WO2022034823A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2022034823A1
WO2022034823A1 PCT/JP2021/028578 JP2021028578W WO2022034823A1 WO 2022034823 A1 WO2022034823 A1 WO 2022034823A1 JP 2021028578 W JP2021028578 W JP 2021028578W WO 2022034823 A1 WO2022034823 A1 WO 2022034823A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
high frequency
transmission filter
mounting board
frequency module
Prior art date
Application number
PCT/JP2021/028578
Other languages
English (en)
French (fr)
Inventor
大 中川
孝紀 上嶋
佑二 竹松
幸哉 山口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180056239.9A priority Critical patent/CN116075929A/zh
Publication of WO2022034823A1 publication Critical patent/WO2022034823A1/ja
Priority to US18/157,157 priority patent/US20230164906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Definitions

  • the present invention generally relates to a high frequency module and a communication device, and more particularly to a high frequency module including a transmission filter and a communication device including a high frequency module.
  • Patent Document 1 describes a mounting substrate having a first main surface and a second main surface facing each other, a transmission filter mounted on the first main surface of the mounting substrate, and a resin member (resin layer) covering the transmission filter. ), And a high frequency module including a shield electrode layer (shield layer) is disclosed.
  • the shield electrode layer is formed so as to cover the top surface and the side surface of the resin member.
  • Patent Document 1 discloses a communication device including a high frequency module.
  • An object of the present invention is to provide a high frequency module and a communication device capable of improving heat dissipation.
  • the high frequency module includes a mounting substrate, a first transmission filter, a second transmission filter, a resin layer, and a shield layer.
  • the mounting board has a first main surface and a second main surface facing each other.
  • the first transmission filter is mounted on the first main surface of the mounting board.
  • the second transmission filter is mounted on the first main surface of the mounting board, and has a higher power class than the first transmission filter.
  • the resin layer is arranged on the first main surface of the mounting substrate.
  • the shield layer covers at least a part of the resin layer.
  • the resin layer covers at least a part of the outer peripheral surface of the first transmission filter and covers at least a part of the outer peripheral surface of the second transmission filter.
  • the shield layer overlaps at least a part of the second transmission filter in a plan view from the thickness direction of the mounting substrate. At least a part of the main surface of the second transmission filter on the side opposite to the mounting board side is in contact with the shield layer.
  • the high frequency module includes a mounting substrate, a first transmission filter, a second transmission filter, a metal member, a resin layer, and a shield layer.
  • the mounting board has a first main surface and a second main surface facing each other.
  • the first transmission filter is mounted on the first main surface of the mounting board.
  • the second transmission filter is mounted on the first main surface of the mounting board, and has a higher power class than the first transmission filter.
  • the metal member is arranged on the main surface of the second transmission filter on the side opposite to the mounting board side.
  • the resin layer is arranged on the first main surface of the mounting substrate.
  • the shield layer covers at least a part of the resin layer.
  • the resin layer covers at least a part of the outer peripheral surface of the first transmission filter, covers at least a part of the outer peripheral surface of the second transmission filter, and covers at least a part of the outer peripheral surface of the metal member.
  • the shield layer overlaps at least a part of the metal member in a plan view from the thickness direction of the mounting substrate. At least a part of the main surface of the metal member on the side opposite to the mounting substrate side is in contact with the shield layer.
  • the high frequency module includes a mounting substrate, a transmission filter, a resin layer, and a shield layer.
  • the mounting board has a first main surface and a second main surface facing each other.
  • the transmission filter is at least one of a power class 1 transmission filter and a power class 2 transmission filter mounted on the first main surface of the mounting board.
  • the resin layer is arranged on the first main surface of the mounting substrate.
  • the shield layer covers at least a part of the resin layer.
  • the resin layer covers at least a part of the outer peripheral surface of the at least one transmission filter.
  • the shield layer overlaps at least a part of the at least one transmission filter in a plan view from the thickness direction of the mounting substrate. At least a part of the main surface of the at least one transmission filter on the side opposite to the mounting board side is in contact with the shield layer.
  • the high frequency module includes a mounting substrate, a transmission filter, a metal member, a resin layer, and a shield layer.
  • the mounting board has a first main surface and a second main surface facing each other.
  • the transmission filter is at least one of a power class 1 transmission filter and a power class 2 transmission filter mounted on the first main surface of the mounting board.
  • the metal member is arranged on the main surface of the at least one transmission filter on the side opposite to the mounting board side.
  • the resin layer is arranged on the first main surface of the mounting substrate.
  • the shield layer covers at least a part of the resin layer.
  • the resin layer covers at least a part of the outer peripheral surface of the at least one transmission filter and covers at least a part of the outer peripheral surface of the metal member.
  • the shield layer overlaps at least a part of the metal member in a plan view from the thickness direction of the mounting substrate. At least a part of the main surface of the metal member on the side opposite to the mounting substrate side is in contact with the shield layer.
  • the communication device includes the high frequency module and a signal processing circuit.
  • the signal processing circuit is connected to the high frequency module.
  • the high frequency module and communication device can improve heat dissipation.
  • FIG. 1 is a plan view of the high frequency module according to the first embodiment, omitting the shield layer and the resin layer.
  • FIG. 2 shows the same high-frequency module as having a second main surface of the mounting board, circuit components arranged on the second main surface of the mounting board, and a plurality of external connection terminals from the first main surface side of the mounting board. It is a perspective plan view.
  • FIG. 3 is a cross-sectional view taken along the line XX of FIG. 1 with respect to the high frequency module of the same.
  • FIG. 4 is a sectional view taken along line YY of FIG. 1 with respect to the high frequency module of the same.
  • FIG. 5 is a circuit configuration diagram of a communication device including the same high frequency module.
  • FIG. 6 is a circuit diagram of a part of the power amplifier and the output matching circuit of the same high frequency module.
  • FIG. 7 is a cross-sectional view of the high frequency module according to the first modification of the first embodiment.
  • FIG. 8 is a cross-sectional view of the high frequency module according to the second modification of the first embodiment.
  • FIG. 9 is a cross-sectional view of the high frequency module according to the third modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of the high frequency module according to the second embodiment.
  • FIG. 11 is a cross-sectional view of the high frequency module according to the first modification of the second embodiment.
  • FIG. 12 is a cross-sectional view of the high frequency module according to the second modification of the second embodiment.
  • FIGS. 1 to 4 and 7 to 12 referred to in the following embodiments 1 and 2 and the like are schematic views, and the ratio of the size and the thickness of each component in the figure is not necessarily the same. It does not always reflect the actual dimensional ratio.
  • the high-frequency module 100 includes a mounting substrate 130, first transmission filters 11 and 12, second transmission filters 13 and 14, a resin layer 15, and a shield layer. 16 and.
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other.
  • the first transmission filters 11 and 12 are mounted on the first main surface 131 of the mounting board 130.
  • the second transmission filters 13 and 14 are mounted on the first main surface 131 of the mounting board 130, and have a higher power class than the first transmission filters 11 and 12.
  • the first transmission filters 11 and 12 are, for example, power class 3 transmission filters.
  • the second transmission filters 13 and 14 are, for example, power class 2 transmission filters.
  • the resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130, covers at least a part of the outer peripheral surfaces 103 of the first transmission filters 11 and 12, and covers at least a part of the outer peripheral surfaces of the second transmission filters 13 and 14. It covers at least a part of 103.
  • the resin layer 15 covers the entire outer peripheral surface 103 of the first transmission filters 11 and 12, and also covers the entire outer peripheral surface 103 of the second transmission filters 13 and 14.
  • the shield layer 16 covers at least a part of the resin layer 15. Further, the shield layer 16 overlaps at least a part of the second transmission filters 13 and 14 in a plan view from the thickness direction D1 of the mounting substrate 130.
  • the shield layer 16 overlaps all of the second transmission filters 13 and 14 in a plan view from the thickness direction D1 of the mounting substrate 130. At least a part of the main surface 102 of the second transmission filters 13 and 14 opposite to the mounting board 130 side is in contact with the shield layer 16. In other words, of the main surface 102 of the second transmission filters 13 and 14 opposite to the mounting substrate 130 side, at least a part of the portion covered by the shield layer 16 is in contact with the shield layer 16. In the first embodiment, all of the main surfaces 102 of the second transmission filters 13 and 14 opposite to the mounting board 130 side are in contact with the shield layer 16. As a result, the high frequency module 100 according to the first embodiment can improve the heat dissipation.
  • the "power class” refers to the Power class determined by 3GPP, and the higher the maximum transmission power, the higher the power class. Specifically, the power class decreases in the order of the power class 1 transmission filter, the power class 2 transmission filter, and the power class 3 transmission filter.
  • the maximum transmission power of the power class 1 transmission filter is 29 dBm.
  • the maximum transmission power of the power class 2 transmission filter is 26 dBm.
  • the maximum transmission power of the power class 3 transmission filter is 23 dBm.
  • Power class is determined as in 3GPP.
  • the high frequency module 100 is used, for example, in a communication device 300 compatible with multimode / multiband.
  • the communication device 300 is, for example, a mobile phone (for example, a smartphone), but is not limited to this, and may be, for example, a wearable terminal (for example, a smart watch).
  • the high frequency module 100 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard and a 5G (5th generation mobile communication) standard.
  • the 4G standard is, for example, a 3GPP LTE standard (LTE: LongTermEvolution).
  • the 5G standard is, for example, 5G NR (New Radio).
  • the high frequency module 100 is a module capable of supporting carrier aggregation and dual connectivity, for example.
  • carrier aggregation and dual connectivity refer to communication using radio waves in a plurality of frequency bands at the same time.
  • the high frequency module 100 amplifies a transmission signal (high frequency signal) of the first frequency band (for example, 1710 MHz-1980 MHz) input from the signal processing circuit 301 to the antenna A1 (hereinafter, also referred to as the first antenna A1). It is configured to be able to output. Further, the high frequency module 100 amplifies a transmission signal (high frequency signal) of the second frequency band (for example, 2300 MHz-2690 MHz) input from the signal processing circuit 301, and the antenna A2 (hereinafter, also referred to as a second antenna A2). ) Is configured to be output.
  • a transmission signal (high frequency signal) of the first frequency band for example, 1710 MHz-1980 MHz
  • the antenna A1 hereinafter, also referred to as the first antenna A1
  • the high frequency module 100 amplifies a transmission signal (high frequency signal) of the second frequency band (for example, 2300 MHz-2690 MHz) input from the signal processing circuit 301, and the antenna A2 (hereinafter,
  • the high frequency module 100 is configured to amplify a received signal (high frequency signal) in the first frequency band input from the first antenna A1 and output it to the signal processing circuit 301. Further, the high frequency module 100 is configured to amplify a received signal (high frequency signal) in the second frequency band input from the second antenna A2 and output it to the signal processing circuit 301. Further, the high frequency module 100 amplifies the received signal (high frequency signal) of the third frequency band (for example, 1880 MHz-2025 MHz) input from the antenna A3 (hereinafter, also referred to as the third antenna A3) to the signal processing circuit 301. It is configured to be able to output.
  • the third frequency band for example, 1880 MHz-2025 MHz
  • the signal processing circuit 301 is not a component of the high frequency module 100, but a component of the communication device 300 including the high frequency module 100.
  • the high frequency module 100 is controlled by, for example, the signal processing circuit 301 included in the communication device 300.
  • the communication device 300 includes a high frequency module 100 and a signal processing circuit 301.
  • the communication device 300 further includes a first antenna A1, a second antenna A2, and a third antenna A3.
  • the communication device 300 further includes a circuit board on which the high frequency module 100 is mounted.
  • the circuit board is, for example, a printed wiring board.
  • the circuit board has a ground electrode to which a ground potential is applied.
  • the signal processing circuit 301 includes, for example, an RF signal processing circuit 302 and a baseband signal processing circuit 303.
  • the RF signal processing circuit 302 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal.
  • the RF signal processing circuit 302 performs signal processing such as up-conversion on the high-frequency signal (transmission signal) output from the baseband signal processing circuit 303, and transfers the signal-processed high-frequency signal to the high-frequency module 100. Output.
  • the RF signal processing circuit 302 performs signal processing such as down-conversion on the high frequency signal (received signal) output from the high frequency module 100, and uses the processed high frequency signal as a baseband signal processing circuit. Output to 303.
  • the baseband signal processing circuit 303 is, for example, a BBIC (Baseband Integrated Circuit).
  • the baseband signal processing circuit 303 generates an I-phase signal and a Q-phase signal from the baseband signal.
  • the baseband signal is, for example, an audio signal, an image signal, or the like input from the outside.
  • the baseband signal processing circuit 303 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal.
  • the transmission signal is generated as a modulation signal (IQ signal) in which a carrier signal having a predetermined frequency is amplitude-modulated with a period longer than the period of the carrier signal.
  • IQ signal modulation signal
  • the received signal processed by the baseband signal processing circuit 303 is used, for example, for displaying an image as an image signal or for a call as an audio signal.
  • the high frequency module 100 transmits a high frequency signal (received signal, transmitted signal) between the first antenna A1, the second antenna A2, and the third antenna A3 and the RF signal processing circuit 302 of the signal processing circuit 301.
  • the high frequency module 100 includes a plurality of (four in the illustrated example) transmission filters 1. Further, the high frequency module 100 includes a power amplifier 3 and an output matching circuit 4. Further, the high frequency module 100 includes a plurality of (six in the illustrated example) reception filters 2. Further, the high frequency module 100 includes a low noise amplifier 18 and a plurality of (six in the illustrated example) input matching circuits 17. Further, the high frequency module 100 includes a first switch 5 and a second switch 7. Further, the high frequency module 100 includes a controller 19. Further, the high frequency module 100 includes a plurality of (four in the illustrated example) matching circuits 6 connected between the second switch 7 and the plurality of transmission filters 1. Further, the high frequency module 100 includes a plurality of matching circuits 8 (three in the illustrated example) connected between the second switch 7 and a plurality of (three in the illustrated example) antenna terminals 91A, 91B, 91C. ..
  • the plurality of transmission filters 1 have different pass bands from each other.
  • the four transmission filters 1 may be referred to as a transmission filter 11, a transmission filter 12, a transmission filter 13, and a transmission filter 14, respectively.
  • the plurality of reception filters 2 have different pass bands from each other.
  • the six reception filters 2 will be referred to as a reception filter 21, a reception filter 22, a reception filter 23, a reception filter 24, a reception filter 25, and a reception filter 26, respectively. There is also.
  • the high frequency module 100 includes a plurality of external connection terminals 9.
  • the plurality of external connection terminals 9 include a plurality of (three in the illustrated example) antenna terminals 91A, 91B, 91C, a signal input terminal 92, a signal output terminal 93, a control terminal 94, and a plurality of ground terminals 95 (FIG. 2). -See FIG. 4) and.
  • the plurality of ground terminals 95 are terminals that are electrically connected to the ground electrode of the circuit board described above included in the communication device 300 and are given a ground potential.
  • the transmission filter 11 is, for example, a filter whose pass band is the transmission band of the first communication band.
  • the transmission filter 12 is, for example, a filter whose pass band is the transmission band of the second communication band.
  • the transmission filter 13 is, for example, a filter whose pass band is the transmission band of the third communication band.
  • the transmission filter 14 is, for example, a filter whose pass band is the transmission band of the fourth communication band.
  • the first communication band corresponds to the transmission signal passing through the transmission filter 11, and is, for example, n3 of the 5G NR standard.
  • the second communication band corresponds to the transmission signal passing through the transmission filter 12, and is, for example, n1 of the 5G NR standard.
  • the third communication band corresponds to the transmission signal passing through the transmission filter 13, and is, for example, n40 of the 5G NR standard.
  • the fourth communication band corresponds to the transmission signal passing through the transmission filter 14, and is, for example, n41 of the 5G NR standard.
  • the transmission filters 11 and 12 are power class 3 transmission filters
  • the transmission filters 13 and 14 are power class 2 transmission filters.
  • the transmission filters 11 and 12 are first transmission filters having a relatively low power class
  • the transmission filters 13 and 14 are second transmission filters having a relatively high power class.
  • the power amplifier 3 has an input terminal and an output terminal.
  • the power amplifier 3 amplifies the transmission signals of the first frequency band and the second frequency band input to the input terminal and outputs them from the output terminal.
  • the first frequency band includes, for example, a first communication band and a second communication band.
  • the second frequency band includes, for example, a third communication band and a fourth communication band.
  • the input terminal of the power amplifier 3 is connected to the signal input terminal 92.
  • the input terminal of the power amplifier 3 is connected to the signal processing circuit 301 via the signal input terminal 92.
  • the signal input terminal 92 is a terminal for inputting a high frequency signal (transmission signal) from an external circuit (for example, a signal processing circuit 301) to the high frequency module 100.
  • the output terminal of the power amplifier 3 is connected to the common terminal 50 of the first switch 5 via the output matching circuit 4.
  • the power amplifier 3 includes a driver stage amplifier 31, two final stage amplifiers 32A and 32B, and a non-equilibrium-balanced conversion circuit 33 having a first transformer T1 (hereinafter referred to as a first balun 33). ), And.
  • Each of the driver stage amplifier 31, the final stage amplifier 32A and the final stage amplifier 32B includes an amplification transistor.
  • the first transformer T1 includes a primary side inductor L10 and a secondary side inductor L11.
  • the primary inductor L10 is connected between the non-equilibrium terminal 331 and the ground.
  • the first balun 33 has a non-equilibrium terminal 331 and a pair of balanced terminals 332A and 332B.
  • the input terminal of the driver stage amplifier 31 is connected to the signal input terminal 92, and the output terminal of the driver stage amplifier 31 is connected to the non-equilibrium terminal 331. Further, in the power amplifier 3, the input terminal of the final stage amplifier 32A is connected to the balanced terminal 332A, and the input terminal of the final stage amplifier 32B is connected to the balanced terminal 332B.
  • the input terminal of the driver stage amplifier 31 constitutes the input terminal of the power amplifier 3, and the output terminals of the two final stage amplifiers 32A and 32B form the output terminals of the power amplifier 3. ..
  • the power amplifier 3 constitutes a differential amplifier circuit. A voltage Vcc1 is applied to the output terminal of the driver stage amplifier 31.
  • the output matching circuit 4 is provided in the signal path between the output terminal of the power amplifier 3 and the common terminal 50 of the first switch 5.
  • the output matching circuit 4 is a circuit for achieving impedance matching between the power amplifier 3 and the plurality of transmission filters 1.
  • the output matching circuit 4 includes, for example, a balanced-non-equilibrium conversion circuit 41 (hereinafter referred to as a second balun 41) having a second transformer T2, and a plurality of circuit elements 42 (see FIG. 1).
  • the second balun 41 has a pair of balanced terminals 411A and 411B and a non-equilibrium terminal 412.
  • the balanced terminal 411A is connected to the output terminal of the final stage amplifier 32A
  • the balanced terminal 411B is connected to the output terminal of the final stage amplifier 32B
  • the non-equilibrium terminal 412 is the common terminal 50 of the first switch 5. It is connected to the.
  • the second transformer T2 has four inductor elements L1, L2, L3, and L4 as an example.
  • the primary side inductor is formed by the series circuit of the inductor element L3 and the inductor element L4
  • the secondary side inductor is formed by the series circuit of the inductor element L1 and the inductor element L2.
  • the primary inductor is connected between the balanced terminal 411A and the balanced terminal 411B.
  • the high frequency module 100 is connected between the wiring W1 connecting the output terminal of the final stage amplifier 32A and the balanced terminal 411A and the wiring W2 connecting the output terminal of the final stage amplifier 32B and the balanced terminal 411B. Further includes a series circuit that has been installed.
  • This series circuit includes the inductor Lc1, the capacitor C1 and the inductor Lc2, and is not grounded to the ground.
  • This series circuit is an LC resonance circuit for attenuating the odd harmonics (for example, the third harmonic) of the high frequency signal (transmission signal) input to the power amplifier 3.
  • the resonance frequency of the LC resonance circuit is three times the lower limit of the frequency band on the relatively low frequency side of the first frequency band and the second frequency band, and the first frequency band and the second frequency band.
  • the high frequency module 100 includes an inductor La1 connected between the output terminal of the final stage amplifier 32A and the balanced terminal 411A, and an inductor connected between the output terminal of the final stage amplifier 32B and the balanced terminal 411B. It also has La2.
  • the reception filter 21 is, for example, a filter whose pass band is the reception band of the first communication band.
  • the reception filter 22 is, for example, a filter having a reception band of the second communication band as a pass band.
  • the reception filter 23 is, for example, a filter whose pass band is the reception band of the third communication band.
  • the reception filter 24 is, for example, a filter having a reception band of the fourth communication band as a pass band.
  • the reception filter 25 is, for example, a filter having a reception band of the fifth communication band as a pass band.
  • the reception filter 26 is, for example, a filter having a reception band of the sixth communication band as a pass band.
  • the first communication band corresponds to the received signal passing through the reception filter 21, and is, for example, n3 of the 5G NR standard.
  • the second communication band corresponds to the received signal passing through the reception filter 22, and is, for example, n1 of the 5G NR standard.
  • the third communication band corresponds to the received signal passing through the reception filter 23, and is, for example, n40 of the 5G NR standard.
  • the fourth communication band corresponds to the received signal passing through the reception filter 24, and is, for example, n41 of the 5G NR standard.
  • the fifth communication band corresponds to the received signal passing through the reception filter 25, and is, for example, Band 34 of the 3GPP LTE standard.
  • the sixth communication band corresponds to the received signal passing through the reception filter 26, and is, for example, Band 39 of the 3GPP LTE standard.
  • the low noise amplifier 18 amplifies and outputs the input received signals in the first frequency band, the second frequency band, and the third frequency band.
  • the first frequency band includes a first communication band and a second communication band.
  • the second frequency band includes a third communication band and a fourth communication band.
  • the third frequency band includes, for example, a fifth communication band and a sixth communication band.
  • the low noise amplifier 18 includes a plurality of (for example, six) amplification transistors. Each of the plurality of amplification transistors has an input terminal and an output terminal. The low noise amplifier 18 amplifies a received signal input to one of the input terminals of the plurality of amplification transistors and outputs the signal from the output terminal.
  • the input terminals of the plurality of amplification transistors of the low noise amplifier 18 are connected to the corresponding reception filter 2 of the plurality of reception filters 2 via the corresponding input matching circuit 17 of the plurality of input matching circuits 17.
  • the output terminal of the low noise amplifier 18 is connected to the signal output terminal 93.
  • the output terminal of the low noise amplifier 18 is connected to the signal processing circuit 301 via, for example, the signal output terminal 93.
  • the signal output terminal 93 is a terminal for outputting a high frequency signal (received signal) from the low noise amplifier 18 to an external circuit (for example, a signal processing circuit 301).
  • a plurality of (for example, six) input matching circuits 17 are provided in a plurality of signal paths between the input terminals of the plurality of amplification transistors of the low noise amplifier 18 and the plurality of reception filters 2.
  • the six input matching circuits 17 are referred to as an input matching circuit 171, an input matching circuit 172, an input matching circuit 173, an input matching circuit 174, and an input matching circuit 175, respectively.
  • Also referred to as an input matching circuit 176 Also referred to as an input matching circuit 176.
  • the input matching circuit 171 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 21.
  • the input matching circuit 172 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 22.
  • the input matching circuit 173 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 23.
  • the input matching circuit 174 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 24.
  • the input matching circuit 175 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 25.
  • the input matching circuit 176 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 26.
  • Each of the plurality of input matching circuits 17 is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • a plurality of (for example, six) input matching circuits 17 are provided in a plurality of signal paths between the input terminals of the plurality of amplification transistors of the low noise amplifier 18 and the plurality of reception filters 2.
  • the six input matching circuits 17 are referred to as an input matching circuit 171, an input matching circuit 172, an input matching circuit 173, an input matching circuit 174, and an input matching circuit 175, respectively.
  • Also referred to as an input matching circuit 176 Also referred to as an input matching circuit 176.
  • the input matching circuit 171 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 21.
  • the input matching circuit 172 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 22.
  • the input matching circuit 173 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 23.
  • the input matching circuit 174 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 24.
  • the input matching circuit 175 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 25.
  • the input matching circuit 176 is a circuit for impedance matching between the low noise amplifier 18 and the receiving filter 26.
  • Each of the plurality of input matching circuits 17 is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the first switch 5 has a common terminal 50 and a plurality of (four in the illustrated example) selection terminals 51.
  • the four selection terminals 51 may be referred to as a selection terminal 511, a selection terminal 512, a selection terminal 513, and a selection terminal 514, respectively.
  • the common terminal 50 is connected to the output terminal of the power amplifier 3 via the output matching circuit 4.
  • the selection terminal 511 is connected to the input terminal of the transmission filter 11.
  • the selection terminal 512 is connected to the input terminal of the transmission filter 12.
  • the selection terminal 513 is connected to the input terminal of the transmission filter 13.
  • the selection terminal 514 is connected to the input terminal of the transmission filter 14.
  • the first switch 5 is, for example, a switch capable of connecting at least one or more of a plurality of selection terminals 51 to the common terminal 50.
  • the first switch 5 is, for example, a switch capable of one-to-one and one-to-many connections.
  • the first switch 5 is, for example, a switch IC (Integrated Circuit).
  • the first switch 5 is controlled by, for example, the signal processing circuit 301.
  • the first switch 5 switches the connection state between the common terminal 50 and the plurality of selection terminals 51 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301.
  • the first switch 5 may be controlled by the controller 19 instead of being controlled by the signal processing circuit 301.
  • the second switch 7 has a plurality of (three in the illustrated example) common terminals 70 and a plurality of (six in the illustrated example) selection terminals 71.
  • the three common terminals 70 may be referred to as a common terminal 70A, a common terminal 70B, and a common terminal 70C, respectively.
  • the six selection terminals 71 are referred to as a selection terminal 711, a selection terminal 712, a selection terminal 713, a selection terminal 714, a selection terminal 715, and a selection terminal 716, respectively.
  • a selection terminal 711 a selection terminal 712, a selection terminal 713, a selection terminal 714, a selection terminal 715, and a selection terminal 716, respectively.
  • the common terminal 70A is connected to the antenna terminal 91A.
  • the first antenna A1 is connected to the antenna terminal 91A.
  • the common terminal 70B is connected to the antenna terminal 91B.
  • the second antenna A2 is connected to the antenna terminal 91B.
  • the common terminal 70C is connected to the antenna terminal 91C.
  • a third antenna A3 is connected to the antenna terminal 91C.
  • the selection terminal 711 is connected to a connection point between the output terminal of the transmission filter 11 and the input terminal of the reception filter 21.
  • the selection terminal 712 is connected to a connection point between the output terminal of the transmission filter 12 and the input terminal of the reception filter 22.
  • the selection terminal 713 is connected to a connection point between the output terminal of the transmission filter 13 and the input terminal of the reception filter 23.
  • the selection terminal 714 is connected to a connection point between the output terminal of the transmission filter 14 and the input terminal of the reception filter 24.
  • the selection terminal 715 is connected to the input terminal of the reception filter 25.
  • the selection terminal 716 is connected to the input terminal of the reception filter 26.
  • the second switch 7 can connect, for example, at least one or more of the plurality of selection terminals 711 and 712 to the common terminal 70A. Further, the second switch 7 can connect at least one or more of the plurality of selection terminals 713 and 714 to the common terminal 70B. Further, the second switch 7 can connect at least one or more of the plurality of selection terminals 715 and 716 to the common terminal 70C.
  • the second switch 7 is, for example, a switch capable of one-to-one and one-to-many connections.
  • the second switch 7 is, for example, a switch IC.
  • the second switch 7 is controlled by, for example, the signal processing circuit 301.
  • the second switch 7 switches the connection state between the plurality of common terminals 70 and the plurality of selection terminals 71 according to the control signal from the RF signal processing circuit 302 of the signal processing circuit 301.
  • the second switch 7 may be controlled by the controller 19 instead of being controlled by the signal processing circuit 301.
  • the four matching circuits 6 may be referred to as a matching circuit 61, a matching circuit 62, a matching circuit 63, and a matching circuit 64, respectively.
  • the matching circuit 61 is connected between the connection point between the output terminal of the transmission filter 11 and the input terminal of the reception filter 21 and the selection terminal 711 of the second switch 7.
  • the matching circuit 62 is connected between the connection point between the output terminal of the transmission filter 12 and the input terminal of the reception filter 22 and the selection terminal 712 of the second switch 7.
  • the matching circuit 63 is connected between the connection point between the output terminal of the transmission filter 13 and the input terminal of the reception filter 23 and the selection terminal 713 of the second switch 7.
  • the matching circuit 64 is connected between the connection point between the output terminal of the transmission filter 14 and the input terminal of the reception filter 24 and the selection terminal 714 of the second switch 7.
  • Each of the plurality of matching circuits 6 is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the three matching circuits 8 may be referred to as a matching circuit 81, a matching circuit 82, and a matching circuit 83, respectively.
  • the matching circuit 81 is connected between the common terminal 70A of the second switch 7 and the antenna terminal 91A.
  • the matching circuit 82 is connected between the common terminal 70B of the second switch 7 and the antenna terminal 91B.
  • the matching circuit 83 is connected between the common terminal 70C of the second switch 7 and the antenna terminal 91C.
  • Each of the plurality of matching circuits 8 is composed of, for example, one inductor, but is not limited to this, and may include, for example, a plurality of inductors and a plurality of capacitors.
  • the controller 19 is connected to the control terminal 94.
  • the control terminal 94 is connected to, for example, the signal processing circuit 301.
  • the controller 19 controls the power amplifier 3 based on the control signal from the signal processing circuit 301.
  • the high frequency module 100 includes a mounting board 130 and four transmission filters 1. Further, the high frequency module 100 includes a power amplifier 3 and an output matching circuit 4. Further, the high frequency module 100 includes six reception filters 2, a low noise amplifier 18, six input matching circuits 17, a first switch 5, a second switch 7, and a controller 19. Further, the high frequency module 100 includes four matching circuits 6 (hereinafter, also referred to as first matching circuit 6) and three matching circuits 8 (hereinafter, also referred to as second matching circuit 8). Further, the high frequency module 100 includes a plurality of external connection terminals 9. Further, the high frequency module 100 includes a first resin layer (resin layer) 15, a second resin layer 20, and a shield layer 16.
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other in the thickness direction D1 of the mounting board 130.
  • the mounting substrate 130 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductive layers.
  • the plurality of dielectric layers and the plurality of conductive layers are laminated in the thickness direction D1 of the mounting substrate 130.
  • the plurality of conductive layers are formed in a predetermined pattern defined for each layer.
  • Each of the plurality of conductive layers includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D1 of the mounting substrate 130.
  • the material of each conductive layer is, for example, copper.
  • the plurality of conductive layers include a ground layer.
  • the mounting substrate 130 is, for example, an LTCC (Low Temperature Co-fired Ceramics) substrate.
  • the mounting substrate 130 is not limited to the LTCC substrate, and may be, for example, a printed wiring board, an HTCC (High Temperature Co-fired Ceramics) substrate, or a resin multilayer substrate.
  • the mounting board 130 is not limited to the LTCC board, and may be, for example, a wiring structure.
  • the wiring structure is, for example, a multi-layer structure.
  • the multilayer structure includes at least one insulating layer and at least one conductive layer.
  • the insulating layer is formed in a predetermined pattern. When there are a plurality of insulating layers, the plurality of insulating layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer is formed in a predetermined pattern different from the predetermined pattern of the insulating layer. When there are a plurality of conductive layers, the plurality of conductive layers are formed in a predetermined pattern determined for each layer.
  • the conductive layer may include one or more rewiring portions.
  • the first surface is the first main surface 131 of the mounting board 130
  • the second surface is the second main surface 132 of the mounting board 130.
  • the wiring structure may be, for example, an interposer.
  • the interposer may be an interposer using a silicon substrate or a substrate composed of multiple layers.
  • the first main surface 131 and the second main surface 132 of the mounting board 130 are separated from each other in the thickness direction D1 of the mounting board 130, and intersect with the thickness direction D1 of the mounting board 130.
  • the first main surface 131 of the mounting board 130 is, for example, orthogonal to the thickness direction D1 of the mounting board 130, but may include, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction D1.
  • the second main surface 132 of the mounting board 130 is, for example, orthogonal to the thickness direction D1 of the mounting board 130, but includes, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction D1. May be good.
  • first main surface 131 and the second main surface 132 of the mounting substrate 130 may be formed with fine irregularities, concave portions or convex portions.
  • the inner surface of the recess is included in the first main surface 131.
  • the mounting board 130 has a rectangular shape in a plan view from the thickness direction D1 of the mounting board 130, but the mounting board 130 is not limited to this, and may be, for example, a square shape.
  • the circuit components of the first group are mounted on the first main surface 131 of the mounting board 130.
  • the circuit components of the first group include four transmission filters 1, six reception filters 2, a power amplifier 3, five circuit elements 42 of the output matching circuit 4, and six input matching. It includes a circuit 17, four first matching circuits 6, and three second matching circuits 8.
  • the circuit component is mounted on the first main surface 131 of the mounting board 130 means that the circuit component is arranged on the first main surface 131 of the mounting board 130 (mechanically connected). That) and that the circuit board is electrically connected to (the appropriate conductor portion) of the mounting board 130.
  • the circuit components of the second group are mounted on the second main surface 132 of the mounting board 130.
  • the second group of circuit components includes a first switch 5, a second switch 7, a controller 19, and a low noise amplifier 18.
  • the circuit component is mounted on the second main surface 132 of the mounting board 130 means that the circuit component is arranged on the second main surface 132 of the mounting board 130 (mechanically connected). That) and that the circuit board is electrically connected to (the appropriate conductor portion) of the mounting board 130.
  • the second balun 41 of the output matching circuit 4 is provided on the mounting board 130.
  • Each of the plurality of transmission filters 1 and the plurality of reception filters 2 is, for example, a ladder type filter.
  • Each of the plurality of transmit filters 1 and the plurality of receive filters 2 has a plurality of (for example, four) series arm resonators and a plurality of (for example, three) parallel arm resonators.
  • Each of the plurality of transmission filters 1 and the plurality of reception filters 2 is, for example, an elastic wave filter.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the surface acoustic wave filter is, for example, a surface acoustic wave filter that utilizes a surface acoustic wave.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is, for example, a SAW (Surface Acoustic Wave) resonator.
  • the surface elastic wave filter is, for example, formed on a piezoelectric substrate and a piezoelectric substrate, and has a plurality of IDT (Interdigital Transducer) electrodes having a one-to-one correspondence with a plurality of series arm resonators and a piezoelectric substrate. It is formed and has a plurality of IDT electrodes having a one-to-one correspondence with the plurality of parallel arm resonators.
  • the piezoelectric substrate is, for example, a piezoelectric substrate.
  • the piezoelectric substrate is, for example, a lithium niobate substrate, a lithium tantalate substrate, or a quartz substrate.
  • the piezoelectric substrate is not limited to the piezoelectric substrate, and is a laminated type including, for example, a silicon substrate, a high sound velocity film on the silicon substrate, a low sound velocity film on the high sound velocity film, and a piezoelectric layer on the low sound velocity film. It may be a substrate.
  • the material of the piezoelectric layer is, for example, lithium niobate or lithium tantalate.
  • the bass sound film is a film in which the sound velocity of the bulk wave propagating in the bass velocity film is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer.
  • the material of the low sound velocity film is, for example, silicon oxide.
  • the high sound velocity film is a film in which the sound velocity of the bulk wave propagating in the high sound velocity film is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the material of the hypersonic film is, for example, silicon nitride.
  • the outer peripheral shape of each of the plurality of transmission filters 1 and the plurality of reception filters 2 is a quadrangular shape in a plan view from the thickness direction D1 of the mounting board 130.
  • the power amplifier 3 is a power amplification IC chip including a circuit unit having a driver stage amplifier 31, two final stage amplifiers 32A and 32B, and a first balun 33.
  • the power amplifier 3 is flip-chip mounted on the first main surface 131 of the mounting board 130.
  • the outer peripheral shape of the power amplifier 3 is a quadrangular shape in a plan view from the thickness direction D1 of the mounting board 130.
  • Each of the driver stage amplifier 31, the final stage amplifier 32A and the final stage amplifier 32B includes an amplification transistor.
  • the amplification transistor is, for example, an HBT (Heterojunction Bipolar Transistor).
  • the power amplification IC chip constituting the power amplifier 3 is, for example, a GaAs-based IC chip.
  • the amplification transistor is not limited to a bipolar transistor such as an HBT, and may be, for example, a FET (Field Effect Transistor).
  • the FET is, for example, a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • the power amplification IC chip constituting the power amplifier 3 is not limited to the GaAs-based IC chip, and may be, for example, a Si-based IC chip, a SiGe-based IC chip, or a GaN-based IC chip.
  • the second balun 41 of the output matching circuit 4 is provided on the mounting board 130.
  • the second balun 41 has a plurality of inductor elements L1 to L4.
  • the inductor elements L3 and L4 are provided in the mounting board 130, and the inductor element L1 is the first main surface of the mounting board 130 so as to overlap the inductor elements L3 and L4 in a plan view from the thickness direction D1 of the mounting board 130.
  • the inductor element L2 is provided in the mounting board 130 so as to overlap the inductor elements L3 and L4 in a plan view from the thickness direction D1 of the mounting board 130. In the thickness direction D1 of the mounting board 130, the inductor element L2 is located on the side opposite to the inductor element L1 when viewed from the inductor elements L3 and L4.
  • the five circuit elements 42 of the output matching circuit 4 are inductors or capacitors.
  • the circuit element 42 arranged between the two transmission filters 1 (transmission filters 11 and 12) in a plan view from the thickness direction D1 of the mounting substrate 130 is, for example, an inductor.
  • the capacitor C1 of the LC resonance circuit is mounted on the first main surface 131 of the mounting board 130. Further, the inductors Lc1 and Lc2 of the LC resonance circuit are provided on the mounting board 130.
  • the low noise amplifier 18 is mounted on the second main surface 132 of the mounting board 130.
  • the IC chip 180 (hereinafter, also referred to as the first IC chip 180) including the low noise amplifier 18 and the second switch 7 is mounted on the second main surface 132 of the mounting board 130. ..
  • the first IC chip 180 is flip-chip mounted on the second main surface 132 of the mounting board 130.
  • the outer peripheral shape of the first IC chip 180 is a quadrangular shape in a plan view from the thickness direction D1 of the mounting substrate 130.
  • the six amplification transistors included in the low noise amplifier 18 are field effect transistors, but are not limited to this, and may be, for example, bipolar transistors.
  • the first IC chip 180 is a Si-based IC chip, but is not limited to this.
  • Each circuit component (inductor) of the six input matching circuits 17 is, for example, a chip inductor.
  • Each circuit component of the six input matching circuits 17 is mounted on, for example, the first main surface 131 of the mounting board 130.
  • the outer peripheral shapes of the circuit components of the six input matching circuits 17 are quadrangular.
  • Each of the six input matching circuits 17 may include an inner layer inductor provided in the mounting board 130.
  • the first switch 5 is mounted on the second main surface 132 of the mounting board 130.
  • the IC chip 55 (hereinafter, also referred to as the second IC chip 55) including the first switch 5 and the controller 19 is mounted on the second main surface 132 of the mounting board 130.
  • the second IC chip 55 is flip-chip mounted on the second main surface 132 of the mounting board 130.
  • the outer peripheral shape of the second IC chip 55 is a quadrangular shape in a plan view from the thickness direction D1 of the mounting substrate 130.
  • the second IC chip 55 is a Si-based IC chip, but is not limited to this.
  • Each circuit component (inductor) of the four first matching circuits 6 is, for example, a chip inductor.
  • Each circuit component of the four first matching circuits 6 is mounted on, for example, the first main surface 131 of the mounting board 130.
  • the outer peripheral shape of each circuit component of the four first matching circuits 6 is a quadrangular shape.
  • Each of the four first matching circuits 6 may include an inner layer inductor provided in the mounting board 130.
  • the circuit component (inductor) of each of the three second matching circuits 8 is, for example, a chip inductor.
  • Each circuit component of the three second matching circuits 8 is mounted on, for example, the first main surface 131 of the mounting board 130.
  • the outer peripheral shape of each circuit component of the three second matching circuits 8 is a quadrangular shape.
  • Each of the three second matching circuits 8 may include an inner layer inductor provided in the mounting board 130.
  • the plurality of external connection terminals 9 are arranged on the second main surface 132 of the mounting board 130.
  • “the external connection terminal 9 is arranged on the second main surface 132 of the mounting board 130” means that the external connection terminal 9 is mechanically connected to the second main surface 132 of the mounting board 130.
  • the external connection terminal 9 is electrically connected to the mounting board 130 (appropriate conductor portion).
  • the material of the plurality of external connection terminals 9 is, for example, a metal (for example, copper, a copper alloy, etc.).
  • Each of the plurality of external connection terminals 9 is a columnar electrode.
  • the columnar electrode is, for example, a columnar electrode.
  • the plurality of external connection terminals 9 are bonded to the conductor portion of the mounting substrate 130, for example, by soldering, but the present invention is not limited to this, and the plurality of external connection terminals 9 are bonded to the conductor portion of the mounting board 130 using, for example, a conductive adhesive (for example, a conductive paste). It may be bonded or it may be directly bonded.
  • a conductive adhesive for example, a conductive paste
  • the plurality of external connection terminals 9 include three antenna terminals 91A, 91B, 91C, a signal input terminal 92, a signal output terminal 93, a control terminal 94, and a plurality of ground terminals 95. I'm out.
  • the plurality of ground terminals 95 are electrically connected to the ground layer of the mounting board 130.
  • the ground layer is the circuit ground of the high frequency module 100, and the plurality of circuit components of the high frequency module 100 include circuit components that are electrically connected to the ground layer.
  • the first resin layer 15 covers each of the circuit components of the first group mounted on the first main surface 131 of the mounting board 130 on the first main surface 131 side of the mounting board 130.
  • the first resin layer 15 contains a resin (for example, an epoxy resin).
  • the first resin layer 15 may contain a filler in addition to the resin.
  • the second resin layer 20 is formed on the second main surface 132 side of the mounting board 130, each of the circuit components of the second group mounted on the second main surface 132 of the mounting board 130, and a plurality of external connection terminals 9. It covers each outer peripheral surface.
  • the second resin layer 20 contains a resin (for example, an epoxy resin).
  • the second resin layer 20 may contain a filler in addition to the resin.
  • the material of the second resin layer 20 may be the same material as the material of the first resin layer 15, or may be a different material.
  • the shield layer 16 covers the first resin layer 15 and the four transmission filters 1. As shown in FIG. 4, the main surface 102 of each of the two transmission filters 13 and 14 of the four transmission filters 1 opposite to the mounting board 130 side is in contact with the shield layer 16.
  • the shield layer 16 has conductivity.
  • the shield layer 16 has a multi-layer structure in which a plurality of metal layers are laminated, but the shield layer 16 is not limited to this and may be one metal layer.
  • the metal layer contains one or more metals.
  • the shield layer 16 covers the main surface 151 of the first resin layer 15 opposite to the mounting substrate 130 side, the outer peripheral surface 153 of the first resin layer 15, and the outer peripheral surface 133 of the mounting substrate 130.
  • the shield layer 16 also covers the outer peripheral surface 203 of the second resin layer 20.
  • the shield layer 16 is in contact with at least a part of the outer peripheral surface of the ground layer of the mounting substrate 130. Thereby, the potential of the shield layer 16 can be made the same as the potential of the ground layer.
  • a plurality of transmission filters are used in a direction parallel to the direction in which the output matching circuit 4 and the power amplifier 3 are arranged (vertical direction in FIG. 1) in a plan view from the thickness direction D1 of the mounting board 130. 1 is arranged in the order of the transmission filter 11, the transmission filter 12, the transmission filter 13, and the transmission filter 14 from the output matching circuit 4 side (upper side).
  • the high frequency module 100 four transmission filters 1 are located between the output matching circuit 4 and the six input matching circuits 17 in a plan view from the thickness direction D1 of the mounting board 130.
  • four transmission filters 1 are located between the output matching circuit 4 and the four first matching circuits 6 in a plan view from the thickness direction D1 of the mounting board 130.
  • four transmission filters 1 are located between the output matching circuit 4 and the three second matching circuits 8 in a plan view from the thickness direction D1 of the mounting board 130.
  • the first IC chip 180 and the plurality of transmission filters 1 do not overlap in a plan view from the thickness direction D1 of the mounting substrate 130.
  • At least one (two in the illustrated example) of the plurality of transmission filters 1 and the second IC chip 55 overlap each other in a plan view from the thickness direction D1 of the mounting substrate 130.
  • a part of each of the transmission filters 12 and 13 overlaps a part of the second IC chip 55, but the present invention is not limited to this, and all of the transmission filters 12 and 13 are all overlapped. May overlap a part of the second IC chip 55. Further, all of the transmission filters 12 and 13 may overlap all of the second IC chip 55.
  • the power amplifier 3 does not overlap with the low noise amplifier 18 in a plan view from the thickness direction D1 of the mounting board 130.
  • the circuit configuration of the high frequency module 100 includes a transmission circuit for transmitting a transmission signal and a reception circuit for receiving a reception signal.
  • circuit components included only in the transmission circuit and other circuit components Do not overlap in the thickness direction D1 of the mounting board 130.
  • the group of circuit components included only in the transmission circuit among the plurality of circuit components includes four transmission filters 1, a power amplifier 3, an output matching circuit 4, and a second IC chip 55.
  • the group of circuit components included only in the receiving circuit among the plurality of circuit components includes six receiving filters 2, six input matching circuits 17, and a low noise amplifier 18.
  • the group of circuit components shared by the transmit circuit and the receive circuit includes a second switch 7, four first matching circuits 6, and three second matching circuits 8.
  • the high-frequency module 100 is included only in the first region in which a group of circuit components included only in the transmission circuit among a plurality of circuit components is arranged and only in the reception circuit in a plan view from the thickness direction D1 of the mounting board 130.
  • the second area in which the group of circuit components and the group of circuit components shared by the transmission circuit and the reception circuit are arranged is separated.
  • a manufacturing method including a first step, a second step, a third step, a fourth step, and a fifth step can be adopted.
  • the first step is a step of mounting a plurality of circuit components on the mounting board 130 and arranging a plurality of external connection terminals 9.
  • a first resin material layer that covers a plurality of transmission filters 1 and the like and is a source of the first resin layer 15 is formed on the first main surface 131 side of the mounting substrate 130, and is a source of the second resin layer 20.
  • This is a step of forming the second resin material layer to be formed on the second main surface 132 side of the mounting substrate 130.
  • the first resin material layer is ground from the main surface of the first resin material layer opposite to the mounting substrate 130 side, and the piezoelectric substrates of the transmission filters 13 and 14 of the plurality of transmission filters 1 are formed. After being exposed, the first resin material layer and each piezoelectric substrate are ground to form the first resin layer 15 and thin each piezoelectric substrate.
  • the second resin material layer is ground from the main surface of the second resin material layer opposite to the mounting substrate 130 side to expose the tips of the plurality of external connection terminals 9, and then the second resin material layer is exposed. This is a step of forming the second resin layer 20 by grinding the external connection terminal 9 and the external connection terminal 9.
  • the shield layer 16 is in contact with the main surface 151 of the first resin layer 15 and the main surface 102 of each of the two transmission filters 13 and 14 of the plurality of transmission filters 1 on the side opposite to the mounting substrate 130 side.
  • a step of forming by a sputtering method, a vapor deposition method, or a printing method is, for example, a step of forming by a sputtering method, a vapor deposition method, or a printing method.
  • the high frequency module 100 includes a mounting substrate 130, first transmission filters 11 and 12, second transmission filters 13, 14 and a resin layer 15, and a shield.
  • a layer 16 is provided.
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other.
  • the first transmission filters 11 and 12 are mounted on the first main surface 131 of the mounting board 130.
  • the second transmission filters 13 and 14 are mounted on the first main surface 131 of the mounting board 130, and have a higher power class than the first transmission filters 11 and 12.
  • the resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130.
  • the shield layer 16 covers at least a part of the resin layer 15.
  • the resin layer 15 covers at least a part of the outer peripheral surfaces 103 of the first transmission filters 11 and 12, and covers at least a part of the outer peripheral surfaces 103 of the second transmission filters 13 and 14.
  • the shield layer 16 overlaps at least a part of the second transmission filters 13 and 14 in a plan view from the thickness direction D1 of the mounting substrate 130. At least a part of the main surface 102 of the second transmission filters 13 and 14 opposite to the mounting board 130 side is in contact with the shield layer 16. In other words, of the main surface 102 of the second transmission filters 13 and 14 opposite to the mounting substrate 130 side, at least a part of the portion covered by the shield layer 16 is in contact with the shield layer 16.
  • the high frequency module 100 includes a mounting substrate 130, transmission filters 13 and 14, a resin layer 15, and a shield layer 16.
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other.
  • the transmission filters 13 and 14 are at least one transmission filter of the power class 1 transmission filter and the power class 2 transmission filter mounted on the first main surface 131 of the mounting board 130.
  • the resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130.
  • the shield layer 16 covers at least a part of the resin layer 15.
  • the resin layer 15 covers at least a part of the outer peripheral surfaces 103 of the transmission filters 13 and 14.
  • the shield layer 16 overlaps at least a part of the transmission filters 13 and 14 in a plan view from the thickness direction D1 of the mounting substrate 130. At least a part of the main surface 102 of the transmission filters 13 and 14 opposite to the mounting board 130 side is in contact with the shield layer 16. In other words, of the main surface 102 of the transmission filters 13 and 14 opposite to the mounting substrate 130 side, at least a part of the portion covered by the shield layer 16 is in contact with the shield layer 16.
  • the high frequency module 100 As described above, at least a part of the main surface 102 on the side opposite to the mounting board 130 side in each of the (second) transmission filters 13 and 14 is in contact with the shield layer 16. There is. Therefore, the heat generated by the (second) transmission filters 13 and 14 can be dissipated through the shield layer 16. This makes it possible to improve heat dissipation. Then, the high frequency module 100 according to the first embodiment can stabilize the temperature characteristics of the elastic wave filters constituting each of the (second) transmission filters 13 and 14, and stabilize the characteristics of the high frequency module 100. It becomes possible to plan.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 having a relatively low power class is not brought into contact with the shield layer 16. This makes it possible to increase the print area of the high frequency module 100. Further, by preventing the main surface 102 of the transmission filters 11 and 12 from coming into contact with the shield layer 16, it is not necessary to increase the thickness of each of the piezoelectric substrates of the transmission filters 11 and 12, and the material cost is increased. Can be suppressed.
  • the shield layer 16 is the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 among the plurality of transmission filters 1. It is preferable that they are in contact with each other over the entire area. However, it is not essential that the shield layer 16 is in contact with the entire surface of the main surface 102 of the transmission filters 13 and 14.
  • the communication device 300 includes a signal processing circuit 301 and a high frequency module 100.
  • the signal processing circuit 301 is connected to the high frequency module 100.
  • the communication device 300 includes the high frequency module 100, it is possible to improve the heat dissipation.
  • the plurality of electronic components constituting the signal processing circuit 301 may be mounted on the above-mentioned circuit board, for example, or a circuit board (first circuit board) different from the circuit board (first circuit board) on which the high frequency module 100 is mounted. It may be mounted on the second circuit board).
  • Modification example (3.1) Modification example 1 The high frequency module 100a according to the first modification of the first embodiment will be described with reference to FIG. 7. Regarding the high frequency module 100a according to the first modification, the same components as the high frequency module 100 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the circuit configuration of the high frequency module 100a is the same as the circuit configuration of the high frequency module 100 according to the first embodiment described with reference to FIGS. 5 and 6.
  • the high frequency module 100a according to the first modification has a high frequency according to the first embodiment in that the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is in contact with the shield layer 16. Different from module 100.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 of the power class 2 is in contact with the shield layer 16. Therefore, it is possible to improve the heat dissipation.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is also in contact with the shield layer 16, so that the heat dissipation is further improved. It is possible to improve.
  • the high frequency module 100b according to the second modification is provided with a contact member 140A arranged on the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3. It is different from the high frequency module 100 according to 1.
  • Each of the plurality of contact members 140A has a rectangular shape in a plan view from the thickness direction D1 of the mounting substrate 130, but is not limited to this. Further, in a plan view from the thickness direction D1 of the mounting substrate 130, each of the plurality of contact members 140A has the same size as the contacting transmission filter 1 among the plurality of transmission filters 1, but is not limited to this. , It may be larger or smaller than the transmission filter 1.
  • the material of the plurality of contact members 140A is, for example, copper or a copper alloy.
  • the plurality of contact members 140A may be joined to or only in contact with the main surface 102 of the transmission filter 1.
  • the materials of the plurality of contact members 140A are preferably the same, but may be different.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 of the power class 2 is in contact with the shield layer 16. Therefore, it is possible to improve the heat dissipation.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is in contact with the shield layer 16 via the contact member 140A. , It is possible to further improve the heat dissipation.
  • the high frequency module 100c according to the third modification is different from the high frequency module 100 according to the first embodiment in that a plurality of external connection terminals 9 are ball bumps. Further, the high frequency module 100c according to the third modification is different from the high frequency module 100 according to the first embodiment in that the second resin layer 20 of the high frequency module 100 according to the first embodiment is not provided.
  • the high frequency module 100c according to the third modification is provided in the gap between the first IC chip 180 and the second IC chip 55 mounted on the second main surface 132 of the mounting board 130 and the second main surface 132 of the mounting board 130. It may be provided with an underfilled portion.
  • the material of the ball bump constituting each of the plurality of external connection terminals 9 is, for example, gold, copper, solder, or the like.
  • the plurality of external connection terminals 9 may be a mixture of an external connection terminal 9 composed of ball bumps and an external connection terminal 9 composed of columnar electrodes.
  • the high frequency module 100d according to the second embodiment will be described with reference to FIG. Regarding the high frequency module 100d according to the second embodiment, the same components as the high frequency module 100 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the circuit configuration of the high frequency module 100d is the same as the circuit configuration of the high frequency module 100 according to the first embodiment described with reference to FIGS. 5 and 6.
  • the high frequency module 100d according to the second embodiment is different from the high frequency module 100 according to the first embodiment in that it includes a plurality of metal members 140.
  • the plurality of metal members 140 are arranged on the main surface 102 of the plurality of transmission filters 1 on the side opposite to the mounting board 130 side in the transmission filters 13 and 14 of the power class 2.
  • the first resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130, and covers the outer peripheral surfaces 103 of the plurality of transmission filters 1 and the outer peripheral surfaces 143 of the plurality of metal members 140.
  • the shield layer 16 covers the first resin layer 15 and the plurality of metal members 140.
  • the plurality of metal members 140 are in contact with the shield layer 16.
  • Each of the plurality of metal members 140 has a rectangular shape in a plan view from the thickness direction D1 of the mounting substrate 130, but the present invention is not limited to this. Further, in a plan view from the thickness direction D1 of the mounting substrate 130, each of the plurality of metal members 140 has the same size as the contacting transmission filter 1 among the plurality of transmission filters 1, but is not limited to this. , It may be larger or smaller than the transmission filter 1.
  • the material of the plurality of metal members 140 is, for example, copper or a copper alloy.
  • the plurality of metal members 140 may be joined to or simply in contact with the main surface 102 of the transmission filter 1.
  • the materials of the plurality of metal members 140 are preferably the same, but may be different.
  • the high frequency module 100d includes a mounting substrate 130, first transmission filters 11 and 12, second transmission filters 13 and 14, a metal member 140, a resin layer 15, and a shield layer 16. .
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other.
  • the first transmission filters 11 and 12 are mounted on the first main surface 131 of the mounting board 130.
  • the second transmission filters 13 and 14 are mounted on the first main surface 131 of the mounting board 130, and have a higher power class than the first transmission filters 11 and 12.
  • the metal member 140 is arranged on the main surface 102 of the second transmission filters 13 and 14 opposite to the mounting substrate 130 side.
  • the resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130.
  • the shield layer 16 covers at least a part of the resin layer 15.
  • the resin layer 15 covers at least a part of the outer peripheral surface 103 of the first transmission filters 11 and 12, covers at least a part of the outer peripheral surface 103 of the second transmission filters 13 and 14, and the outer peripheral surface 143 of the metal member 140. Covers at least part of.
  • the shield layer 16 overlaps at least a part of the metal member 140 in a plan view from the thickness direction D1 of the mounting substrate 130. At least a part of the main surface 141 of the metal member 140 opposite to the mounting substrate 130 side is in contact with the shield layer 16. In other words, of the main surface 141 of the metal member 140 opposite to the mounting substrate 130 side, at least a part of the portion covered by the shield layer 16 is in contact with the shield layer 16.
  • the high frequency module 100d includes a mounting substrate 130, transmission filters 13 and 14, a metal member 140, a resin layer 15, and a shield layer 16.
  • the mounting board 130 has a first main surface 131 and a second main surface 132 facing each other.
  • the transmission filters 13 and 14 are at least one transmission filter of the power class 1 transmission filter and the power class 2 transmission filter mounted on the first main surface 131 of the mounting board 130.
  • the metal member 140 is arranged on the main surface 102 of the transmission filters 13 and 14 opposite to the mounting board 130 side.
  • the resin layer 15 is arranged on the first main surface 131 of the mounting substrate 130.
  • the shield layer 16 covers at least a part of the resin layer 15.
  • the resin layer 15 covers at least a part of the outer peripheral surface 103 of the transmission filters 13 and 14, and also covers at least a part of the outer peripheral surface 143 of the metal member 140.
  • the shield layer 16 overlaps at least a part of the metal member 140 in a plan view from the thickness direction D1 of the mounting substrate 130. At least a part of the main surface 141 of the metal member 140 opposite to the mounting substrate 130 side is in contact with the shield layer 16. In other words, of the main surface 141 of the metal member 140 opposite to the mounting substrate 130 side, at least a part of the portion covered by the shield layer 16 is in contact with the shield layer 16.
  • the high frequency module 100d according to the second embodiment as described above, the main surface 102 of the (second) transmission filters 13 and 14 opposite to the mounting substrate 130 side is in contact with the shield layer 16 via the metal member 140. ing. Therefore, the heat generated by the (second) transmission filters 13 and 14 can be dissipated through the metal member 140 and the shield layer 16. This makes it possible to improve heat dissipation. Then, the high frequency module 100d according to the second embodiment can stabilize the temperature characteristics of the elastic wave filters constituting each of the (second) transmission filters 13 and 14, and stabilize the characteristics of the high frequency module 100. It becomes possible to plan.
  • the high frequency module 100e according to the first modification of the second embodiment will be described with reference to FIG. Regarding the high frequency module 100e according to the first modification, the same components as the high frequency module 100d according to the second embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the circuit configuration of the high frequency module 100e is the same as the circuit configuration of the high frequency module 100 according to the first embodiment described with reference to FIGS. 5 and 6.
  • the high frequency module 100e according to the first modification is further provided with a contact member 140A arranged on the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3. It is different from the high frequency module 100d according to the second embodiment.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 of the power class 2 is interposed via the metal member 140. Since it is in contact with the shield layer 16, it is possible to improve heat dissipation.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is in contact with the shield layer 16 via the contact member 140A. , It is possible to further improve the heat dissipation.
  • Modification 2 The high frequency module 100f according to the second modification of the second embodiment will be described with reference to FIG. Regarding the high frequency module 100f according to the second modification, the same components as the high frequency module 100d according to the second embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the circuit configuration of the high frequency module 100f is the same as the circuit configuration of the high frequency module 100 according to the first embodiment described with reference to FIGS. 5 and 6.
  • the high frequency module 100f according to the second modification has a high frequency according to the second embodiment in that the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is in contact with the shield layer 16. It is different from the module 100d.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 of the power class 2 is via the metal member 140. Since it is in contact with the shield layer 16, it is possible to improve heat dissipation.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 11 and 12 of the power class 3 is in contact with the shield layer 16, so that the heat dissipation is further improved. It is possible to improve.
  • first and second embodiments are only one of various embodiments of the present invention.
  • the above-mentioned first and second embodiments can be variously modified according to the design and the like as long as the object of the present invention can be achieved.
  • the number of transmission filters 1 may be plural, and is not limited to four. Further, it is sufficient that the main surface 102 of the plurality of transmission filters 1 on the side opposite to the mounting board 130 side in the transmission filter 1 having a relatively high power class is in contact with the shield layer 16, and the main surface 102 is the first resin layer.
  • the transmission filter 1 covered by 15 may be included.
  • the plurality of transmission filters 1 and the plurality of reception filters 2 may be filters constituting a duplexer. That is, the transmission filter 11 and the reception filter 21 form the first duplexer, the transmission filter 12 and the reception filter 22 form the second duplexer, and the transmission filter 13 and the reception filter 23 form the third duplexer.
  • the transmit filter 14 and the receive filter 24 may form a fourth duplexer. In this case, at least the main surface of each of the third duplexer and the fourth duplexer opposite to the mounting substrate 130 side should be in direct or indirect contact with the shield layer 16 (via the metal member 140). Just do it.
  • the main surface 102 on the side of the transmission filters 13 and 14 opposite to the mounting substrate 130 side and the main surface 151 of the resin layer 15 are substantially flush with each other. Not limited to.
  • each of the plurality of transmission filters 1 and the plurality of reception filters 2 is not limited to the surface acoustic wave filter, and may be, for example, a BAW (Bulk Acoustic Wave) filter.
  • the resonator in the BAW filter is, for example, FBAR (Film Bulk Acoustic Resonator) or SMR (Solidly Mounted Resonator).
  • the BAW filter has a substrate.
  • the substrate is, for example, a silicon substrate.
  • each of the plurality of transmission filters 1 and the plurality of reception filters 2 is not limited to the ladder type filter, and may be, for example, a vertically coupled resonator type surface acoustic wave filter.
  • the above-mentioned elastic wave filter is an elastic wave filter that utilizes a surface acoustic wave or a bulk elastic wave, but is not limited to this, and may be, for example, an elastic wave filter that utilizes an elastic boundary wave, a plate wave, or the like. good.
  • the power amplifier 3 is not limited to the differential amplifier circuit, but has a configuration including a driver stage amplifier, an output stage amplifier, and an interstage matching circuit for matching the impedances of the driver stage amplifier and the output stage amplifier.
  • the interstage matching circuit is, for example, an inductor provided between the driver stage amplifier and the output stage amplifier, but may further include a capacitor in addition to the inductor.
  • the number of amplifier stages in the power amplifier 3 is not limited to two, and may be one or three or more.
  • the number of input matching circuits 17 is not limited to a plurality, and may be one.
  • the plurality of circuit components include circuit components that are electrically connected to the mounting board 130 via bumps and circuit components that are electrically connected to the mounting board 130 via solder. However, for example, it may include circuit components that are electrically connected to the mounting board 130 via a bonding wire.
  • the high-frequency module 100 may further include a heat-dissipating conductor portion that is arranged on the second main surface 132 of the mounting board 130 and overlaps with the power amplifier 3 in the thickness direction D1 of the mounting board 130.
  • a part of the plurality of external connection terminals 9 may form a heat dissipation conductor portion.
  • the main surface 102 on the side opposite to the mounting board 130 side in each of the plurality of transmission filters 13 and 14 is directly or indirectly ( It is in contact with the shield layer 16 (via the metal member 140), but is not limited to this.
  • the main surface 102 of one of the plurality of transmission filters 13 and 14 may be in direct or indirect contact with the shield layer 16.
  • the high frequency module 100a according to the first modification of the first embodiment, the high frequency module 100b according to the second modification of the first embodiment, the high frequency module 100e according to the first modification of the second embodiment, and the second modification of the second embodiment.
  • the main surface 102 of each of the plurality of transmission filters 11 and 12 opposite to the mounting substrate 130 side is in direct or indirect contact with the shield layer 16 (via the metal member 140).
  • the main surface 102 of one of the plurality of transmission filters 11 and 12 may be in direct or indirect contact with the shield layer 16.
  • the entire outer peripheral surface 103 of each of the transmission filters 11, 12, 13, and 14 is covered with the first resin layer 15, but a part of the outer peripheral surface 103 is covered with the first resin layer. It may be covered by 15. Further, in the high frequency modules 100, 100a to 100c, all of the main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 is in contact with the shield layer 16, but a part of the main surface 102 is in contact with the shield layer 16. It may be in contact with the shield layer 16.
  • the entire outer peripheral surface 143 of each of the plurality of metal members 140 is covered with the first resin layer 15, but a part of the outer peripheral surface 143 is covered with the first resin layer 15. May be. Further, in the high frequency modules 100d to 100f, all of the main surface 142 on the side opposite to the mounting board 130 side in each of the plurality of metal members 140 is in contact with the shield layer 16, but a part of the main surface 142 is in contact with the shield layer. It may be in contact with 16.
  • the entire main surface 102 of the transmission filters 11 and 12 opposite to the mounting board 130 side is in contact with the shield layer 16, but a part of the main surface 102 is in the shield layer 16. You may be in contact.
  • all of the main surface 142 on the side opposite to the mounting board 130 side in each of the plurality of contact members 140A is in contact with the shield layer 16, but a part of the main surface 142 is in contact with the shield layer. It may be in contact with 16.
  • the entire main surface 102 on the side opposite to the mounting board 130 side in each of the transmission filters 13 and 14 is covered with the shield layer 16, but a part of the main surface 102. May be covered with the shield layer 16.
  • the entire main surface 142 on the side opposite to the mounting substrate 130 side in each of the plurality of metal members 140 is covered with the shield layer 16, but a part of the main surface 142 is shielded. It may be covered with a layer 16.
  • the high frequency modules 100, 100a to 100f include, but are not limited to, the transmission filters 11 and 12 of the power class 3 and the transmission filters 13 and 14 of the power class 2.
  • the high frequency module may include, for example, a power class 1 transmission filter, a power class 2 transmission filter, and a power class 3 transmission filter.
  • at least a part of the main surface of the power class 1 transmission filter opposite to the mounting board 130 side needs to be in contact with the shield layer 16, and each of the power class 2 transmission filter and the power class 3 transmission filter With respect to, at least a part of the main surface of the transmission filter on the side opposite to the mounting board 130 side may or may not be in contact with the shield layer 16.
  • the high frequency module may include, for example, a power class 1 transmission filter and a power class 2 transmission filter.
  • a power class 1 transmission filter and a power class 2 transmission filter.
  • the shield layer 16 which is opposite to the mounting board 130 side in the power class 2 transmission filter.
  • At least a part of the main surface on the side may or may not be in contact with the shield layer 16.
  • the high frequency module may include, for example, a power class 1 transmission filter and a power class 3 transmission filter.
  • a power class 1 transmission filter and a power class 3 transmission filter.
  • at least a part of the main surface opposite to the mounting board 130 side in the power class 1 transmission filter needs to be in contact with the shield layer 16, which is opposite to the mounting board 130 side in the power class 3 transmission filter.
  • At least a part of the main surface on the side may or may not be in contact with the shield layer 16.
  • the high frequency module may include, for example, only a plurality of transmission filters of power class 1. In this case, at least a part of the main surface of at least one of the plurality of transmission filters of power class 1 opposite to the mounting board 130 side may be in contact with the shield layer 16. Further, the high frequency module may include, for example, only a plurality of transmission filters of power class 2. In this case, at least a part of the main surface of at least one of the plurality of power class 2 transmission filters opposite to the mounting board 130 side may be in contact with the shield layer 16.
  • the first communication band is n3 of the 5G NR standard
  • the second communication band is n1 of the 5G NR standard
  • Each of the first communication band and the second communication band may be, for example, any of n1, n3, n25 and n66 of the 5G NR standard.
  • the fifth communication band is the Band 34 of the 3GPP LTE standard
  • the sixth communication band is the Band 39 of the 3GPP LTE standard, but the present invention is not limited to this.
  • Each of the fifth communication band and the sixth communication band may be, for example, any one of Band34, Band39, Band7, Band30, Band11, Band21, and Band32 of the 3GPP LTE standard.
  • the circuit configuration of the high frequency modules 100, 100a, 100b, 100c, 100d, 100e, 100f is not limited to the above example. Further, the high frequency modules 100, 100a, 100b, 100c, 100d, 100e, 100f may have, for example, a MIMO (Multi Input Multi Output) compatible high frequency front end circuit as a circuit configuration.
  • MIMO Multi Input Multi Output
  • the communication device 300 may include any one of the high frequency modules 100a, 100b, 100c, 100d, 100e, and 100f instead of the high frequency module 100.
  • the high frequency module (100; 100a; 100b) includes a mounting substrate (130), a first transmission filter (11, 12), a second transmission filter (13, 14), and a resin layer (15). ) And a shield layer (16).
  • the mounting board (130) has a first main surface (131) and a second main surface (132) facing each other.
  • the first transmission filter (11, 12) is mounted on the first main surface (131) of the mounting board (130).
  • the second transmission filter (13, 14) is mounted on the first main surface (131) of the mounting board (130), and has a higher power class than the first transmission filter (11, 12).
  • the resin layer (15) is arranged on the first main surface (131) of the mounting substrate (130).
  • the shield layer (16) covers at least a part of the resin layer (15).
  • the resin layer (15) covers at least a part of the outer peripheral surface (103) of the first transmission filter (11, 12) and at least a part of the outer peripheral surface (103) of the second transmission filter (13, 14). Covering.
  • the shield layer (16) overlaps at least a part of the second transmission filter (13, 14) in a plan view from the thickness direction (D1) of the mounting substrate (130). At least a part of the main surface (102) on the side opposite to the mounting board (130) side in the second transmission filter (13, 14) is in contact with the shield layer (16).
  • the second transmission filter (13, 14) is in contact with the shield layer (16).
  • the heat generated by the transmission filters (13, 14) can be dissipated through the shield layer (16), and as a result, the heat dissipation can be improved.
  • the high frequency module (100d; 100e; 100f) includes a mounting substrate (130), a first transmission filter (11, 12), a second transmission filter (13, 14), and a metal member (140). ), A resin layer (15), and a shield layer (16).
  • the mounting board (130) has a first main surface (131) and a second main surface (132) facing each other.
  • the first transmission filter (11, 12) is mounted on the first main surface (131) of the mounting board (130).
  • the second transmission filter (13, 14) is mounted on the first main surface (131) of the mounting board (130), and has a higher power class than the first transmission filter (11, 12).
  • the metal member (140) is arranged on the main surface (102) of the second transmission filter (13, 14) opposite to the mounting substrate (130) side.
  • the resin layer (15) is arranged on the first main surface (131) of the mounting substrate (130).
  • the shield layer (16) covers at least a part of the resin layer (15).
  • the resin layer (15) covers at least a part of the outer peripheral surface (103) of the first transmission filter (11, 12) and covers at least a part of the outer peripheral surface (103) of the second transmission filter (13, 14). Moreover, it covers at least a part of the outer peripheral surface (143) of the metal member (140).
  • the shield layer (16) overlaps at least a part of the metal member (140) in a plan view from the thickness direction (D1) of the mounting substrate (130). At least a part of the main surface (141) of the metal member (140) opposite to the mounting substrate (130) side is in contact with the shield layer (16).
  • the main surface (102) of the second transmission filter (13, 14) opposite to the mounting substrate (130) side is in contact with the shield layer (16) via the metal member (140). Therefore, the heat generated by the second transmission filter (13, 14) can be dissipated through the metal member (140) and the shield layer (16), and as a result, the heat dissipation can be improved. ..
  • the high frequency module (100; 100a; 100b) includes a mounting substrate (130), a transmission filter (13, 14), a resin layer (15), and a shield layer (16).
  • the mounting board (130) has a first main surface (131) and a second main surface (132) facing each other.
  • the transmission filters (13, 14) are at least one transmission filter of the power class 1 transmission filter and the power class 2 transmission filter mounted on the first main surface (131) of the mounting board (130).
  • the resin layer (15) is arranged on the first main surface (131) of the mounting substrate (130).
  • the shield layer (16) covers at least a part of the resin layer (15).
  • the resin layer (15) covers at least a part of the outer peripheral surface (103) of the transmission filter (13, 14).
  • the shield layer (16) overlaps at least a part of the transmission filter (13, 14) in a plan view from the thickness direction (D1) of the mounting substrate (130). At least a part of the main surface (102) of the transmission filter (13, 14) opposite to the mounting board (130) side is in contact with the shield layer (16).
  • the transmission filter (13) is used. , 14) can be dissipated through the shield layer (16), and as a result, the heat dissipation can be improved.
  • the high frequency module (100d; 100e; 100f) includes a mounting substrate (130), a transmission filter (13, 14), a metal member (140), a resin layer (15), and a shield layer (15). 16) and.
  • the mounting board (130) has a first main surface (131) and a second main surface (132) facing each other.
  • the transmission filters (13, 14) are at least one transmission filter of the power class 1 transmission filter and the power class 2 transmission filter mounted on the first main surface (131) of the mounting board (130).
  • the metal member (140) is arranged on the main surface (102) of the transmission filter (13, 14) opposite to the mounting substrate (130) side.
  • the resin layer (15) is arranged on the first main surface (131) of the mounting substrate (130).
  • the shield layer (16) covers at least a part of the resin layer (15).
  • the resin layer (15) covers at least a part of the outer peripheral surface (103) of the transmission filter (13, 14) and covers at least a part of the outer peripheral surface (143) of the metal member (140).
  • the shield layer (16) overlaps at least a part of the metal member (140) in a plan view from the thickness direction (D1) of the mounting substrate (130). At least a part of the main surface (141) of the metal member (140) opposite to the mounting substrate (130) side is in contact with the shield layer (16).
  • the main surface (102) of the transmission filter (13, 14) opposite to the mounting substrate (130) side is in contact with the shield layer (16) via the metal member (140).
  • the heat generated by the transmission filters (13, 14) can be dissipated through the metal member (140) and the shield layer (16), and as a result, the heat dissipation can be improved.
  • the high frequency module (100a; 100f) further includes a power class 3 transmission filter (11, 12) in the fourth or fifth aspect.
  • the transmission filter (11, 12) of the power class 3 is separate from the transmission filter (13, 14) and is mounted on the first main surface (131) of the mounting board (130). At least a part of the main surface (102) on the side opposite to the mounting board (130) side in the transmission filter (11, 12) of the power class 3 is in contact with the shield layer (16).
  • the power class since at least a part of the main surface (102) on the side opposite to the mounting board (130) side in the transmission filter (11, 12) of the power class 3 is in contact with the shield layer (16), the power class The heat generated by the transmission filters (11, 12) of No. 3 can be dissipated through the shield layer (16), and as a result, the heat dissipation can be further improved.
  • the high frequency module (100b; 100e) according to the seventh aspect further includes a power class 3 transmission filter (11, 12) and a contact member (140A) in the fourth or fifth aspect.
  • the transmission filter (11, 12) of the power class 3 is separate from the transmission filter (13, 14) and is mounted on the first main surface (131) of the mounting board (130).
  • the contact member (140A) is made of a metal material and is arranged on a main surface (102) of a power class 3 transmission filter (11, 12) opposite to the mounting substrate (130) side. At least a part of the main surface (141) of the contact member (140A) opposite to the mounting substrate (130) side is in contact with the shield layer (16).
  • the main surface (102) of the power class 3 transmission filter (11, 12) opposite to the mounting board (130) side is in contact with the shield layer (16) via the contact member (140A). Therefore, the heat generated by the transmission filter (11, 12) of the power class 3 can be dissipated through the contact member (140A) and the shield layer (16), and as a result, the heat dissipation can be improved. It will be possible.
  • the communication device (300) according to the eighth aspect includes a high frequency module (100; 100a to 100f) according to any one of the first to seventh aspects, and a signal processing circuit (301).
  • the signal processing circuit (301) is connected to a high frequency module (100; 100a to 100f).
  • a high frequency module (100; 100a to 100f) is provided, it is possible to improve heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

放熱性の向上を図る。高周波モジュール(100)は、実装基板(130)と、第1送信フィルタ(11,12)と、第2送信フィルタ(13,14)と、樹脂層(15)と、シールド層(16)と、を備える。第2送信フィルタ(13,14)は、第1送信フィルタ(11,12)よりもパワークラスが高い。樹脂層(15)は、第1送信フィルタ(11,12)の外周面(103)の少なくとも一部を覆い、かつ、第2送信フィルタ(13,14)の外周面(103)の少なくとも一部を覆っている。シールド層(16)は、実装基板(130)の厚さ方向(D1)からの平面視において第2送信フィルタ(13,14)の少なくとも一部に重なっている。第2送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)の少なくとも一部は、シールド層(16)に接している。

Description

高周波モジュール及び通信装置
 本発明は、一般に高周波モジュール及び通信装置に関し、より詳細には、送信フィルタを備える高周波モジュール、及び高周波モジュールを備える通信装置に関する。
 特許文献1には、互いに対向する第1主面及び第2主面を有する実装基板と、実装基板の第1主面に実装された送信フィルタと、送信フィルタを覆っている樹脂部材(樹脂層)と、シールド電極層(シールド層)と、を備える高周波モジュールが開示されている。
 特許文献1に開示された高周波モジュールでは、シールド電極層は、樹脂部材の天面及び側面を覆うように形成されている。
 また、特許文献1には、高周波モジュールを備える通信装置が開示されている。
国際公開第2019/181590号
 高周波モジュールにおいては、送信フィルタの温度上昇を抑制するために放熱性の向上が求められる場合がある。
 本発明の目的は、放熱性の向上を図ることが可能な高周波モジュール及び通信装置を提供することにある。
 本発明の一態様に係る高周波モジュールは、実装基板と、第1送信フィルタと、第2送信フィルタと、樹脂層と、シールド層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記第1送信フィルタは、前記実装基板の前記第1主面に実装されている。前記第2送信フィルタは、前記実装基板の前記第1主面に実装されており、前記第1送信フィルタよりもパワークラスが高い。前記樹脂層は、前記実装基板の前記第1主面に配置されている。前記シールド層は、前記樹脂層の少なくとも一部を覆っている。前記樹脂層は、前記第1送信フィルタの外周面の少なくとも一部を覆い、かつ、前記第2送信フィルタの外周面の少なくとも一部を覆っている。前記シールド層は、前記実装基板の厚さ方向からの平面視において前記第2送信フィルタの少なくとも一部に重なっている。前記第2送信フィルタにおける前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している。
 本発明の一態様に係る高周波モジュールは、実装基板と、第1送信フィルタと、第2送信フィルタと、金属部材と、樹脂層と、シールド層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記第1送信フィルタは、前記実装基板の前記第1主面に実装されている。前記第2送信フィルタは、前記実装基板の前記第1主面に実装されており、前記第1送信フィルタよりもパワークラスが高い。前記金属部材は、前記第2送信フィルタにおける前記実装基板側とは反対側の主面に配置されている。前記樹脂層は、前記実装基板の前記第1主面に配置されている。前記シールド層は、前記樹脂層の少なくとも一部を覆っている。前記樹脂層は、前記第1送信フィルタの外周面の少なくとも一部を覆い、前記第2送信フィルタの外周面の少なくとも一部を覆い、かつ、前記金属部材の外周面の少なくとも一部を覆っている。前記シールド層は、前記実装基板の厚さ方向からの平面視において前記金属部材の少なくとも一部に重なっている。前記金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している。
 本発明の一態様に係る高周波モジュールは、実装基板と、送信フィルタと、樹脂層と、シールド層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記送信フィルタは、前記実装基板の前記第1主面に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。前記樹脂層は、前記実装基板の前記第1主面に配置されている。前記シールド層は、前記樹脂層の少なくとも一部を覆っている。前記樹脂層は、前記少なくとも一方の送信フィルタの外周面の少なくとも一部を覆っている。前記シールド層は、前記実装基板の厚さ方向からの平面視において前記少なくとも一方の送信フィルタの少なくとも一部に重なっている。前記少なくとも一方の送信フィルタにおける前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している。
 本発明の一態様に係る高周波モジュールは、実装基板と、送信フィルタと、金属部材と、樹脂層と、シールド層と、を備える。前記実装基板は、互いに対向する第1主面及び第2主面を有する。前記送信フィルタは、前記実装基板の前記第1主面に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。前記金属部材は、前記少なくとも一方の送信フィルタにおける前記実装基板側とは反対側の主面に配置されている。前記樹脂層は、前記実装基板の前記第1主面に配置されている。前記シールド層は、前記樹脂層の少なくとも一部を覆っている。前記樹脂層は、前記少なくとも一方の送信フィルタの外周面の少なくとも一部を覆い、かつ、前記金属部材の外周面の少なくとも一部を覆っている。前記シールド層は、前記実装基板の厚さ方向からの平面視において前記金属部材の少なくとも一部に重なっている。前記金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路と、を備える。前記信号処理回路は、前記高周波モジュールに接続されている。
 本発明の一態様に係る高周波モジュール及び通信装置は、放熱性の向上を図ることが可能となる。
図1は、実施形態1に係る高周波モジュールに関し、シールド層及び樹脂層を省略した平面図である。 図2は、同上の高周波モジュールに関し、実装基板の第2主面と、実装基板の第2主面に配置された回路部品及び複数の外部接続端子と、を実装基板の第1主面側から透視した平面図である。 図3は、同上の高周波モジュールに関し、図1のX-X線断面図である。 図4は、同上の高周波モジュールに関し、図1のY-Y線断面図である。 図5は、同上の高周波モジュールを備える通信装置の回路構成図である。 図6は、同上の高周波モジュールのパワーアンプ及び出力整合回路の一部の回路図である。 図7は、実施形態1の変形例1に係る高周波モジュールの断面図である。 図8は、実施形態1の変形例2に係る高周波モジュールの断面図である。 図9は、実施形態1の変形例3に係る高周波モジュールの断面図である。 図10は、実施形態2に係る高周波モジュールの断面図である。 図11は、実施形態2の変形例1に係る高周波モジュールの断面図である。 図12は、実施形態2の変形例2に係る高周波モジュールの断面図である。
 以下の実施形態1,2等において参照する図1~図4、図7~図12は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 実施形態1に係る高周波モジュール100は、図1~図4に示すように、実装基板130と、第1送信フィルタ11,12と、第2送信フィルタ13,14と、樹脂層15と、シールド層16と、を備える。実装基板130は、互いに対向する第1主面131及び第2主面132を有する。第1送信フィルタ11,12は、実装基板130の第1主面131に実装されている。第2送信フィルタ13,14は、実装基板130の第1主面131に実装されており、第1送信フィルタ11,12よりもパワークラスが高い。第1送信フィルタ11,12は、例えば、パワークラス3の送信フィルタである。第2送信フィルタ13,14は、例えば、パワークラス2の送信フィルタである。樹脂層15は、実装基板130の第1主面131に配置されており、第1送信フィルタ11,12の外周面103の少なくとも一部を覆い、かつ、第2送信フィルタ13,14の外周面103の少なくとも一部を覆っている。実施形態1では、樹脂層15は、第1送信フィルタ11,12の外周面103の全部を覆い、かつ、第2送信フィルタ13,14の外周面103の全部を覆っている。シールド層16は、樹脂層15の少なくとも一部を覆っている。また、シールド層16は、実装基板130の厚さ方向D1からの平面視において第2送信フィルタ13,14の少なくとも一部に重なっている。実施形態1では、シールド層16は、実装基板130の厚さ方向D1からの平面視において第2送信フィルタ13,14の全部に重なっている。第2送信フィルタ13,14における実装基板130側とは反対側の主面102の少なくとも一部は、シールド層16に接している。言い換えると、第2送信フィルタ13,14における実装基板130側とは反対側の主面102のうち、シールド層16により覆われている部分の少なくとも一部は、シールド層16に接している。実施形態1では、第2送信フィルタ13,14における実装基板130側とは反対側の主面102の全部がシールド層16に接している。これにより、実施形態1に係る高周波モジュール100は、放熱性の向上を図ることが可能となる。
 ここにおいて「パワークラス」とは、3GPPで決められたPower classのことをいい、最大送信電力が大きい送信フィルタほどパワークラスが高くなる。具体的には、パワークラス1の送信フィルタ、パワークラス2の送信フィルタ、パワークラス3の送信フィルタの順にパワークラスが低くなる。パワークラス1の送信フィルタの最大送信電力は、29dBmである。パワークラス2の送信フィルタの最大送信電力は、26dBmである。パワークラス3の送信フィルタの最大送信電力は、23dBmである。また、5G NRにおいても、3GPPと同様に、Power classが決められている。
 以下、実施形態1に係る高周波モジュール100及び通信装置300について、図1~図9を参照して説明する。
 (1)高周波モジュール及び通信装置
 (1.1)高周波モジュール及び通信装置の回路構成
 まず、実施形態1に係る高周波モジュール100及び通信装置300の回路構成について、図5及び図6を参照して説明する。
 実施形態1に係る高周波モジュール100は、例えば、マルチモード/マルチバンド対応の通信装置300に用いられる。通信装置300は、例えば、携帯電話(例えば、スマートフォン)であるが、これに限らず、例えば、ウェアラブル端末(例えば、スマートウォッチ)であってもよい。高周波モジュール100は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格に対応可能なモジュールである。4G規格は、例えば、3GPP LTE規格(LTE:Long Term Evolution)である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール100は、例えば、キャリアアグリゲーション及びデュアルコネクティビティに対応可能なモジュールである。ここで、キャリアアグリゲーション及びデュアルコネクティビティとは、複数の周波数帯域の電波を同時に使用する通信をいう。
 高周波モジュール100は、例えば、信号処理回路301から入力された第1周波数帯域(例えば、1710MHz-1980MHz)の送信信号(高周波信号)を増幅してアンテナA1(以下、第1アンテナA1とも称する)に出力できるように構成されている。また、高周波モジュール100は、例えば、信号処理回路301から入力された第2周波数帯域(例えば、2300MHz-2690MHz)の送信信号(高周波信号)を増幅してアンテナA2(以下、第2アンテナA2とも称する)に出力できるように構成されている。また、高周波モジュール100は、第1アンテナA1から入力された第1周波数帯域の受信信号(高周波信号)を増幅して信号処理回路301に出力できるように構成されている。また、高周波モジュール100は、第2アンテナA2から入力された第2周波数帯域の受信信号(高周波信号)を増幅して信号処理回路301に出力できるように構成されている。また、高周波モジュール100は、アンテナA3(以下、第3アンテナA3とも称する)から入力された第3周波数帯域(例えば、1880MHz-2025MHz)の受信信号(高周波信号)を増幅して信号処理回路301に出力できるように構成されている。
 信号処理回路301は、高周波モジュール100の構成要素ではなく、高周波モジュール100を備える通信装置300の構成要素である。高周波モジュール100は、例えば、通信装置300が備える信号処理回路301によって制御される。通信装置300は、高周波モジュール100と、信号処理回路301と、を備える。通信装置300は、第1アンテナA1と、第2アンテナA2と、第3アンテナA3と、を更に備える。通信装置300は、高周波モジュール100が実装された回路基板を更に備える。回路基板は、例えば、プリント配線板である。回路基板は、グランド電位が与えられるグランド電極を有する。
 信号処理回路301は、例えば、RF信号処理回路302と、ベースバンド信号処理回路303と、を含む。RF信号処理回路302は、例えば、RFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路302は、例えば、ベースバンド信号処理回路303から出力された高周波信号(送信信号)に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を高周波モジュール100へ出力する。また、RF信号処理回路302は、例えば、高周波モジュール100から出力された高周波信号(受信信号)に対してダウンコンバート等の信号処理を行い、信号処理が行われた高周波信号をベースバンド信号処理回路303へ出力する。
 ベースバンド信号処理回路303は、例えば、BBIC(Baseband Integrated Circuit)である。ベースバンド信号処理回路303は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路303は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。ベースバンド信号処理回路303で処理された受信信号は、例えば、画像信号として画像表示のために、又は、音声信号として通話のために使用される。高周波モジュール100は、第1アンテナA1、第2アンテナA2及び第3アンテナA3と信号処理回路301のRF信号処理回路302との間で高周波信号(受信信号、送信信号)を伝達する。
 高周波モジュール100は、複数(図示例では4つ)の送信フィルタ1を備える。また、高周波モジュール100は、パワーアンプ3と、出力整合回路4と、を備える。また、高周波モジュール100は、複数(図示例では6つ)の受信フィルタ2を備える。また、高周波モジュール100は、ローノイズアンプ18と、複数(図示例では6つ)の入力整合回路17と、を備える。また、高周波モジュール100は、第1スイッチ5と、第2スイッチ7と、を備える。また、高周波モジュール100は、コントローラ19を備える。また、高周波モジュール100は、第2スイッチ7と複数の送信フィルタ1との間に接続されている複数(図示例では4つ)の整合回路6を備える。また、高周波モジュール100は、第2スイッチ7と複数(図示例では3つ)のアンテナ端子91A、91B、91Cとの間に接続されている複数(図示例では3つ)の整合回路8を備える。
 複数の送信フィルタ1は、互いに異なる通過帯域を有する。以下では、4つの送信フィルタ1を区別して説明する場合に、4つの送信フィルタ1をそれぞれ、送信フィルタ11、送信フィルタ12、送信フィルタ13、送信フィルタ14と称することもある。また、複数の受信フィルタ2は、互いに異なる通過帯域を有する。以下では、6つの受信フィルタ2を区別して説明する場合に、6つの受信フィルタ2をそれぞれ、受信フィルタ21、受信フィルタ22、受信フィルタ23、受信フィルタ24、受信フィルタ25、受信フィルタ26と称することもある。
 また、高周波モジュール100は、複数の外部接続端子9を備える。複数の外部接続端子9は、複数(図示例では3つ)アンテナ端子91A、91B、91Cと、信号入力端子92と、信号出力端子93と、制御端子94と、複数のグランド端子95(図2~図4参照)と、を含む。複数のグランド端子95は、通信装置300が備える上述の回路基板のグランド電極と電気的に接続されてグランド電位が与えられる端子である。
 送信フィルタ11は、例えば、第1通信バンドの送信帯域を通過帯域とするフィルタである。送信フィルタ12は、例えば、第2通信バンドの送信帯域を通過帯域とするフィルタである。送信フィルタ13は、例えば、第3通信バンドの送信帯域を通過帯域とするフィルタである。送信フィルタ14は、例えば、第4通信バンドの送信帯域を通過帯域とするフィルタである。第1通信バンドは、送信フィルタ11を通る送信信号に対応し、例えば、5G NR規格のn3である。第2通信バンドは、送信フィルタ12を通る送信信号に対応し、例えば、5G NR規格のn1である。第3通信バンドは、送信フィルタ13を通る送信信号に対応し、例えば、5G NR規格のn40である。第4通信バンドは、送信フィルタ14を通る送信信号に対応し、例えば、5G NR規格のn41である。実施形態1に係る高周波モジュール100では、送信フィルタ11,12がパワークラス3の送信フィルタであり、送信フィルタ13,14がパワークラス2の送信フィルタである。言い換えると、送信フィルタ11,12は、パワークラスが相対的に低い第1送信フィルタであり、送信フィルタ13,14は、パワークラスが相対的に高い第2送信フィルタである。
 パワーアンプ3は、入力端子及び出力端子を有する。パワーアンプ3は、入力端子に入力された第1周波数帯域及び第2周波数帯域の送信信号を増幅して出力端子から出力する。ここにおいて、第1周波数帯域は、例えば、第1通信バンドと第2通信バンドとを含む。第2周波数帯域は、例えば、第3通信バンドと第4通信バンドとを含む。パワーアンプ3の入力端子は、信号入力端子92に接続されている。パワーアンプ3の入力端子は、信号入力端子92を介して信号処理回路301に接続される。信号入力端子92は、外部回路(例えば、信号処理回路301)からの高周波信号(送信信号)を高周波モジュール100に入力するための端子である。パワーアンプ3の出力端子は、出力整合回路4を介して第1スイッチ5の共通端子50に接続されている。
 パワーアンプ3は、例えば、図6に示すように、ドライバ段増幅器31と、2つの最終段増幅器32A,32Bと、第1トランスT1を有する非平衡-平衡変換回路33(以下、第1バラン33と称する)と、を備えている。ドライバ段増幅器31、最終段増幅器32A及び最終段増幅器32Bの各々は、増幅用トランジスタを含んでいる。第1トランスT1は、一次側インダクタL10と、二次側インダクタL11と、を含む。一次側インダクタL10は、非平衡端子331とグランドとの間に接続されている。第1バラン33は、非平衡端子331と、一対の平衡端子332A、332Bと、を有する。パワーアンプ3では、ドライバ段増幅器31の入力端子が信号入力端子92に接続され、ドライバ段増幅器31の出力端子が非平衡端子331に接続されている。また、パワーアンプ3では、最終段増幅器32Aの入力端子が平衡端子332Aに接続され、最終段増幅器32Bの入力端子が平衡端子332Bに接続されている。パワーアンプ3では、ドライバ段増幅器31の入力端子が、パワーアンプ3の入力端子を構成し、2つの最終段増幅器32A,32Bの各々の出力端子が、パワーアンプ3の出力端子を構成している。パワーアンプ3は、差動増幅回路を構成している。なお、ドライバ段増幅器31の出力端子には、電圧Vcc1が印加される。
 出力整合回路4は、パワーアンプ3の出力端子と第1スイッチ5の共通端子50との間の信号経路に設けられている。出力整合回路4は、パワーアンプ3と複数の送信フィルタ1とのインピーダンス整合をとるための回路である。出力整合回路4は、例えば、第2トランスT2を有する平衡-非平衡変換回路41(以下、第2バラン41と称する)と、複数の回路素子42(図1参照)と、を備える。第2バラン41は、一対の平衡端子411A,411Bと、非平衡端子412と、を有する。出力整合回路4では、平衡端子411Aが最終段増幅器32Aの出力端子に接続され、平衡端子411Bが最終段増幅器32Bの出力端子に接続され、非平衡端子412が、第1スイッチ5の共通端子50に接続されている。第2トランスT2は、一例として、4つのインダクタ要素L1、L2、L3、L4を有している。第2トランスT2では、インダクタ要素L3とインダクタ要素L4との直列回路で一次側インダクタが構成され、インダクタ要素L1とインダクタ要素L2との直列回路で二次側インダクタが構成されている。第2トランスT2では、一次側インダクタが、平衡端子411Aと平衡端子411Bとの間に接続されている。
 高周波モジュール100は、最終段増幅器32Aの出力端子と平衡端子411Aとを接続している配線W1と、最終段増幅器32Bの出力端子と平衡端子411Bとを接続している配線W2との間に接続されている直列回路を更に備える。この直列回路は、インダクタLc1とキャパシタC1とインダクタLc2とを含み、グランドに接地されていない。この直列回路は、パワーアンプ3に入力される高周波信号(送信信号)の奇数次高調波(例えば、3次高調波)を減衰させるためのLC共振回路である。LC共振回路の共振周波数は、第1周波数帯域と第2周波数帯域とのうち相対的に低周波数側の周波数帯域の下限の3倍の周波数と、第1周波数帯域と第2周波数帯域とのうち相対的に高周波数側の周波数帯域の上限の3倍の周波数と、の間の周波数帯域に含まれる。また、高周波モジュール100は、最終段増幅器32Aの出力端子と平衡端子411Aとの間に接続されているインダクタLa1と、最終段増幅器32Bの出力端子と平衡端子411Bとの間に接続されているインダクタLa2と、を更に備えている。
 受信フィルタ21は、例えば、第1通信バンドの受信帯域を通過帯域とするフィルタである。受信フィルタ22は、例えば、第2通信バンドの受信帯域を通過帯域とするフィルタである。受信フィルタ23は、例えば、第3通信バンドの受信帯域を通過帯域とするフィルタである。受信フィルタ24は、例えば、第4通信バンドの受信帯域を通過帯域とするフィルタである。受信フィルタ25は、例えば、第5通信バンドの受信帯域を通過帯域とするフィルタである。受信フィルタ26は、例えば、第6通信バンドの受信帯域を通過帯域とするフィルタである。第1通信バンドは、受信フィルタ21を通る受信信号に対応し、例えば、5G NR規格のn3である。第2通信バンドは、受信フィルタ22を通る受信信号に対応し、例えば、5G NR規格のn1である。第3通信バンドは、受信フィルタ23を通る受信信号に対応し、例えば、5G NR規格のn40である。第4通信バンドは、受信フィルタ24を通る受信信号に対応し、例えば、5G NR規格のn41である。第5通信バンドは、受信フィルタ25を通る受信信号に対応し、例えば、3GPP LTE規格のBand34である。第6通信バンドは、受信フィルタ26を通る受信信号に対応し、例えば、3GPP LTE規格のBand39である。
 ローノイズアンプ18は、入力された第1周波数帯域、第2周波数帯域及び第3周波数帯域の受信信号を増幅して出力する。第1周波数帯域は、第1通信バンドと第2通信バンドとを含む。第2周波数帯域は、第3通信バンドと第4通信バンドとを含む。第3周波数帯域は、例えば、第5通信バンドと第6通信バンドとを含む。
 ローノイズアンプ18は、複数(例えば、6つ)の増幅用トランジスタを備えている。複数の増幅用トランジスタの各々は、入力端子及び出力端子を有する。ローノイズアンプ18は、複数の増幅用トランジスタのうちいずれかの入力端子に入力された受信信号を増幅して出力端子から出力する。ローノイズアンプ18の複数の増幅用トランジスタの入力端子は、複数の入力整合回路17のうち対応する入力整合回路17を介して複数の受信フィルタ2のうち対応する受信フィルタ2に接続されている。ローノイズアンプ18の出力端子は、信号出力端子93に接続されている。ローノイズアンプ18の出力端子は、例えば、信号出力端子93を介して信号処理回路301に接続される。信号出力端子93は、ローノイズアンプ18からの高周波信号(受信信号)を外部回路(例えば、信号処理回路301)へ出力するための端子である。
 複数(例えば、6つ)の入力整合回路17は、ローノイズアンプ18の複数の増幅用トランジスタの入力端子と複数の受信フィルタ2との間の複数の信号経路に設けられている。以下では、6つの入力整合回路17を区別して説明する場合に、6つの入力整合回路17をそれぞれ、入力整合回路171、入力整合回路172、入力整合回路173、入力整合回路174、入力整合回路175、入力整合回路176と称することもある。
 入力整合回路171は、ローノイズアンプ18と受信フィルタ21とのインピーダンス整合をとるための回路である。入力整合回路172は、ローノイズアンプ18と受信フィルタ22とのインピーダンス整合をとるための回路である。入力整合回路173は、ローノイズアンプ18と受信フィルタ23とのインピーダンス整合をとるための回路である。入力整合回路174は、ローノイズアンプ18と受信フィルタ24とのインピーダンス整合をとるための回路である。入力整合回路175は、ローノイズアンプ18と受信フィルタ25とのインピーダンス整合をとるための回路である。入力整合回路176は、ローノイズアンプ18と受信フィルタ26とのインピーダンス整合をとるための回路である。複数の入力整合回路17の各々は、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 複数(例えば、6つ)の入力整合回路17は、ローノイズアンプ18の複数の増幅用トランジスタの入力端子と複数の受信フィルタ2との間の複数の信号経路に設けられている。以下では、6つの入力整合回路17を区別して説明する場合に、6つの入力整合回路17をそれぞれ、入力整合回路171、入力整合回路172、入力整合回路173、入力整合回路174、入力整合回路175、入力整合回路176と称することもある。
 入力整合回路171は、ローノイズアンプ18と受信フィルタ21とのインピーダンス整合をとるための回路である。入力整合回路172は、ローノイズアンプ18と受信フィルタ22とのインピーダンス整合をとるための回路である。入力整合回路173は、ローノイズアンプ18と受信フィルタ23とのインピーダンス整合をとるための回路である。入力整合回路174は、ローノイズアンプ18と受信フィルタ24とのインピーダンス整合をとるための回路である。入力整合回路175は、ローノイズアンプ18と受信フィルタ25とのインピーダンス整合をとるための回路である。入力整合回路176は、ローノイズアンプ18と受信フィルタ26とのインピーダンス整合をとるための回路である。複数の入力整合回路17の各々は、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 第1スイッチ5は、共通端子50と、複数(図示例では4つ)の選択端子51と、を有する。以下では、4つの選択端子51を区別して説明する場合に、4つの選択端子51をそれぞれ、選択端子511、選択端子512、選択端子513、選択端子514と称することもある。
 共通端子50は、出力整合回路4を介してパワーアンプ3の出力端子に接続されている。選択端子511は、送信フィルタ11の入力端子に接続されている。選択端子512は、送信フィルタ12の入力端子に接続されている。選択端子513は、送信フィルタ13の入力端子に接続されている。選択端子514は、送信フィルタ14の入力端子に接続されている。第1スイッチ5は、例えば、共通端子50に複数の選択端子51のうち少なくとも1つ以上を接続可能なスイッチである。ここで、第1スイッチ5は、例えば、一対一及び一対多の接続が可能なスイッチである。
 第1スイッチ5は、例えば、スイッチIC(Integrated Circuit)である。第1スイッチ5は、例えば、信号処理回路301によって制御される。第1スイッチ5は、信号処理回路301のRF信号処理回路302からの制御信号に従って、共通端子50と複数の選択端子51との接続状態を切り替える。第1スイッチ5は、信号処理回路301によって制御される代わりに、コントローラ19によって制御されてもよい。
 第2スイッチ7は、複数(図示例では3つ)の共通端子70と、複数(図示例では6つ)の選択端子71と、を有する。以下では、3つの共通端子70を区別して説明する場合に、3つの共通端子70をそれぞれ、共通端子70A、共通端子70B、共通端子70Cと称することもある。また、以下では、6つの選択端子71を区別して説明する場合に、6つの選択端子71をそれぞれ、選択端子711、選択端子712、選択端子713、選択端子714、選択端子715、選択端子716と称することもある。
 共通端子70Aは、アンテナ端子91Aに接続されている。アンテナ端子91Aには、第1アンテナA1が接続される。共通端子70Bは、アンテナ端子91Bに接続されている。アンテナ端子91Bには、第2アンテナA2が接続される。共通端子70Cは、アンテナ端子91Cに接続されている。アンテナ端子91Cには、第3アンテナA3が接続される。選択端子711は、送信フィルタ11の出力端子と受信フィルタ21の入力端子との接続点に接続されている。選択端子712は、送信フィルタ12の出力端子と受信フィルタ22の入力端子との接続点に接続されている。選択端子713は、送信フィルタ13の出力端子と受信フィルタ23の入力端子との接続点に接続されている。選択端子714は、送信フィルタ14の出力端子と受信フィルタ24の入力端子との接続点に接続されている。選択端子715は、受信フィルタ25の入力端子に接続されている。選択端子716は、受信フィルタ26の入力端子に接続されている。第2スイッチ7は、例えば、共通端子70Aに複数の選択端子711、712のうち少なくとも1つ以上を接続可能である。また、第2スイッチ7は、共通端子70Bに複数の選択端子713、714のうち少なくとも1つ以上を接続可能である。また、第2スイッチ7は、共通端子70Cに複数の選択端子715、716のうち少なくとも1つ以上を接続可能である。ここで、第2スイッチ7は、例えば、一対一及び一対多の接続が可能なスイッチである。
 第2スイッチ7は、例えば、スイッチICである。第2スイッチ7は、例えば、信号処理回路301によって制御される。第2スイッチ7は、信号処理回路301のRF信号処理回路302からの制御信号に従って、複数の共通端子70と複数の選択端子71との接続状態を切り替える。第2スイッチ7は、信号処理回路301によって制御される代わりに、コントローラ19によって制御されてもよい。
 以下では、4つの整合回路6を区別して説明する場合に、4つの整合回路6をそれぞれ、整合回路61、整合回路62、整合回路63、整合回路64と称することもある。
 整合回路61は、送信フィルタ11の出力端子と受信フィルタ21の入力端子との接続点と、第2スイッチ7の選択端子711と、の間に接続されている。整合回路62は、送信フィルタ12の出力端子と受信フィルタ22の入力端子との接続点と、第2スイッチ7の選択端子712と、の間に接続されている。整合回路63は、送信フィルタ13の出力端子と受信フィルタ23の入力端子との接続点と、第2スイッチ7の選択端子713と、の間に接続されている。整合回路64は、送信フィルタ14の出力端子と受信フィルタ24の入力端子との接続点と、第2スイッチ7の選択端子714と、の間に接続されている。複数の整合回路6の各々は、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 以下では、3つの整合回路8を区別して説明する場合に、3つの整合回路8をそれぞれ、整合回路81、整合回路82、整合回路83と称することもある。
 整合回路81は、第2スイッチ7の共通端子70Aとアンテナ端子91Aとの間に接続されている。整合回路82は、第2スイッチ7の共通端子70Bとアンテナ端子91Bとの間に接続されている。整合回路83は、第2スイッチ7の共通端子70Cとアンテナ端子91Cとの間に接続されている。複数の整合回路8の各々は、例えば、1つのインダクタで構成されているが、これに限らず、例えば、複数のインダクタ及び複数のキャパシタを含む場合もある。
 コントローラ19は、制御端子94に接続されている。制御端子94は、例えば、信号処理回路301に接続される。コントローラ19は、信号処理回路301からの制御信号に基づいてパワーアンプ3を制御する。
 (1.2)高周波モジュールの構造
 次に、実施形態1に係る高周波モジュール100の構造について、図1~図4を参照して説明する。
 高周波モジュール100は、図1~図4に示すように、実装基板130と、4つの送信フィルタ1と、を備える。また、高周波モジュール100は、パワーアンプ3と、出力整合回路4と、を備える。また、高周波モジュール100は、6つの受信フィルタ2と、ローノイズアンプ18と、6つの入力整合回路17と、第1スイッチ5と、第2スイッチ7と、コントローラ19と、を備える。また、高周波モジュール100は、4つの整合回路6(以下、第1整合回路6とも称する)と、3つの整合回路8(以下、第2整合回路8とも称する)と、を備える。また、高周波モジュール100は、複数の外部接続端子9を備える。さらに、高周波モジュール100は、第1樹脂層(樹脂層)15と、第2樹脂層20と、シールド層16と、を備える。
 実装基板130は、実装基板130の厚さ方向D1において互いに対向する第1主面131及び第2主面132を有する。実装基板130は、例えば、複数の誘電体層及び複数の導電層を含む多層基板である。複数の誘電体層及び複数の導電層は、実装基板130の厚さ方向D1において積層されている。複数の導電層は、層ごとに定められた所定パターンに形成されている。複数の導電層の各々は、実装基板130の厚さ方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導電層の材料は、例えば、銅である。複数の導電層は、グランド層を含む。高周波モジュール100では、複数のグランド端子95(図3及び図4参照)とグランド層とが、実装基板130の有するビア導体等を介して電気的に接続されている。実装基板130は、例えば、LTCC(Low Temperature Co-fired Ceramics)基板である。実装基板130は、LTCC基板に限らず、例えば、プリント配線板、HTCC(High Temperature Co-fired Ceramics)基板、又は樹脂多層基板であってもよい。
 また、実装基板130は、LTCC基板に限らず、例えば、配線構造体であってもよい。配線構造体は、例えば、多層構造体である。多層構造体は、少なくとも1つの絶縁層と、少なくとも1つの導電層と、を含む。絶縁層は、所定パターンに形成されている。絶縁層が複数の場合は、複数の絶縁層は、層ごとに定められた所定パターンに形成されている。導電層は、絶縁層の所定パターンとは異なる所定パターンに形成されている。導電層が複数の場合は、複数の導電層は、層ごとに定められた所定パターンに形成されている。導電層は、1つ又は複数の再配線部を含んでいてもよい。配線構造体では、多層構造体の厚さ方向において互いに対向する2つの面のうち第1面が実装基板130の第1主面131であり、第2面が実装基板130の第2主面132である。配線構造体は、例えば、インタポーザであってもよい。インタポーザは、シリコン基板を用いたインタポーザであってもよいし、多層で構成された基板であってもよい。
 実装基板130の第1主面131及び第2主面132は、実装基板130の厚さ方向D1において離れており、実装基板130の厚さ方向D1に交差する。実装基板130における第1主面131は、例えば、実装基板130の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として導体部の側面等を含んでいてもよい。また、実装基板130における第2主面132は、例えば、実装基板130の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として導体部の側面等を含んでいてもよい。また、実装基板130の第1主面131及び第2主面132は、微細な凹凸、凹部又は凸部が形成されていてもよい。例えば、実装基板130の第1主面131に凹部が形成されている場合、凹部の内面は、第1主面131に含まれる。実装基板130の厚さ方向D1からの平面視で、実装基板130は、長方形状であるが、これに限らず、例えば、正方形状であってもよい。
 実施形態1に係る高周波モジュール100では、第1群の回路部品が実装基板130の第1主面131に実装されている。第1群の回路部品は、図1に示すように、4つの送信フィルタ1と、6つの受信フィルタ2と、パワーアンプ3と、出力整合回路4の5つの回路素子42と、6つの入力整合回路17と、4つの第1整合回路6と、3つの第2整合回路8と、を含む。ここにおいて「回路部品が実装基板130の第1主面131に実装されている」とは、回路部品が実装基板130の第1主面131に配置されていること(機械的に接続されていること)と、回路部品が実装基板130(の適宜の導体部)と電気的に接続されていることと、を含む。また、高周波モジュール100では、第2群の回路部品が実装基板130の第2主面132に実装されている。第2群の回路部品は、第1スイッチ5と、第2スイッチ7と、コントローラ19と、ローノイズアンプ18と、を含む。ここにおいて「回路部品が実装基板130の第2主面132に実装されている」とは、回路部品が実装基板130の第2主面132に配置されていること(機械的に接続されていること)と、回路部品が実装基板130(の適宜の導体部)と電気的に接続されていることと、を含む。出力整合回路4の第2バラン41は、実装基板130に設けられている。
 複数の送信フィルタ1及び複数の受信フィルタ2の各々は、例えば、ラダー型フィルタである。複数の送信フィルタ1及び複数の受信フィルタ2の各々は、複数(例えば、4つ)の直列腕共振子と、複数(例えば、3つ)の並列腕共振子と、を有する。
 複数の送信フィルタ1及び複数の受信フィルタ2の各々は、例えば、弾性波フィルタである。弾性波フィルタは、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。弾性波フィルタは、例えば、弾性表面波を利用する表面弾性波フィルタである。
 表面弾性波フィルタでは、複数の直列腕共振子及び複数の並列腕共振子の各々は、例えば、SAW(Surface Acoustic Wave)共振子である。
 表面弾性波フィルタは、例えば、圧電性基板と、圧電性基板上に形成されており、複数の直列腕共振子に一対一に対応する複数のIDT(Interdigital Transducer)電極と、圧電性基板上に形成されており、複数の並列腕共振子に一対一に対応する複数のIDT電極と、を有している。圧電性基板は、例えば、圧電基板である。圧電基板は、例えば、リチウムニオベイト基板、リチウムタンタレート基板又は水晶基板である。圧電性基板は、圧電基板に限らず、例えば、シリコン基板と、シリコン基板上の高音速膜と、高音速膜上の低音速膜と、低音速膜上の圧電体層と、を含む積層型基板であってもよい。積層型基板では、圧電体層の材料は、例えば、リチウムニオベイト又はリチウムタンタレートである。低音速膜は、圧電体層を伝搬するバルク波の音速よりも、低音速膜を伝搬するバルク波の音速が低速となる膜である。低音速膜の材料は、例えば、酸化ケイ素である。高音速膜は、圧電体層を伝搬する弾性波の音速よりも、高音速膜を伝搬するバルク波の音速が高速となる膜である。高音速膜の材料は、例えば、窒化ケイ素である。
 実装基板130の厚さ方向D1からの平面視で、複数の送信フィルタ1及び複数の受信フィルタ2の各々の外周形状は、四角形状である。
 パワーアンプ3は、ドライバ段増幅器31と、2つの最終段増幅器32A,32Bと、第1バラン33とを有する回路部を含む電力増幅用ICチップである。パワーアンプ3は、実装基板130の第1主面131にフリップチップ実装されている。実装基板130の厚さ方向D1からの平面視で、パワーアンプ3の外周形状は、四角形状である。ドライバ段増幅器31、最終段増幅器32A及び最終段増幅器32Bの各々は、増幅用トランジスタを含んでいる。増幅用トランジスタは、例えば、HBT(Heterojunction Bipolar Transistor)である。この場合、パワーアンプ3を構成する電力増幅用ICチップは、例えば、GaAs系ICチップである。増幅用トランジスタは、HBT等のバイポーラトランジスタに限らず、例えば、FET(Field Effect Transistor)であってもよい。FETは、例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)である。パワーアンプ3を構成する電力増幅用ICチップは、GaAs系ICチップに限らず、例えば、Si系ICチップ、SiGe系ICチップ又はGaN系ICチップであってもよい。
 出力整合回路4の第2バラン41は、実装基板130に設けられている。第2バラン41は、上述したように、複数のインダクタ要素L1~L4を有する。インダクタ要素L3,L4は、実装基板130内に設けられ、インダクタ要素L1は、実装基板130の厚さ方向D1からの平面視でインダクタ要素L3,L4に重なるように実装基板130の第1主面131に設けられており、インダクタ要素L2は、実装基板130の厚さ方向D1からの平面視でインダクタ要素L3,L4に重なるように実装基板130内に設けられている。実装基板130の厚さ方向D1において、インダクタ要素L2は、インダクタ要素L3、L4から見てインダクタ要素L1とは反対側に位置している。
 出力整合回路4の5つの回路素子42は、インダクタ又はキャパシタである。実装基板130の厚さ方向D1からの平面視で、2つの送信フィルタ1(送信フィルタ11,12)の間に配置されている回路素子42は、例えば、インダクタである。
 なお、図1では、LC共振回路の図示を省略しているが、LC共振回路のキャパシタC1は、実装基板130の第1主面131に実装されている。また、LC共振回路のインダクタLc1,Lc2は、実装基板130に設けられている。
 ローノイズアンプ18は、図2に示すように、実装基板130の第2主面132に実装されている。実施形態1に係る高周波モジュール100では、ローノイズアンプ18と第2スイッチ7とを含むICチップ180(以下、第1ICチップ180とも称する)が、実装基板130の第2主面132に実装されている。ここで、第1ICチップ180は、実装基板130の第2主面132にフリップチップ実装されている。実装基板130の厚さ方向D1からの平面視で、第1ICチップ180の外周形状は、四角形状である。ローノイズアンプ18の有する6つの増幅用トランジスタは、電界効果トランジスタであるが、これに限らず、例えば、バイポーラトランジスタであってもよい。第1ICチップ180は、Si系ICチップであるが、これに限らない。
 6つの入力整合回路17の各々の回路部品(インダクタ)は、例えば、チップインダクタである。6つの入力整合回路17の各々の回路部品は、例えば、実装基板130の第1主面131に実装されている。実装基板130の厚さ方向D1からの平面視で、6つの入力整合回路17の回路部品の外周形状は、四角形状である。6つの入力整合回路17の各々は、実装基板130内に設けられる内層インダクタを含んでいてもよい。
 第1スイッチ5は、図2に示すように、実装基板130の第2主面132に実装されている。実施形態1に係る高周波モジュール100では、第1スイッチ5とコントローラ19とを含むICチップ55(以下、第2ICチップ55とも称する)が、実装基板130の第2主面132に実装されている。ここで、第2ICチップ55は、実装基板130の第2主面132にフリップチップ実装されている。実装基板130の厚さ方向D1からの平面視で、第2ICチップ55の外周形状は、四角形状である。第2ICチップ55は、Si系ICチップであるが、これに限らない。
 4つの第1整合回路6の各々の回路部品(インダクタ)は、例えば、チップインダクタである。4つの第1整合回路6の各々の回路部品は、例えば、実装基板130の第1主面131に実装されている。実装基板130の厚さ方向D1からの平面視で、4つの第1整合回路6の各々の回路部品の外周形状は、四角形状である。4つの第1整合回路6の各々は、実装基板130内に設けられる内層インダクタを含んでいてもよい。
 3つの第2整合回路8の各々の回路部品(インダクタ)は、例えば、チップインダクタである。3つの第2整合回路8の各々の回路部品は、例えば、実装基板130の第1主面131に実装されている。実装基板130の厚さ方向D1からの平面視で、3つの第2整合回路8の各々の回路部品の外周形状は、四角形状である。3つの第2整合回路8の各々は、実装基板130内に設けられる内層インダクタを含んでいてもよい。
 複数の外部接続端子9は、実装基板130の第2主面132に配置されている。ここにおいて「外部接続端子9が実装基板130の第2主面132に配置されている」とは、外部接続端子9が実装基板130の第2主面132に機械的に接続されていることと、外部接続端子9が実装基板130(の適宜の導体部)と電気的に接続されていることと、を含む。複数の外部接続端子9の材料は、例えば、金属(例えば、銅、銅合金等)である。複数の外部接続端子9の各々は、柱状電極である。柱状電極は、例えば、円柱状の電極である。複数の外部接続端子9は、実装基板130の導体部に対して、例えば、はんだにより接合されているが、これに限らず、例えば、導電性接着剤(例えば、導電性ペースト)を用いて接合されていてもよいし、直接接合されていてもよい。
 複数の外部接続端子9は、上述したように、3つのアンテナ端子91A,91B,91Cと、信号入力端子92と、信号出力端子93と、制御端子94と、複数のグランド端子95と、を含んでいる。複数のグランド端子95は、実装基板130のグランド層と電気的に接続されている。グランド層は高周波モジュール100の回路グランドであり、高周波モジュール100の複数の回路部品は、グランド層と電気的に接続されている回路部品を含む。
 第1樹脂層15は、実装基板130の第1主面131側において、実装基板130の第1主面131に実装されている第1群の回路部品の各々を覆っている。第1樹脂層15は、樹脂(例えば、エポキシ樹脂)を含む。第1樹脂層15は、樹脂の他にフィラーを含んでいてもよい。
 第2樹脂層20は、実装基板130の第2主面132側において、実装基板130の第2主面132に実装されている第2群の回路部品の各々、及び複数の外部接続端子9の各々の外周面を覆っている。第2樹脂層20は、樹脂(例えば、エポキシ樹脂)を含む。第2樹脂層20は、樹脂の他にフィラーを含んでいてもよい。第2樹脂層20の材料は、第1樹脂層15の材料と同じ材料であってもよいし、異なる材料であってもよい。
 シールド層16は、第1樹脂層15と4つの送信フィルタ1とを覆っている。図4に示すように、4つの送信フィルタ1のうち2つの送信フィルタ13,14の各々における実装基板130側とは反対側の主面102は、シールド層16に接している。シールド層16は、導電性を有する。シールド層16は、複数の金属層を積層した多層構造を有しているが、これに限らず、1つの金属層であってもよい。金属層は、1又は複数種の金属を含む。シールド層16は、第1樹脂層15における実装基板130側とは反対側の主面151と、第1樹脂層15の外周面153と、実装基板130の外周面133と、を覆っている。また、シールド層16は、第2樹脂層20の外周面203も覆っている。シールド層16は、実装基板130の有するグランド層の外周面の少なくとも一部と接触している。これにより、シールド層16の電位をグランド層の電位と同じにすることができる。
 (1.3)高周波モジュールにおける回路部品のレイアウト
 次に、実施形態1に係る高周波モジュール100における回路部品のレイアウトについて、図1~図4を参照して説明する。
 高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、出力整合回路4とパワーアンプ3とが並んでいる方向と平行な方向(図1の上下方向)において、複数の送信フィルタ1が、出力整合回路4側(上側)から、送信フィルタ11、送信フィルタ12、送信フィルタ13及び送信フィルタ14の順に並んでいる。
 高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、出力整合回路4と6つの入力整合回路17との間に、4つの送信フィルタ1が位置している。
 また、高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、出力整合回路4と4つの第1整合回路6との間に、4つの送信フィルタ1が位置している。
 また、高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、出力整合回路4と3つの第2整合回路8との間に、4つ送信フィルタ1が位置している。
 高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、第1ICチップ180と複数の送信フィルタ1とが重ならない。
 高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、複数の送信フィルタ1の少なくとも1つ(図示例では2つ)と第2ICチップ55とが重なる。実装基板130の厚さ方向D1からの平面視で、送信フィルタ12,13それぞれの一部が第2ICチップ55の一部に重なっているが、これに限らず、送信フィルタ12,13それぞれの全部が第2ICチップ55の一部に重なっていてもよい。また、送信フィルタ12,13それぞれの全部が第2ICチップ55の全部に重なっていてもよい。
 高周波モジュール100では、実装基板130の厚さ方向D1からの平面視で、パワーアンプ3がローノイズアンプ18に重ならない。
 高周波モジュール100の回路構成は、送信信号を送信する送信回路と、受信信号を受信回路と、を有している。高周波モジュール100では、複数の回路部品のうち送信回路のみに含まれる回路部品と、それ以外の回路部品(受信回路のみに含まれる回路部品、送信回路と受信回路とで共用される回路部品)とが実装基板130の厚さ方向D1において重ならない。複数の回路部品のうち送信回路のみに含まれる回路部品の群は、4つの送信フィルタ1と、パワーアンプ3と、出力整合回路4、第2ICチップ55と、を含む。複数の回路部品のうち受信回路のみに含まれる回路部品の群は、6つの受信フィルタ2と、6つの入力整合回路17と、ローノイズアンプ18と、を含む。送信回路と受信回路とで共用される回路部品の群は、第2スイッチ7と、4つの第1整合回路6と、3つの第2整合回路8と、を含む。
 高周波モジュール100は、実装基板130の厚さ方向D1からの平面視で、複数の回路部品のうち送信回路のみに含まれる回路部品の群が配置されている第1領域と、受信回路のみに含まれる回路部品の群及び送信回路と受信回路とで共用される回路部品の群が配置されている第2領域とが分かれている。
 (1.4)高周波モジュールの製造方法
 次に、実施形態1に係る高周波モジュール100の製造方法について説明する。
 高周波モジュール100の製造方法としては、例えば、第1工程と、第2工程と、第3工程と、第4工程と、第5工程と、を備える製造方法を採用することができる。第1工程は、実装基板130に複数の回路部品を実装するとともに複数の外部接続端子9を配置する工程である。第2工程は、複数の送信フィルタ1等を覆い第1樹脂層15の元になる第1樹脂材料層を実装基板130の第1主面131側に形成するとともに、第2樹脂層20の元になる第2樹脂材料層を実装基板130の第2主面132側に形成する工程である。第3工程は、第1樹脂材料層における実装基板130側とは反対側の主面から第1樹脂材料層を研削し複数の送信フィルタ1のうち2つの送信フィルタ13,14の圧電性基板を露出させた後、第1樹脂材料層と各圧電性基板とを研削することで、第1樹脂層15を形成するとともに各圧電性基板を薄くする工程である。第4工程は、第2樹脂材料層における実装基板130側とは反対側の主面から第2樹脂材料層を研削し複数の外部接続端子9の先端を露出させた後、第2樹脂材料層と各外部接続端子9とを研削することで、第2樹脂層20を形成する工程である。第5工程は、第1樹脂層15の主面151と複数の送信フィルタ1のうち2つの送信フィルタ13,14の各々における実装基板130側とは反対側の主面102とに接するシールド層16を、例えば、スパッタ法、蒸着法、又は印刷法によって形成する工程である。
 (2)効果
 (2.1)高周波モジュール
 実施形態1に係る高周波モジュール100は、実装基板130と、第1送信フィルタ11,12と、第2送信フィルタ13,14と、樹脂層15と、シールド層16と、を備える。実装基板130は、互いに対向する第1主面131及び第2主面132を有する。第1送信フィルタ11,12は、実装基板130の第1主面131に実装されている。第2送信フィルタ13,14は、実装基板130の第1主面131に実装されており、第1送信フィルタ11,12よりもパワークラスが高い。樹脂層15は、実装基板130の第1主面131に配置されている。シールド層16は、樹脂層15の少なくとも一部を覆っている。樹脂層15は、第1送信フィルタ11,12の外周面103の少なくとも一部を覆い、かつ、第2送信フィルタ13,14の外周面103の少なくとも一部を覆っている。シールド層16は、実装基板130の厚さ方向D1からの平面視において第2送信フィルタ13,14の少なくとも一部に重なっている。第2送信フィルタ13,14における実装基板130側とは反対側の主面102の少なくとも一部は、シールド層16に接している。言い換えると、第2送信フィルタ13,14における実装基板130側とは反対側の主面102のうち、シールド層16により覆われている部分の少なくとも一部は、シールド層16に接している。
 また、実施形態1に係る高周波モジュール100は、実装基板130と、送信フィルタ13,14と、樹脂層15と、シールド層16と、を備える。実装基板130は、互いに対向する第1主面131及び第2主面132を有する。送信フィルタ13,14は、実装基板130の第1主面131に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。樹脂層15は、実装基板130の第1主面131に配置されている。シールド層16は、樹脂層15の少なくとも一部を覆っている。樹脂層15は、送信フィルタ13,14の外周面103の少なくとも一部を覆っている。シールド層16は、実装基板130の厚さ方向D1からの平面視において送信フィルタ13,14の少なくとも一部に重なっている。送信フィルタ13,14における実装基板130側とは反対側の主面102の少なくとも一部は、シールド層16に接している。言い換えると、送信フィルタ13,14における実装基板130側とは反対側の主面102のうち、シールド層16により覆われている部分の少なくとも一部は、シールド層16に接している。
 実施形態1に係る高周波モジュール100は、上述したように、(第2)送信フィルタ13,14の各々における実装基板130側とは反対側の主面102の少なくとも一部がシールド層16に接している。そのため、(第2)送信フィルタ13,14で発生した熱を、シールド層16を通して放熱することが可能となる。これにより、放熱性の向上を図ることが可能となる。そして、実施形態1に係る高周波モジュール100は、(第2)送信フィルタ13,14の各々を構成する弾性波フィルタの温度特性の安定化を図ることが可能となり、高周波モジュール100の特性の安定化を図ることが可能となる。
 また、実施形態1に係る高周波モジュール100は、相対的にパワークラスの低い送信フィルタ11,12の各々における実装基板130側とは反対側の主面102をシールド層16に接触させていない。これにより、高周波モジュール100における印字エリアを大きくすることが可能となる。さらに、送信フィルタ11,12の主面102をシールド層16に接触させないようにすることで、送信フィルタ11,12の各々の圧電性基板の厚さを厚くしなくてもよく、材料費のアップを抑制することが可能となる。
 実施形態1に係る高周波モジュール100では、放熱性の向上を図る観点から、シールド層16が複数の送信フィルタ1のうち送信フィルタ13,14の各々における実装基板130側とは反対側の主面102の全域にわたって接していることが好ましい。ただし、シールド層16が送信フィルタ13,14の主面102の全面に接することは必須ではない。
 (2.2)通信装置
 実施形態1に係る通信装置300は、信号処理回路301と、高周波モジュール100と、を備える。信号処理回路301は、高周波モジュール100に接続されている。
 実施形態1に係る通信装置300は、高周波モジュール100を備えるので、放熱性の向上を図ることが可能となる。
 信号処理回路301を構成する複数の電子部品は、例えば、上述の回路基板に実装されていてもよいし、高周波モジュール100が実装された回路基板(第1回路基板)とは別の回路基板(第2回路基板)に実装されていてもよい。
 (3)変形例
 (3.1)変形例1
 実施形態1の変形例1に係る高周波モジュール100aについて、図7を参照して説明する。変形例1に係る高周波モジュール100aに関し、実施形態1に係る高周波モジュール100と同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100aの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同様である。
 変形例1に係る高周波モジュール100aは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102がシールド層16に接している点で、実施形態1に係る高周波モジュール100と相違する。
 変形例1に係る高周波モジュール100aは、実施形態1に係る高周波モジュール100と同様、パワークラス2の送信フィルタ13,14の各々における実装基板130側とは反対側の主面102がシールド層16に接しているので、放熱性の向上を図ることが可能となる。
 また、変形例1に係る高周波モジュール100aでは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102もシールド層16に接しているので、更なる放熱性の向上を図ることが可能となる。
 (3.2)変形例2
 実施形態1の変形例2に係る高周波モジュール100bについて、図8を参照して説明する。変形例2に係る高周波モジュール100bに関し、実施形態1に係る高周波モジュール100と同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100bの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同様である。
 変形例2に係る高周波モジュール100bは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102に配置されている接触部材140Aを備えている点で、実施形態1に係る高周波モジュール100と相違する。
 実装基板130の厚さ方向D1からの平面視で、複数の接触部材140Aの各々は、四角形状であるが、これに限らない。また、実装基板130の厚さ方向D1からの平面視で、複数の接触部材140Aの各々は、複数の送信フィルタ1のうち接している送信フィルタ1と同じ大きさであるが、これに限らず、送信フィルタ1よりも大きくてもよいし、小さくてもよい。複数の接触部材140Aの材料は、例えば、銅又は銅合金である。複数の接触部材140Aは、送信フィルタ1における主面102に接合されていてもよいし、接しているだけでもよい。複数の接触部材140Aの材料は、同じであることが好ましいが、異なっていてもよい。
 変形例2に係る高周波モジュール100bは、実施形態1に係る高周波モジュール100と同様、パワークラス2の送信フィルタ13,14の各々における実装基板130側とは反対側の主面102がシールド層16に接しているので、放熱性の向上を図ることが可能となる。
 また、変形例2に係る高周波モジュール100bでは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102が接触部材140Aを介してシールド層16に接しているので、更なる放熱性の向上を図ることが可能となる。
 (3.3)変形例3
 実施形態1の変形例3に係る高周波モジュール100cについて、図9を参照して説明する。変形例3に係る高周波モジュール100cに関し、実施形態1に係る高周波モジュール100と同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100cの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同様である。
 変形例3に係る高周波モジュール100cは、複数の外部接続端子9がボールバンプである点で、実施形態1に係る高周波モジュール100と相違する。また、変形例3に係る高周波モジュール100cは、実施形態1に係る高周波モジュール100の第2樹脂層20を備えていない点で、実施形態1に係る高周波モジュール100と相違する。変形例3に係る高周波モジュール100cは、実装基板130の第2主面132に実装されている第1ICチップ180及び第2ICチップ55と実装基板130の第2主面132との間の隙間に設けられたアンダーフィル部を備えていてもよい。
 複数の外部接続端子9の各々を構成するボールバンプの材料は、例えば、金、銅、はんだ等である。
 複数の外部接続端子9は、ボールバンプにより構成された外部接続端子9と、柱状電極により構成された外部接続端子9と、が混在してもよい。
 (実施形態2)
 実施形態2に係る高周波モジュール100dについて、図10を参照して説明する。実施形態2に係る高周波モジュール100dに関し、実施形態1に係る高周波モジュール100と同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100dの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同じである。
 実施形態2に係る高周波モジュール100dは、複数の金属部材140を備える点で、実施形態1に係る高周波モジュール100と相違する。複数の金属部材140は、複数の送信フィルタ1のうち、パワークラス2の送信フィルタ13,14における実装基板130側とは反対側の主面102に配置されている。
 第1樹脂層15は、実装基板130の第1主面131に配置されており、複数の送信フィルタ1の外周面103と複数の金属部材140の外周面143とを覆っている。シールド層16は、第1樹脂層15と複数の金属部材140と、を覆っている。複数の金属部材140は、シールド層16に接している。
 実装基板130の厚さ方向D1からの平面視で、複数の金属部材140の各々は、四角形状であるが、これに限らない。また、実装基板130の厚さ方向D1からの平面視で、複数の金属部材140の各々は、複数の送信フィルタ1のうち接している送信フィルタ1と同じ大きさであるが、これに限らず、送信フィルタ1よりも大きくてもよいし、小さくてもよい。複数の金属部材140の材料は、例えば、銅又は銅合金である。複数の金属部材140は、送信フィルタ1における主面102に接合されていてもよいし、接しているだけでもよい。複数の金属部材140の材料は、同じであることが好ましいが、異なっていてもよい。
 実施形態2に係る高周波モジュール100dは、実装基板130と、第1送信フィルタ11,12と、第2送信フィルタ13,14と、金属部材140と、樹脂層15と、シールド層16と、を備える。実装基板130は、互いに対向する第1主面131及び第2主面132を有する。第1送信フィルタ11,12は、実装基板130の第1主面131に実装されている。第2送信フィルタ13,14は、実装基板130の第1主面131に実装されており、第1送信フィルタ11,12よりもパワークラスが高い。金属部材140は、第2送信フィルタ13,14における実装基板130側とは反対側の主面102に配置されている。樹脂層15は、実装基板130の第1主面131に配置されている。シールド層16は、樹脂層15の少なくとも一部を覆っている。樹脂層15は、第1送信フィルタ11,12の外周面103の少なくとも一部を覆い、第2送信フィルタ13,14の外周面103の少なくとも一部を覆い、かつ、金属部材140の外周面143の少なくとも一部を覆っている。シールド層16は、実装基板130の厚さ方向D1からの平面視において金属部材140の少なくとも一部に重なっている。金属部材140における実装基板130側とは反対側の主面141の少なくとも一部は、シールド層16に接している。言い換えると、金属部材140における実装基板130側とは反対側の主面141のうち、シールド層16により覆われている部分の少なくとも一部は、シールド層16に接している。
 また、実施形態2に係る高周波モジュール100dは、実装基板130と、送信フィルタ13,14と、金属部材140と、樹脂層15と、シールド層16と、を備える。実装基板130は、互いに対向する第1主面131及び第2主面132を有する。送信フィルタ13,14は、実装基板130の第1主面131に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。金属部材140は、送信フィルタ13,14における実装基板130側とは反対側の主面102に配置されている。樹脂層15は、実装基板130の第1主面131に配置されている。シールド層16は、樹脂層15の少なくとも一部を覆っている。樹脂層15は、送信フィルタ13,14の外周面103の少なくとも一部を覆い、かつ、金属部材140の外周面143の少なくとも一部を覆っている。シールド層16は、実装基板130の厚さ方向D1からの平面視において金属部材140の少なくとも一部に重なっている。金属部材140における実装基板130側とは反対側の主面141の少なくとも一部は、シールド層16に接している。言い換えると、金属部材140における実装基板130側とは反対側の主面141のうち、シールド層16により覆われている部分の少なくとも一部は、シールド層16に接している。
 実施形態2に係る高周波モジュール100dでは、上述したように、(第2)送信フィルタ13,14における実装基板130側とは反対側の主面102が、金属部材140を介してシールド層16に接している。そのため、(第2)送信フィルタ13,14で発生した熱を、金属部材140及びシールド層16を通して放熱することが可能となる。これにより、放熱性の向上を図ることが可能となる。そして、実施形態2に係る高周波モジュール100dは、(第2)送信フィルタ13,14の各々を構成する弾性波フィルタの温度特性の安定化を図ることが可能となり、高周波モジュール100の特性の安定化を図ることが可能となる。
 (変形例1)
 実施形態2の変形例1に係る高周波モジュール100eについて、図11を参照して説明する。変形例1に係る高周波モジュール100eに関し、実施形態2に係る高周波モジュール100dと同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100eの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同様である。
 変形例1に係る高周波モジュール100eは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102に配置されている接触部材140Aを更に備えている点で、実施形態2に係る高周波モジュール100dと相違する。
 変形例1に係る高周波モジュール100eは、実施形態2に係る高周波モジュール100と同様、パワークラス2の送信フィルタ13,14の各々における実装基板130側とは反対側の主面102が金属部材140を介してシールド層16に接しているので、放熱性の向上を図ることが可能となる。
 また、変形例1に係る高周波モジュール100eでは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102が接触部材140Aを介してシールド層16に接しているので、更なる放熱性の向上を図ることが可能となる。
 (変形例2)
 実施形態2の変形例2に係る高周波モジュール100fについて、図12を参照して説明する。変形例2に係る高周波モジュール100fに関し、実施形態2に係る高周波モジュール100dと同様の構成要素については、同一の符号を付して説明を省略する。なお、高周波モジュール100fの回路構成については、図5及び図6を参照して説明した実施形態1に係る高周波モジュール100の回路構成と同様である。
 変形例2に係る高周波モジュール100fは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102がシールド層16に接している点で、実施形態2に係る高周波モジュール100dと相違する。
 変形例2に係る高周波モジュール100fは、実施形態2に係る高周波モジュール100dと同様、パワークラス2の送信フィルタ13,14の各々における実装基板130側とは反対側の主面102が金属部材140を介してシールド層16に接しているので、放熱性の向上を図ることが可能となる。
 また、変形例2に係る高周波モジュール100fでは、パワークラス3の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102がシールド層16に接しているので、更なる放熱性の向上を図ることが可能となる。
 (その他の変形例)
 上記の実施形態1~2等は、本発明の様々な実施形態の一つに過ぎない。上記の実施形態1~2等は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 例えば、送信フィルタ1の数は、複数であればよく、4つに限定されない。また、複数の送信フィルタ1のうち相対的にパワークラスの高い送信フィルタ1における実装基板130側とは反対側の主面102がシールド層16に接していればよく、主面102が第1樹脂層15により覆われている送信フィルタ1が含まれていてもよい。
 複数の送信フィルタ1と複数の受信フィルタ2とは、デュプレクサを構成するフィルタであってもよい。すなわち、送信フィルタ11と受信フィルタ21とが第1デュプレクサを構成し、送信フィルタ12と受信フィルタ22とが第2デュプレクサを構成し、送信フィルタ13と受信フィルタ23とが第3デュプレクサを構成し、送信フィルタ14と受信フィルタ24とが第4デュプレクサを構成してもよい。この場合、少なくとも、第3デュプレクサ及び第4デュプレクサの各々における実装基板130側とは反対側の主面が、直接的又は間接的に(金属部材140を介して)、シールド層16に接していればよい。
 また、実施形態1に係る高周波モジュール100では、送信フィルタ13,14における実装基板130側とは反対側の主面102と、樹脂層15の主面151と、が略面一であるが、これに限らない。
 例えば、複数の送信フィルタ1及び複数の受信フィルタ2の各々は、表面弾性波フィルタに限らず、例えば、BAW(Bulk Acoustic Wave)フィルタであってもよい。BAWフィルタにおける共振子は、例えば、FBAR(Film Bulk Acoustic Resonator)又はSMR(Solidly Mounted Resonator)である。BAWフィルタは、基板を有する。基板は、例えば、シリコン基板である。
 また、複数の送信フィルタ1及び複数の受信フィルタ2の各々は、ラダー型フィルタに限らず、例えば、縦結合共振子型弾性表面波フィルタでもよい。
 また、上述の弾性波フィルタは、表面弾性波又はバルク弾性波を利用する弾性波フィルタであるが、これに限らず、例えば、弾性境界波、板波等を利用する弾性波フィルタであってもよい。
 また、パワーアンプ3は、差動増幅回路に限らず、ドライバ段増幅器と、出力段増幅器と、ドライバ段増幅器と出力段増幅器とのインピーダンスを整合させる段間整合回路と、を有した構成であってもよい。この場合、段間整合回路は、例えば、ドライバ段増幅器と出力段増幅器との間に設けられるインダクタであるが、インダクタの他にキャパシタを更に含んでいてもよい。また、パワーアンプ3における増幅器の段数は2段に限らず、1段又は3段以上であってもよい。
 また、入力整合回路17の数は、複数に限らず、1つであってもよい。
 また、複数の回路部品は、バンプを介して実装基板130と電気的に接続されている回路部品と、はんだを介して実装基板130と電気的に接続されている回路部品と、を含んでいるが、例えば、ボンディングワイヤを介して実装基板130と電気的に接続されている回路部品を含んでいてもよい。
 高周波モジュール100は、実装基板130の第2主面132に配置されて実装基板130の厚さ方向D1においてパワーアンプ3に重なる放熱用導体部を更に備えていてもよい。なお、複数の外部接続端子9の一部が放熱用導体部を構成していてもよい。
 また、実施形態1に係る高周波モジュール100及び実施形態2に係る高周波モジュール100dでは、複数の送信フィルタ13,14の各々における実装基板130側とは反対側の主面102が直接的又は間接的(金属部材140を介して)にシールド層16に接しているが、これに限らない。例えば、複数の送信フィルタ13,14のうちの一方の主面102が直接的又は間接的にシールド層16に接していてもよい。
 さらに、実施形態1の変形例1に係る高周波モジュール100a、実施形態1の変形例2に係る高周波モジュール100b、実施形態2の変形例1に係る高周波モジュール100e及び実施形態2の変形例2に係る高周波モジュール100fでは、複数の送信フィルタ11,12の各々における実装基板130側とは反対側の主面102が直接的又は間接的(金属部材140を介して)にシールド層16に接しているが、これに限らない。例えば、複数の送信フィルタ11,12のうちの一方の主面102が直接的又は間接的にシールド層16に接していてもよい。
 高周波モジュール100、100a~100fでは、送信フィルタ11,12,13,14の各々の外周面103の全部が第1樹脂層15により覆われているが、外周面103の一部が第1樹脂層15により覆われていてもよい。また、高周波モジュール100、100a~100cでは、送信フィルタ13,14の各々における実装基板130側とは反対側の主面102の全部がシールド層16に接しているが、主面102の一部がシールド層16に接していてもよい。
 また、高周波モジュール100d~100fでは、複数の金属部材140の各々の外周面143の全部が第1樹脂層15により覆われているが、外周面143の一部が第1樹脂層15により覆われていてもよい。また、高周波モジュール100d~100fでは、複数の金属部材140の各々における実装基板130側とは反対側の主面142の全部がシールド層16に接しているが、主面142の一部がシールド層16に接していてもよい。
 また、高周波モジュール100a,100fでは、送信フィルタ11,12における実装基板130側とは反対側の主面102の全部がシールド層16に接しているが、主面102の一部がシールド層16に接していてもよい。また、高周波モジュール100b,100eでは、複数の接触部材140Aの各々における実装基板130側とは反対側の主面142の全部がシールド層16に接しているが、主面142の一部がシールド層16に接していてもよい。
 また、高周波モジュール100、100a~100cでは、送信フィルタ13,14の各々における実装基板130側とは反対側の主面102の全部がシールド層16に覆われているが、主面102の一部がシールド層16に覆われていてもよい。また、高周波モジュール100d~100fでは、複数の金属部材140の各々における実装基板130側とは反対側の主面142の全部がシールド層16に覆われているが、主面142の一部がシールド層16に覆われていてもよい。
 また、高周波モジュール100、100a~100fは、パワークラス3の送信フィルタ11,12と、パワークラス2の送信フィルタ13,14と、を備えているが、これに限らない。高周波モジュールは、例えば、パワークラス1の送信フィルタと、パワークラス2の送信フィルタと、パワークラス3の送信フィルタと、を備えていてもよい。この場合、少なくとも、パワークラス1の送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していればよく、パワークラス2の送信フィルタ及びパワークラス3の送信フィルタの各々については、送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していてもよいし、接していなくてもよい。
 さらに、高周波モジュールは、例えば、パワークラス1の送信フィルタと、パワークラス2の送信フィルタと、を備えていてもよい。この場合、少なくとも、パワークラス1の送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していればよく、パワークラス2の送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部は、シールド層16に接していてもよいし、接していなくてもよい。
 さらに、高周波モジュールは、例えば、パワークラス1の送信フィルタと、パワークラス3の送信フィルタと、を備えていてもよい。この場合、少なくとも、パワークラス1の送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していればよく、パワークラス3の送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部は、シールド層16に接していてもよいし、接していなくてもよい。
 また、高周波モジュールは、例えば、パワークラス1の複数の送信フィルタのみを備えていてもよい。この場合、パワークラス1の複数の送信フィルタのうち少なくとも1つの送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していればよい。また、高周波モジュールは、例えば、パワークラス2の複数の送信フィルタのみを備えていてもよい。この場合、パワークラス2の複数の送信フィルタのうち少なくとも1つの送信フィルタにおける実装基板130側とは反対側の主面の少なくとも一部がシールド層16に接していればよい。
 また、高周波モジュール100、100a~100fでは、第1通信バンドが5G NR規格のn3であり、第2通信バンドが5G NR規格のn1であるが、これに限らない。第1通信バンド及び第2通信バンドの各々は、例えば、5G NR規格のn1、n3、n25及びn66のいずれかであればよい。また、高周波モジュール100、100a~100fでは、第5通信バンドが3GPP LTE規格のBand34であり、第6通信バンドが3GPP LTE規格のBand39であるが、これに限らない。第5通信バンド及び第6通信バンドの各々は、例えば、3GPP LTE規格のBand34、Band39、Band7、Band30、Band11、Band21、Band32のいずれかであればよい。
 高周波モジュール100,100a,100b,100c,100d,100e,100fの回路構成は、上述の例に限らない。また、高周波モジュール100,100a,100b,100c,100d,100e,100fは、回路構成として、例えば、MIMO(Multi Input Multi Output)対応の高周波フロントエンド回路を有していてもよい。
 また、実施形態1に係る通信装置300は、高周波モジュール100の代わりに、高周波モジュール100a,100b,100c,100d,100e,100fのいずれかを備えてもよい。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る高周波モジュール(100;100a;100b)は、実装基板(130)と、第1送信フィルタ(11,12)と、第2送信フィルタ(13,14)と、樹脂層(15)と、シールド層(16)と、を備える。実装基板(130)は、互いに対向する第1主面(131)及び第2主面(132)を有する。第1送信フィルタ(11,12)は、実装基板(130)の第1主面(131)に実装されている。第2送信フィルタ(13,14)は、実装基板(130)の第1主面(131)に実装されており、第1送信フィルタ(11,12)よりもパワークラスが高い。樹脂層(15)は、実装基板(130)の第1主面(131)に配置されている。シールド層(16)は、樹脂層(15)の少なくとも一部を覆っている。樹脂層(15)は、第1送信フィルタ(11,12)の外周面(103)の少なくとも一部を覆い、かつ、第2送信フィルタ(13,14)の外周面(103)の少なくとも一部を覆っている。シールド層(16)は、実装基板(130)の厚さ方向(D1)からの平面視において第2送信フィルタ(13,14)の少なくとも一部に重なっている。第2送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、第2送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)の少なくとも一部がシールド層(16)に接しているので、第2送信フィルタ(13,14)で発生した熱を、シールド層(16)を通して放熱することが可能となり、その結果、放熱性の向上を図ることが可能となる。
 第2の態様に係る高周波モジュール(100d;100e;100f)は、実装基板(130)と、第1送信フィルタ(11,12)と、第2送信フィルタ(13,14)と、金属部材(140)と、樹脂層(15)と、シールド層(16)と、を備える。実装基板(130)は、互いに対向する第1主面(131)及び第2主面(132)を有する。第1送信フィルタ(11,12)は、実装基板(130)の第1主面(131)に実装されている。第2送信フィルタ(13,14)は、実装基板(130)の第1主面(131)に実装されており、第1送信フィルタ(11,12)よりもパワークラスが高い。金属部材(140)は、第2送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)に配置されている。樹脂層(15)は、実装基板(130)の第1主面(131)に配置されている。シールド層(16)は、樹脂層(15)の少なくとも一部を覆っている。樹脂層(15)は、第1送信フィルタ(11,12)の外周面(103)の少なくとも一部を覆い、第2送信フィルタ(13,14)の外周面(103)の少なくとも一部を覆い、かつ、金属部材(140)の外周面(143)の少なくとも一部を覆っている。シールド層(16)は、実装基板(130)の厚さ方向(D1)からの平面視において金属部材(140)の少なくとも一部に重なっている。金属部材(140)における実装基板(130)側とは反対側の主面(141)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、第2送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)が金属部材(140)を介してシールド層(16)に接しているので、第2送信フィルタ(13,14)で発生した熱を、金属部材(140)及びシールド層(16)を通して放熱することが可能となり、その結果、放熱性の向上を図ることが可能となる。
 第3の態様に係る高周波モジュール(100;100d)では、第1又は第2の態様において、第1送信フィルタ(11,12)における実装基板(130)側とは反対側の主面(102)は、実装基板(130)の厚さ方向(D1)においてシールド層(16)から離れている。
 この態様によれば、印字エリアを大きくすることが可能となるとともに、材料費のアップを抑制することが可能となる。
 第4の態様に係る高周波モジュール(100;100a;100b)は、実装基板(130)と、送信フィルタ(13,14)と、樹脂層(15)と、シールド層(16)と、を備える。実装基板(130)は、互いに対向する第1主面(131)及び第2主面(132)を有する。送信フィルタ(13,14)は、実装基板(130)の第1主面(131)に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。樹脂層(15)は、実装基板(130)の第1主面(131)に配置されている。シールド層(16)は、樹脂層(15)の少なくとも一部を覆っている。樹脂層(15)は、送信フィルタ(13,14)の外周面(103)の少なくとも一部を覆っている。シールド層(16)は、実装基板(130)の厚さ方向(D1)からの平面視において送信フィルタ(13,14)の少なくとも一部に重なっている。送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)の少なくとも一部がシールド層(16)に接しているので、送信フィルタ(13,14)で発生した熱を、シールド層(16)を通して放熱することが可能となり、その結果、放熱性の向上を図ることが可能となる。
 第5の態様に係る高周波モジュール(100d;100e;100f)は、実装基板(130)と、送信フィルタ(13,14)と、金属部材(140)と、樹脂層(15)と、シールド層(16)と、を備える。実装基板(130)は、互いに対向する第1主面(131)及び第2主面(132)を有する。送信フィルタ(13,14)は、実装基板(130)の第1主面(131)に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタである。金属部材(140)は、送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)に配置されている。樹脂層(15)は、実装基板(130)の第1主面(131)に配置されている。シールド層(16)は、樹脂層(15)の少なくとも一部を覆っている。樹脂層(15)は、送信フィルタ(13,14)の外周面(103)の少なくとも一部を覆い、かつ、金属部材(140)の外周面(143)の少なくとも一部を覆っている。シールド層(16)は、実装基板(130)の厚さ方向(D1)からの平面視において金属部材(140)の少なくとも一部に重なっている。金属部材(140)における実装基板(130)側とは反対側の主面(141)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、送信フィルタ(13,14)における実装基板(130)側とは反対側の主面(102)が金属部材(140)を介してシールド層(16)に接しているので、送信フィルタ(13,14)で発生した熱を、金属部材(140)及びシールド層(16)を通して放熱することが可能となり、その結果、放熱性の向上を図ることが可能となる。
 第6の態様に係る高周波モジュール(100a;100f)は、第4又は第5の態様において、パワークラス3の送信フィルタ(11,12)を更に備える。パワークラス3の送信フィルタ(11,12)は、送信フィルタ(13,14)とは別体であって、実装基板(130)の第1主面(131)に実装されている。パワークラス3の送信フィルタ(11,12)における実装基板(130)側とは反対側の主面(102)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、パワークラス3の送信フィルタ(11,12)における実装基板(130)側とは反対側の主面(102)の少なくとも一部がシールド層(16)に接しているので、パワークラス3の送信フィルタ(11,12)で発生した熱を、シールド層(16)を通して放熱することが可能となり、その結果、更なる放熱性の向上を図ることが可能となる。
 第7の態様に係る高周波モジュール(100b;100e)は、第4又は第5の態様において、パワークラス3の送信フィルタ(11,12)と、接触部材(140A)と、を更に備える。パワークラス3の送信フィルタ(11,12)は、送信フィルタ(13,14)とは別体であって、実装基板(130)の第1主面(131)に実装されている。接触部材(140A)は、金属材料からなり、パワークラス3の送信フィルタ(11,12)における実装基板(130)側とは反対側の主面(102)に配置されている。接触部材(140A)における実装基板(130)側とは反対側の主面(141)の少なくとも一部は、シールド層(16)に接している。
 この態様によれば、パワークラス3の送信フィルタ(11,12)における実装基板(130)側とは反対側の主面(102)が、接触部材(140A)を介してシールド層(16)に接しているので、パワークラス3の送信フィルタ(11,12)で発生した熱を、接触部材(140A)及びシールド層(16)を通して放熱することが可能となり、その結果、放熱性の向上を図ることが可能となる。
 第8の態様に係る通信装置(300)は、第1~第7の態様のいずれか1つの高周波モジュール(100;100a~100f)と、信号処理回路(301)と、を備える。信号処理回路(301)は、高周波モジュール(100;100a~100f)に接続されている。
 この態様によれば、高周波モジュール(100;100a~100f)を備えるので、放熱性を向上させることが可能となる。
1 送信フィルタ
11,12 送信フィルタ(第1送信フィルタ、パワークラス3の送信フィルタ)
13,14 送信フィルタ(第2送信フィルタ、パワークラス2の送信フィルタ)
 102 主面
 103 外周面
2 受信フィルタ
21~26 受信フィルタ
3 パワーアンプ
31 ドライバ段増幅器
32A 最終段増幅器
32B 最終段増幅器
33 非平衡-平衡変換回路(第1バラン)
331 非平衡端子
332A 平衡端子
332B 平衡端子
4 出力整合回路
41 平衡-非平衡変換回路(第2バラン)
411A 平衡端子
411B 平衡端子
412 非平衡端子
42 回路素子
15 第1樹脂層(樹脂層)
151 主面
153 外周面
16 シールド層
20 第2樹脂層
201 主面
203 外周面
5 第1スイッチ
50 共通端子
51 選択端子
511~514 選択端子
55 第2ICチップ
6 整合回路(第1整合回路)
61~64 整合回路
7 第2スイッチ
70 共通端子
70A~70C 選択端子
71 選択端子
711~716 選択端子
8 整合回路(第2整合回路)
9 外部接続端子
91A,91B,91C アンテナ端子
92 信号入力端子
93 信号出力端子
94 制御端子
95 グランド端子
17 入力整合回路
171~176 入力整合回路
18 ローノイズアンプ
180 ICチップ(第1ICチップ)
19 コントローラ
100,100a,100b,100c,100d,100e,100f 高周波モジュール
130 実装基板
131 第1主面
132 第2主面
133 外周面
140 金属部材
140A 接触部材
141 主面
142 主面
143 外周面
300 通信装置
301 信号処理回路
302 RF信号処理回路
303 ベースバンド信号処理回路
A1 アンテナ(第1アンテナ)
A2 アンテナ(第2アンテナ)
A3 アンテナ(第3アンテナ)
C1 キャパシタ
D1 厚さ方向
L1 インダクタ要素
L2 インダクタ要素
L3 インダクタ要素
L4 インダクタ要素
L10 一次側インダクタ
L11 二次側インダクタ
La1 インダクタ
La2 インダクタ
Lc1 インダクタ
Lc2 インダクタ
T1 第1トランス
T2 第2トランス
Vcc1 電圧
W1 配線
W2 配線

Claims (8)

  1.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に実装されている第1送信フィルタと、
     前記実装基板の前記第1主面に実装されており、前記第1送信フィルタよりもパワークラスが高い第2送信フィルタと、
     前記実装基板の前記第1主面に配置されている樹脂層と、
     前記樹脂層の少なくとも一部を覆っているシールド層と、を備え、
     前記樹脂層は、前記第1送信フィルタの外周面の少なくとも一部を覆い、かつ、前記第2送信フィルタの外周面の少なくとも一部を覆っており、
     前記シールド層は、前記実装基板の厚さ方向からの平面視において前記第2送信フィルタの少なくとも一部に重なっており、
     前記第2送信フィルタにおける前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     高周波モジュール。
  2.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に実装されている第1送信フィルタと、
     前記実装基板の前記第1主面に実装されており、前記第1送信フィルタよりもパワークラスが高い第2送信フィルタと、
     前記第2送信フィルタにおける前記実装基板側とは反対側の主面に配置されている金属部材と、
     前記実装基板の前記第1主面に配置されている樹脂層と、
     前記樹脂層の少なくとも一部を覆っているシールド層と、を備え、
     前記樹脂層は、前記第1送信フィルタの外周面の少なくとも一部を覆い、前記第2送信フィルタの外周面の少なくとも一部を覆い、かつ、前記金属部材の外周面の少なくとも一部を覆っており、
     前記シールド層は、前記実装基板の厚さ方向からの平面視において前記金属部材の少なくとも一部に重なっており、
     前記金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     高周波モジュール。
  3.  前記第1送信フィルタにおける前記実装基板側とは反対側の主面は、前記実装基板の厚さ方向において前記シールド層から離れている、
     請求項1又は2に記載の高周波モジュール。
  4.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタと、
     前記実装基板の前記第1主面に配置されている樹脂層と、
     前記樹脂層の少なくとも一部を覆っているシールド層と、を備え、
     前記樹脂層は、前記少なくとも一方の送信フィルタの外周面の少なくとも一部を覆っており、
     前記シールド層は、前記実装基板の厚さ方向からの平面視において前記少なくとも一方の送信フィルタの少なくとも一部に重なっており、
     前記少なくとも一方の送信フィルタにおける前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     高周波モジュール。
  5.  互いに対向する第1主面及び第2主面を有する実装基板と、
     前記実装基板の前記第1主面に実装されている、パワークラス1の送信フィルタ及びパワークラス2の送信フィルタの少なくとも一方の送信フィルタと、
     前記少なくとも一方の送信フィルタにおける前記実装基板側とは反対側の主面に配置されている金属部材と、
     前記実装基板の前記第1主面に配置されている樹脂層と、
     前記樹脂層の少なくとも一部を覆っているシールド層と、を備え、
     前記樹脂層は、前記少なくとも一方の送信フィルタの外周面の少なくとも一部を覆い、かつ、前記金属部材の外周面の少なくとも一部を覆っており、
     前記シールド層は、前記実装基板の厚さ方向からの平面視において前記金属部材の少なくとも一部に重なっており、
     前記金属部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     高周波モジュール。
  6.  前記少なくとも一方の送信フィルタとは別体であって、前記実装基板の前記第1主面に実装されている、パワークラス3の送信フィルタを更に備え、
     前記パワークラス3の送信フィルタにおける前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     請求項4又は5に記載の高周波モジュール。
  7.  前記少なくとも一方の送信フィルタとは別体であって、前記実装基板の前記第1主面に実装されている、パワークラス3の送信フィルタと、
     金属材料からなり、前記パワークラス3の送信フィルタにおける前記実装基板側とは反対側の主面に配置されている接触部材と、を更に備え、
     前記接触部材における前記実装基板側とは反対側の主面の少なくとも一部は、前記シールド層に接している、
     請求項4又は5に記載の高周波モジュール。
  8.  請求項1~7のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールに接続されている信号処理回路と、を備える、
     通信装置。
PCT/JP2021/028578 2020-08-12 2021-08-02 高周波モジュール及び通信装置 WO2022034823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180056239.9A CN116075929A (zh) 2020-08-12 2021-08-02 高频模块和通信装置
US18/157,157 US20230164906A1 (en) 2020-08-12 2023-01-20 Radio-frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020136490 2020-08-12
JP2020-136490 2020-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/157,157 Continuation US20230164906A1 (en) 2020-08-12 2023-01-20 Radio-frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2022034823A1 true WO2022034823A1 (ja) 2022-02-17

Family

ID=80247840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028578 WO2022034823A1 (ja) 2020-08-12 2021-08-02 高周波モジュール及び通信装置

Country Status (3)

Country Link
US (1) US20230164906A1 (ja)
CN (1) CN116075929A (ja)
WO (1) WO2022034823A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120981A (ja) * 2004-10-25 2006-05-11 Alps Electric Co Ltd 電子部品及びその製造方法
WO2008053845A1 (en) * 2006-10-30 2008-05-08 Anritsu Corporation Mobile communication terminal transmission power control method and mobile communication terminal transmission power control device
WO2014013831A1 (ja) * 2012-07-19 2014-01-23 株式会社村田製作所 モジュールおよびこのモジュールの製造方法
JP2015015546A (ja) * 2013-07-03 2015-01-22 株式会社村田製作所 高周波モジュール
WO2016088681A1 (ja) * 2014-12-04 2016-06-09 株式会社村田製作所 電子部品及びその製造方法
WO2020095455A1 (ja) * 2018-11-09 2020-05-14 株式会社Nttドコモ ユーザ装置及び基地局装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120981A (ja) * 2004-10-25 2006-05-11 Alps Electric Co Ltd 電子部品及びその製造方法
WO2008053845A1 (en) * 2006-10-30 2008-05-08 Anritsu Corporation Mobile communication terminal transmission power control method and mobile communication terminal transmission power control device
WO2014013831A1 (ja) * 2012-07-19 2014-01-23 株式会社村田製作所 モジュールおよびこのモジュールの製造方法
JP2015015546A (ja) * 2013-07-03 2015-01-22 株式会社村田製作所 高周波モジュール
WO2016088681A1 (ja) * 2014-12-04 2016-06-09 株式会社村田製作所 電子部品及びその製造方法
WO2020095455A1 (ja) * 2018-11-09 2020-05-14 株式会社Nttドコモ ユーザ装置及び基地局装置

Also Published As

Publication number Publication date
US20230164906A1 (en) 2023-05-25
CN116075929A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2021002296A1 (ja) 高周波モジュール及び通信装置
WO2021044691A1 (ja) 高周波モジュール及び通信装置
US11736077B2 (en) Radio-frequency module and communication device
CN216162714U (zh) 高频模块和通信装置
US20230170862A1 (en) Radio-frequency module and communication device
WO2021084848A1 (ja) 高周波モジュール及び通信装置
US20230319984A1 (en) Radio-frequency module and communication device
US20230308121A1 (en) High-frequency module and communication device
WO2022124262A1 (ja) 高周波モジュール及び通信装置
US11881840B2 (en) Radio-frequency module and communication device
WO2022102197A1 (ja) 高周波モジュール及び通信装置
WO2022034823A1 (ja) 高周波モジュール及び通信装置
KR20210117949A (ko) 고주파 모듈 및 통신 장치
WO2022130733A1 (ja) 高周波モジュール及び通信装置
WO2022014337A1 (ja) 高周波モジュール及び通信装置
WO2022091954A1 (ja) 高周波モジュール及び通信装置
CN115514383B (zh) 高频模块以及通信装置
WO2022145412A1 (ja) 高周波モジュール及び通信装置
WO2022209482A1 (ja) 高周波モジュール及び通信装置
CN115039345B (zh) 高频模块以及通信装置
WO2023047957A1 (ja) 高周波モジュール、及び、通信装置
WO2022091852A1 (ja) 高周波モジュール、及び通信装置
WO2022118706A1 (ja) 高周波モジュール及び通信装置
WO2021117294A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP