CN103646972A - 一种tco薄膜及其制备方法 - Google Patents

一种tco薄膜及其制备方法 Download PDF

Info

Publication number
CN103646972A
CN103646972A CN201310712255.6A CN201310712255A CN103646972A CN 103646972 A CN103646972 A CN 103646972A CN 201310712255 A CN201310712255 A CN 201310712255A CN 103646972 A CN103646972 A CN 103646972A
Authority
CN
China
Prior art keywords
film
zinc
tco
layer
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310712255.6A
Other languages
English (en)
Other versions
CN103646972B (zh
Inventor
张恒生
李廷凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUNAN GONGCHUANG GROUP CO Ltd
Original Assignee
HUNAN GONGCHUANG GROUP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUNAN GONGCHUANG GROUP CO Ltd filed Critical HUNAN GONGCHUANG GROUP CO Ltd
Priority to CN201310712255.6A priority Critical patent/CN103646972B/zh
Publication of CN103646972A publication Critical patent/CN103646972A/zh
Application granted granted Critical
Publication of CN103646972B publication Critical patent/CN103646972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种TCO(透明导电氧化物)薄膜及其制备方法。该TCO薄膜由下至上包括三层含有掺杂物的氧化锌薄膜层,且每层氧化锌薄膜层中掺杂物在氧化锌中的原子比例各不相同。该制备方法在薄膜生长过程中通过调节掺杂气体流量,形成中间和界面不同掺杂浓度的多层结构,调制TCO薄膜表面微观结构和光学性能。本发明在维持TCO膜层及其界面良好导电性的同时,可大大提高膜层的陷光效果,改善近红外光区域的光学透过率,其400-1100nm波段雾度平均值由27.3%提升至34.9%,700-2000nm近红外波段光学透过率由76%提升至77.7%,提高电池的光电转换效率。

Description

一种TCO薄膜及其制备方法
技术领域
本发明属于薄膜制备技术,尤其涉及一种薄膜太阳能电池的透明导电氧化物薄膜(TCO薄膜)及其制备方法。
背景技术
以带绒面的TCO薄膜作为前、背电极被广泛的应用在薄膜太阳能电池行业中,在传导电流的同时可以在电池中形成光陷阱,从而延长光子在吸收层中的传播路径以增加光子利用率,提高电池效率。
目前主要有两种工艺路线应用于大面积的TCO薄膜生产中,一种为采用化学气相沉积工艺生长出本身具有V型绒面结构的薄膜,另一种为通过后期处理的方式(如干法或湿法刻蚀)使原来不具备绒面结构或绒面结构较小的薄膜达到所需的绒面结构。在前一种工艺路线中,普遍采用单一掺杂气体和掺杂浓度制备TCO薄膜,该方法不足之处在于工艺窗口较窄,只能通过增加厚度来获得较高的雾度,既降低了TCO膜层的光学透过率又增加了生产成本,且V型绒面结构容易导致后期沉积的微晶硅吸收层产生孔洞和间隙等结构缺陷。因此如何进一步优化TCO膜层的制备工艺,提升其光学性质,避免后期硅吸收层的结构缺陷并降低成本成为该领域内的技术难题。
发明内容
本发明的目的是提供一种TCO薄膜及其制备方法,该TCO薄膜优化吸收层微观结构和界面接触导电率,提高电池的光电转换效率。该制备方法利用梯度掺杂理念使得该TCO薄膜具有多层复合型结构,以实现良好的光学透过和陷光效果。
为解决上述技术问题,本发明所采用的技术方案是:
一种TCO薄膜,所述TCO薄膜由下至上包括三层含有掺杂物的氧化锌薄膜层;所述TCO薄膜为前电极TCO薄膜或者背电极TCO薄膜,所述前电极TCO薄膜的三层含有掺杂物的氧化锌薄膜层中掺杂物在氧化锌中的原子比例由下至上依次为0.35-0.50,0.01-0.10,0.35-0.50;所述背电极TCO薄膜的三层含有掺杂物的氧化锌薄膜层中掺杂物在氧化锌中的原子比例由下至上依次为0.01-0.07,0.05-0.14,0.35-0.50。
所述掺杂物优选为硼、铝和镓中的至少一种。
所述三层含有掺杂物的氧化锌薄膜层的厚度优选由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
所述前电极TCO薄膜的最上层表面为U型绒面结构,如图5所示。
所述TCO薄膜的制备方法,采用低压化学气相沉积法进行镀膜,将待镀膜基板放入低压化学气相沉积设备,控制沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,通入反应气体二乙基锌和水蒸气,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm;设定掺杂气体流量,通过控制掺杂气体流量与二乙基锌气体流量的原子比来控制掺杂物质的掺杂量;沉积第一层氧化锌薄膜,镀膜时间由所需第一层氧化锌薄膜厚度决定;然后改变掺杂气体流量,沉积第二层氧化锌薄膜,镀膜时间由所需第二层氧化锌薄膜厚度决定;再次改变掺杂气体流量,沉积第三层氧化锌薄膜,镀膜时间由所需第三层氧化锌薄膜厚度决定,得到三层含有掺杂物的氧化锌薄膜层。
优选方案:所述掺杂气体为B2H6,Al(CH3)3,Ga(CH3)3中的至少一种;沉积过程中基板温度保持在高温160℃-220℃,掺杂气体之间的摩尔浓度比为:B:Al:Ga=1:0.3–0:0.1–0,且复合掺杂浓度比通过调节B2H6,Al(CH3)3,Ga(CH3)3气体流量控制。
当所述TCO薄膜为三层含有掺杂物的氧化锌薄膜层的前电极TCO薄膜时,其制备方法优选为:第一层氧化锌薄膜为TCO与基片间的缓冲层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌气体原子比为0.35-0.50;第二层氧化锌薄膜为TCO中间层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌气体原子比为0.01-0.10;第三层氧化锌薄膜为与吸收层接触的接触层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.35-0.50;所述三层氧化锌薄膜层的厚度由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
进一步优选对第三层氧化锌薄膜层表面进行氢等离子体预处理,消除表面棱角,使其从V型表面变为U型表面,该预处理过程采用高频辉光放电产生H等离子体,其主要工艺参数为:反应压强:0.2mbar-0.8mbar,功率密度:30mW/m2-300mW/m2,辉光频率:13.56MHz-60MHz,基板温度:160℃-300℃,反应时间:5min-30min。
当所述TCO薄膜为三层含有掺杂物的氧化锌薄膜层的背电极TCO薄膜时,其制备方法优选为:第一层氧化锌薄膜为TCO与吸收层接触的缓冲层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.01-0.07;第二层氧化锌薄膜为TCO中间层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.05-0.14;第三层氧化锌薄膜为重摻杂层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.35-0.50;所述三层氧化锌薄膜层的厚度由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
下面对本申请做进一步解释和说明:
本申请所述TCO薄膜优选为硼,铝,镓掺杂的氧化锌(ZnO:B,Al,Ga)透明导电氧化物薄膜,在这里,硼,铝,镓仅为掺杂物,掺杂源为B2H6,Al(CH3)3和Ga(CH3)3。硼,铝,镓掺杂的氧化锌用低压化学气相沉积技术形成绒面结构,在ZnO:B,Al,Ga薄膜生长过程中采用梯度和复合掺杂技术,通过调节掺杂气体流量,形成中间和界面不同掺杂浓度的多层结构。并且在沉积吸收层之前对所制备的TCO前电极膜层进行H等离子体预处理。
所述TCO薄膜的制备方法针对前、背电极。并对所制备前电极TCO薄膜在沉积吸收层之前进行H等离子体预处理,以增大与吸收层接触面积优化界面导电率。对第三层氧化膜表面进行氢等离子体预处理,消除表面棱角,使其从V型表面变为U型表面,避免形成如图3所示的结构缺陷,并增大TCO层与吸收层的接触面积,使界面电导率由2.2×104S/m提升至2.8×104S/m,方阻标准差由60Ω/□降为15Ω/□。
所述衬底或者基片优选为玻璃、不锈钢或高分子等材料。
所述TCO薄膜制备采用的是低压化学气相沉积设备,反应腔室有3个独立的掺杂气体气路和独立的MFC,分别对应B2H6,Al(CH3)3和Ga(CH3)3。沉积参数包括本底真空度、衬底温度、反应气压、二乙基锌(DEZ)、H2O气体流量、三种掺杂气体的流量和通气时间。
本发明制备出的绒面TCO薄膜可以应用于具有以下结构的薄膜太阳能电池之一:
(1)基片/TCO/n‐μc‐Si1‐xGex/i‐μc‐Si1‐xGex/p‐μc‐Si1‐xGex/中间反射层/n‐μc‐Si/i‐μc‐Si/p‐μc‐Si/中间反射层/n–A‐Si1‐xGex/i–A‐Si1‐xGex/p–A‐Si1‐xGex/中间反射层/n–A–Si/i–A–Si/p–A–Si/中间反射层/n‐μc‐SiC/i‐μc‐SiC/p‐μc‐SiC/中间反射层/n‐A–SiC/i‐A–SiC/p‐A–SiC/TCO/减反射膜;
(2)基片/TCO/n‐μc‐Si1‐xGex/i‐μc‐Si1‐xGex/p‐μc‐Si1‐xGex/中间反射层/n‐μc‐Si/i‐μc‐Si/p‐μc‐Si/中间反射层/n–A‐Si1‐xGex/i–A‐Si1‐xGex/p–A‐Si1‐xGex/中间反射层/n–A–Si/i–A–Si/p–A–Si/中间反射层/n‐A–SiC/i‐A–SiC/p‐A–SiC/TCO/减反射膜;
(3)基片/TCO/n‐μc‐Si1‐xGex/i‐μc‐Si1‐xGex/p‐μc‐Si1‐xGex/中间反射层/n‐μc‐Si/i‐μc‐Si/p‐μc‐Si/中间反射层/n–A‐Si1‐xGex/i–A‐Si1‐xGex/p–A‐Si1‐xGex/中间反射层/n–A–Si/i–A–Si/p–A–Si/TCO/减反射膜;
(4)基片/TCO/n‐μc‐Si1‐xGex/i‐μc‐Si1‐xGex/p‐μc‐Si1‐xGex/中间反射层/n‐μc‐Si/i‐μc‐Si/p‐μc‐Si/中间反射层/n–A–Si/i–A–Si/p–A–Si/TCO/减反射膜;
其中,TCO层与相邻的中间反射层之间以及相邻两中间反射层之间的膜层为一结,0≤x≤1;“/”表示两层之间的界面。基片是玻璃,不锈钢或高分子材料。
与现有技术相比,本发明的优势是:
1、该制备方法在薄膜生长过程中通过调节掺杂气体流量,形成中间和界面不同掺杂浓度的多层结构,调制TCO薄膜表面微观结构和光学性能。
2、该方法进一步在沉积吸收层前应用H等离子体进行表面预处理,改变表面形貌,并使界面电导率由2.2×104S/m提升至2.8×104S/m。
3、本发明的TCO薄膜在维持TCO膜层及其界面良好导电性的同时,可大大提高膜层的陷光效果,改善近红外光区域的光学透过率,其400-1100nm波段雾度平均值由27.3%提升至34.9%,700-2000nm近红外波段光学透过率由76%提升至77.7%,可应用于多结多叠层硅基薄膜电池,以提高电池的光电转换效率。
附图说明
图1是本发明实施例中TCO膜层的结构示意图;
图2是具有本发明的TCO膜层的电池结构示意图;
图3是未对n3层表面H化处理时形成于氧化锌和硅基薄膜界面结构缺陷图;
图4是以玻璃为基片的前电极实施例7所对应的透射率和雾度曲线;
图5是所述前电极TCO薄膜的最上层表面为U型绒面结构。
其中a为本申请实施例中所述TCO膜层,1为前电极TCO薄膜的第一层氧化锌薄膜层,2为前电极TCO薄膜的第二层氧化锌薄膜层,3为前电极TCO薄膜的第三层氧化锌薄膜层,4是背电极TCO薄膜的第一层氧化锌薄膜层,5为背电极TCO薄膜的第二层氧化锌薄膜层,6为背电极TCO薄膜的第三层氧化锌薄膜层,7是基片层,8是μ-Si电池层,9是a-Si电池层,10是其它省略现有电池层,11是反射膜层,12是孔洞和间隙,13是前电极TCO薄膜的最上层表面为U型绒面结构示意图,箭头方向表示从下至上。
具体实施方式
一种多结多叠层硅基薄膜太阳能电池的绒面透明导电氧化物薄膜的制备工艺,具体实施步骤包括:对基板进行清洗,应用低压化学气相沉积技术在基板上沉积形成3层掺杂的ZnO复合型薄膜,其中各层ZnO根据其所处位置不同而具有不同的掺杂浓度。所述基片为不锈钢基片、玻璃基片、高分子基片或待镀背电极的半成品基片。
上述前电极复合型TCO薄膜是由依次沉积在基片上的3层ZnO薄膜组成,其掺杂浓度分别为n1:0.35-0.50,n2:0.01-0.10,n3:0.35-0.50,且掺杂物质为B、Al、Ga中的一种或几种(n表示掺杂气体与二乙基锌气体的原子比)。在沉积吸收层之前,对n3层表面进行氢等离子体预处理,消除表面棱角,使其从V型表面变为U型表面,从而避免形成如图3所示的吸收层结构缺陷,并增大TCO层与吸收层的接触面积,使界面电导率由2.2×104S/m提升至2.8×104S/m,方阻标准差由60Ω/□降为15Ω/□。该预处理过程采用高频辉光放电产生H等离子体,其主要工艺参数为:反应压强:0.2-0.8mbar,功率密度:30-300mW/m2,辉光频率:13.56-60MHz,基板温度:160-300℃,反应时间:5-30min。下面表1给出了前电极的9个具体实施例
表1:前电极具体实施例
实施例 n1掺杂浓度 n2掺杂浓度 n3掺杂浓度 B:Al:Ga
1 0.35 0.01 0.35 1:0:0
2 0.35 0.01 0.35 1:0.15:0.05
3 0.35 0.01 0.35 1:0.3:0.1
4 0.4 0.05 0.4 1:0:0
5 0.4 0.05 0.4 1:0.15:0.05
6 0.4 0.05 0.4 1:0.3:0.1
7 0.5 0.1 0.5 1:0:0
8 0.5 0.1 0.5 1:0.15:0.05
9 0.5 0.1 0.5 1:0.3:0.1
上述背电极复合型TCO薄膜是由依次沉积在已镀有吸收层半成品基片上的3层ZnO薄膜组成,其掺杂浓度分别为n4:0.01-0.07,n5:0.05-0.14,n6:0.35-0.50,且掺杂物质为B、Al、Ga中的一种或几种,下面表2给出了背电极的9个具体实施例。
表2:背电极具体实施例
实施例 n4掺杂浓度 n5掺杂浓度 n6掺杂浓度 B:Al:Ga
1 0.01 0.05 0.35 1:0:0
2 0.01 0.05 0.35 1:0.15:0.05
3 0.01 0.05 0.35 1:0.3:0.1
4 0.04 0.1 0.4 1:0:0
5 0.04 0.1 0.4 1:0.15:0.05
6 0.04 0.1 0.4 1:0.3:0.1
7 0.07 0.14 0.5 1:0:0
8 0.07 0.14 0.5 1:0.15:0.05
9 0.07 0.14 0.5 1:0.3:0.1
下面以前电极应用实例7为例做出详细说明:首先对基板进行清洗,对不锈钢基片或玻璃基片的清洗工艺分两步进行:
第一步,用体积比HCl:H2O2:H2O=10:0.8—1.2:48—52的溶液在60℃—70℃清洗5分钟—10分钟;
第二步,用体积比NH4OH:H2O2:H2O=10:0.8—1.2:48—52的溶液在60℃—70℃清洗5分钟-10分钟;最后用水清洗干净,并进行干燥、烘干;
高分子基片不用清洗;
其次是镀膜过程:基板进入低压化学气相沉积设备且当沉积腔室本底真空达到10-2mbar量级,基板温度加热到180℃时,通入反应气体二乙基锌、H2O,流量在整个反应过程保持恒定且分别为675sccm和820sccm,保持反应压强为0.5mbar。设定掺杂气体B2H6的初始流量为340sccm,30s后第一次改变掺杂气体B2H6流量为70sccm,408s后第二次改变掺杂气体B2H6流量为340sccm,30s后反应结束,基板传出反应腔室,三层TCO膜层的厚度分别为150nm,1500nm,150nm,TCO膜层的整体厚度为1800nm。
最后是前电极TCO膜层的氢等离子体预处理过程,该预处理过程采用高频辉光放电产生H等离子体其主要工艺参数为:反应压强:0.2-0.8mbar,功率密度:30-300mW/m2,辉光频率:13.56-60MHz,基板温度:160-300℃,反应时间:5-30min。
本实例应用梯度掺杂和H等离子体刻蚀工艺制备出的前电极ZnO薄膜400-1100nm波段雾度平均值高达34.9%,提升约7%,700-2000nm近红外波段光学透过率高达77.7%,提升1.7%,如图4所示,即该掺杂工艺大大提高膜层的陷光效果,改善了近红外光区域的光学透过率。
接下来以背电极应用实例9为例做出详细说明,此工艺过程不需要清洗和H等离子刻蚀流程:镀有前电极和吸收层的基板进入低压化学气相沉积设备且当沉积腔室本底真空达到10-2mbar量级,基板温度加热到180℃时,通入反应气体二乙基锌、H2O,流量在整个反应过程保持恒定且分别为675sccm和820sccm,保持反应压强为0.5mbar。设定掺杂气体B2H6、Al(CH3)3、Ga(CH3)3的初始流量为35sccm、10sccm和4sccm,50s后第一次改变掺杂气体B2H6、Al(CH3)3、Ga(CH3)3的流量为70sccm、20sccm和8sccm,300s后第二次改变掺杂气体B2H6、Al(CH3)3、Ga(CH3)3的流量为240sccm、75sccm和25sccm,50s后反应结束,基板传出反应腔室,三层TCO膜层的厚度分别为200nm,1100nm,200nm,TCO膜层的整体厚度为1500nm。

Claims (9)

1.一种TCO薄膜,其特征是,所述TCO薄膜由下至上包括三层含有掺杂物的氧化锌薄膜层;所述TCO薄膜为前电极TCO薄膜或者背电极TCO薄膜,所述前电极TCO薄膜的三层含有掺杂物的氧化锌薄膜层中掺杂物在氧化锌中的原子比例由下至上依次为0.35-0.50,0.01-0.10,0.35-0.50;所述背电极TCO薄膜的三层含有掺杂物的氧化锌薄膜层中掺杂物在氧化锌中的原子比例由下至上依次为0.01-0.07,0.05-0.14,0.35-0.50。
2.根据权利要求1所述TCO薄膜,其特征是,所述掺杂物为硼、铝和镓中的至少一种。
3.根据权利要求1或2所述TCO薄膜,其特征是,所述三层含有掺杂物的氧化锌薄膜层的厚度由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
4.根据权利要求1或2所述TCO薄膜,其特征是,所述前电极TCO薄膜的最上层表面为U型绒面结构。
5.权利要求1-4之一所述TCO薄膜的制备方法,采用低压化学气相沉积法进行镀膜,其特征是,将待镀膜基板放入低压化学气相沉积设备,控制沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,通入反应气体二乙基锌和水蒸气,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm;设定掺杂气体流量,通过控制掺杂气体流量与二乙基锌气体流量的原子比来控制掺杂物质的掺杂量;沉积第一层氧化锌薄膜,镀膜时间由所需第一层氧化锌薄膜厚度决定;然后改变掺杂气体流量,沉积第二层氧化锌薄膜,镀膜时间由所需第二层氧化锌薄膜厚度决定;再次改变掺杂气体流量,沉积第三层氧化锌薄膜,镀膜时间由所需第三层氧化锌薄膜厚度决定,得到三层含有掺杂物的氧化锌薄膜层。
6.根据权利要求5所述TCO薄膜的制备方法,其特征是,所述掺杂气体为B2H6,Al(CH3)3,Ga(CH3)3中的至少一种;沉积过程中基板温度保持在高温160℃-220℃,掺杂气体之间的摩尔浓度比为:B:Al:Ga=1:0.3–0:0.1–0,且复合掺杂浓度比通过调节B2H6,Al(CH3)3,Ga(CH3)3气体流量控制。
7.根据权利要求6所述TCO薄膜的制备方法,其特征是,当所述TCO薄膜为三层含有掺杂物的氧化锌薄膜层的前电极TCO薄膜时,其制备方法为:第一层氧化锌薄膜为TCO与基片间的缓冲层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌气体原子比为0.35-0.50;第二层氧化锌薄膜为TCO中间层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌气体原子比为0.01-0.10;第三层氧化锌薄膜为与吸收层间的接触层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.35-0.50;所述三层氧化锌薄膜层的厚度由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
8.根据权利要求7所述TCO薄膜的制备方法,其特征是,对第三层氧化锌薄膜层表面进行氢等离子体预处理,消除表面棱角,使其从V型表面变为U型表面,该预处理过程采用高频辉光放电产生H等离子体,其主要工艺参数为:反应压强:0.2mbar-0.8mbar,功率密度:30mW/m2-300mW/m2,辉光频率:13.56MHz-60MHz,基板温度:160℃-300℃,反应时间:5min-30min。
9.根据权利要求5所述TCO薄膜的制备方法,其特征是,当所述TCO薄膜为三层含有掺杂物的氧化锌薄膜层的背电极TCO薄膜时,其制备方法为:第一层氧化锌薄膜为TCO与吸收层间的缓冲层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气的流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.01-0.07;第二层氧化锌薄膜为TCO中间层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.05-0.14;第三层氧化锌薄膜为重摻杂层,其工艺条件为:沉积室气压0.4mbar-0.6mbar,基板温度160℃-220℃,二乙基锌和水蒸气流量分别为650sccm–700sccm和800sccm-850sccm,掺杂气体与二乙基锌原子比为0.35-0.50;所述三层氧化锌薄膜层的厚度由下至上依次为:50nm-500nm,500nm-2400nm,50nm-500nm,且所述TCO薄膜的膜层总厚度为1500nm-2500nm。
CN201310712255.6A 2013-12-20 2013-12-20 一种tco薄膜及其制备方法 Active CN103646972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310712255.6A CN103646972B (zh) 2013-12-20 2013-12-20 一种tco薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310712255.6A CN103646972B (zh) 2013-12-20 2013-12-20 一种tco薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN103646972A true CN103646972A (zh) 2014-03-19
CN103646972B CN103646972B (zh) 2016-04-27

Family

ID=50252164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310712255.6A Active CN103646972B (zh) 2013-12-20 2013-12-20 一种tco薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103646972B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531835A (zh) * 2016-10-31 2017-03-22 新奥光伏能源有限公司 一种硅异质结太阳能电池及太阳能电池组件
WO2018040247A1 (zh) * 2016-09-05 2018-03-08 上海空间电源研究所 一种采用数字-指数混合方式掺杂功能区的太阳电池及其制备方法
CN113451429A (zh) * 2021-06-30 2021-09-28 安徽华晟新能源科技有限公司 一种异质结太阳能电池及其制备方法
CN113471306A (zh) * 2021-06-01 2021-10-01 安徽华晟新能源科技有限公司 一种异质结电池及异质结电池的制备方法
CN114361280A (zh) * 2020-09-27 2022-04-15 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及光伏组件
WO2022247570A1 (zh) * 2021-05-28 2022-12-01 中威新能源(成都)有限公司 一种异质结太阳电池及其制备方法
US20230017543A1 (en) * 2020-10-09 2023-01-19 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
US11587799B2 (en) 2019-12-02 2023-02-21 Applied Materials, Inc. Methods and apparatus for processing a substrate
WO2023077763A1 (zh) * 2021-11-05 2023-05-11 西安隆基乐叶光伏科技有限公司 金属氧化物掺杂层、太阳能电池及其制备方法
CN116395977A (zh) * 2023-02-20 2023-07-07 电子科技大学 一种应用于智能窗的氧化钒薄膜制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102187A (zh) * 2009-12-17 2011-06-22 中环股份有限公司 制造具结晶结构的透明导电薄膜的方法
WO2012028691A1 (en) * 2010-09-03 2012-03-08 Oerlikon Solar Ag, Trübbach Method of coating a substrate for manufacturing a solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102187A (zh) * 2009-12-17 2011-06-22 中环股份有限公司 制造具结晶结构的透明导电薄膜的方法
WO2012028691A1 (en) * 2010-09-03 2012-03-08 Oerlikon Solar Ag, Trübbach Method of coating a substrate for manufacturing a solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040247A1 (zh) * 2016-09-05 2018-03-08 上海空间电源研究所 一种采用数字-指数混合方式掺杂功能区的太阳电池及其制备方法
CN106531835A (zh) * 2016-10-31 2017-03-22 新奥光伏能源有限公司 一种硅异质结太阳能电池及太阳能电池组件
US11587799B2 (en) 2019-12-02 2023-02-21 Applied Materials, Inc. Methods and apparatus for processing a substrate
CN114361280A (zh) * 2020-09-27 2022-04-15 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及光伏组件
US20230017543A1 (en) * 2020-10-09 2023-01-19 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2022247570A1 (zh) * 2021-05-28 2022-12-01 中威新能源(成都)有限公司 一种异质结太阳电池及其制备方法
CN113471306A (zh) * 2021-06-01 2021-10-01 安徽华晟新能源科技有限公司 一种异质结电池及异质结电池的制备方法
CN113451429A (zh) * 2021-06-30 2021-09-28 安徽华晟新能源科技有限公司 一种异质结太阳能电池及其制备方法
WO2023077763A1 (zh) * 2021-11-05 2023-05-11 西安隆基乐叶光伏科技有限公司 金属氧化物掺杂层、太阳能电池及其制备方法
CN116395977A (zh) * 2023-02-20 2023-07-07 电子科技大学 一种应用于智能窗的氧化钒薄膜制备方法

Also Published As

Publication number Publication date
CN103646972B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN103646972B (zh) 一种tco薄膜及其制备方法
TWI520366B (zh) 用於大規模cigs基薄膜光伏材料的艙內摻雜鈉的方法和系統
WO2019119817A1 (zh) 一种太阳能异质结电池及其制备方法
CN106252432A (zh) 一种可降低缺陷密度的碲化镉太阳能电池制备方法
WO2022142343A1 (zh) 太阳能电池及其制备方法
KR101221987B1 (ko) 이종접합 실리콘 태양전지
CN102694066B (zh) 一种提高太阳能电池板光电转换效率的方法
CN109638094A (zh) 高效异质结电池本征非晶硅钝化层结构及其制备方法
WO2014032457A1 (zh) 一种制备具有抗pid效应的减反射膜的方法
JP2017508703A (ja) コーティングされたグレイジング
CN102255005B (zh) 薄膜太阳电池及其制造方法
US20130269767A1 (en) Method of coating a substrate for manufacturing a solar cell
CN102623569A (zh) 薄膜太阳能电池的绒面透明导电氧化物薄膜的制备方法
CN104993018A (zh) 控制cigs薄膜中钠含量的方法、太阳能电池及结构
CN102142484A (zh) 多晶硅/铜铟镓硒叠层电池工艺
CN115132884B (zh) 一种异质结太阳能电池的制作方法
CN114843175A (zh) 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
US20150187979A1 (en) Heterojunction solar cell with epitaxial silicon thin film and method for preparing the same
CN115425114A (zh) 一种异质结太阳能电池的制造方法
CN103594536A (zh) 多结多叠层硅基薄膜太阳能电池及其制造工艺
CN203746868U (zh) 一种tco薄膜
CN112531037A (zh) 光伏电池电极、光伏电池及其制备方法
CN218513468U (zh) 一种向光面隧穿型异质结太阳能电池
CN203325950U (zh) 一种多带隙双面透光太阳能电池
CN203573991U (zh) 多结多叠层硅基薄膜太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant