CN114937717B - 一种钙钛矿-hbc叠层双面电池制备方法 - Google Patents

一种钙钛矿-hbc叠层双面电池制备方法 Download PDF

Info

Publication number
CN114937717B
CN114937717B CN202210597149.7A CN202210597149A CN114937717B CN 114937717 B CN114937717 B CN 114937717B CN 202210597149 A CN202210597149 A CN 202210597149A CN 114937717 B CN114937717 B CN 114937717B
Authority
CN
China
Prior art keywords
layer
battery
perovskite
electrode conductive
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210597149.7A
Other languages
English (en)
Other versions
CN114937717A (zh
Inventor
王伟
张凤鸣
路忠林
王浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sunport Power Corp Ltd
Original Assignee
Jiangsu Sunport Power Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sunport Power Corp Ltd filed Critical Jiangsu Sunport Power Corp Ltd
Priority to CN202210597149.7A priority Critical patent/CN114937717B/zh
Publication of CN114937717A publication Critical patent/CN114937717A/zh
Application granted granted Critical
Publication of CN114937717B publication Critical patent/CN114937717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/20Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising components having an active region that includes an inorganic semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公布了一种钙钛矿‑HBC叠层双面电池制备方法,在HBC电池结构背面叠加钙钛矿形成一种钙钛矿‑HBC叠层双面电池结构;该结构引入背接触技术使电池正面无任何遮光,同时背面叠加钙钛矿使正背两面均为受光面并将两面的电流均引到中间导电层以获得更高的叠加效率。另外,该电池主要使用金属氧化膜或铜、铝和锡等金属作为电池金属电极,完全去银化,结合无倒角、低成本的铸锭单晶可极大的降低生产成本。

Description

一种钙钛矿-HBC叠层双面电池制备方法
技术领域
本专利涉及一种钙钛矿-HBC叠层双面电池的制备方法,属于太阳能电池生产技术领域。
背景技术
提效降本一直是光伏行业发展的主要动力,也是光伏工作者的主要研究方向。高效电池如IBC、HBC等背接触电池因正面无金属遮光均具有较高的光电转换效率,其中HBC电池除了正面无金属化遮光外还具有优良的钝化效果,一直是高效电池中的典型代表,也是光伏电池将来发展的主要趋势之一。但是HBC电池由于其背接触结构,属于单面电池,仍然存在受光效率低等问题,而且作为单结晶硅电池,无论何种结构设计,都很难打破其理论上的效率极限(约29%)。因此近年来,钙钛矿-硅叠层电池因其极高的光电转换效率(>30%)获得了越来越多的关注,具有单独的单个电池所不能比拟的效率优势。然而,这些钙钛矿-硅叠层电池基本采用串联叠层结构,无论是单面还是双面电池,在其背面或两面依然存在金属遮光情况。本发明采用并联叠层结构,金属导电层位于电池中部,受光两面均无金属遮光,结合双面双玻组件技术理论上可获得更大的叠加效率(35%-45%)。另外,目前的高效晶体硅电池基本采用直拉单晶硅作为衬底,且金属化基本采用银浆印刷,电池制作成本较高。本发明采用无倒角,成本低的铸锭单晶作为晶硅衬底,同时去银化,这极大降低了电池的原料成本。
发明内容
为了解决上述背景技术中的问题,本发明以铸锭单晶为衬底引入钙钛矿-HBC叠层双面电池结构以达到提效降本的目的。
本申请还提供一种钙钛矿-HBC叠层双面电池制备方法,所述制备方法包含以下步骤:
步骤S01,对硅片进行双面抛光并对背面进行热氧化处理,在背面形成SiO2层;
步骤S02,对硅片正面进行单面制绒处理;
步骤S03,使用PECVD技术背面沉积本征非晶硅i-a-Si:H层;
步骤S04,使用PECVD技术分别在正、背面沉积n型掺杂非晶硅n-a-Si:H层;
步骤S05,使用激光将背面要制备p-a-Si:H层区域的n-a-Si:H刻蚀熔掉,然后使用PECVD技术在背面沉积p-a-Si:H层,使用激光将背面n-a-Si:H层区域上的p-a-Si:H层刻蚀熔掉,形成交叉指状的n-a-Si:H层/p-a-Si:H层;
步骤S06,使用PVD和电镀技术在背面沉积TCO、Cu镀层、TCO;
步骤S07,使用激光或掩膜技术在背面TCO层上制备交叉指状的电子传输层/空穴传输层;
步骤S08,激光开槽,使n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间均保留间隙并填充绝缘胶;
步骤S09,在背面制备钙钛矿吸收层;
步骤S10,分别对电池正背表面制备钝化层及双面减反射层;
步骤S11,激光开槽或打孔将电池两端的正、负极导电层露出;
步骤S12,焊带连接,将金属焊带与电池两端漏出的正、负电极分别焊接连在一起。
进一步的,所述电子传输层为LiF、C60、ZnO、SnOx、TiOx中的任意一种或几种组合,厚度为10~50nm,制备方法为PVD或CVD工艺。
进一步的,所述空穴传输层为NiOx、MoOx、PTAA、Spiro-TTB、 Spiro-OMeTAD中的任意一种或几种组合,厚度为10~50nm,制备方法为旋涂法或蒸发法。
所述方法用于制备以下钙钛矿-HBC叠层双面电池,所述双面电池包括上下两层结构,上层结构是以铸锭单晶硅为衬底的背接触结构,下层结构是以钙钛矿为衬底的背接触结构;
上层结构从上到下依次为减反射层、第一钝化层、前表面场层、晶硅衬底、本征非晶硅层、叉指状排列的n/p型掺杂非晶硅层和电极导电层;
下层结构从下到上依次为减反射层、第二钝化层、钙钛矿吸收层、交替排列的电子传输层/空穴传输层和电极导电层。
进一步的,其中,与n型掺杂非晶硅层和电子传输层接触的电极导电层为负极导电层;
与p型掺杂非晶硅层和空穴传输层接触的电极导电层为正极导电层。
进一步的,所述交替排列的电子传输层/空穴传输层为:
n型掺杂非晶硅层和p型掺杂非晶硅层交叉指状排列,电子传输层和空穴传输层对应的也是交叉指状排列;
n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间保留间隙并填充绝缘胶。
进一步的,在所述的电池背面的边缘位置设有2条金属焊带,第一金属焊带与负电极导电层接触收集负电流,第二金属焊带与正电极导电层接触收集正电流;
或者将所述电池制作组件时,在电池背面边缘位置设有2条金属焊带,第一金属焊带与负电池导电层接触收集负电流,第二金属焊带与正电池导电层接触收集正电流。
有益效果
HBC电池虽然无正面金属遮光情况,但其背接触单面电池结构仍使其存在受光效率低等问题,而本发明钙钛矿-HBC叠层双面电池结构不仅打破了HBC等单结晶硅电池理论上的效率极限(约29%),而且其双面受光并均无金属遮光,理论上可获得更大的受光效率。另外,HBC等晶硅电池基本采用直拉单晶硅作为衬底,且金属化基本含有银浆材料,电池制作成本较高。本发明采用无倒角,成本低的铸锭单晶作为晶硅衬底,同时去银化,这极大降低了电池的制作成本。本发明的并联结构使上下两层叠层电池彼此独立发电,且将正、负电极设计在电池内部,可对电极形成一定程度的保护,这均提高了电池的使用寿命。本发明的正、负电极对应两条焊带的结构设计简化了双面双玻组件端的封装工序。
附图说明
图1为本发明提供的钙钛矿-HBC叠层双面电池结构示意图;
图2为本发明提供的钙钛矿-HBC叠层双面电池背面电极结构示意图;
图1中,其中1为铸锭单晶(N型或P型的一种)衬底;2为前表面场层,掺杂非晶硅层或;3为钝化层,如AlOx/SiNx叠层;4为本征非晶硅i-a-Si:H层;5为n型掺杂非晶硅n-a-Si:H层、6为p型掺杂非晶硅p-a-Si:H层;7为电极导电层,为TCO层或TCO、Cu镀层、TCO复合层;8为电子传输层;9为空穴传输层;10为钙钛矿吸收层;11为钝化层;12为减反射SiNx层;13为绝缘胶;14为金属焊带;14-1金属焊带与负电极导电层接触收集负电流,与正极导电层隔离绝缘;14-2金属焊带与正电极导电层接触收集正电流,与负极导电层隔离绝缘。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域的技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
本申请还提供一种钙钛矿-HBC叠层双面电池制备方法,所述制备方法包含以下步骤:
步骤S01,对硅片进行双面抛光并对背面进行热氧化处理,在背面形成SiO2层;
步骤S02,对硅片正面进行单面制绒处理;
步骤S03,使用PECVD技术背面沉积本征非晶硅i-a-Si:H层;
步骤S04,使用PECVD技术分别在正、背面沉积n型掺杂非晶硅n-a-Si:H层;
步骤S05,使用激光将背面要制备p-a-Si:H层区域的n-a-Si:H刻蚀熔掉,然后使用PECVD技术在背面沉积p-a-Si:H层,使用激光将背面n-a-Si:H层区域上的p-a-Si:H层刻蚀熔掉,形成交叉指状的n-a-Si:H层/p-a-Si:H层;
步骤S06,使用PVD和电镀技术在背面沉积TCO、Cu镀层、TCO;
步骤S07,使用激光或掩膜技术在背面TCO层上制备交叉指状的电子传输层/空穴传输层;
步骤S08,激光开槽,使n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间均保留间隙并填充绝缘胶;
步骤S09,在背面制备钙钛矿吸收层;
步骤S10,分别对电池正背表面制备钝化层及双面减反射层;
步骤S11,激光开槽或打孔将电池两端的正、负极导电层露出;
步骤S12,焊带连接,将金属焊带与电池两端漏出的正、负电极分别焊接连在一起。
本实施例以N型铸锭单晶衬底为例,钙钛矿-HBC叠层双面电池制备步骤如下:
步骤S01,对硅片进行双面抛光并对背面进行热氧化处理,在背面形成2~5nm厚度的SiO2层;
步骤S02,制绒槽内添加单面制绒添加剂对硅片正面进行单面制绒处理;
步骤S03,使用PECVD技术背面沉积5~10nm厚度的本征非晶硅(i-a-Si:H)层;
步骤S04,使用PECVD技术分别在正、背面沉积5~10nm厚度的n型掺杂非晶硅(n-a-Si:H)层;
步骤S05,使用激光将背面要制备p-a-Si:H层区域的n-a-Si:H刻蚀熔掉,然后使用PECVD技术背面沉积5~10nm厚度的p-a-Si:H层,使用激光将背面n-a-Si:H层区域上的p-a-Si:H层刻蚀熔掉,形成交叉指状的n-a-Si:H和p-a-Si:H层;
步骤S06,使用PVD和电镀铜技术在背面沉积150~300nm厚度的TCO、Cu镀层、TCO;
步骤S07,同样使用激光或掩膜技术在背面TCO上制备交叉指状的电子传输层、空穴传输层,
其中电子传输层可以为LiF、C60、ZnO、SnOx和TiOx中的任意一种或几种组合,厚度为10~50nm,制备方法有PVD、CVD等,空穴传输层可以为NiOx、MoOx、PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺],分子式C10H13NO3。)、Spiro-TTB(2,2',7,7'-四(二-对甲苯基氨基)螺-9,9'-二芴,分子式C81H68N4。)和 Spiro-OMeTAD (2,2',7,7'-四烷基-(N,N-二-4-甲氧基苯基氨基)-9,9'-螺二芴,分子式 C81H68N4O8。)中的任意一种或几种组合,厚度为10~50nm,制备方法有旋涂、蒸发等;
步骤S08,激光开槽,使n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间均保留间隙并填充绝缘胶;
步骤S09,背面制备钙钛矿吸收层,可以为ABX3(A= CH3NH3+,B= Pb2+、Sn2+,X=I-、Cl-、Br-),厚度为200~1000nm,制备方法有旋涂、喷涂和蒸镀等;
步骤S10,分别对电池正背表面制备钝化层及双面减反射层;
步骤S11,激光开槽或打孔将电池两端的正、负极导电层露出;
步骤S12,焊带连接,将金属焊带与电池两端漏出的正、负电极分别焊接连在一起(电池端或组件端)。
实施例2
本申请方法用于制备以下钙钛矿-HBC叠层双面电池:本实施例为一种钙钛矿-HBC叠层双面电池结构,如图1所示,该结构上层为HBC背接触电池结构,下层为钙钛矿背接触结构。如图1,上层HBC结构正面含前表面场、钝化层和减反射层,背面首先制备一层本征非晶硅i-a-Si:H层,然后分两个单元制备,一单元由上到下分别为n型掺杂非晶硅层、电极导电层和电子传输层,且各层宽度一致(0.5-2mm);二单元由上到下分别为p型掺杂非晶硅层、电极导电层和空穴传输层,且各层宽度一致(0.5-2mm),一、二单元之间有绝缘胶隔离绝缘,绝缘宽度为0.3-1mm。最后由上到下分别为钙钛矿吸收层、钝化层和减反射层。本实施例提供的电极导电层为两种:一种只有一层TCO层作为电极导电层;另一种是TCO、Cu镀层和TCO复合层,其中Cu镀层在两层TCO层中间,这里的TCO可增加横向导电性,辅助Cu镀层收集电流。
该结构由HBC和钙钛矿上下两层电池通过中间电极导电层并联组成,上层HBC电池交叉指状排列的n+掺杂非晶硅层和p+掺杂非晶硅层与下层钙钛矿电池交叉指状排列的电子传输层和空穴传输层分别对应,中间以电极导电层对应连接。在中间电极导电层中,上下两侧分别与n+掺杂非晶硅层和电子传输层接触的为负极导电层,其与负极金属焊带接触14-1;上下两侧分别与p+掺杂非晶硅层和空穴传输层接触的为正极导电层,其与正极金属焊带接触14-2,如图2所示。图2中1为无倒角的铸锭单晶片;8为电子传输层,其下面对应为7-1的负极导电层和5-n型掺杂非晶硅层;9为空穴传输层,其下面对应为7-2的正极导电层和6-p型掺杂非晶硅层;7为打孔露出的导电层,即TCO层或TCO、Cu镀层、TCO复合层;14为金属焊带,如锡膏、铜镀层或铝浆,其中14-1金属焊带与负电极导电层接触收集负电流,与正极导电层隔离绝缘;14-2金属焊带与正电极导电层接触收集正电流,与负极导电层隔离绝缘;13为绝缘胶。
本申请提供的钙钛矿-HBC叠层双面电池结构在HBC电池结构背面叠加钙钛矿形成一种钙钛矿-HBC叠层双面电池结构;该结构引入背接触技术使电池正面无任何遮光,同时背面叠加钙钛矿使正背两面均为受光面并将两面的电流均引到中间导电层以获得更高的叠加效率。
上述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (7)

1.一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,所述制备方法包含以下步骤:
步骤S01,对硅片进行双面抛光并对背面进行热氧化处理,在背面形成SiO2层;
步骤S02,对硅片正面进行单面制绒处理;
步骤S03,使用PECVD技术背面沉积本征非晶硅i-a-Si:H层;
步骤S04,使用PECVD技术分别在正、背面沉积n型掺杂非晶硅n-a-Si:H层;
步骤S05,使用激光将背面要制备p-a-Si:H层区域的n-a-Si:H刻蚀熔掉,然后使用PECVD技术在背面沉积p-a-Si:H层,使用激光将背面n-a-Si:H层区域上的p-a-Si:H层刻蚀熔掉,形成交叉指状的n-a-Si:H层/p-a-Si:H层;
步骤S06,使用PVD和电镀技术在背面沉积TCO、Cu镀层、TCO;
步骤S07,使用激光或掩膜技术在背面TCO层上制备交叉指状的电子传输层/空穴传输层;
步骤S08,激光开槽,使n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间均保留间隙并填充绝缘胶;
步骤S09,在背面制备钙钛矿吸收层;
步骤S10,分别对电池正背表面制备钝化层及双面减反射层;
步骤S11,激光开槽或打孔将电池两端的正、负极导电层露出;
步骤S12,焊带连接,将金属焊带与电池两端漏出的正、负极导电层分别焊接连在一起。
2.根据权利要求1所述的一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,所述电子传输层为LiF、C60、ZnO、SnOx、TiOx中的任意一种或几种组合,厚度为10~50nm,制备方法为PVD或CVD工艺。
3.根据权利要求1所述的一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,所述空穴传输层为NiOx、MoOx、PTAA、Spiro-TTB、 Spiro-OMeTAD中的任意一种或几种组合,厚度为10~50nm,制备方法为旋涂法或蒸发法。
4.根据权利要求1所述的一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,所述方法用于制备以下结构的双面电池,所述双面电池包括上下两层结构,上层结构是以铸锭单晶硅为衬底的背接触结构,下层结构是以钙钛矿为衬底的背接触结构;
上层结构从上到下依次为减反射层、第一钝化层、前表面场层、晶硅衬底、本征非晶硅层、叉指状排列的n/p型掺杂非晶硅层和电极导电层;
下层结构从下到上依次为减反射层、第二钝化层、钙钛矿吸收层、交替排列的电子传输层/空穴传输层和电极导电层。
5.根据权利要求4所述的一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,与n型掺杂非晶硅层和电子传输层接触的电极导电层为负极导电层;
与p型掺杂非晶硅层和空穴传输层接触的电极导电层为正极导电层。
6.根据权利要求4所述的一种钙钛矿-HBC叠层双面电池结构,其特征在于,所述交替排列的电子传输层/空穴传输层为:
n型掺杂非晶硅层和p型掺杂非晶硅层交叉指状排列,电子传输层和空穴传输层对应的也是交叉指状排列;
n型掺杂非晶硅层与p型掺杂非晶硅层之间、负极导电层与正极导电层之间、电子传输层与空穴传输层之间均保留间隙并填充绝缘胶。
7.根据权利要求4所述的一种钙钛矿-HBC叠层双面电池制备方法,其特征在于,在所述电池背面的边缘位置设有2条金属焊带,第一金属焊带与负电极导电层接触收集负电流,第二金属焊带与正电极导电层接触收集正电流;该金属焊带可在电池端制备,也可在组件端制备;
或者将所述电池制作组件时,在电池背面边缘位置设有2条金属焊带,第一金属焊带与负电池导电层接触收集负电流,第二金属焊带与正电池导电层接触收集正电流。
CN202210597149.7A 2022-05-30 2022-05-30 一种钙钛矿-hbc叠层双面电池制备方法 Active CN114937717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210597149.7A CN114937717B (zh) 2022-05-30 2022-05-30 一种钙钛矿-hbc叠层双面电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210597149.7A CN114937717B (zh) 2022-05-30 2022-05-30 一种钙钛矿-hbc叠层双面电池制备方法

Publications (2)

Publication Number Publication Date
CN114937717A CN114937717A (zh) 2022-08-23
CN114937717B true CN114937717B (zh) 2023-09-01

Family

ID=82866554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210597149.7A Active CN114937717B (zh) 2022-05-30 2022-05-30 一种钙钛矿-hbc叠层双面电池制备方法

Country Status (1)

Country Link
CN (1) CN114937717B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115867047A (zh) * 2022-11-30 2023-03-28 隆基绿能科技股份有限公司 基于高空穴迁移率材料的ibc/hbc电池及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660500A (zh) * 2018-06-22 2018-10-16 苏州太阳井新能源有限公司 一种水平电化学沉积金属的方法及其装置
CN109920858A (zh) * 2019-03-29 2019-06-21 江苏日托光伏科技股份有限公司 一种钝化接触的p型mwt电池结构及制备方法
CN209199951U (zh) * 2018-12-24 2019-08-02 江苏日托光伏科技股份有限公司 一种异质结mwt双面太阳能电池片
CN113113501A (zh) * 2021-04-26 2021-07-13 江苏日托光伏科技股份有限公司 一种mwt异质结太阳能电池及其制备方法
CN113193063A (zh) * 2021-04-26 2021-07-30 浙江爱旭太阳能科技有限公司 太阳能叠层电池、太阳能组件和太阳能电池制作方法
CN113224210A (zh) * 2021-03-25 2021-08-06 江苏日托光伏科技股份有限公司 一种p型ibc电池的制备方法
CN113707647A (zh) * 2021-11-01 2021-11-26 南京日托光伏新能源有限公司 一种钙钛矿/mwt异质结串并联复合电池的制备方法
CN113782566A (zh) * 2021-11-12 2021-12-10 南京日托光伏新能源有限公司 一种基于背接触的叠层电池及其制备方法
WO2022012180A1 (zh) * 2020-07-14 2022-01-20 普乐新能源科技(徐州)有限公司 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池
WO2022037653A1 (zh) * 2020-08-20 2022-02-24 隆基绿能科技股份有限公司 一种叠层电池
CN114256387A (zh) * 2021-11-01 2022-03-29 南京日托光伏新能源有限公司 一种钙钛矿-异质结三端mwt结构叠层太阳能电池的制备方法
WO2022073518A1 (zh) * 2020-10-09 2022-04-14 隆基绿能科技股份有限公司 一种叠层电池及其制作方法
CN114361344A (zh) * 2021-12-23 2022-04-15 浙江爱旭太阳能科技有限公司 一种叠层太阳能电池及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013282A1 (de) * 2007-07-23 2009-01-29 Basf Se Photovoltaische tandem-zelle
US20140356744A1 (en) * 2013-05-29 2014-12-04 Mcalister Technologies, Llc Energy storage and conversion with hot carbon deposition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660500A (zh) * 2018-06-22 2018-10-16 苏州太阳井新能源有限公司 一种水平电化学沉积金属的方法及其装置
CN209199951U (zh) * 2018-12-24 2019-08-02 江苏日托光伏科技股份有限公司 一种异质结mwt双面太阳能电池片
CN109920858A (zh) * 2019-03-29 2019-06-21 江苏日托光伏科技股份有限公司 一种钝化接触的p型mwt电池结构及制备方法
WO2022012180A1 (zh) * 2020-07-14 2022-01-20 普乐新能源科技(徐州)有限公司 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池
WO2022037653A1 (zh) * 2020-08-20 2022-02-24 隆基绿能科技股份有限公司 一种叠层电池
WO2022073518A1 (zh) * 2020-10-09 2022-04-14 隆基绿能科技股份有限公司 一种叠层电池及其制作方法
CN113224210A (zh) * 2021-03-25 2021-08-06 江苏日托光伏科技股份有限公司 一种p型ibc电池的制备方法
CN113113501A (zh) * 2021-04-26 2021-07-13 江苏日托光伏科技股份有限公司 一种mwt异质结太阳能电池及其制备方法
CN113193063A (zh) * 2021-04-26 2021-07-30 浙江爱旭太阳能科技有限公司 太阳能叠层电池、太阳能组件和太阳能电池制作方法
CN113707647A (zh) * 2021-11-01 2021-11-26 南京日托光伏新能源有限公司 一种钙钛矿/mwt异质结串并联复合电池的制备方法
CN114256387A (zh) * 2021-11-01 2022-03-29 南京日托光伏新能源有限公司 一种钙钛矿-异质结三端mwt结构叠层太阳能电池的制备方法
CN113782566A (zh) * 2021-11-12 2021-12-10 南京日托光伏新能源有限公司 一种基于背接触的叠层电池及其制备方法
CN114361344A (zh) * 2021-12-23 2022-04-15 浙江爱旭太阳能科技有限公司 一种叠层太阳能电池及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钙钛矿叠层太阳电池结构与性能优化:模型预测和实验研究;金慧娇;田汉民;李春静;戎小莹;张天;材料导报;第30卷(第10A期);全文 *

Also Published As

Publication number Publication date
CN114937717A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
US7902454B2 (en) Solar cell, solar cell module, and method of manufacturing the solar cell
CN111668317B (zh) 一种光伏组件、太阳能电池及其制备方法
WO2023050823A1 (zh) 一种背接触电池
JP7389861B1 (ja) 太陽電池、その製造方法、及び光起電力モジュール
CN114038922A (zh) 一种提升绝缘隔离效果的背接触异质结太阳能电池及其制作方法
CN111430384A (zh) 一种太阳能电池组件、叠层太阳能电池及其制作方法
CN216597603U (zh) 一种提升绝缘隔离效果的背接触异质结太阳能电池
CN114937717B (zh) 一种钙钛矿-hbc叠层双面电池制备方法
CN108615775B (zh) 一种叉指背接触异质结单晶硅电池
CN108922934B (zh) 双面直连太阳能电池组件及制备方法
CN113764535A (zh) 双面受光的机械叠层太阳能电池、电池组件和光伏系统
CN211789098U (zh) 晶硅-钙钛矿组件
CN110690308A (zh) 一种背接触异质结太阳能电池及其模组
CN103066133A (zh) 光电装置
CN103390660A (zh) 晶体硅太阳能电池及其制作方法
CN103201854A (zh) 太阳能电池设备及其制造方法
CN110277463B (zh) 一种太阳能电池结构制作方法
CN109037364B (zh) 分片贯孔双面直连太阳能电池组件及制备方法
CN115000198B (zh) 太阳能电池及光伏组件
CN113707647B (zh) 一种钙钛矿/mwt异质结串并联复合电池的制备方法
CN109841699A (zh) 背接触太阳能电池组串及其制备方法、组件
CN217768381U (zh) 一种钙钛矿-hbc叠层双面电池结构
CN111540803B (zh) 一种太阳能电池组件及其制作方法
CN110212060B (zh) 一种电池制备方法、电池、电池组件及太阳能供电站
CN106449847A (zh) 一种具有垂直pn异质结的太阳能电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant