-i-n, making them one of the best choices for bottom cells.
  • a "perovskite/silicon-based heterojunction" laminated cell structure is formed by using a perovskite cell (top cell) and a silicon-based heterojunction cell (bottom cell) to realize the distribution and absorption of the solar spectrum, and it is expected to obtain more than 30% solar energy. conversion efficiency.
  • the composite layer connecting the hole transport layer of the perovskite cell and the emitter of the silicon-based heterojunction cell has a simple process and is suitable for commercial production, its conduction band cannot match that of the emitter of the silicon-based heterojunction cell.
  • the simultaneous matching of the conduction band and the HOMO energy level of the hole transport layer of the perovskite cell limits the improvement of the electrical performance of the cell.
  • Perovskite cells can also form a "perovskite/PERC" laminated cell structure with PERC cells to achieve distributed absorption of the solar spectrum.
  • the composite layer connecting the hole transport layer of the perovskite battery and the emitter of the P-type PERC battery is similar to the structure of the "perovskite/silicon-based heterojunction" laminated battery. Its conduction band cannot simultaneously match the conduction band of the emitter of the P-type PERC cell and the HOMO energy level of the hole transport layer of the perovskite cell.
  • the composite layer connecting the electron transport layer of the perovskite battery and the emitter of the N-type PERT battery cannot be compared with the valence band of the emitter of the N-type PERT battery and the electron transport layer of the perovskite battery.
  • the simultaneous matching of LUMO energy levels limits the improvement of the electrical performance of the battery.
  • the present application proposes a metal oxide doped layer and a tandem solar cell using the metal oxide doped layer as a composite layer.
  • the metal oxide doped layer has a gradually changing work function, so The gradually changing work function can be matched with the upper cell and the lower cell of the tandem solar cell, so that the conversion efficiency of the solar cell can be improved.
  • the present application provides a metal oxide doped layer, the work function of the metal oxide doped layer changes gradually from the first surface on one side to the second surface on the other side of the metal oxide doped layer .
  • the metal oxide doped layer includes at least one metal oxide layer and at least one doped layer stacked.
  • the metal oxide doped layer includes an n-layer metal oxide layer and an m-layer doped layer, wherein n and m are integers greater than 1;
  • the metal oxide layer and the doping layer are arranged cross-stacked, and at the junction of the metal oxide layer and the doping layer, the material of the doping layer is partially diffused into the metal oxide layer.
  • the work function of the metal oxide doped layer gradually changing from the first surface to the second surface is adjusted by adjusting the structure and material of the metal oxide doped layer.
  • adjusting the structure and material of the metal oxide doped layer includes adjusting the thickness of the metal oxide layer, the thickness of the doped layer, the material of the metal oxide layer, the material of the doped layer, and the thickness of the metal oxide layer and the doped layer. Any one or more than two of the sequence.
  • the thickness of the metal oxide layer in the n layer changes gradually; the thickness of the doped layer in the m layer is the same.
  • the thickness of the metal oxide layer gradually increases or decreases, and the work function of the metal oxide doped layer also gradually increases or decreases.
  • the present application also provides a solar cell, comprising an upper layer cell and a lower layer cell stacked in layers, and the aforementioned metal oxide doped layer is arranged between the upper layer cell and the lower layer cell.
  • the upper battery has a first carrier transport layer
  • the lower battery has an N-type silicon layer or a P-type silicon layer
  • the first surface of the metal oxide doped layer is connected to the first current-carrying layer.
  • the sub-transmission layers are stacked, and the second surface of the metal oxide doped layer is stacked with the N-type silicon layer or the P-type silicon layer.
  • the lower cell has an N-type silicon layer, and the first carrier transport layer is a hole transport layer,
  • the work function of the first surface of the metal oxide doped layer is consistent with the HOMO energy level of the hole transport layer
  • the work function of the second surface of the metal oxide doped layer is consistent with the conduction band of the N-type silicon layer
  • the work function of the metal oxide doped layer gradually increases.
  • the lower battery has a P-type silicon layer, and the first carrier transport layer is an electron transport layer,
  • the work function of the first surface of the metal oxide doped layer is consistent with the LUMO energy level of the electron transport layer
  • the work function of the second surface of the metal oxide doped layer is consistent with the valence band of the P-type silicon layer
  • the work function of the metal oxide doped layer becomes gradually smaller.
  • the present application also provides a method for preparing a metal oxide doped layer, comprising the following steps:
  • the metal oxide layer and the doped layer are cross-stacked to form a metal oxide doped layer
  • the work function of the metal oxide doped layer changes gradually.
  • the metal oxide doped layer includes an n-layer metal oxide layer and an m-layer doped layer, wherein n and m are integers greater than 1.
  • the thickness of the n-layer metal oxide layer changes gradually
  • the doped layers of the m layers have the same thickness.
  • the thickness of the metal oxide layer gradually increases or decreases, and the work function of the metal oxide doped layer gradually increases or decreases.
  • metal oxide layers are all selected from one of zinc oxide layer, indium oxide layer or titanium oxide layer;
  • the doped layers are all selected from one of aluminum oxide layer, boron oxide layer or tin oxide layer.
  • the present application also provides a method for preparing a solar cell, comprising the steps of:
  • the work function of the metal oxide doped layer changes gradually.
  • the metal oxide doped layer is the aforementioned metal oxide doped layer or the metal oxide doped layer prepared by the aforementioned preparation method.
  • the work function gradually increases or decreases from the first surface to the second surface, so that the metal oxide doped layer can be used as an intermediate composite layer of different batteries, and The work function of the two sides of the metal oxide doped layer can be matched with different batteries.
  • the work function of the first surface of the metal oxide doped layer is related to the first carrier transport of the upper cell
  • the HOMO energy level of the layer (hole transport layer) is consistent
  • the work function of the second surface of the metal oxide doped layer is consistent with the conduction band of the N-type silicon layer of the lower battery
  • the charge is in the upper battery and
  • the transmission between the lower cells is smooth, so the performance of the solar cell is better.
  • the work function of the first surface of the metal oxide doped layer is consistent with the LUMO energy level of the first carrier transport layer (electron transport layer) of the upper battery, so The work function of the second surface of the metal oxide doped layer is consistent with the valence band of the P-type silicon layer of the lower cell, and the charge is smoothly transmitted between the upper cell and the lower cell, so the performance of the solar cell better.
  • Fig. 1 is a schematic structural diagram of a "perovskite/silicon-based heterojunction" tandem solar cell provided by the present application.
  • Fig. 2 is a schematic structural diagram of the "perovskite/P-type PERC" tandem solar cell provided by the present application.
  • Fig. 3 is a schematic structural diagram of the "perovskite/N-type PERT" tandem solar cell provided by the present application.
  • FIG. 4 is a schematic structural diagram of a metal oxide doped layer provided in the present application.
  • 111-back transparent conductive layer 112-P-type silicon layer, 113-first intrinsic amorphous silicon layer, 114-N-type crystalline silicon substrate layer, 115-second intrinsic amorphous silicon layer, 116-N-type silicon Layer, 117-metal oxide doped layer, 1171-first surface; 1172-second surface, 1173-metal oxide layer, 1174-doped layer, 121-first carrier transport layer, 122-perovskite Absorption layer, 123-second carrier transport layer, 124-front transparent conductive layer, 131-metal electrode.
  • 211-Al back field 212-silicon nitride layer, 213-aluminum oxide layer, 214-P-type crystalline silicon substrate, 215-N-type emitter, 217-metal oxide doped layer; 221-first Carrier transport layer, 222-perovskite absorption layer, 223-second carrier transport layer, 224-front transparent conductive layer, 231-metal electrode, 2171-first surface, 2172-second surface.
  • 311-silicon nitride layer 312-aluminum oxide layer, 313-phosphorous diffusion back field layer, 314-N-type silicon substrate, 315-boron-diffused P-type silicon layer, 317-metal oxide doped layer; 321-first carrier transport layer, 322-perovskite absorption layer, 323-second carrier transport layer, 324-front transparent conductive layer, 331-metal electrode, 3171-first surface, 3172-second surface.
  • the present application provides a metal oxide doped layer 117 , the work function of the metal oxide doped layer changes gradually from the first surface 1171 on one side to the second surface 1172 on the other side. That is, the work function of the metal oxide doped layer 117 gradually increases or decreases from the first surface 1171 to the second surface 1172 of the metal oxide doped layer 117 .
  • the work function gradually increases from the first surface 1171 to the second surface 1172.
  • the work function gradually decreases from the first surface 1171 to the second surface 1172 .
  • the metal oxide doped layer 117 includes at least one metal oxide layer 1173 and at least one doped layer 1174 that are stacked.
  • the thickness of the n-layer metal oxide layer 1173 changes gradually
  • the doped layers 1174 of the m layers have the same thickness.
  • the metal oxide layer 1173 and the doped layer 1174 are cross-stacked, and at the junction of the metal oxide layer 1173 and the doped layer 1174, the material of the doped layer 1174 is partially diffused into the metal Oxide layer 1173.
  • the metal oxide-doped intermediate composite layer 117 has a multi-layer stack structure
  • the metal oxide-doped intermediate composite layer 117 has two types of stacking arrangements, the first arrangement is the metal oxide layer and the doped layer are sequentially stacked and arranged, and the first surface 1171 and the second surface 1172 are both metal oxide layers, and the second arrangement is that the metal oxide layer and the doped layer are sequentially stacked and arranged , and the first surface 1171 is a doped layer, and the second surface 1172 is a metal oxide layer.
  • both the first surface 1171 and the second surface 1172 are metal oxide layers.
  • the thickness of the metal oxide layer 1173 in the direction from the first surface 1171 to the second surface 1172 gradually increases or decreases, and the doped layer 1174 The thickness remains unchanged. Since part of the doped layer 1174 diffuses into the metal oxide layer 1173 on the side of the metal oxide layer 1173 close to the doped layer 1174, the direction from the first surface 1171 to the second surface 1172 The doping concentration in the metal oxide layer 1173 on the metal oxide layer 1173 gradually decreases or increases, thereby causing the work function of the metal oxide doped layer 117 to gradually increase in the direction from the first surface 1171 to the second surface 1172 bigger or smaller.
  • the thickness of the metal oxide layer 1173 in the direction from the first surface 1171 to the second surface 1172 gradually increases, in the direction from the first surface 1171 to the second surface 1172 The work function also increases gradually.
  • the metal oxide layer 1173 can be one or more of zinc oxide layer, indium oxide or titanium oxide layer; preferably, the metal oxide layer 1173 can be zinc oxide layer, indium oxide or titanium oxide layer one of the layers.
  • the thickness of the metal oxide layer 1173 may be 0.1-1000 nm, preferably 1-30 nm.
  • it can be 0.1nm, 1nm, 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm, 650nm, 700nm, 750nm, 800nm, 850nm, 900nm, 950nm or 1000nm.
  • the doped layer 1174 can be one or more of aluminum oxide layer, boron oxide layer or tin oxide layer, preferably, the doped layer 1174 can be aluminum oxide, boron oxide, tin oxide layer A sort of.
  • the thickness of the doped layer 1174 is 0.1-10 nm, preferably 0.1 nm.
  • it may be 0.1 nm, 0.5 nm, 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm or 10 nm.
  • the thickness of the metal oxide doped layer 117 is 10-1000 nm.
  • it can be 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm, 650nm, 700nm, 750nm, 800nm , 850nm, 900nm, 950nm or 1000nm.
  • the work function of the metal oxide doped layer 117 gradually changing from the first surface 1171 to the second surface 1172 is adjusted by adjusting the structure and material of the metal oxide doped layer 117 .
  • adjusting the structure and material of the metal oxide doped layer 117 includes adjusting the thickness of the metal oxide layer 1173, the thickness of the doped layer 1174, the material of the metal oxide layer 1173, the material of the doped layer 1174, and the metal oxide layer 1173 and the arrangement sequence of the doped layer 1174 can be any one or more than two.
  • the structures of the upper battery and the lower battery have been determined (that is, the HOMO energy level of the first carrier transport layer 121 (hole transport layer) of the perovskite battery and the emitter of the silicon-based heterojunction battery
  • the conduction band has been determined)
  • the metal oxide doped layer 117 has a gradually changing work function between the first surface 1171 and the second surface 1172 .
  • the present application discloses a method for preparing a metal oxide doped layer 117, comprising the following steps:
  • the metal oxide layer 1173 and the doped layer 1174 are cross-stacked to form the metal oxide doped layer 117;
  • the work function of the metal oxide doped layer gradually changes (increases or decreases).
  • the metal oxide doped layer includes an n-layer metal oxide layer 1173 and an m-layer doped layer 1174 that are stacked, where n and m are integers greater than 1.
  • the thickness of the n-layer metal oxide layer 1173 changes gradually
  • the doped layers 1174 of the m layers have the same thickness.
  • the present application discloses a method for preparing a metal oxide doped layer 117, including the following steps:
  • Step 1 preparing the first metal oxide layer 1173
  • Step 2 forming a first doped layer 1174 on the first metal oxide layer 1173;
  • Step 3 forming a second metal oxide layer 1173 on the first doped layer 1174;
  • Step 4 forming a second doped layer 1174 on the second metal oxide layer 1173;
  • Step five forming a third metal oxide layer 1173 on the second doped layer 1174;
  • Step 2n-1 Form the nth metal oxide layer 1173 on the mth doped layer 1174, or form the mth doped layer 1174 on the nth metal oxide layer 1173, thereby forming the metal oxide doped miscellaneous layer 117;
  • a side of the first metal oxide layer 1173 away from the first doped layer 1174 is a second surface 1172;
  • One side of the n-th metal oxide layer 1173 away from the m-th doped layer 1174 or one side of the m-th doped layer 1174 away from the n-th metal oxide layer 1173 is the first surface 1171 ,
  • the work function from the first surface 1171 to the second surface 1172 gradually increases or decreases
  • n and m are integers greater than 1.
  • the thicknesses of the first metal oxide layer 1173, the second metal oxide layer 1173, the third metal oxide layer 1173 and the nth metal oxide layer 1173 gradually become smaller or larger;
  • the first doped layer 1174 , the second doped layer 1174 and the mth doped layer 1174 have the same thickness.
  • the first metal oxide layer 1173, the second metal oxide layer 1173, the third metal oxide layer 1173 and the nth metal oxide layer 1173 are all selected from zinc oxide layer, indium oxide layer, or titanium oxide layer
  • the first doped layer 1174 , the second doped layer 1174 and the mth doped layer 1174 are all selected from one of aluminum oxide, boron oxide or tin oxide.
  • the first metal oxide layer 1173, the second metal oxide layer 1173, the third metal oxide layer 1173 and the nth metal oxide layer 1173 are all zinc oxide layers
  • BZO layer boron-doped zinc oxide layer
  • the metal oxide doped layer 117 (BZO layer) prepared by ALD can realize the passage of photogenerated carriers from the perovskite layer to the silicon heterojunction.
  • the metal oxide doped layer 117 (BZO layer) uses three sources of diethylzinc, water, and diborane at the same time, wherein the two sources of diethylzinc and water generate zinc oxide as the main body, and water, water, and diborane Two sources of diborane were generated as doped boron oxide.
  • the doping concentration can be changed.
  • step 1 two sources of diethyl zinc and water are used to deposit a cycle to form a zinc oxide layer with a thickness of 0.nm;
  • step 2 two sources of water and diborane are used to deposit b cycles on one side of the zinc oxide layer to form a boron oxide layer with a thickness of 0.bnm;
  • step 3 two sources of diethyl zinc and water are used to deposit c cycles on one side of the boron oxide layer to form a zinc oxide layer with a thickness of 0.cnm;
  • step 4 two sources of water and diborane are used to deposit b cycles on one side of the zinc oxide layer to form a boron oxide layer with a thickness of 0.bnm;
  • step five two sources of diethyl zinc and water are used to deposit d cycles on one side of the boron oxide layer to form a zinc oxide layer with a thickness of 0.dnm;
  • step 2n-1 two sources of diethylzinc and water are used to deposit g cycles on one side of the m-th layer of boron oxide to form a zinc oxide layer with a thickness of 0.gnm, thereby obtaining a metal oxide doped layer 117, and the values of a, c, d and g in the metal oxide doped layer 117 gradually increase or decrease.
  • the first metal oxide layer 1173, the second metal oxide layer 1173, the third metal oxide layer 1173 and the nth metal oxide layer 1173 are all zinc oxide layers
  • AZO layer aluminum-doped zinc oxide layer
  • the metal oxide doped layer 117 (AZO layer) prepared by ALD can realize the passage of photogenerated carriers from the perovskite layer to the silicon heterojunction.
  • the specific method is: use three sources of diethyl zinc, water and trimethyl aluminum at the same time, wherein the two sources of diethyl zinc and water generate zinc oxide which accounts for the main part, and the two sources of water and trimethyl aluminum are used as the doping Miscellaneous aluminum oxide. By controlling the deposition times of zinc oxide and aluminum oxide, the doping concentration can be changed.
  • the specific preparation method of the metal oxide doped layer 117 reference may be made to the foregoing.
  • the first metal oxide layer 1173, the second metal oxide layer 1173, the third metal oxide layer 1173 and the nth metal oxide layer 1173 are all zinc oxide layers
  • TZO layer tin-doped zinc oxide layer
  • the TZO layer prepared by ALD realizes the crossing of photogenerated carriers from the perovskite layer to the silicon heterojunction.
  • the specific method is: use three sources of diethylzinc, water, and tetrakis(dimethylamino)tin at the same time, wherein the two sources of diethylzinc and water generate mainly zinc oxide, and water, tetrakis(dimethylamino)tin Both sources generate tin oxide as dopant.
  • the doping concentration can be changed.
  • the specific preparation method of the metal oxide doped layer 117 reference may be made to the foregoing.
  • the metal oxide doped layer 117 prepared by the method described in the present application is the aforementioned metal oxide doped layer 117, so the specific parameters of the metal oxide doped layer 117 prepared by this method can refer to the aforementioned metal oxide doped layer 117 descriptions.
  • the present application provides a solar cell, which includes an upper cell, a metal oxide doped layer 117 and a lower cell stacked in sequence from top to bottom.
  • the metal oxide doped layer 117 is located between the upper cell and the lower cell. Since the work function of the metal oxide doped layer 117 gradually increases or decreases from the first surface 171 to the second surface 172, the gradually changing work function can be matched with the upper battery and the lower battery, and the charge is between the upper battery and the lower battery.
  • the transmission between the lower cells is smooth, so that the conversion efficiency of the solar cell can be improved.
  • this application provides three kinds of tandem cells for specific description, the three kinds of tandem cells are perovskite/silicon-based heterojunction solar cells, perovskite/P-type PERC tandem solar cells, perovskite/ N-type PERT tandem solar cells.
  • the first is perovskite/silicon-based heterojunction solar cells.
  • the perovskite/silicon-based heterojunction solar cell described in this application includes an upper cell, a metal oxide doped layer 117, and a lower cell stacked in sequence from top to bottom.
  • the upper cell includes a front transparent conductive layer 124 , a second carrier transport layer 123 , a perovskite absorption layer 122 , and a first carrier transport layer 121 stacked in order from top to bottom.
  • the lower cell includes an N-type silicon layer 116 (the N-type silicon layer 116 can be an N-type amorphous silicon layer or an N-type microcrystalline silicon layer), a second intrinsic amorphous silicon layer, and Layer 115, N-type crystalline silicon substrate, first intrinsic amorphous silicon layer 113, P-type silicon layer 112 (P-type silicon layer 112 can be P-type amorphous silicon layer or P-type microcrystalline silicon layer) and back transparent Conductive layer 111. That is, the solar cell includes a front transparent conductive layer 124, a second carrier transport layer 123, a perovskite absorption layer 122, a first carrier transport layer 121, and a metal oxide doped layer stacked in sequence from top to bottom.
  • a metal electrode 131 is provided on the surface of the front transparent conductive layer 124 away from the second carrier transport layer 123, and a metal electrode 131 is provided on the surface of the back transparent conductive layer 111 away from the P-type silicon layer 112. metal electrode 131 .
  • Both the front transparent conductive layer 124 and the back transparent conductive layer 111 are used to collect carriers and transport them to the metal electrode 131.
  • the front transparent conductive layer 124 can be an ITO layer, an IWO layer, an IZO layer, an ITiO layer, etc., including But it doesn't stop there.
  • the rear transparent conductive layer may be an ITO layer, an IWO layer, an IZO layer, an ITiO layer, etc., including but not limited thereto.
  • the first carrier transport layer 121 is a hole transport layer
  • the second carrier transport layer 123 is an electron transport layer
  • the first carrier transport layer 121 can be a molybdenum oxide layer, [double (4- Phenyl)(2,4,6-trimethylphenyl)amine](PTAA) layer, copper iodide layer or Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di( 4-methoxyphenyl)amino]-9,9'-spirobifluorene
  • Chinese name is 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'- Spirobifluorene) layer, PEDOT layer, PEDOT:PSS layer, P3HT layer, P3OHT layer, P3ODDT layer, NiOx layer or CuSCN layer.
  • the second carrier transport layer 123 can be titanium oxide layer, tin oxide layer, C60 layer or C60-PCBM layer, [60]PCBM ([6,6]-phenyl-C 61 butyric acid methyl ester, the Chinese name is [ 6,6]-phenyl-C 61 -butyric acid methyl ester) layer, [70]PCBM ([6,6]-Phenyl-C 71 -butyric acid methyl ester, the Chinese name is [6,6]-benzene base-C 71 -isomethyl butyrate) layer, bis[60]PCBM (Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C 62 ) layer, [60] ICBA(1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2",3"][5,6]fullerene -
  • the perovskite absorption layer 122 may be an organic-inorganic hybrid halide perovskite layer, an all-inorganic halide perovskite layer, a lead-free perovskite layer, etc., including but not limited thereto. Its bandgap is generally around 1.5-1.8eV.
  • the metal oxide doped layer 117 is the aforementioned metal oxide doped layer 117 .
  • the N-type silicon layer 116 can be prepared by PECVD, and can constitute the emitter level of the heterojunction cell.
  • Both the first intrinsic amorphous silicon layer 113 and the second intrinsic amorphous silicon layer 115 are prepared by PECVD method, and mainly function as dangling bonds to passivate the surface of the N-type crystalline silicon substrate layer 114 .
  • the N-type crystalline silicon substrate layer 114 serves as a light absorbing layer of the lower cell, converting photons into photogenerated carriers.
  • the P-type silicon layer 112 is prepared by PECVD, which can form the back electric field of the silicon heterojunction solar cell.
  • the first surface 1171 of the metal oxide doped layer 117 is stacked with the first carrier transport layer 121, and the second surface 1172 of the metal oxide doped layer 117 is stacked with the N-type silicon layers 116 are stacked.
  • the first carrier transport layer 121 is a hole transport layer
  • the second carrier transport layer 123 is an electron transport layer. That is, the first surface 1171 of the metal oxide doped layer 117 is stacked with the hole transport layer, and the second surface 1172 of the metal oxide doped layer 117 is stacked with the N-type silicon layer 116 .
  • TCO materials are generally prepared on a-Si:H(n+) as a composite layer, and inorganic materials such as MoOx, NiOx, and Cu 2 O are selected as the composite layer. hole transport layer.
  • BZO, AZO, ITO, FTO, IWO, IZO and other materials can be selected.
  • Most TCO materials can be prepared by magnetron sputtering or reactive plasma deposition.
  • a-Si: The conduction band of H(n+) is about -3.7eV, and the HOMO energy level of the hole transport layer of the inorganic material is about -5.3eV.
  • the work function of the TCO material is generally -4.0 ⁇ -5eV, between -3.7eV and -5.3eV, which can realize the transmission of charges.
  • the conduction band of a single TCO material is a fixed value, and the charge is easy to accumulate at the interface during the transport process, resulting in recombination loss, thereby affecting the electrical performance of the battery.
  • the work function of the first surface 1171 of the metal oxide doped layer 117 is consistent with the HOMO energy level of the hole transport layer, and the second surface 1172 of the metal oxide doped layer 117 The work function is consistent with the conduction band of the N-type silicon layer 116.
  • the work function of the metal oxide doped layer 117 gradually increases from the first surface 1171 to the second surface 1172, the charge The transmission between the hole transport layer and the N-type silicon layer 116 is smooth, and will not accumulate at the interface, so that the conversion efficiency of the solar cell can be improved, so the performance of the solar cell is better.
  • the application provides a method for preparing a solar cell, comprising the steps of:
  • Step 1 Provide the lower battery
  • Step 2 preparing a metal oxide doped layer 117
  • Step 3 Provide the upper battery
  • the metal oxide doped layer 117 is prepared on the surface of the lower battery, and the upper battery is prepared on the surface of the metal oxide doped layer 117 away from the lower battery, and the metal oxide doped
  • the surface of the heterogeneous layer 117 that is in contact with the lower cells is the second surface 1172
  • the surface that is in contact with the upper cells is the first surface 1171 .
  • the work function of the metal oxide doped layer changes gradually from the first surface 1171 to the second surface 1172 .
  • the lower battery is a silicon-based silicon heterojunction battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the upper battery is a perovskite battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the preparation method of the metal oxide doped layer 117 can refer to the preparation method of the metal oxide doped layer 117 mentioned above.
  • perovskite/P-type PERC tandem solar cells This is followed by perovskite/P-type PERC tandem solar cells.
  • the perovskite/P-type PERC tandem solar cell described in this application includes an upper layer cell, a metal oxide doped layer 217 and a lower layer cell stacked sequentially from top to bottom.
  • the upper cell includes a front transparent conductive layer 224 , a second carrier transport layer 223 , a perovskite absorption layer 222 , and a first carrier transport layer 221 stacked in order from top to bottom.
  • the lower cell includes an N-type emitter 215 , a P-type crystalline silicon substrate 214 , an aluminum oxide layer 213 , a silicon nitride layer 212 , and an Al back field 211 stacked in sequence from top to bottom.
  • a metal electrode 231 is provided on the surface of the front transparent conductive layer 224 away from the second carrier transport layer 223, and a metal electrode 231 is provided on the surface of the Al back field 211 away from the silicon nitride layer 212. electrode 231 .
  • the front transparent conductive layer 22-4 can be an ITO layer, an IWO layer, an IZO layer, an ITiO layer, etc., including but not limited thereto.
  • the first carrier transport layer 221 is a hole transport layer, and the hole transport layer can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine ](PTAA) layer, copper iodide layer or Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene Chinese name 2 ,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene) layer, PEDOT layer, PEDOT:PSS layer, P3HT layer, P3OHT layer, P3ODDT layer, NiOx layer or CuSCN layer.
  • the hole transport layer can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine ]
  • the second carrier transport layer 223 is an electron transport layer, and the electron transport layer can be a titanium oxide layer, a tin oxide layer, a C60 layer or a C60-PCBM layer, [60]PCBM ([6,6]-phenyl -C 61 butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C 61 -butyric acid methyl ester) layer, [70]PCBM([6,6]-Phenyl-C 71 -butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C 71 -isomethyl butyrate) layer, bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[ 6,6] C 62 ) layer, [60] ICBA (1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56
  • the perovskite absorbing layer 222 may be an organic-inorganic hybrid halide perovskite layer, an all-inorganic halide perovskite layer, a lead-free perovskite layer, etc., including but not limited thereto. Its bandgap is generally around 1.5-1.8eV.
  • the metal oxide doped layer 217 may be the aforementioned metal oxide doped layer 117 .
  • the aluminum oxide layer 213 is prepared by ALD and can passivate the P-type crystalline silicon substrate 214 .
  • the silicon nitride layer 212 is prepared by PECVD method, and mainly plays an anti-reflection function.
  • the Al back field 211 mainly plays the role of field passivation through screen printing.
  • the N-type emitter 215 is prepared by a diffusion process.
  • the first surface 2171 of the metal oxide doped layer 217 is stacked with the hole transport layer, and the second surface 2172 of the metal oxide doped layer 217 is stacked with the N-type emitter 215 cascading settings.
  • TCO materials are generally prepared on the N-type emitter as a composite layer, and inorganic materials such as MoOx, NiOx, and Cu2O are selected as the hole transport layer.
  • inorganic materials such as MoOx, NiOx, and Cu2O are selected as the hole transport layer.
  • BZO, AZO, ITO, FTO, IWO, IZO and other materials can be selected.
  • Most TCO materials can be prepared by magnetron sputtering or reactive plasma deposition.
  • a-Si The conduction band of H(n+) is about -3.7eV, and the HOMO energy level of the hole transport layer of the inorganic material is about -5.3eV.
  • the work function of the TCO material is generally -4.0 ⁇ -5eV, between -3.7eV and -5.3eV, which can realize the transmission of charges.
  • the conduction band of a single TCO material is a fixed value, and the charge is easy to accumulate at the interface during the transport process, resulting in recombination loss, thereby affecting the electrical performance of the battery.
  • the work function of the first surface 2171 of the metal oxide doped layer 217 is consistent with the HOMO energy level of the hole transport layer, and the second surface 2172 of the metal oxide doped layer 217
  • the work function is consistent with the conduction band of the N-type emitter 215, so the charges are transported smoothly between the hole transport layer and the N-type emitter 215, and will not accumulate at the interface, thereby improving the conversion efficiency of the solar cell , so the performance of the solar cell is better.
  • the application provides a method for preparing a solar cell, comprising the steps of:
  • Step 1 Provide the lower battery
  • Step 2 preparing a metal oxide doped layer 217;
  • Step 3 Provide the upper battery
  • the metal oxide doped layer 217 is prepared on the surface of the lower battery, and the upper battery is prepared on the surface of the metal oxide doped layer 217 away from the lower battery, and the metal oxide doped
  • the surface of the heterogeneous layer 217 that is in contact with the lower cells is the second surface 2172
  • the surface that is in contact with the upper cells is the first surface 2171 .
  • the work function of the metal oxide doped layer changes gradually from the first surface 2171 to the second surface 2172 .
  • the lower battery is a P-type PERC battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the upper battery is a perovskite battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the preparation method of the metal oxide doped layer 217 can refer to the preparation method of the aforementioned metal oxide doped layer 117 .
  • the third is perovskite/N-type PERT tandem solar cells.
  • the perovskite/N-type PERT tandem solar cell of the present application includes an upper cell, a metal oxide doped layer 317 and a lower cell stacked in sequence from top to bottom.
  • the upper cell includes a front transparent conductive layer 324 , a second carrier transport layer 323 , a perovskite absorption layer 322 , and a first carrier transport layer 321 which are stacked sequentially from top to bottom.
  • the lower cell includes a boron-diffused P-type silicon layer 315 , an N-type silicon substrate 314 , a phosphorus-diffused back field layer 313 , an aluminum oxide layer 312 and a silicon nitride layer 311 stacked in sequence from top to bottom.
  • the solar cell includes a front transparent conductive layer 324, a second carrier transport layer 323, a perovskite absorption layer 322, a first carrier transport layer 321, and a metal oxide doped layer that are stacked in order from top to bottom.
  • layer 317 boron-diffused P-type silicon layer 315 , N-type silicon substrate 314 , phosphorus-diffused back field layer 313 , aluminum oxide layer 312 and silicon nitride layer 311 .
  • a metal electrode 331 is provided on the surface of the front transparent conductive layer 324 away from the second carrier transport layer 323 , and on the side of the silicon nitride layer 311 away from the aluminum oxide layer 312 Metal electrodes 331 are provided on the surface.
  • the front transparent conductive layer 324 may be an ITO layer, an IWO layer, an IZO layer, an ITiO layer, etc., including but not limited thereto.
  • the second carrier transport layer 323 is a hole transport layer, and the hole transport layer can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine ](PTAA) layer, copper iodide layer or Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene Chinese name 2 ,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene) layer, PEDOT layer, PEDOT:PSS layer, P3HT layer, P3OHT layer, P3ODDT layer, NiOx layer or CuSCN layer.
  • the hole transport layer can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine ]
  • the first carrier transport layer 321 is an electron transport layer, and the electron transport layer can be a titanium oxide layer, a tin oxide layer, a C60 layer or a C60-PCBM layer, [60]PCBM ([6,6]-phenyl -C 61 butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C 61 -butyric acid methyl ester) layer, [70]PCBM([6,6]-Phenyl-C 71 -butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C 71 -isomethyl butyrate) layer, bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[ 6,6] C 62 ) layer, [60] ICBA (1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56
  • the perovskite absorption layer 32-2 may be an organic-inorganic hybrid halide perovskite layer, an all-inorganic halide perovskite layer, a lead-free perovskite layer, etc., including but not limited thereto. Its bandgap is generally around 1.5-1.8eV.
  • the metal oxide doped layer 317 is the aforementioned metal oxide doped layer 117 .
  • the aluminum oxide layer is prepared by ALD.
  • the silicon nitride layer is prepared by PECVD method, which mainly plays the role of anti-reflection.
  • the boron-diffused P-type silicon layer 315 can be prepared by a diffusion process.
  • the first surface 3171 of the metal oxide doped layer 317 is stacked with the electron transport layer, and the second surface 3172 of the metal oxide doped layer 317 is layered with the boron-diffused P-type
  • the silicon layers 315 are stacked.
  • TCO materials are generally prepared on the boron-diffused P-type silicon layer as a composite layer, and inorganic materials such as SnO 2 , TiO 2 , ZnO are selected as the electron transport layer.
  • inorganic materials such as SnO 2 , TiO 2 , ZnO are selected as the electron transport layer.
  • BZO, AZO, ITO, FTO, IWO, IZO and other materials can be selected.
  • Most TCO materials can be prepared by magnetron sputtering or reactive plasma deposition.
  • the valence band of the boron-diffused P-type silicon layer is about -5.0eV
  • the LUMO energy level of the electron transport layer of inorganic materials is about -4.0eV.
  • the work function of the TCO material is generally between -4.1 and -5eV, which can realize the transmission of charges.
  • the conduction band of a single TCO material is a fixed value, and the charge is easy to accumulate at the interface during the transport process, resulting in recombination loss, thereby affecting the electrical performance of the battery.
  • the work function of the first surface 3171 of the metal oxide doped layer 317 is consistent with the LUMO energy level of the electron transport layer, and the work function of the second surface 3172 of the metal oxide doped layer 317
  • the work function is consistent with the valence band of the boron-diffused P-type silicon layer 315, so charges are transported smoothly between the electron transport layer and the boron-diffused P-type silicon layer 315, and will not accumulate at the interface, thereby improving the solar energy.
  • the conversion efficiency of the battery, so the performance of the solar battery is better.
  • the application provides a method for preparing a solar cell, comprising the steps of:
  • Step 1 Provide the lower battery
  • Step 2 Preparing the metal oxide doped layer 317
  • Step 3 Provide the upper battery
  • the metal oxide doped layer 317 is prepared on the surface of the lower battery, and the upper battery is prepared on the surface of the metal oxide doped layer 317 away from the lower battery, and the metal oxide doped
  • the surface of the miscellaneous layer 317 that is in contact with the lower battery is the second surface 3172
  • the surface that is in contact with the upper battery is the first surface 3171 .
  • the work function of the metal oxide doped layer 317 changes gradually from the first surface 3171 to the second surface 3172 .
  • the preparation method of the metal oxide doped layer 317 can refer to the preparation method of the aforementioned metal oxide doped layer 117 .
  • the lower battery is an N-type PERT battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the upper battery is a perovskite battery, and the specific preparation method is the prior art, which is not specifically limited in this application.
  • the solar cell in this embodiment is a perovskite/silicon-based heterojunction tandem solar cell, which includes a front transparent conductive layer 124, a second carrier transport layer 123, a perovskite Absorption layer 122, first carrier transport layer 121, metal oxide doped layer 117, N-type amorphous silicon layer 116, second intrinsic amorphous silicon layer 115, N-type crystalline silicon substrate, first intrinsic The amorphous silicon layer 113 , the P-type amorphous silicon layer 112 and the back transparent conductive layer 111 .
  • a metal electrode 131 is provided on the surface of the front transparent conductive layer 124 away from the second carrier transport layer 123, and a metal electrode 131 is provided on the surface of the back transparent conductive layer 111 away from the P-type amorphous silicon layer 112. metal electrode 131 .
  • the front transparent conductive layer 124 is an ITO layer with a thickness of 100 nm.
  • the second carrier transport layer 123 is an electron transport layer, specifically a SnO 2 /PCBM composite layer, wherein the thickness of the SnO 2 layer is 20 nm, and the thickness of the PCBM layer is 10 nm.
  • the perovskite absorption layer 122 is 3 layers of (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) with a band gap of 1.6eV and a thickness of 600nm.
  • the first carrier transport layer 121 is a hole transport layer, specifically a NiOx layer, with a thickness of 25 nm.
  • the HOMO energy level is -5.1eV.
  • the N-type amorphous silicon layer 116 has a thickness of 10 nm and a conduction band of -3.7 eV.
  • the thickness of the second intrinsic amorphous silicon layer 115 is 5 nm.
  • the thickness of the N-type crystalline silicon substrate is 150 ⁇ m.
  • the thickness of the first intrinsic amorphous silicon layer 113 is 5 nm.
  • the thickness of the P-type amorphous silicon layer 112 is 10 nm.
  • the back transparent conductive layer 111 is an ITO layer with a thickness of 100 nm.
  • the metal oxide doped layer 117 is a boron-doped zinc oxide layer (BZO layer) with a thickness of 250 nm.
  • the preparation method of the metal oxide doped layer 117 is as follows:
  • Process settings substrate temperature 150°C, carrier gas flow rate 100 sccm, process pressure 25Pa.
  • Two sources of diethyl zinc and water are used to deposit 300 cycles first, and a zinc oxide layer with a thickness of about 30 nm is formed on the interface contacting the N-type amorphous silicon layer 16 .
  • the number of deposition cycles of the two sources of diethylzinc and water is successively reduced, and then two sources of water and diborane are used to deposit one cycle to form a layer of boron oxide.
  • Two sources of water and diborane were used to deposit one cycle on the surface of the zinc oxide layer with a thickness of 2nm away from the boron oxide layer to form a boron oxide layer.
  • the metal oxide doped layer 117 is obtained, wherein the zinc oxide layer with a thickness of 1 nm is the first surface 1171, and the zinc oxide layer with a thickness of 30 nm is the second surface 1172.
  • the thickness of the zinc oxide layer gradually increases from the first surface 1171 to the second surface 1172, and the doping concentration of the boron oxide diffused into the zinc oxide layer gradually decreases, so the metal oxide doped layer 117 changes from
  • the work functions from the first surface 1171 to the second surface 1172 gradually become larger.
  • the work function of the first surface 1171 is about -4.7eV
  • the work function of the second surface 1172 is -3.8eV.
  • the work function of the first surface 1171 forms the best match with the HOMO energy level of the first carrier transport layer 121, and the work function of the second surface 1172 forms the best match with the N-type amorphous silicon layer 16. match.
  • the performance of the solar cell is shown in Table 2.
  • the metal oxide doped layer 117 in this embodiment is an aluminum-doped zinc oxide layer (AZO) with a thickness of 110 nm.
  • AZO aluminum-doped zinc oxide layer
  • the preparation method of the metal oxide doped layer 117 is as follows:
  • Process settings substrate temperature 100°C, carrier gas flow rate 100 sccm, process pressure 25Pa.
  • Two sources of diethyl zinc and water are used to deposit 240 cycles first, and a zinc oxide layer with a thickness of about 24 nm is formed on the interface contacting the N-type amorphous silicon layer 16 .
  • two sources of water and trimethylaluminum are used to deposit 1 cycle to form a layer of aluminum oxide layer.
  • the number of deposition cycles of the two sources of diethylzinc and water is successively reduced, and then the deposition cycles of the two sources of water and trimethylaluminum are used again to form A layer of aluminum oxide.
  • the metal oxide doped layer 117 is obtained, wherein the zinc oxide layer with a thickness of 1 nm is the first surface 1171, and the zinc oxide layer with a thickness of 24 nm is the second surface 1172.
  • the thickness of the zinc oxide layer in the direction from the first surface 1171 to the second surface 1172 gradually decreases and increases, and the doping concentration of the aluminum oxide diffused into the zinc oxide layer gradually decreases, so the metal oxide doped layer 117
  • the work function gradually increases from the first surface 1171 to the second surface 1172 .
  • the work function of the first surface 1171 is about -4.5eV
  • the work function of the second surface 1172 is -3.8eV.
  • the work function of the first surface 1171 forms the best match with the HOMO energy level of the first carrier transport layer 121, and the work function of the second surface 1172 forms the best match with the N-type amorphous silicon layer 16. match.
  • the performance of the solar cell is shown in Table 2.
  • the metal oxide doped layer 117 in this embodiment is a tin-doped zinc oxide layer (TZO) with a thickness of 200 nm.
  • ZO tin-doped zinc oxide layer
  • the preparation method of the metal oxide doped layer 117 is as follows:
  • Two sources of diethyl zinc and water are used to deposit 200 cycles first, and a zinc oxide layer with a thickness of about 20 nm is formed on the interface contacting the N-type amorphous silicon layer 16 .
  • tin oxide layer On one side of the zinc oxide layer with a thickness of 20nm, two sources of water and tetrakis(dimethylamino)tin were used to deposit one cycle to form a tin oxide layer.
  • the number of deposition cycles of the two sources of diethylzinc and water is successively reduced, and then two sources of water and tetrakis(dimethylamino)tin are used to deposit one cycle to form a tin oxide layer.
  • Two sources of water and tetrakis(dimethylamino)tin were used to deposit one cycle on the surface of the zinc oxide layer with a thickness of 1 nm away from the tin oxide layer to form a tin oxide layer.
  • the metal oxide doped layer 117 is obtained, wherein the tin oxide layer with a thickness of 1 nm is the first surface 1171, and the zinc oxide layer with a thickness of 20 nm is the second surface 1172.
  • the thickness of the zinc oxide layer gradually increases from the first surface 1171 to the second surface 1172, and the doping concentration of the tin oxide diffused into the zinc oxide layer gradually decreases, so the metal oxide doped layer 117 changes from The work function of the first surface 1171 to the second surface 1172 gradually increases.
  • the work function of the first surface 1171 is about -4.2eV
  • the work function of the second surface 1172 is -3.8eV.
  • the work function of the first surface 1171 forms the best match with the HOMO energy level of the first carrier transport layer 121, and the work function of the second surface 1172 forms the best match with the N-type amorphous silicon layer 16. match.
  • the performance of the solar cell is shown in Table 2.
  • the solar cell of this embodiment is a perovskite/P-type PERC stacked solar cell, including a front transparent conductive layer 224, a second carrier transport layer 223, a perovskite absorption layer 222, A first carrier transport layer 221 , a metal oxide doped layer 217 , an N-type emitter 215 , a P-type crystalline silicon substrate 214 , an aluminum oxide layer 213 , a silicon nitride layer 212 , and an Al back field 211 .
  • a metal electrode 231 is provided on the surface of the front transparent conductive layer 224 away from the second carrier transport layer 223, and a metal electrode 231 is provided on the side surface of the Al back field 211 away from the silicon nitride layer 212. metal electrode 231 .
  • the front transparent conductive layer 224 is an ITO layer with a thickness of 100 nm.
  • the second carrier transport layer 223 is an electron transport layer, specifically a SnO 2 /PCBM composite layer, wherein the thickness of the SnO 2 layer is 20 nm, and the thickness of the PCBM layer is 10 nm.
  • the perovskite absorbing layer is 3 layers of (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ), with a band gap of 1.6eV and a thickness of 600nm.
  • the first carrier transport layer 221 is a hole transport layer, specifically a NiOx layer, with a thickness of 25 nm.
  • the HOMO energy level is -5.1eV.
  • the N-type emitter 215 is phosphorus diffused with a thickness of 10nm and a conduction band of -3.7eV.
  • the thickness of the P-type crystalline silicon substrate 214 is 190 ⁇ m.
  • the thickness of the aluminum oxide layer 213 is 5 nm.
  • the silicon nitride layer 212 has a thickness of 20 nm.
  • the thickness of the Al back field 211 is 2 ⁇ m.
  • the metal oxide doped layer 217 in this embodiment is the same as the metal oxide doped layer 117 in Embodiment 1, and the specific preparation method refers to Embodiment 1.
  • the metal oxide doped layer 217 is a boron-doped zinc oxide layer (BZO layer) with a thickness of 250 nm.
  • the first surface 2171 of the metal oxide doped layer 217 is a zinc oxide layer with a thickness of 1nm and a work function of about -4.7eV
  • the second surface 2172 is a zinc oxide layer with a thickness of 30nm and a work function of -3.8 eV.
  • the work function in the direction from the first surface 2171 to the second surface 2172 gradually increases.
  • the work function of the first surface 2171 forms the best match with the HOMO energy level of the first carrier transport layer
  • the work function of the second surface 2172 forms the best match with the N-type emitter.
  • the performance of the solar cell is shown in Table 2.
  • the metal oxide doped layer 217 in this embodiment is the same as the metal oxide doped layer 117 in Embodiment 2, please refer to Embodiment 2 for details.
  • the metal oxide doped layer 217 in this embodiment is the same as the metal oxide doped layer 117 in the third embodiment, please refer to the third embodiment for details.
  • the solar cell in this embodiment is a perovskite/N-type PERT stacked solar cell, including a front transparent conductive layer 324, a second carrier transport layer 323, and a perovskite absorption layer stacked in sequence from top to bottom. 322, first carrier transport layer 321, metal oxide doped layer 317, boron-diffused P-type silicon layer 315, N-type silicon substrate 314, phosphorus-diffused back field layer 313, aluminum oxide layer 312, and nitrogen silicon oxide layer 311.
  • a metal electrode 331 is provided on the surface of the front transparent conductive layer 324 away from the second carrier transport layer 323, and a metal electrode 331 is provided on the surface of the silicon nitride layer 311 away from the aluminum oxide layer. electrode 331 .
  • the front transparent conductive layer 324 is an ITO layer with a thickness of 100 nm.
  • the second carrier transport layer 323 is a hole transport layer, specifically a Spiro-OMeTAD layer, with a thickness of 100 nm.
  • the perovskite absorbing layer 322 is 3 layers of (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) with a band gap of 1.6eV and a thickness of 600nm.
  • the first carrier transport layer 321 is an electron transport layer, specifically a TiO 2 layer with a thickness of 30nm and a LUMO energy level of -4.1eV.
  • the thickness of the boron-diffused P-type silicon layer 315 is 10 nm, and its conduction band is -4.9 eV.
  • the thickness of the N-type silicon substrate 314 is 170 ⁇ m.
  • the phosphorus diffusion back field layer 313 has a thickness of 10 nm.
  • the thickness of the aluminum oxide layer 312 is 5 nm.
  • the thickness of the silicon nitride layer 311 is 20nm.
  • the metal oxide doped layer 317 is a boron-doped zinc oxide layer (BZO layer) with a thickness of 245nm.
  • the preparation method of the metal oxide doped layer 317 is as follows:
  • Process settings substrate temperature 150°C, carrier gas flow rate 100 sccm, process pressure 25Pa.
  • Two sources of diethylzinc and water are used to deposit for 40 cycles, and a zinc oxide layer with a thickness of about 4 nm is formed on the interface contacting the boron-diffused P-type silicon layer 315 .
  • the metal oxide doped layer 317 is obtained, wherein the zinc oxide layer with a thickness of 30 nm is the first surface 3171, and the zinc oxide layer with a thickness of 4 nm is the second surface 3172.
  • the thickness of the zinc oxide layer in the direction from the first surface 3171 to the second surface 3172 gradually decreases, and the doping concentration of boron oxide diffused into the zinc oxide layer gradually increases, so the metal oxide doped layer
  • the work function of 317 gradually decreases from the first surface 3171 to the second surface 3172 .
  • the work function of the first surface 3171 is about -4.1eV
  • the work function of the second surface 3172 is -4.7eV.
  • the work function of the first surface 3171 forms the best match with the LUMO energy level of the electron transport layer, and the work function of the second surface 3172 forms the best match with the boron-diffused P-type silicon layer 315 .
  • the performance of the solar cell is shown in Table 2.
  • the metal oxide doped layer 317 in this embodiment is an aluminum-doped zinc oxide (AZO) layer with a thickness of 105 nm.
  • AZO aluminum-doped zinc oxide
  • the preparation method of the metal oxide doped layer 317 is as follows:
  • Process settings substrate temperature 100°C, carrier gas flow rate 100 sccm, process pressure 25Pa.
  • Two sources of diethylzinc and water are used to deposit for 40 cycles, and a zinc oxide layer with a thickness of about 4 nm is formed on the interface contacting the boron-diffused P-type silicon layer 315 .
  • the metal oxide doped layer 317 is obtained, the zinc oxide layer with a thickness of 24nm is the first surface 3171, and the zinc oxide layer with a thickness of 4nm is the second surface 3172.
  • the thickness of the zinc oxide layer gradually decreases from the first surface 3171 to the second surface 3172, and the doping concentration of the aluminum oxide diffused into the zinc oxide layer gradually increases, so the metal oxide doped layer 317 starts from the first surface 3172.
  • the work function from the first surface 3171 to the second surface 3172 decreases gradually.
  • the work function of the first surface 3171 is about -4.1eV
  • the work function of the second surface 3172 is -4.7eV.
  • the work function of the first surface 3171 forms the best match with the LUMO energy level of the electron transport layer, and the work function of the second surface 3172 forms the best match with the boron-diffused P-type silicon layer 315 .
  • the performance of the solar cell is shown in Table 2.
  • the metal oxide doped layer 317 in this embodiment is a tin-doped zinc oxide layer (TZO) with a thickness of 200 nm.
  • the preparation method of the metal oxide-doped intermediate composite layer 17 is as follows:
  • One cycle is deposited on one side of the zinc oxide layer with a thickness of 1 nm by using two sources of water and tetrakis(dimethylamino)tin to form a tin oxide layer.
  • two sources of diethyl zinc and water are used to deposit 200 cycles to form a zinc oxide layer with a thickness of about 20 nm;
  • the metal oxide doped layer 317 is obtained, wherein the tin oxide layer with a thickness of 1 nm is the first surface 3171, and the zinc oxide layer with a thickness of 1 nm is the second surface 3172.
  • the thickness of the zinc oxide layer gradually decreases from the first surface 3171 to the second surface 3172, and the doping concentration of tin oxide diffused into the zinc oxide layer gradually increases, so the metal oxide doped layer 317 starts from the first surface 3171 to the second surface 3172.
  • the work function from the first surface 3171 to the second surface 3172 decreases gradually.
  • the work function of the first surface 3171 is about -3.8eV, and the work function of the second surface 3172 is -4.2eV.
  • the work function of the first surface 3171 forms the best match with the LUMO energy level of the electron transport layer, and the work function of the second surface 3172 forms the best match with the boron-diffused P-type silicon layer 315 .
  • the performance of the solar cell is shown in Table 2.
  • BZO layer uniformly doped boron-doped zinc oxide layer in the prior art
  • the performance of the solar cell is shown in Table 2.
  • AZO aluminum-doped zinc oxide layer in the prior art
  • the performance of the solar cell is shown in Table 2.
  • the performance of the solar cell is shown in Table 2.
  • BZO layer uniformly doped boron-doped zinc oxide layer in the prior art
  • the performance of the solar cell is shown in Table 2.
  • BZO layer uniformly doped boron-doped zinc oxide layer in the prior art
  • the performance of the solar cell is shown in Table 2.
  • Table 1 is each parameter of each embodiment and comparative example
  • Table 2 is the performance parameter of each embodiment and the solar cell of comparative example
  • the metal oxide doped layer described in this application as the middle layer between the upper battery and the lower battery can make the charge transfer between the hole transport layer of the upper battery and the N-type emitter of the lower battery, It will not accumulate on the interface, so the filling factor of the stacked solar cell and the energy conversion efficiency of the stacked solar cell can be improved, so the performance of the solar cell is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种金属氧化物掺杂层,从其第一表面到第二表面的金属氧化物掺杂层的功函数逐渐变化。本申请还提供一种金属氧化物掺杂层的制备方法、一种太阳能电池及其制备方法。本申请所述的金属氧化物掺杂层以及太阳能电池,所述金属氧化物掺杂层具有渐变的功函数,因此渐变的功函数可以与太阳能电池的上层电池以及下层电池进行匹配,从而可以提高太阳能电池的转换效率。

Description

金属氧化物掺杂层、太阳能电池及其制备方法
相关申请的交叉引用
本申请要求在2021年11月05日提交中国专利局、申请号为202111307805.7、名称为“金属氧化物掺杂层、太阳能电池及其制备方法”的中国专利公开的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池技术领域,具体涉及一种金属氧化物掺杂层、太阳能电池及其制备方法。
背景技术
有机-无机杂化钙钛矿太阳能电池作为新型高效率、低成本太阳能电池在全世界范围内被广泛关注。短短几年时间里,单结小面积钙钛矿电池的光电转换效率从2009年的3.8%迅速攀升到25%以上,钙钛矿/硅异质结叠层电池的光电转换效率也达到了29%以上。迅猛的效率发展使其成为当下光伏研究机构及企业的重点关注对象。
与传统薄膜太阳电池(铜铟镓硒、碲化镉等)相比,钙钛矿太阳电池具有高转换效率、简单制备工艺以及低成本潜力等优势,并成为最具产业化前景的薄膜太阳电池技术。通过调节前驱体溶液的成分配比,可实现太阳电池光谱响应截止波长的调控,使之成为最理想的顶电池吸收层材料。
硅异质结太阳电池技术具有工艺简单(制绒清洗→非晶硅沉积→TCO沉积→银电极印刷)、制备温度低(<220℃)、转换效率高(>25%)、对称结构(可双面)等优势,被认为是PERC电池之后的第三代电池技术。硅异质结电池高的红外波段吸收、强的弱光效应以及可匹配p-i-n的结构优势,使其成为最佳的底电池选择之一。以钙钛矿电池(顶电池)与硅基异质结电池(底电池)形成“钙钛矿/硅基异质结”叠层电池结构,实现太阳光谱的分配吸收,有望获得30%以上的转换效率。但是连接钙钛矿电池空穴传输层与硅基异质结电池的发射极的中的复合层虽然工艺简单,适合商业化生产,但是其导带无法与硅基异质结电池的发射极的导带和钙钛矿电池的空穴传输层的HOMO能级同时匹配,限制了电池的电性能提升。
钙钛矿电池同样可以与PERC电池形成“钙钛矿/PERC”叠层电池结构,实现太阳光谱的分配吸收。对于P型PERC电池,连接钙钛矿电池空穴传输层与P型PERC电池的发射极的复合层,与“钙钛矿/硅基异质结”叠层电池结构相似。其导带无法与P型PERC电池的发射极的导带和钙钛矿电池的空穴传输层的HOMO能级同时匹配。对于N型PERT电池,连接钙钛矿电池电子传输层与N型PERT电池的发射极的复合层,其导带无法与N型PERT电池发射极的价带和钙钛矿电池的电子传输层的LUMO能级同时匹配,限制了电池的电性能提升。
概述
针对上述问题,本申请提出了一种金属氧化物掺杂层以及使用所述金属氧化物掺杂层作为复合层的叠层太阳能电池,所述金属氧化物掺杂层具有渐变的功函数,因此渐变的功函数可以与叠层太阳能电池的上层电池以及下层电池进行匹配,从而可以提高太阳能电池的转换效率。
本申请提供一种金属氧化物掺杂层,所述金属氧化物掺杂层从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
进一步地,所述金属氧化物掺杂层包括层叠设置的至少一层金属氧化层和至少一层掺杂层。
进一步地,所述金属氧化物掺杂层包括叠层设置的n层金属氧化层和m层掺杂层,其中,n和m为大于1的整数;
所述金属氧化层和掺杂层交叉叠层设置,以及在所述金属氧化层和掺杂层的交界处,所述掺杂层的材料部分扩散到所述金属氧化层中。
进一步地,通过调整所述金属氧化物掺杂层的结构和材料来调整所述金属氧化物掺杂层从第一表面到第二表面逐渐变化的功函数。
进一步地,调整所述金属氧化物掺杂层的结构和材料包括调节金属氧化层的厚度、掺杂层的厚度、金属氧化层的材料、掺杂层的材料和金属氧化层和掺杂层的排列顺序中的任意一种或两种以上。
进一步地,n层所述金属氧化层的厚度逐渐变化;m层所述掺杂层的厚度相同。
进一步地,所述金属氧化层的厚度逐渐变大或变小,所述金属氧化物掺杂层的功函数也逐渐变大或变小。
本申请还提供一种太阳能电池,包括层叠设置的上层电池和下层电池,所述上层电池与所述下层电池之间具有前述金属氧化物掺杂层。
进一步地,所述上层电池具有第一载流子传输层,所述下层电池具有N型硅层或P型硅层,所述金属氧化物掺杂层的第一表面与所述第一载流子传输层层叠设置,所述金属氧化物掺杂层的第二表面与所述N型硅层或P型硅层层叠设置。
进一步地,所述下层电池具有N型硅层,所述第一载流子传输层为空穴传输层,
所述金属氧化物掺杂层的第一表面的功函数与所述空穴传输层的HOMO能级一致,
所述金属氧化物掺杂层的第二表面的功函数与所述N型硅层的导带一致,
所述金属氧化物掺杂层从第一表面到第二表面的方向上,所述金属氧化物掺杂层的功函数逐渐变大。
进一步地,所述下层电池具P型硅层,所述第一载流子传输层为电子传输层,
所述金属氧化物掺杂层的第一表面的功函数与所述电子传输层的LUMO能级一致,
所述金属氧化物掺杂层的第二表面的功函数与所述P型硅层的价带一致,
所述金属氧化物掺杂层从第一表面到第二表面的方向上,所述金属氧化物掺杂层的功函数逐渐变小。
本申请还提供一种金属氧化物掺杂层的制备方法,包括如下步骤:
金属氧化层和掺杂层交叉叠层设置,从而形成金属氧化物掺杂层;
所述金属氧化物掺杂层从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
进一步地,所述金属氧化物掺杂层包括叠层设置的n层金属氧化层和m层掺杂层,其中,n和m为大于1的整数。
进一步地,n层所述金属氧化层的厚度逐渐变化;
m层所述掺杂层的厚度相同。
进一步地,金属氧化层的厚度逐渐增大或减小,所述金属氧化物掺杂层 的功函数逐渐变大或变小。
进一步地,所述金属氧化层均选自氧化锌层、氧化铟层或氧化钛层中的一种;
所述掺杂层均选自氧化铝层、氧化硼层或氧化锡层中的一种。
本申请还提供一种太阳能电池的制备方法,包括如下步骤:
提供下层电池;
制备金属氧化物掺杂层;
提供上层电池;
所述金属氧化物掺杂层,从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
进一步地,所述金属氧化物掺杂层为前述金属氧化物掺杂层或前述制备方法制备的金属氧化物掺杂层。
本申请提供的金属氧化物掺杂层,从所述第一表面到第二表面的功函数逐渐变大或变小,使得所述金属氧化物掺杂层可以作为不同电池的中间复合层,且所述金属氧化物掺杂层的两个侧面的功函数可以与不同电池进行匹配。
本申请提供的太阳能电池,当下层电池使用硅异质结电池或P型PERC电池时,所述金属氧化物掺杂层的第一表面的功函数与所述上层电池的第一载流子传输层(空穴传输层)的HOMO能级一致,所述金属氧化物掺杂层的第二表面的功函数与所述下层电池的所述N型硅层的导带一致,电荷在上层电池和下层电池之间传输畅通,因此所述太阳能电池的性能较好。当下层电池使用N型PERT电池时,所述金属氧化物掺杂层的第一表面的功函数与所述上层电池的第一载流子传输层(电子传输层)的LUMO能级一致,所述金属氧化物掺杂层的第二表面的功函数与所述下层电池的所述P型硅层的价带一致,电荷在上层电池和下层电池之间传输畅通,因此所述太阳能电池的性能较好。
附图简述
附图用于更好地理解本申请,不构成对本申请的不当限定。其中:
图1为本申请提供的“钙钛矿/硅基异质结”叠层太阳能电池的结构示意图。
图2为本申请提供的“钙钛矿/P型PERC”叠层太阳能电池的结构示意 图。
图3为本申请提供的“钙钛矿/N型PERT”叠层太阳能电池的结构示意图。
图4为本申请提供的金属氧化物掺杂层的结构示意图。
附图标记说明
111-背透明导电层,112-P型硅层,113-第一本征非晶硅层,114-N型晶硅衬底层,115-第二本征非晶硅层,116-N型硅层,117-金属氧化物掺杂层,1171-第一表面;1172-第二表面,1173-金属氧化层,1174-掺杂层,121-第一载流子传输层,122-钙钛矿吸收层,123-第二载流子传输层,124-前透明导电层,131-金属电极。
211-Al背场,212-氮化硅层,213-三氧化二铝层,214-P型晶硅衬底,215-N型发射极,217-金属氧化物掺杂层;221-第一载流子传输层,222-钙钛矿吸收层,223-第二载流子传输层,224-前透明导电层,231-金属电极,2171-第一表面,2172-第二表面。
311-氮化硅层,312-三氧化二铝层,313-磷扩散背场层,314-N型硅衬底,315-硼扩散的P型硅层,317-金属氧化物掺杂层;321-第一载流子传输层,322-钙钛矿吸收层,323-第二载流子传输层,324-前透明导电层,331-金属电极,3171-第一表面,3172-第二表面。
详细描述
以下对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。在本申请中上下位置依据光线入射方向而定,光线入射处为上。
如图4所示,本申请提供一种金属氧化物掺杂层117,从其一侧的第一表面1171到另一侧的第二表面1172的金属氧化物掺杂层的功函数逐渐变化。即所述金属氧化物掺杂层117从其第一表面1171到第二表面1172的金属氧化物掺杂层117的功函数逐渐变大或变小。
在一个具体实施方式中,在所述金属氧化物掺杂层117上,从第一表面 1171到第二表面1172的功函数逐渐变大。
在另一个具体实施方式中,在所述金属氧化物掺杂层117上,从第一表面1171到第二表面1172的功函数逐渐变小。
在本申请中,所述金属氧化物掺杂层117包括层叠设置的至少一层金属氧化层1173和至少一层掺杂层1174。
具体地,所述金属氧化物掺杂层117包括叠层设置的n层金属氧化层1173和m层掺杂层1174,其中,n和m为大于1的整数;m和n可以相等,也可以不等,当m和n不相等时,m与n的差值为1即m=n±1。
n层所述金属氧化层1173的厚度逐渐变化;
m层所述掺杂层1174的厚度相同。
具体地,所述金属氧化层1173和掺杂层1174交叉叠层设置,以及在所述金属氧化层1173和掺杂层1174的交界处,所述掺杂层1174的材料部分扩散到所述金属氧化层1173中。
当所述金属氧化物掺杂中间复合层117为多层叠层结构时,所述金属氧化物掺杂中间复合层117具有两种类型的层叠排列顺序,第一种排布是所述金属氧化层与所述掺杂层依次交叉层叠设置,且所述第一表面1171和第二表面1172均为金属氧化层,第二种排布是所述金属氧化层与所述掺杂层依次交叉层叠设置,且所述第一表面1171为掺杂层,第二表面1172为金属氧化层,优选地,所述第一表面1171和第二表面1172均为金属氧化层。
具体地,在所述金属氧化物掺杂层117中,从所述第一表面1171到第二表面1172的方向上的金属氧化层1173的厚度逐渐增大或减小,所述掺杂层1174的厚度不变。由于在所述金属氧化层1173靠近所述掺杂层1174的一侧面上,部分掺杂层1174扩散到所述金属氧化层1173中,因此从所述第一表面1171到第二表面1172的方向上的金属氧化层1173中的掺杂浓度逐渐减小或增大,从而导致所述金属氧化物掺杂层117,从所述第一表面1171到第二表面1172的方向上的功函数逐渐增大或减小。
在一个具体实施方式中,当从所述第一表面1171到第二表面1172的方向上的金属氧化层1173的厚度逐渐增大时,从所述第一表面1171到第二表面1172的方向上的功函数也逐渐增大。
具体地,所述金属氧化层1173可以为氧化锌层、氧化铟或氧化钛层中的一种或两种以上;优选地,所述金属氧化层1173可以为氧化锌层、氧化 铟或氧化钛层中的一种。
具体地,所述金属氧化层1173的厚度可以为0.1-1000nm,优选为1-30nm。例如可以为0.1nm、1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm或1000nm。
具体地,所述掺杂层1174可以氧化铝层、氧化硼层或氧化锡层中的一种或两种以上,优选地,所述掺杂层1174可以氧化铝、氧化硼、氧化锡中的一种。
具体地,所述掺杂层1174的厚度为0.1-10nm优选为0.1nm。例如可以为0.1nm、0.5nm、1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm或10nm。
在本申请中,所述金属氧化物掺杂层117的厚度为10-1000nm。例如可以为10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm或1000nm。
在本申请中,通过调整所述金属氧化物掺杂层117的结构和材料来调整所述金属氧化物掺杂层117从第一表面1171到第二表面1172逐渐变化的功函数。
具体地,调整所述金属氧化物掺杂层117的结构和材料包括调节金属氧化层1173的厚度、掺杂层1174的厚度、金属氧化层1173的材料、掺杂层1174的材料和金属氧化层1173和掺杂层1174的排列顺序中的任意一种或两种以上。
当所述上层电池和下层电池的结构已确定(即所述钙钛矿电池的第一载流子传输层121(空穴传输层)的HOMO能级以及硅基异质结电池的发射极的导带已经确定),通过调整金属氧化层1173的厚度、掺杂层1174的厚度、金属氧化层1173的材料、掺杂层1174的材料和金属氧化层1173和掺杂层1174的排列顺序来调整所述金属氧化物掺杂层117第一表面1171到第二表面1172之间渐变的功函数。
本申请公开一种金属氧化物掺杂层117的制备方法,包括如下步骤:
金属氧化层1173和掺杂层1174交叉叠层设置,从而形成金属氧化物掺杂层117;
所述金属氧化物掺杂层117从其第一表面1171到第二表面1172的方向上,所述金属氧化物掺杂层的功函数逐渐变化(变大或变小)。
具体地,所述金属氧化物掺杂层包括叠层设置的n层金属氧化层1173和m层掺杂层1174,其中,n和m为大于1的整数。
n层所述金属氧化层1173的厚度逐渐变化;
m层所述掺杂层1174的厚度相同。
具体地,本申请公开一种金属氧化物掺杂层117的制备方法,包括如下步骤:
步骤一:制备第一金属氧化层1173;
步骤二:在所述第一金属氧化层1173上形成第一掺杂层1174;
步骤三:在所述第一掺杂层1174上形成第二金属氧化层1173;
步骤四:在所述第二金属氧化层1173上形成第二掺杂层1174;
步骤五:在所述第二掺杂层1174上形成第三金属氧化层1173;
···
步骤2n-1:在第m层掺杂层1174上形成第n层金属氧化层1173,或在第n层金属氧化层1173上形成第m层掺杂层1174,从而形成所述金属氧化物掺杂层117;
所述第一金属氧化层1173背离所述第一掺杂层1174的一侧面为第二表面1172;
所述第n层金属氧化层1173背离所述第m层掺杂层1174的一侧面或第m层掺杂层1174背离所述第n层金属氧化层1173的一侧面为第一表面1171,
从所述第一表面1171到第二表面1172的功函数逐渐变大或变小;
n和m为大于1的整数。
在本申请中,所述第一金属氧化层1173、第二金属氧化层1173、第三金属氧化层1173以及第n层金属氧化层1173的厚度逐渐变小或变大;
所述第一掺杂层1174、第二掺杂层1174以及第m层掺杂层1174的厚度相同。
在本申请中,所述第一金属氧化层1173、第二金属氧化层1173、第三 金属氧化层1173以及第n层金属氧化层1173均选自氧化锌层、氧化铟层、或氧化钛层
所述第一掺杂层1174、第二掺杂层1174以及第m层掺杂层1174均选自氧化铝、氧化硼或氧化锡中的一种。
具体地,当所述第一金属氧化层1173、第二金属氧化层1173、第三金属氧化层1173以及第n层金属氧化层1173均为氧化锌层时,所述第一掺杂层1174、第二掺杂层1174以及第m层掺杂层1174均为氧化硼时,制备得到的金属氧化物掺杂层117为功函数渐变的掺硼氧化锌层(BZO层)。
使用ALD制备的所述金属氧化物掺杂层117(BZO层)可以实现光生载流子从钙钛矿层到硅异质结中的穿越。具体所述金属氧化物掺杂层117(BZO层)通过同时使用二乙基锌、水、乙硼烷三种源,其中二乙基锌、水两种源生成占主体的氧化锌,水、乙硼烷两种源生成作为掺杂的氧化硼。通过控制氧化锌、氧化硼的沉积次数,从而改变其掺杂浓度。
进一步具体地:
在步骤一中,使用二乙基锌、水两种源沉积a个循环,形成厚度为0.anm的氧化锌层;
在步骤二中,在所述氧化锌层的一侧表面使用水、乙硼烷两种源沉积b个循环,形成厚度为0.bnm的氧化硼层;
在步骤三中,在所述氧化硼层的一侧表面使用二乙基锌、水两种源沉积c个循环,形成厚度为0.cnm的氧化锌层;
在步骤四中,在所述氧化锌层的一侧表面使用水、乙硼烷两种源沉积b个循环,形成厚度为0.bnm的氧化硼层;
在步骤五中,在所述氧化硼层的一侧表面使用二乙基锌、水两种源沉积d个循环,形成厚度为0.dnm的氧化锌层;
···
在步骤2n-1中,在第m层氧化硼的一侧表面使用二乙基锌、水两种源沉积g个循环,形成厚度为0.gnm的氧化锌层,从而得到金属氧化物掺杂层117,且在所述金属氧化物掺杂层117中a、c、d以及g的数值逐渐增大或减小。
具体地,当所述第一金属氧化层1173、第二金属氧化层1173、第三金属氧化层1173以及第n层金属氧化层1173均为氧化锌层时,所述第一掺杂 层1174、第二掺杂层1174以及第m层掺杂层1174均为氧化铝时,制备得到的金属氧化物掺杂层117为功函数渐变的掺铝氧化锌层(AZO层)。
使用ALD制备的所述金属氧化物掺杂层117(AZO层)可以实现光生载流子从钙钛矿层到硅异质结中的穿越。具体方法为:同时使用二乙基锌、水、三甲基铝三种源,其中二乙基锌、水两种源生成占主体的氧化锌,水、三甲基铝两种源生成作为掺杂的三氧化二铝。通过控制氧化锌、三氧化二铝的沉积次数,从而改变其掺杂浓度。具体该金属氧化物掺杂层117的的制备方法可参考前述。
具体地,当所述第一金属氧化层1173、第二金属氧化层1173、第三金属氧化层1173以及第n层金属氧化层1173均为氧化锌层时,所述第一掺杂层1174、第二掺杂层1174以及第m层掺杂层1174均为氧化锡时,制备得到的金属氧化物掺杂层117为功函数渐变的掺锡氧化锌层(TZO层)。
使用ALD制备的TZO层实现光生载流子从钙钛矿层到硅异质结中的穿越。具体方法为:同时使用二乙基锌、水、四(二甲氨基)锡三种源,其中二乙基锌、水两种源生成占主体的氧化锌,水、四(二甲氨基)锡两种源生成作为掺杂的氧化锡。通过控制氧化锌、氧化锡的沉积次数,从而改变其掺杂浓度。具体该金属氧化物掺杂层117的的制备方法可参考前述。
本申请所述的方法制备的金属氧化物掺杂层117为前述金属氧化物掺杂层117,因此本方法制备的金属氧化物掺杂层117的具体参数可参考前述对于金属氧化物掺杂层117的描述。
本申请提供一种太阳能电池,包括从上到下依次层叠设置的上层电池、金属氧化物掺杂层117以及下层电池。所述金属氧化物掺杂层117位于上层电池和下层电池之间。由于所述金属氧化物掺杂层117从其第一表面171到第二表面172的功函数逐渐变大或变小,渐变的功函数可以与上层电池以及下层电池进行匹配,电荷在上层电池和下层电池之间传输畅通,从而可以提高太阳能电池的转换效率。
具体地,本申请提供三种叠层电池来具体说明,三种叠层电池分别为钙钛矿/硅基异质结太阳能电池、钙钛矿/P型PERC叠层太阳能电池、钙钛矿/N型PERT叠层太阳能电池。
首先是钙钛矿/硅基异质结太阳能电池。
如图1所示,本申请所述的钙钛矿/硅基异质结太阳能电池,包括从上到 下依次层叠设置的上层电池、金属氧化物掺杂层117以及下层电池。所述上层电池包括从上到下依次层叠设置的前透明导电层124、第二载流子传输层123、钙钛矿吸收层122、第一载流子传输层121。所述下层电池包括从上到下依次层叠设置的N型硅层116(所述N型硅层116可以为N型非晶硅层或N型微晶硅层)、第二本征非晶硅层115、N型晶硅衬底、第一本征非晶硅层113、P型硅层112(P型硅层112可以为P型非晶硅层或P型微晶硅层)以及背透明导电层111。即所述太阳能电池包括从上到下依次层叠设置的前透明导电层124、第二载流子传输层123、钙钛矿吸收层122、第一载流子传输层121、金属氧化物掺杂层117、N型硅层116、第二本征非晶硅层115、N型晶硅衬底、第一本征非晶硅层113、P型硅层112以及背透明导电层111。在所述前透明导电层124背离所述第二载流子传输层123的一侧表面上设置有金属电极131,在所述背透明导电层111背离所述P型硅层112的表面设置有金属电极131。
所述前透明导电层124和背透明导电层111均是用于收集载流子并传输至金属电极131,所述前透明导电层124可以ITO层、IWO层、IZO层、ITiO层等,包括但不仅限于此。所述后透明导电层可以ITO层、IWO层、IZO层、ITiO层等,包括但不仅限于此。
所述第一载流子传输层121为空穴传输层,第二载流子传输层123为电子传输层,所述第一载流子传输层121可以为氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层或Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene中文名为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层。第二载流子传输层123可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C 61 butyric acid methyl ester,中文名称为[6,6]-苯基-C 61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C 71-butyric acid methyl ester,中文名称为[6,6]-苯基-C 71-丁酸异甲酯)层、bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C 62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fullerene-C60)层等,包括但不仅限于此,只要能实现在本申请中的功能即可。
所述钙钛矿吸收层122可以为有机-无机杂化卤化物钙钛矿层、全无机卤 化物钙钛矿层、无铅钙钛矿层等,包括但不仅限于此。其带隙一般在1.5-1.8eV左右。
所述金属氧化物掺杂层117为前述的金属氧化物掺杂层117。
所述N型硅层116可以通过PECVD法制备,可以构成异质结电池的发射级。
所述第一本征非晶硅层113和所述第二本征非晶硅层115均是通过PECVD法制备,主要起到钝化所述N型晶硅衬底层114表面的悬挂键作用。
所述N型晶硅衬底层114作为下层电池的光吸收层,将光子转换为光生载流子。
所述P型硅层112通过PECVD法制备,可以形成硅异质结太阳电池的背面电场。
在本申请中,所述金属氧化物掺杂层117的第一表面1171与所述第一载流子传输层121层叠设置,所述金属氧化物掺杂层117的第二表面1172与所述N型硅层116层叠设置。
进一步具体地,所述第一载流子传输层121为空穴传输层,所述第二载流子传输层123为电子传输层。即所述金属氧化物掺杂层117的第一表面1171与所述空穴传输层层叠设置,所述金属氧化物掺杂层117的第二表面1172与所述N型硅层116层叠设置。
现有技术中的钙钛矿/硅基异质结叠层太阳电池,一般在a-Si:H(n+)上制备TCO材料作为复合层,并选择MoOx、NiOx、Cu 2O等无机材料作为空穴传输层。制备TCO作为复合层时,可选择BZO、AZO、ITO、FTO、IWO、IZO等材料,大部分TCO材料可以使用磁控溅射或反应等离子体沉积等方法制。a-Si:H(n+)的导带大约为-3.7eV,无机材料的空穴传输层的HOMO能级大约为-5.3eV。TCO材料的功函数一般为-4.0~-5eV,介于-3.7eV与-5.3eV之间,可以实现电荷的传输。单一TCO材料的导带是固定值,电荷在传输过程中容易在界面积累,导致复合损失,从而影响电池的电性能。而在本申请中,所述金属氧化物掺杂层117的第一表面1171的功函数与所述空穴传输层的HOMO能级一致,所述金属氧化物掺杂层117的第二表面1172的功函数与所述N型硅层116的导带一致,在本实施例方式中由于所述金属氧化物掺杂层117功函数从第一表面1171到第二表面1172逐 渐变大,因此电荷在空穴传输层和N型硅层116之间传输畅通,不会积累在界面,从而可以提高所述太阳能电池的转换效率,因此所述太阳能电池的性能较好。
本申请提供一种太阳能电池的制备方法,包括如下步骤:
步骤一:提供下层电池;
步骤二:制备金属氧化物掺杂层117;
步骤三:提供上层电池;
具体地,在所述下层电池的表面制备所述金属氧化物掺杂层117,在所述金属氧化物掺杂层117背离所述下层电池的表面制备所述上层电池,所述金属氧化物掺杂层117与所述下层电池相接的表面为第二表面1172,其与所述上层电池相接的表面为第一表面1171。
所述金属氧化物掺杂层117,从其第一表面1171到第二表面1172的金属氧化物掺杂层的功函数逐渐变化。
所述下层电池为硅基硅异质结电池,具体制备方法为现有技术,在本申请中不做具体限定。
所述上层电池为钙钛矿电池,具体制备方法为现有技术,在本申请中不做具体限定。
所述金属氧化物掺杂层117的制备方法可参考前述金属氧化物掺杂层117的制备方法。
其次是钙钛矿/P型PERC叠层太阳能电池。
如图2所示,本申请所述的钙钛矿/P型PERC叠层太阳能电池,包括从上到下依次层叠设置的上层电池、金属氧化物掺杂层217以及下层电池。所述上层电池包括从上到下依次层叠设置的前透明导电层224、第二载流子传输层223、钙钛矿吸收层222、第一载流子传输层221。所述下层电池包括从上到下依次层叠设置的N型发射极215、P型晶硅衬底214、三氧化二铝层213,氮化硅层212,Al背场211。在所述前透明导电层224背离所述第二载流子传输层223的表面上设置有金属电极231,在所述Al背场211背离所述氮化硅层212的一侧表面设置有金属电极231。
所述前透明导电层22-4可以ITO层、IWO层、IZO层、ITiO层等,包括但不仅限于此。
所述第一载流子传输层221为空穴传输层,所述空穴传输层可以为氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层或Spiro- OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene中文名为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层。
所述第二载流子传输层223为电子传输层,所述电子传输层可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C 61butyric acid methyl ester,中文名称为[6,6]-苯基-C 61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C 71-butyric acid methyl ester,中文名称为[6,6]-苯基-C 71-丁酸异甲酯)层、bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C 62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fullerene-C 60)层等,包括但不仅限于此,只要能实现在本申请中的功能即可。
所述钙钛矿吸收层222可以为有机-无机杂化卤化物钙钛矿层、全无机卤化物钙钛矿层、无铅钙钛矿层等,包括但不仅限于此。其带隙一般在1.5-1.8eV左右。
所述金属氧化物掺杂层217可以为前述的金属氧化物掺杂层117。
所述三氧化二铝层213通过ALD制备,可以钝化P型晶硅衬底214。
所述氮化硅层212通过PECVD法制备,主要起到减反作用。
所述Al背场211通过丝网印刷,主要起到场钝化作用。
所述N型发射极215为通过扩散工艺制备得到。
在本申请中,所述金属氧化物掺杂层217的第一表面2171与所述空穴传输层层叠设置,所述金属氧化物掺杂层217的第二表面2172与所述N型发射极215层叠设置。
现有技术中的钙钛矿/P型PERC结叠层太阳电池,一般在N型发射极上制备TCO材料作为复合层,并选择MoOx、NiOx、Cu2O等无机材料作为空穴传输层。制备TCO作为复合层时,可选择BZO、AZO、ITO、FTO、IWO、IZO等材料,大部分TCO材料可以使用磁控溅射或反应等离子体沉积等方法制。a-Si:H(n+)的导带大约为-3.7eV,无机材料的空穴传输层的HOMO能级大约为-5.3eV。TCO材料的功函数一般为-4.0~-5eV,介于-3.7eV与-5.3eV之间,可以实现电荷的传输。单一TCO材料的导带是固定值,电荷在传输过程中容易在界面积累,导致复合损失,从而影响电池的电性能。而在本申请中,所述金属氧化物掺杂层217的第一表面2171的功函数与所述空穴传输层的HOMO能级一致,所述金属氧化物掺杂层217的第 二表面2172的功函数与所述N型发射极215的导带一致,因此电荷在空穴传输层和N型发射极215之间传输畅通,不会积累在界面,从而可以提高所述太阳能电池的转换效率,因此所述太阳能电池的性能较好。
本申请提供一种太阳能电池的制备方法,包括如下步骤:
步骤一:提供下层电池;
步骤二:制备金属氧化物掺杂层217;
步骤三:提供上层电池;
具体地,在所述下层电池的表面制备所述金属氧化物掺杂层217,在所述金属氧化物掺杂层217背离所述下层电池的表面制备所述上层电池,所述金属氧化物掺杂层217与所述下层电池相接的表面为第二表面2172,其与所述上层电池相接的表面为第一表面2171。
所述金属氧化物掺杂层217,从其第一表面2171到第二表面2172的金属氧化物掺杂层的功函数逐渐变化。
所述下层电池为P型PERC电池,具体制备方法为现有技术,在本申请中不做具体限定。
所述上层电池为钙钛矿电池,具体制备方法为现有技术,在本申请中不做具体限定。
所述金属氧化物掺杂层217的制备方法可参考前述金属氧化物掺杂层117的制备方法。
再次是钙钛矿/N型PERT叠层太阳能电池。
如图3所示,本申请的钙钛矿/N型PERT叠层太阳能电池,包括从上到下依次层叠设置的上层电池、金属氧化物掺杂层317以及下层电池。所述上层电池包括从上到下依次层叠设置的前透明导电层324、第二载流子传输层323、钙钛矿吸收层322、第一载流子传输层321。所述下层电池包括从上到下依次层叠设置的硼扩散的P型硅层315、N型硅衬底314、磷扩散背场层313、三氧化二铝层312以及氮化硅层311。
即所述太阳能电池包括从上到下依次层叠设置的前透明导电层324、第二载流子传输层323、钙钛矿吸收层322、第一载流子传输层321、金属氧化物掺杂层317、硼扩散的P型硅层315、N型硅衬底314、磷扩散背场层313、三氧化二铝层312以及氮化硅层311。在所述前透明导电层324背离所述第二载流子传输层323的一侧表面上设置有金属电极331,在所述氮化硅层311背离所述三氧化二铝层312的一侧表面设置有金属电极331。
所述前透明导电层324可以ITO层、IWO层、IZO层、ITiO层等,包括但不仅限于此。
所述第二载流子传输层323为空穴传输层,所述空穴传输层可以为氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层或Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene中文名为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层。
所述第一载流子传输层321为电子传输层,所述电子传输层可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C 61butyric acid methyl ester,中文名称为[6,6]-苯基-C 61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C 71-butyric acid methyl ester,中文名称为[6,6]-苯基-C 71-丁酸异甲酯)层、bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C 62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fullerene-C 60)层等,包括但不仅限于此,只要能实现在本申请中的功能即可。
所述钙钛矿吸收层32-2可以为有机-无机杂化卤化物钙钛矿层、全无机卤化物钙钛矿层、无铅钙钛矿层等,包括但不仅限于此。其带隙一般在1.5-1.8eV左右。
所述金属氧化物掺杂层317为前述的金属氧化物掺杂层117。
所述三氧化二铝层通过ALD制备。
所述氮化硅层通过PECVD法制备,主要起到减反作用。
所述硼扩散的P型硅层315可以通过扩散工艺制备。
在本申请中,所述金属氧化物掺杂层317的第一表面3171与所述电子传输层层叠设置,所述金属氧化物掺杂层317的第二表面3172与所述硼扩散的P型硅层315层叠设置。
现有技术中的钙钛矿/PERT结叠层太阳电池,一般在硼扩散的P型硅层上制备TCO材料作为复合层,并选择SnO 2、TiO 2、ZnO等无机材料作为电子传输层。制备TCO作为复合层时,可选择BZO、AZO、ITO、FTO、IWO、IZO等材料,大部分TCO材料可以使用磁控溅射或反应等离子体沉积等方法制。硼扩散的P型硅层的价带大约为-5.0eV,无机材料的电子传输层的LUMO能级大约为-4.0eV。TCO材料的功函数一般为-4.1~-5eV之间,可以实现电荷的传输。单一TCO材料的导带是固定值,电荷在传输过程中 容易在界面积累,导致复合损失,从而影响电池的电性能。而在本申请中,所述金属氧化物掺杂层317的第一表面3171的功函数与所述电子传输层的LUMO能级一致,所述金属氧化物掺杂层317的第二表面3172的功函数与所述硼扩散的P型硅层315的价带一致,因此电荷在电子传输层和硼扩散的P型硅层315之间传输畅通,不会积累在界面,从而可以提高所述太阳能电池的转换效率,因此所述太阳能电池的性能较好。
本申请提供一种太阳能电池的制备方法,包括如下步骤:
步骤一:提供下层电池;
步骤二:制备金属氧化物掺杂层317
步骤三:提供上层电池;
具体地,在所述下层电池的表面制备所述金属氧化物掺杂层317,在所述金属氧化物掺杂层317背离所述下层电池的表面制备所述上层电池,所述金属氧化物掺杂层317与所述下层电池相接的表面为第二表面3172,其与所述上层电池相接的表面为第一表面3171。
所述金属氧化物掺杂层317,从其第一表面3171到第二表面3172的功函数逐渐变化。所述金属氧化物掺杂层317的制备方法可参考前述金属氧化物掺杂层117的制备方法。
所述下层电池为N型PERT电池,具体制备方法为现有技术,在本申请中不做具体限定。
所述上层电池为钙钛矿电池,具体制备方法为现有技术,在本申请中不做具体限定。
实施例
下述实施例中所使用的实验方法如无特殊要求,均为常规方法。
下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
本实施例的所述太阳能电池为钙钛矿/硅基异质结叠层太阳能电池,包括从上到下依次层叠设置的前透明导电层124、第二载流子传输层123、钙钛矿吸收层122、第一载流子传输层121、金属氧化物掺杂层117、N型非晶硅层116、第二本征非晶硅层115、N型晶硅衬底、第一本征非晶硅层113、P型非晶硅层112以及背透明导电层111。在所述前透明导电层124背离所述第二载流子传输层123的表面上设置有金属电极131,在所述背透明导电层 111背离所述P型非晶硅层112的表面设置有金属电极131。
所述前透明导电层124为ITO层,厚度为100nm。
所述第二载流子传输层123为电子传输层,具体为SnO 2/PCBM复合层,其中SnO 2层的厚度为20nm,PCBM层的厚度为10nm。
所述钙钛矿吸收层122为(Cs 0.15FA 0.85)Pb(I 0.7Br 0.3) 3层,带隙为1.6eV,厚度为600nm。
所述第一载流子传输层121为空穴传输层,具体为NiOx层,厚度为25nm。HOMO能级为-5.1eV。
所述N型非晶硅层116的厚度为10nm,导带为-3.7ev。
所述第二本征非晶硅层115厚度为5nm。
所述N型晶硅衬底厚度为150μm。
所述第一本征非晶硅层113厚度为5nm。
所述P型非晶硅层112的厚度为10nm。
所述背透明导电层111为ITO层,厚度为100nm。
金属氧化物掺杂层117为掺硼氧化锌层(BZO层),厚度为250nm。
具体所述金属氧化物掺杂层117的制备方法为:
工艺设定:基底温度150℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积300个循环,在与N型非晶硅层16接触的界面上形成一层厚度约30nm的氧化锌层。
在厚度为30nm的氧化锌层的一侧表面使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积280个循环,形成一层厚度约28nm的氧化锌层。
在厚度为28nm的氧化锌层背离所述氧化硼层的一侧表面再使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积260个循环,形成厚度约26nm的氧化锌层。
在厚度为26nm的氧化锌层背离所述氧化硼层的一侧表面再使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层背离所述氧化锌层的一侧表面依次降低二乙基锌、水两种源的沉积循环次数,然后再使用水、乙硼烷两种源沉积1个循环,形成一 层氧化硼层。
···
在所述氧化硼层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积20个循环,形成一层厚度约2nm的氧化锌层。
在厚度为2nm的氧化锌层的背离所述氧化硼层的一侧表面使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积10个循环,形成一层厚度约1nm的氧化锌层。
工艺结束,得到所述金属氧化物掺杂层117,其中厚度为1nm的氧化锌层为第一表面1171,厚度为30nm的氧化锌层为第二表面1172,在所述金属氧化物掺杂层117中从第一表面1171到第二表面1172的方向上氧化锌层的厚度逐渐增大,氧化硼扩散到氧化锌层的掺杂浓度逐渐减小,因此所述金属氧化物掺杂层117从第一表面1171到第二表面1172的功函数逐渐变大。第一表面1171的功函数约-4.7eV,所述第二表面1172的功函数为-3.8eV。所述第一表面1171的功函数与第一载流子传输层121的HOMO能级形成最佳匹配,所述第二表面1172的功函数与所述N型非晶硅层16形成最佳的匹配。所述太阳能电池的性能如表2。
实施例2
本实施例中的太阳能电池与实施例1中的太阳能电池的不同之处在于金属氧化物掺杂层117。
本实施例的金属氧化物掺杂层117为厚度为110nm的掺铝氧化锌层(AZO)。
具体所述金属氧化物掺杂层117的制备方法为:
工艺设定:基底温度100℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积240个循环,在与N型非晶硅层16接触的界面上形成一层厚度约24nm的氧化锌层。
在厚度为24nm的氧化锌层的一侧表面使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积210个循环,形成一层厚度约21nm的氧化锌层。
在厚度为21nm的氧化锌层背离所述氧化铝层的一侧表面再使用水、三 甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积180个循环,形成厚度约18nm的氧化锌层。
在厚度为18nm的氧化锌层背离所述氧化铝层的一侧表面再使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层背离所述氧化锌层的一侧表面依次降低二乙基锌、水两种源的沉积循环次数,然后再使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
···
在所述氧化铝层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积30个循环,形成一层厚度约3nm的氧化锌层。
在厚度为3nm的氧化锌层的背离所述氧化铝层的一侧表面使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积10个循环,形成一层厚度约1nm的氧化锌层。
工艺结束,得到所述金属氧化物掺杂层117,其中厚度为1nm的氧化锌层为第一表面1171,厚度为24nm的氧化锌层为第二表面1172,在所述金属氧化物掺杂层117中从第一表面1171到第二表面1172的方向上氧化锌层的厚度逐渐减增大,氧化铝扩散到氧化锌层的掺杂浓度逐渐减小,因此所述金属氧化物掺杂层117从第一表面1171到第二表面1172的功函数逐渐增加。第一表面1171的功函数约-4.5eV,所述第二表面1172的功函数为-3.8eV。所述第一表面1171的功函数与第一载流子传输层121的HOMO能级形成最佳匹配,所述第二表面1172的功函数与所述N型非晶硅层16形成最佳的匹配。所述太阳能电池的性能如表2。
实施例3
本实施例中的太阳能电池与实施例1中的太阳能电池的不同之处在于金属氧化物掺杂层117。
本实施例的金属氧化物掺杂层117为厚度为200nm的掺锡氧化锌层(TZO)。
具体所述金属氧化物掺杂层117的制备方法为:
工艺设定:基底温度120℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积200个循环,在与N型非晶硅层16接触的界面上形成一层厚度约20nm的氧化锌层。
在厚度为20nm的氧化锌层的一侧表面使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积190个循环,形成一层厚度约19nm的氧化锌层。
在厚度为19nm的氧化锌层背离所述氧化锡层的一侧表面再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积180个循环,形成厚度约18nm的氧化锌层。
在厚度为18nm的氧化锌层背离所述氧化锡层的一侧表面再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面依次降低二乙基锌、水两种源的沉积循环次数,然后再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
···
在所述氧化锡层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积20个循环,形成一层厚度约2nm的氧化锌层。
在厚度为2nm的氧化锌层的背离所述氧化锡层的一侧表面使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积10个循环,形成一层厚度约1nm的氧化锌层;
在厚度为1nm的氧化锌层的背离所述氧化锡层的一侧表面使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
工艺结束,得到所述金属氧化物掺杂层117,其中厚度为1nm的氧化锡层为第一表面1171,厚度为20nm的氧化锌层为第二表面1172,在所述金属氧化物掺杂层117中从第一表面1171到第二表面1172的方向上氧化锌层的厚度逐渐增大,氧化锡扩散到氧化锌层的掺杂浓度逐渐减小,因此所述金属氧化物掺杂层117从第一表面1171到第二表面1172的功函数逐渐增加。第一表面1171的功函数约-4.2eV,所述第二表面1172的功函数为-3.8eV。所述第一表面1171的功函数与第一载流子传输层121的HOMO能级形成最佳 匹配,所述第二表面1172的功函数与所述N型非晶硅层16形成最佳的匹配。所述太阳能电池的性能如表2。
实施例4
本实施例的太阳能电池为钙钛矿/P型PERC叠层太阳能电池,包括从上到下依次层叠设置的前透明导电层224、第二载流子传输层223、钙钛矿吸收层222、第一载流子传输层221、金属氧化物掺杂层217、N型发射极215、P型晶硅衬底214、三氧化二铝层213,氮化硅层212,Al背场211。在所述前透明导电层224背离所述第二载流子传输层223的一侧表面上设置有金属电极231,在所述Al背场211背离所氮化硅层212的一侧表面设置有金属电极231。
所述前透明导电层224为ITO层,厚度为100nm。
所述第二载流子传输层223为电子传输层,具体为SnO 2/PCBM复合层,其中SnO 2层的厚度为20nm,所述PCBM层的厚度为10nm。
所述钙钛矿吸收层为(Cs 0.15FA 0.85)Pb(I 0.7Br 0.3) 3层,带隙为1.6eV,厚度为600nm。
所述第一载流子传输层221为空穴传输层,具体为NiOx层,其厚度为25nm。HOMO能级为-5.1eV。
N型发射极215为磷扩散,其厚度为10nm,导带为-3.7eV。
P型晶硅衬底214的厚度为190μm。
三氧化二铝层213的厚度为5nm。
氮化硅层212的厚度为20nm。
Al背场211的厚度为2μm。
本实施例中的金属氧化物掺杂层217与实施例1中的金属氧化物掺杂层117相同,具体制备方法参考实施例1。
所述金属氧化物掺杂层217为掺硼氧化锌层(BZO层),其厚度为250nm。
所述金属氧化物掺杂层217的第一表面2171为氧化锌层,其厚度为1nm,功函数约-4.7eV,第二表面2172为氧化锌层,其厚度为30nm,功函数为-3.8eV。在所述金属氧化物掺杂层217中从第一表面2171第二表面2172方向上的功函数逐渐变大。所述第一表面2171的功函数与第一载流子传输层的HOMO能级形成最佳匹配,所述第二表面2172的功函数与所述N型发射极形成最佳的匹配。所述太阳能电池的性能如表2。
实施例5
本实施例中的太阳能电池与实施例4中的太阳能电池的不同之处在于金属氧化物掺杂层217。
本实施例中的金属氧化物掺杂层217与实施例2中的金属氧化物掺杂层117相同,具体参考实施例2。
本实施例的太阳能电池的性能如表2。
实施例6
本实施例中的太阳能电池与实施例4中的太阳能电池的不同之处在于金属氧化物掺杂层217。
本实施例中的金属氧化物掺杂层217与实施例3中的金属氧化物掺杂层117相同,具体参考实施例3。
本实施例的太阳能电池的性能如表2。
实施例7
本实施例的所述太阳能电池为钙钛矿/N型PERT叠层太阳能电池,包括从上到下依次层叠设置的前透明导电层324、第二载流子传输层323、钙钛矿吸收层322、第一载流子传输层321、金属氧化物掺杂层317、硼扩散的P型硅层315、N型硅衬底314、磷扩散背场层313、三氧化二铝层312以及氮化硅层311。在所述前透明导电层324背离所述第二载流子传输层323的表面上设置有金属电极331,在所述氮化硅层311背离所三氧化二铝层的一侧表面设置有金属电极331。
所述前透明导电层324为ITO层,厚度为100nm。
所述第二载流子传输层323为空穴传输层,具体为Spiro-OMeTAD层,厚度为100nm。
所述钙钛矿吸收层322为(Cs 0.15FA 0.85)Pb(I 0.7Br 0.3) 3层,带隙为1.6eV,厚度为600nm。
第一载流子传输层321为电子传输层,具体为TiO 2层,厚度为30nm,LUMO能级为-4.1eV。
所述硼扩散的P型硅层315的厚度为10nm,其导带为-4.9eV。
所述N型硅衬底314的厚度为170μm。
所述磷扩散背场层313的厚度为10nm。
所述三氧化二铝层312的厚度为5nm。
所述氮化硅层311的厚度为20nm。
所述金属氧化物掺杂层317为掺硼氧化锌层(BZO层),厚度为 245nm。
具体所述金属氧化物掺杂层317的制备方法为:
工艺设定:基底温度150℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积40个循环,在与所述硼扩散的P型硅层315接触的界面上形成一层厚度约4nm的氧化锌层。
在厚度为4nm的氧化锌层的一侧表面使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积60个循环,形成一层厚度约6nm的氧化锌层。
在厚度为6nm的氧化锌层背离所述氧化硼层的一侧表面再使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积80个循环,形成厚度约8nm的氧化锌层。
在厚度为8nm的氧化锌层背离所述氧化硼层的一侧表面再使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
···
在所述氧化硼层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积280个循环,形成一层厚度约28nm的氧化锌层。
在厚度为28nm的氧化锌层的背离所述氧化硼层的一侧表面使用水、乙硼烷两种源沉积1个循环,形成一层氧化硼层。
在所述氧化硼层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积300个循环,形成一层厚度约30nm的氧化锌层。
工艺结束,得到所述金属氧化物掺杂层317,其中厚度为30nm的氧化锌层为第一表面3171,厚度为4nm的氧化锌层为第二表面3172,在所述金属氧化物掺杂层317中,从第一表面3171到第二表面3172的方向上的氧化锌层的厚度逐渐减小,氧化硼扩散到氧化锌层的掺杂浓度逐渐增大,因此所述金属氧化物掺杂层317从第一表面3171到第二表面3172到的功函数逐渐减小。第一表面3171的功函数约-4.1eV,所述第二表面3172的功函数为-4.7eV。所述第一表面3171的功函数与电子传输层LUMO能级形成最佳匹配,所述第二表面3172的功函数与所述硼扩散的P型硅层315形成最佳的匹配。所述太阳能电池的性能如表2。
实施例8
本实施例的太阳能电池与实施例7的太阳能电池的不同之处在于金属氧化物掺杂层317。
本实施例的金属氧化物掺杂层317为厚度为105nm的掺铝氧化锌层(AZO)。
具体所述金属氧化物掺杂层317的制备方法为:
工艺设定:基底温度100℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积40个循环,在与所述硼扩散的P型硅层315接触的界面上形成一层厚度约4nm的氧化锌层。
在厚度为4nm的氧化锌层的一侧表面使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积60个循环,形成一层厚度约6nm的氧化锌层。
在厚度为6nm的氧化锌层背离所述氧化铝层的一侧表面再使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积80个循环,形成厚度约8nm的氧化锌层。
在厚度为8nm的氧化锌层背离所述氧化铝层的一侧表面再使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
···
在所述氧化铝层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积220个循环,形成一层厚度约22nm的氧化锌层。
在厚度为28nm的氧化锌层的背离所述氧化铝层的一侧表面使用水、三甲基铝两种源沉积1个循环,形成一层氧化铝层。
在所述氧化铝层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积240个循环,形成一层厚度约24nm的氧化锌层。
工艺结束,得到所述金属氧化物掺杂层317,其厚度为24nm的氧化锌层为第一表面3171,厚度为4nm的氧化锌层为第二表面3172,在所述金属氧化物掺杂层317中从第一表面3171到第二表面3172的方向上氧化锌层的厚度逐渐减小,氧化铝扩散到氧化锌层的掺杂浓度逐渐增加,因此所述金属氧化物掺杂层317从第一表面3171到第二表面3172的功函数逐渐减小。第一表面3171的功函数约-4.1eV,所述第二表面3172的功函数为-4.7eV。所述第一表面3171的功函数与电子传输层LUMO能级形成最佳匹配,所述第二表面3172的功函数与所述硼扩散的P型硅层315形成最佳的匹配。所述 太阳能电池的性能如表2。
实施例9
本实施例中的太阳能电池与实施例7中的太阳能电池的不同之处在于金属氧化物掺杂层317。
本实施例的金属氧化物掺杂层317为厚度为200nm的掺锡氧化锌层(TZO)。
具体所述金属氧化物掺杂中间复合层17的制备方法为:
工艺设定:基底温度120℃,载气流量100sccm,工艺压强25Pa。
先使用二乙基锌、水两种源先沉积10个循环,在与所述硼扩散的P型硅层315接触的界面上形成一层厚度约1nm的氧化锌层。
在厚度为1nm的氧化锌层的一侧表面使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源先沉积20个循环,形成一层厚度约2nm的氧化锌层。
在厚度为2nm的氧化锌层背离所述氧化锡层的一侧表面再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积30个循环,形成厚度约3nm的氧化锌层。
在厚度为4nm的氧化锌层背离所述氧化锡层的一侧表面再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层背离所述氧化锌层的一侧表面继续使用二乙基锌、水两种源先沉积40个循环,形成厚度约4nm的氧化锌层。
在厚度为4nm的氧化锌层背离所述氧化锡层的一侧表面再使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
···
在所述氧化锡层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积190个循环,形成一层厚度约19nm的氧化锌层。
在厚度为19nm的氧化锌层的背离所述氧化锡层的一侧表面使用水、四(二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
在所述氧化锡层的背离所述氧化锌层的一侧表面再使用二乙基锌、水两种源沉积200个循环,形成一层厚度约20nm的氧化锌层;
在厚度为1nm的氧化锌层的背离所述氧化锡层的一侧表面使用水、四 (二甲氨基)锡两种源沉积1个循环,形成一层氧化锡层。
工艺结束,得到所述金属氧化物掺杂层317,其中厚度为1nm的氧化锡层为第一表面3171,厚度为1nm的氧化锌层为第二表面3172,在所述金属氧化物掺杂层317中从第一表面3171到第二表面3172的方向上氧化锌层的厚度逐渐减小,氧化锡扩散到氧化锌层的掺杂浓度逐渐增加,因此所述金属氧化物掺杂层317从第一表面3171到第二表面3172的功函数逐渐减小。第一表面3171的功函数约-3.8eV,所述第二表面3172的功函数为-4.2eV。所述第一表面3171的功函数与电子传输层LUMO能级形成最佳匹配,所述第二表面3172的功函数与所述硼扩散的P型硅层315形成最佳的匹配。所述太阳能电池的性能如表2。
对比例1
对比例1的太阳能电池与实施例1中的太阳能电池的不同之处在于金属氧化物掺杂层,对比例1中金属氧化物掺杂层为现有技术中均匀掺杂的掺硼氧化锌层(BZO层),掺杂度为3%,厚度为250nm。所述太阳能电池的性能如表2。
对比例2
对比例2的太阳能电池与实施例2中的太阳能电池的不同之处在于金属氧化物掺杂层,对比例2中金属氧化物掺杂层为现有技术中均匀掺杂的掺铝氧化锌层(AZO),掺杂度为5%,厚度为200nm。所述太阳能电池的性能如表2。
对比例3
对比例3的太阳能电池与实施例3中的太阳能电池的不同之处在于金属氧化物掺杂层,对比例3中金属氧化物掺杂层为现有技术中均匀掺杂的掺锡氧化锌层(TZO),掺杂度为10%,厚度为200nm。所述太阳能电池的性能如表2。
对比例4
对比例4的太阳能电池与实施例4中的太阳能电池的不同之处在于金属氧化物掺杂层,对比例4中金属氧化物掺杂层为现有技术中均匀掺杂的掺硼氧化锌层(BZO层),掺杂度为3%,厚度为250nm。所述太阳能电池的性能如表2。
对比例5
对比例5的太阳能电池与实施例7中的太阳能电池的不同之处在于金属 氧化物掺杂层,对比例5中金属氧化物掺杂层为现有技术中均匀掺杂的掺硼氧化锌层(BZO层),掺杂度为3%,厚度为245nm。所述太阳能电池的性能如表2。
表1 为各个实施例以及对比例的各项参数
Figure PCTCN2022092273-appb-000001
表2 为各实施例以及对比例的太阳能电池的性能参数
Figure PCTCN2022092273-appb-000002
小结:由上表可知,本申请所述金属氧化物掺杂层作为上层电池和下层电池的中间层可以使得电荷在上层电池的空穴传输层和下层电池的N型发射极之间传输畅通,不会积累在界面,因此可以提高所述叠层太阳能电池的填充因子以及所述叠层太阳能电池的能量转换效率,因此所述太阳能电池的性能较好。
尽管以上结合对本申请的实施方案进行了描述,但本申请并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请保护之列。

Claims (18)

  1. 一种金属氧化物掺杂层,其特征在于,所述金属氧化物掺杂层从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
  2. 根据权利要求1所述的金属氧化物掺杂层,其特征在于,所述金属氧化物掺杂层包括层叠设置的至少一层金属氧化层和至少一层掺杂层。
  3. 根据权利要求2所述的金属氧化物掺杂层,其特征在于,
    所述金属氧化物掺杂层包括叠层设置的n层金属氧化层和m层掺杂层,其中,n和m为大于1的整数;
    所述金属氧化层和掺杂层交叉叠层设置,以及在所述金属氧化层和掺杂层的交界处,所述掺杂层的材料部分扩散到所述金属氧化层中。
  4. 根据权利要求3所述的金属氧化物掺杂层,其特征在于,通过调整所述金属氧化物掺杂层的结构和材料来调整所述金属氧化物掺杂层从第一表面到第二表面逐渐变化的功函数。
  5. 根据权利要求4所述的金属氧化物掺杂层,其特征在于,调整所述金属氧化物掺杂层的结构和材料包括调节金属氧化层的厚度、掺杂层的厚度、金属氧化层的材料、掺杂层的材料和金属氧化层和掺杂层的排列顺序中的任意一种或两种以上。
  6. 根据权利要求5所述的金属氧化物掺杂层,其特征在于,n层所述金属氧化层的厚度逐渐变化;m层所述掺杂层的厚度相同。
  7. 根据权利要求6所述的金属氧化物掺杂层,其特征在于,所述金属氧化层的厚度逐渐变大或变小,所述金属氧化物掺杂层的功函数也逐渐变大或变小。
  8. 一种太阳能电池,其特征在于,包括层叠设置的上层电池和下层电池,所述上层电池与所述下层电池之间具有权利要求1-7任一项所述的金属氧化物掺杂层。
  9. 根据权利要求8所述的太阳能电池,其特征在于,所述上层电池具有第一载流子传输层,所述下层电池具有N型硅层或P型硅层,所述金属氧化物掺杂层的第一表面与所述第一载流子传输层层叠设置,所述金属氧化物掺杂层的第二表面与所述N型硅层或P型硅层层叠设置。
  10. 根据权利要求9所述的太阳能电池,其特征在于,所述下层电池具有N型硅层,所述第一载流子传输层为空穴传输层,
    所述金属氧化物掺杂层的第一表面的功函数与所述空穴传输层的HOMO能级一致,
    所述金属氧化物掺杂层的第二表面的功函数与所述N型硅层的导带一致,
    所述金属氧化物掺杂层从第一表面到第二表面的方向上,所述金属氧化物掺杂层的功函数逐渐变大。
  11. 根据权利要求9所述的太阳能电池,其特征在于,所述下层电池具P型硅层,所述第一载流子传输层为电子传输层,
    所述金属氧化物掺杂层的第一表面的功函数与所述电子传输层的LUMO能级一致,
    所述金属氧化物掺杂层的第二表面的功函数与所述P型硅层的价带一致,
    所述金属氧化物掺杂层从第一表面到第二表面的方向上,所述金属氧化物掺杂层的功函数逐渐变小。
  12. 一种金属氧化物掺杂层的制备方法,其特征在于,包括如下步骤:
    金属氧化层和掺杂层交叉叠层设置,从而形成金属氧化物掺杂层;
    所述金属氧化物掺杂层从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
  13. 根据权利要求12所述的制备方法,其特征在于,所述金属氧化物掺杂层包括叠层设置的n层金属氧化层和m层掺杂层,其中,n和m为大于1的整数。
  14. 根据权利要求13所述的制备方法,其特征在于,n层所述金属氧化层的厚度逐渐变化;
    m层所述掺杂层的厚度相同。
  15. 根据权利要求14所述的制备方法,其特征在于,金属氧化层的厚度逐渐增大或减小,所述金属氧化物掺杂层的功函数逐渐变大或变小。
  16. 根据权利要求12所述的制备方法,其特征在于,所述金属氧化层均选自氧化锌层、氧化铟层或氧化钛层中的一种;
    所述掺杂层均选自氧化铝层、氧化硼层或氧化锡层中的一种。
  17. 一种太阳能电池的制备方法,其特征在于,包括如下步骤:
    提供下层电池;
    制备金属氧化物掺杂层;
    提供上层电池;
    所述金属氧化物掺杂层,从其一侧的第一表面到另一侧的第二表面,所述金属氧化物掺杂层的功函数逐渐变化。
  18. 根据权利要求17所述的方法,其特征在于,所述金属氧化物掺杂层为权利要求1-7任一项所述金属氧化物掺杂层或权利要求12-16任一项所述制备方法制备的金属氧化物掺杂层。
PCT/CN2022/092273 2021-11-05 2022-05-11 金属氧化物掺杂层、太阳能电池及其制备方法 WO2023077763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111307805.7 2021-11-05
CN202111307805.7A CN114188422A (zh) 2021-11-05 2021-11-05 金属氧化物掺杂层、太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2023077763A1 true WO2023077763A1 (zh) 2023-05-11

Family

ID=80540775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092273 WO2023077763A1 (zh) 2021-11-05 2022-05-11 金属氧化物掺杂层、太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN114188422A (zh)
WO (1) WO2023077763A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188422A (zh) * 2021-11-05 2022-03-15 西安隆基乐叶光伏科技有限公司 金属氧化物掺杂层、太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103646972A (zh) * 2013-12-20 2014-03-19 湖南共创光伏科技有限公司 一种tco薄膜及其制备方法
CN104037244A (zh) * 2014-06-17 2014-09-10 辽宁工业大学 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
US20160005795A1 (en) * 2013-03-15 2016-01-07 The Regents Of The University Of California Organic tandem photovoltaic device and methods
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN114188422A (zh) * 2021-11-05 2022-03-15 西安隆基乐叶光伏科技有限公司 金属氧化物掺杂层、太阳能电池及其制备方法
CN216818360U (zh) * 2021-12-22 2022-06-24 嘉兴阿特斯技术研究院有限公司 叠层太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160005795A1 (en) * 2013-03-15 2016-01-07 The Regents Of The University Of California Organic tandem photovoltaic device and methods
CN103646972A (zh) * 2013-12-20 2014-03-19 湖南共创光伏科技有限公司 一种tco薄膜及其制备方法
CN104037244A (zh) * 2014-06-17 2014-09-10 辽宁工业大学 一种晶硅太阳能电池钝化材料Al2O3浓度梯度掺杂ZnO薄膜及制备方法
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法
CN114188422A (zh) * 2021-11-05 2022-03-15 西安隆基乐叶光伏科技有限公司 金属氧化物掺杂层、太阳能电池及其制备方法
CN216818360U (zh) * 2021-12-22 2022-06-24 嘉兴阿特斯技术研究院有限公司 叠层太阳能电池

Also Published As

Publication number Publication date
CN114188422A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
Yan et al. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells
GB2559800B (en) Multijunction photovoltaic device
CN108604615B (zh) 混合串联太阳能电池
CN112086535B (zh) 一种叠层电池
Raza et al. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives
CN113257940B (zh) 叠层光伏器件及生产方法
WO2022073518A1 (zh) 一种叠层电池及其制作方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
Ko et al. Recent progress in interconnection layer for hybrid photovoltaic tandems
CN112103392A (zh) 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN111430494A (zh) 一种串联型钙钛矿晶硅太阳能电池及其制备方法
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
WO2023077763A1 (zh) 金属氧化物掺杂层、太阳能电池及其制备方法
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
US11437537B2 (en) Perovskite-silicon tandem solar cell
CN114551729A (zh) 一种硅基异质结钙钛矿叠层太阳电池制备方法
CN114203850A (zh) 异质结太阳能电池及制备其的方法
CN219679160U (zh) 光伏电池
CN210668381U (zh) 一种硅基叠层太阳电池
Li et al. Perovskite‐based Tandem Solar Cells
CN112366232B (zh) 一种异质结太阳能电池及其制备方法与应用
KR101529232B1 (ko) 박막 태양전지 및 그 제조방법
KR102093567B1 (ko) 태양 전지 및 이의 제조 방법
CN111354814B (zh) 一种双结叠层太阳能电池及其制备方法
US20240065008A1 (en) Solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888800

Country of ref document: EP

Kind code of ref document: A1