WO2022033046A1 - 信息发送的方法、装置、设备及计算机存储介质 - Google Patents

信息发送的方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2022033046A1
WO2022033046A1 PCT/CN2021/085131 CN2021085131W WO2022033046A1 WO 2022033046 A1 WO2022033046 A1 WO 2022033046A1 CN 2021085131 W CN2021085131 W CN 2021085131W WO 2022033046 A1 WO2022033046 A1 WO 2022033046A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
differential
positioning
terminal device
differential positioning
Prior art date
Application number
PCT/CN2021/085131
Other languages
English (en)
French (fr)
Inventor
涂奎
刘杰
王靖瑜
Original Assignee
中移(上海)信息通信科技有限公司
中移智行网络科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(上海)信息通信科技有限公司, 中移智行网络科技有限公司, 中国移动通信集团有限公司 filed Critical 中移(上海)信息通信科技有限公司
Priority to US18/002,660 priority Critical patent/US20230236325A1/en
Priority to JP2022576201A priority patent/JP2023530651A/ja
Priority to EP21855102.6A priority patent/EP4155678A4/en
Publication of WO2022033046A1 publication Critical patent/WO2022033046A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/011Identifying the radio environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Definitions

  • the embodiments of the present application belong to the field of positioning technologies, and in particular, relate to a method, apparatus, device, and computer storage medium for sending information.
  • the most common positioning method is satellite positioning, but satellite signals are easily affected by factors such as sunspot movement, bad weather, and electromagnetic interference, and these effects are unavoidable. In order to offset these interferences, the industry usually adopts differential positioning technology.
  • the differential positioning information is broadcast to the on-board unit (OBU) in the terminal equipment through the roadside unit (Road Side Unit, RSU) in the roadside equipment, and the terminal equipment is based on the received satellite positioning signals. and differential positioning information to calculate the precise position.
  • OBU on-board unit
  • RSU Road Side Unit
  • the RSU will continue to send differential positioning information to the OBU, and the terminal equipment continues to perform high-precision positioning calculations, which increases the calculation time of positioning information and causes waste of energy consumption of roadside equipment and terminal equipment. At the same time, the efficiency of high-precision positioning of the system is reduced.
  • the embodiments of the present application provide a method, apparatus, device, and computer storage medium for information transmission, which can determine the time for transmitting differential positioning information according to the needs of terminal equipment, reduce the calculation time of positioning information, and reduce roadside equipment and terminal equipment.
  • the energy consumption of the system improves the efficiency of high-precision positioning of the system.
  • an embodiment of the present application provides a method for sending information, the method comprising:
  • first information for terminal device positioning includes differential positioning information; or the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information;
  • the differential positioning information is sent to the terminal device.
  • the preset condition includes that the environmental information is the first environmental information.
  • the differential positioning information includes a differential value; when the first information is a differential value, the preset condition includes greater than a preset differential threshold.
  • the first information is the satellite positioning signal and the differential positioning information
  • differential positioning information is sent to the terminal device.
  • an apparatus for sending information comprising:
  • an acquisition module configured to acquire first information for terminal device positioning, where the first information includes differential positioning information; or the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information;
  • the sending module is configured to send differential positioning information to the terminal device when the first information satisfies the preset condition.
  • the preset condition includes that the environmental information is the first environmental information.
  • the differential positioning information includes a differential value; when the first information is a differential value, the preset condition includes greater than a preset differential threshold.
  • the apparatus further includes a calculation module, configured to calculate the calculated position of the roadside equipment according to the satellite positioning signal and the differential positioning information when the first information is the satellite positioning signal and the differential positioning information;
  • the device further includes a determining module for determining the distance difference between the calculated position and the actual position according to the calculated position and the actual position of the roadside equipment;
  • the sending unit is specifically configured to send the differential positioning information to the terminal device when the distance difference is greater than a preset distance difference threshold.
  • an embodiment of the present application provides a roadside device, the roadside device includes: a processor, and a memory storing computer program instructions; the processor reads and executes the computer program instructions, so as to realize the above-mentioned information sending method.
  • an embodiment of the present application provides a computer storage medium, where computer program instructions are stored on the computer storage medium, and when the computer program instructions are executed by a processor, the above-mentioned method for sending information is implemented.
  • the method, apparatus, device, and computer storage medium for information sending provided by the embodiments of the present application, wherein the method includes: a roadside device obtains first information for terminal device positioning, where the first information includes differential positioning information, or the first information includes At least one of environmental information or satellite positioning signals, as well as differential positioning information, does not require the establishment of a communication connection between the terminal device and the high-precision positioning platform, that is, the terminal device does not need a mobile communication module and high-precision positioning functions, which reduces equipment costs.
  • the differential positioning information is sent to the terminal device, which can effectively reduce the sending of unnecessary differential positioning information, avoid unnecessary waste of energy consumption by the roadside device and the terminal device, and save the terminal device from calculating the location information. time, and improve the efficiency of high-precision positioning of the system.
  • FIG. 1 is a schematic structural diagram of an information sending system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for sending information provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a roadside information management device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for sending information provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for sending information provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for sending information provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for sending information provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a roadside device provided by an embodiment of the present application.
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • Galileo of the European Union
  • the working principles of various satellite positioning systems are roughly the same. Taking GPS as an example, it can be simply understood that it consists of 24 working satellites, so that more than 4 satellites can be observed anywhere in the world and at any time. , measure the distance between the satellite with known position and the receiver of the user, and then combine the data of multiple satellites to know the specific position of the receiver.
  • the quality of the received satellite signal has a great relationship with the positioning accuracy, but the satellite signal is easily affected by factors such as sunspot movement, bad weather, and electromagnetic interference, and these are unavoidable.
  • the differential positioning technology commonly used in the industry is based on the principle of measuring the current satellite signal by setting the ground reference station, and calculating the differential parameters of the signal according to the actual position known by the ground reference station and the received satellite signal.
  • the differential parameter includes the influence caused by various interference factors, and then the reference station sends the differential parameter to the terminal device, and the terminal device uses the differential parameter to correct its measurement results to obtain accurate positioning results. Therefore, in order to achieve high-precision positioning, the positioning device needs to receive differential positioning information.
  • the terminal device In the prior art, there are mainly two ways for the terminal device to obtain differential positioning information.
  • One way is that the terminal device mainly communicates with the server of the high-precision positioning platform through a mobile communication module, and queries its differential positioning information. This method requires the terminal device to have mobile Communication module, and enable high-precision positioning function, which increases the cost of terminal equipment.
  • Another way is that in the road scene, the vehicle-road coordination system broadcasts differential positioning information to the on-board unit (OBU) in the terminal equipment through the roadside unit (Road Side Unit, RSU) in the roadside equipment, using To offset the impact of various interference factors.
  • OBU on-board unit
  • RSU roadside unit
  • various interference factors are weakened.
  • the terminal equipment does not need differential positioning information, and can also obtain positioning results with high accuracy. Therefore, in the case of a good environment, if the RSU continues to broadcast differential positioning information, it will cause unnecessary transmission of differential positioning information and high-precision calculation on the terminal device side, which increases the calculation time of the terminal device side position information, and further This leads to waste of energy consumption of RSU, OBU and terminal equipment, and reduces the efficiency of high-precision positioning of the system.
  • the embodiments of the present application provide a method, apparatus, device, and computer storage medium for sending information.
  • the first information used for the positioning of the terminal equipment is obtained through the roadside equipment, and whether the differential positioning information improves the accuracy of the correction of the positioning result information is determined according to the relationship between the first information and the preset conditions, and only the terminal equipment
  • the RSU is controlled to send differential positioning information to the terminal equipment on the roadside, so that the terminal equipment can use the differential positioning information to complete accurate positioning, avoiding unnecessary waste of energy consumption of the roadside equipment and terminal equipment, saving terminal equipment
  • the time for the device to calculate the position information improves the efficiency of the high-precision positioning of the system.
  • FIG. 1 shows a schematic structural diagram of an information sending system provided by an embodiment of the present application.
  • the information sending system may include: satellite 110 , roadside equipment 120 , ground reference station 130 , high-precision positioning platform 140 , and terminal equipment 150 .
  • the roadside equipment 120 includes a roadside unit 121 and a roadside information management device 122 .
  • the roadside unit 121 is installed on the roadside, and can use a dedicated short-range communication technology (Dedicated Short Range Communication, DSRC) and/or a long-term evolution technology (Long Term Evolution-Vehicle, LTE-V) to communicate with the communication equipment traveling on the road. communication, sending and receiving various information.
  • the roadside unit 121 in the embodiment of the present application is further configured to broadcast differential positioning information corresponding to the ground reference station 130 suitable for use by the positioning terminal in the area to the roadside.
  • the terminal device 150 is installed with a vehicle-mounted unit 151, and the vehicle-mounted unit 151 can communicate with the roadside unit 121 by using DSRC and/or LTE-V technology, and send and receive various information.
  • the vehicle-mounted unit 151 in this embodiment of the present application may also be used to receive differential positioning information corresponding to the ground reference station 130 suitable for use by the terminal device 150 in the area broadcast by the roadside unit 121 to the roadside.
  • the roadside unit 121 sends the differential positioning information to the roadside, which may be that the roadside unit 121 periodically sends the differential positioning information to the roadside, or the roadside unit 121 sends the differential positioning information to the roadside when the vehicle-mounted unit 151 is detected, or When the terminal device 150 needs high-precision positioning, the vehicle-mounted unit 151 requests the roadside unit 121 to send differential positioning information.
  • the terminal device 150 may be a car, a truck, or some other vehicle with a positioning system, which is not limited here.
  • the satellite 110 transmits satellite positioning signals
  • the ground reference station 130 continuously observes the satellite positioning signals for a long time
  • the communication equipment transmits the observation data to the high-precision positioning platform 140 in real time or at regular intervals, and the high-precision positioning platform 140 solves each ground From the observation data of the reference station 130, differential positioning information is obtained.
  • the roadside information management device 122 obtains the environmental information and the differential positioning information, and receives the satellite positioning signal sent by the satellite 110, judges whether the differential positioning information improves the accuracy of the corrected positioning result according to the preset conditions, and obtains the judgment result 1: differential positioning information The accuracy of the corrected positioning result is improved, and the judgment result 2: the differential positioning information does not improve the accuracy of the corrected positioning result, and the control information is formed according to the two judgment results.
  • the roadside unit 121 receives the control information. When the control information includes the decision result 1, it sends the differential positioning information to the roadside equipment terminal 150 according to the control information.
  • the vehicle-mounted unit 151 receives the differential positioning information, and the terminal equipment 150 receives the satellite positioning signal according to the received signal. With the differential positioning information received by the vehicle-mounted unit 151, a high-precision positioning result of the terminal device 150 is calculated.
  • FIG. 2 shows a schematic flowchart of a method for sending information provided by an embodiment of the present application. As shown in Figure 2, the method may include the following steps:
  • S210 Acquire first information for terminal device positioning, where the first information includes differential positioning information; or the first information includes at least one item of environmental information or satellite positioning signals, and differential positioning information.
  • the roadside equipment 120 provides differential positioning information capable of correcting the position information for the terminal equipment 150 on the roadside, and obtains differential positioning information from the high-precision positioning platform 140 through the roadside information management device 122 in the roadside equipment 120.
  • the differential positioning information is at least It includes errors such as satellite and receiver clock errors, atmospheric propagation delays, and multipath effects.
  • the roadside information management device 122 determines whether to send differential positioning information to the vehicle-mounted unit 151 according to the differential positioning information.
  • whether to send differential positioning information to the vehicle-mounted unit 151 may also be determined according to at least one item of environmental information or satellite positioning signals, and differential positioning information.
  • the environmental information includes air flow information, air temperature information, PM value, and other factors that affect weather conditions.
  • the terminal device 150 When the first information satisfies the preset condition, the terminal device 150 needs differential positioning information to assist high-precision positioning. At this time, the roadside information management apparatus 122 sends differential positioning information to the terminal device 150 .
  • the first information may only include differential positioning information, or may include environmental information and differential positioning information or satellite positioning signals and differential positioning information.
  • the auxiliary information contained in the first information is different, the corresponding preset conditions are different, which satisfies any situation of whether the roadside information management apparatus 122 needs to send differential positioning information to the terminal device 150, and ensures that the terminal device 150 can calculate the positioning result in any environment. accuracy.
  • the first information used for the positioning of the terminal device is acquired through the roadside device, where the first information includes differential positioning information, or the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information.
  • the first information includes differential positioning information
  • the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information.
  • differential positioning information there is no need to establish a communication connection between the terminal device and the high-precision positioning platform, that is, the terminal device does not need a mobile communication module and a high-precision positioning function is enabled, which reduces equipment costs.
  • the differential positioning information is sent to the terminal device, which can effectively reduce the sending of unnecessary differential positioning information, avoid unnecessary waste of energy consumption by the roadside device and the terminal device, and save the terminal device from calculating the location information. time, and improve the efficiency of high-precision positioning of the system.
  • the preset condition includes that the environment information is the first environment information.
  • the first environmental information includes low air visibility information, cloudy and rainy weather information, air flow fluctuation information, and other environmental information indicating bad weather conditions.
  • the roadside information management device 122 in the roadside equipment 120 may be provided with an environmental monitoring module to obtain environmental information, and may also be connected to an environmental information release platform to obtain environmental information.
  • the roadside information management device 122 judges the weather state according to the environmental information. If the current air visibility is high, the weather is clear, the airflow is stable, etc., it means that the weather state is good, that is, the interference of the atmosphere on the satellite positioning signal is very small, and the differential positioning information is very important to the computing terminal equipment.
  • the positioning result of 150 has little influence, and the terminal device 150 may not need differential positioning information to assist positioning.
  • the control information is generated and sent to the roadside unit 121 according to the judgment result.
  • the roadside unit 121 does not send differential positioning information to the vehicle-mounted unit 151 according to the control information, and the terminal device 150 only calculates its location according to the satellite positioning signal.
  • the environmental information includes the first environmental information, that is, the current lightning and thunder, violent storms, turbulent air flow, etc.
  • the differential positioning information is used to calculate the positioning of the terminal device 150.
  • the impact is great, and the terminal device 150 needs differential positioning information to assist in positioning.
  • Control information is generated and sent to the roadside unit 121 according to the judgment result.
  • the roadside unit 121 sends differential positioning information to the vehicle-mounted unit 151 according to the control information.
  • the terminal device 150 calculates its location according to the differential positioning information and satellite positioning signals.
  • the differential positioning information includes a differential value; when the first information is a differential value, the preset condition includes greater than a preset differential threshold.
  • the differential value may include the clock difference between the satellite 110 and the receiver, the atmospheric propagation delay , multipath effect and other error values, and compare whether the difference value is within the preset difference threshold range.
  • the control information is generated and sent to the roadside unit 121 according to the judgment result.
  • the roadside unit 121 does not send differential positioning information to the vehicle-mounted unit 151 according to the control information, and the terminal device 150 only calculates its location according to the satellite positioning signal.
  • the terminal device 150 Differential positioning information is required to assist positioning. Control information is generated and sent to the roadside unit 121 according to the judgment result. The roadside unit 121 sends differential positioning information to the vehicle-mounted unit 151 according to the control information. The terminal device 150 calculates its location according to the differential positioning information and satellite positioning signals.
  • the on-board unit 151 may further carry the accuracy requirements required for the positioning in the request message, and the roadside information management device 122 can perform the positioning according to the request.
  • the accuracy requirement determines the preset differential threshold. The higher the positioning accuracy requirement is, the smaller the preset differential threshold is set, and vice versa. Therefore, in the case where the requirement for positioning accuracy is not high, it is possible to effectively avoid sending unnecessary differential positioning information, thereby achieving the purpose of saving energy consumption and shortening the time for the terminal device 150 to calculate the position information.
  • sending differential positioning information to the terminal device 150 includes: when the distance difference is greater than a preset distance difference threshold, sending differential positioning information to the terminal device 150 .
  • the roadside information management device 122 receives the satellite positioning signal transmitted by the satellite 110, and obtains the positioning information in the satellite positioning signal, where the positioning information at least includes the coordinates of the satellite 110 and the propagation delay of the satellite positioning signal.
  • the roadside information management device 122 selects a positioning result according to the positioning information, uses the differential positioning information to correct the positioning result, and obtains the calculated position of the roadside equipment 120. According to the calculated position and the actual position of the roadside device 120, the distance difference between the calculated position and the actual position is determined.
  • the coordinates of the calculated position are obtained as (x 1 , y 1 , z 1 ).
  • the actual position of the roadside equipment 120 is recorded and stored, according to For the actual position, the coordinates of the obtained actual position are (x 2 , y 2 , z 2 ), and the distance between each group of calculated position coordinates and the actual position coordinates is calculated according to the following formula (1):
  • the differential positioning information has little effect on the calculation of the positioning result of the terminal device 150, and the terminal device 150 may perform correction without the differential positioning information.
  • the control information is generated and sent to the roadside unit 121 according to the judgment result.
  • the roadside unit 121 does not send differential positioning information to the vehicle-mounted unit 151 according to the control information, and the terminal device 150 only calculates its location according to the satellite positioning signal.
  • the differential positioning information has a greater impact on the calculation of the positioning result of the terminal device 150, and the terminal device 150 needs the differential positioning information for correction.
  • the control information is generated and sent to the roadside unit 121 according to the judgment result.
  • the roadside unit 121 sends differential positioning information to the vehicle-mounted unit 151 according to the control information.
  • the terminal device 150 calculates its location according to the differential positioning information and satellite positioning signals.
  • the roadside information management device 122 includes: a satellite signal receiving module 1221 , a communication module 1222 , a position calculation module 1223 , a differential positioning information decision module 1224 , and a roadside information management module 1225 .
  • the roadside information management device 122 receives the satellite positioning signal through the satellite signal receiving module 1221, and obtains the positioning information in the satellite positioning signal.
  • the communication module 1222 obtains the differential positioning information from the high-precision positioning platform 140, and the position calculating module 1223 obtains the differential positioning information according to the positioning information and the differential positioning information.
  • the calculated position of the roadside equipment 120 is calculated from the positioning information, and the distance difference between the calculated position and the actual position of the roadside equipment 120 is obtained according to the calculated position and the actual position of the roadside equipment 120 .
  • the differential positioning information decision module 1224 determines whether the differential positioning information affects the roadside equipment 150 according to the environmental information or the differential positioning information or according to the relationship between the distance difference between the calculated position and the actual position of the roadside equipment 120 and the preset condition. There are three judgment methods for the positioning result:
  • the decision method includes:
  • S402. Determine whether the differential positioning information affects the positioning result of the terminal device. When the weather conditions are good, the differential positioning information has little effect on the calculation of the positioning result of the terminal device. The terminal device does not need the differential positioning information to assist the positioning. Execute S404. In the case of bad weather conditions, the differential positioning information has a great influence on the calculation of the positioning result of the terminal device, and the terminal device needs the differential positioning information to assist the positioning, and S403 is executed.
  • the differential positioning information at least includes errors such as the clock difference between the satellite and the receiver, atmospheric propagation delay, and multipath effects.
  • the judgment results include judgment result 1: the differential positioning information is required to participate in the calculation of the positioning result of the terminal device, and judgment result 2: the differential positioning information is not required to participate in the calculation of the positioning result of the terminal device. If the decision result is 1, the control information includes differential positioning information; if the decision result is 2, the control information does not include differential positioning information, and the roadside information management module 1225 sends the control information to the roadside unit.
  • control information includes decision result 1, that is, the control information includes differential positioning information
  • the broadcast message includes differential positioning information
  • the broadcast message is sent to the terminal device to improve the accuracy of the positioning result of the terminal device.
  • decision result 2 that is, the control information does not contain differential positioning information
  • the broadcast message does not contain differential positioning information, and a broadcast message is sent to the terminal device.
  • the roadside unit to send differential positioning information to the terminal equipment on the roadside:
  • the roadside unit periodically sends differential positioning information to the terminal equipment on the roadside.
  • the vehicle-mounted unit requests the roadside unit to send differential positioning information.
  • the vehicle-mounted unit receives the broadcast message.
  • the terminal device calculates an accurate positioning result according to the positioning information and differential positioning information in the satellite positioning signal received from the satellite.
  • the terminal device only calculates the positioning result according to the positioning information in the satellite positioning signal received from the satellite.
  • the determination method does not need to enable the satellite signal receiving module 1221 and the position calculating module 1223, which minimizes the waste of energy consumption of roadside equipment.
  • the decision method includes:
  • S501 Receive observation data of a ground reference station, and obtain differential positioning information.
  • the differential value is obtained according to the differential positioning information, and the relationship between the differential value and the preset differential threshold is compared.
  • the differential value is greater than the preset differential threshold, the differential positioning information has a great influence on the positioning result of the computing terminal device, and judgment result 1 is generated: Terminal equipment needs differential positioning information to assist positioning.
  • the differential value is less than the preset differential threshold, the differential positioning information has little effect on the calculation of the positioning result of the terminal device, and decision result 2 is generated: the terminal device does not need differential positioning information to assist positioning.
  • the determination method does not need to enable the satellite signal receiving module 1221 and the position calculating module 1223, which minimizes the waste of energy consumption of roadside equipment.
  • the judgment method includes:
  • the positioning information includes at least the coordinates of the satellite and the propagation delay of the satellite positioning signal.
  • S602. Receive the observation data of the ground reference station, and obtain differential positioning information.
  • S603. Determine whether the differential positioning information affects the positioning result of the terminal device.
  • the position calculation module 1223 calculates the calculated position of the roadside equipment, obtains the distance difference according to the calculated position and the actual position of the roadside equipment, and compares the relationship between the distance difference and the preset distance difference threshold.
  • the distance difference is greater than the preset distance difference threshold, the differential positioning information has a greater impact on the calculation of the positioning result of the terminal device, and a decision result 1 is generated: the terminal device needs differential positioning information to assist positioning.
  • the terminal device does not need differential positioning information to assist positioning.
  • the function of the roadside information management device can be realized by a single device as shown in Figure 3, and other modules other than the satellite signal receiving module can also be integrated in the roadside unit or vehicle-mounted unit or high-precision positioning platform. If it is arranged on the roadside or integrated in the roadside unit or the vehicle-mounted unit, the cost of the equipment will be increased, but the delay of obtaining the differential positioning information by the vehicle-mounted unit can be reduced. If it is integrated into the high-precision positioning platform, the cost of roadside or vehicle-end equipment will be reduced, but the delay of obtaining differential positioning information by the vehicle-mounted unit will increase. function of the device.
  • the roadside device acquires first information for terminal device positioning, where the first information includes differential positioning information, or the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information, without the need for a terminal
  • a communication connection is established between the device and the high-precision positioning platform, that is, the terminal device does not need a mobile communication module and a high-precision positioning function is enabled, which reduces equipment costs.
  • the differential positioning information is sent to the terminal device, which can effectively reduce the sending of unnecessary differential positioning information, avoid unnecessary waste of energy consumption by the roadside device and the terminal device, and save the terminal device from calculating the location information. time, and improve the efficiency of high-precision positioning of the system.
  • the embodiments of the present application are applicable to high-precision satellite positioning requirements including but not limited to vehicle-road collaboration scenarios such as highways and urban roads.
  • FIG. 7 is a schematic structural diagram of a device provided by an embodiment of the present application. As shown in FIG. 7 , the apparatus may include an obtaining module 710 and a sending module 720 .
  • an obtaining module 710 configured to obtain first information for terminal device positioning, where the first information includes differential positioning information; or the first information includes at least one of environmental information or satellite positioning signals, and differential positioning information;
  • the sending module 720 is configured to send differential positioning information to the terminal device when the first information satisfies a preset condition.
  • the preset condition includes that the environmental information is the first environmental information.
  • the differential positioning information includes a differential value; when the first information is a differential value, the preset condition includes greater than a preset differential threshold.
  • the apparatus further includes a calculation module for calculating the calculated position of the roadside equipment according to the satellite positioning signal and the differential positioning information when the first information is the satellite positioning signal and the differential positioning information;
  • the device further includes a determining module for determining the distance difference between the calculated position and the actual position according to the calculated position and the actual position of the roadside equipment;
  • the sending unit is specifically configured to send differential positioning information to the terminal device when the distance difference is greater than a preset distance difference threshold.
  • Each module in the device shown in FIG. 7 has the function of implementing each step in FIG. 2 and can achieve its corresponding technical effect, and is not repeated here for the sake of brevity.
  • FIG. 8 shows a schematic diagram of a hardware structure of information sending provided by an embodiment of the present application.
  • the roadside equipment may include a processor 801 and a memory 802 storing computer program instructions.
  • the above-mentioned processor 801 may include a central processing unit (Central Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Memory 802 may include mass storage for data or instructions.
  • memory 802 may include a Hard Disk Drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of more than one of the above.
  • HDD Hard Disk Drive
  • floppy disk drive a flash memory
  • optical disk a magneto-optical disk
  • magnetic tape magnetic tape
  • USB Universal Serial Bus
  • USB Universal Serial Bus
  • memory 802 may include removable or non-removable (or fixed) media, or memory 802 may be non-volatile solid-state memory.
  • the memory 802 may be internal or external to the integrated gateway disaster recovery device.
  • memory 802 may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical or other physical/tangible memory storage devices.
  • memory 802 includes one or more tangible (non-transitory) computer-readable storage media (eg, memory devices) encoded with software including computer-executable instructions, and when the software is executed (eg, by a or multiple processors), it is operable to perform the operations described with reference to the method according to an aspect of the embodiments of the present application.
  • the processor 801 realizes steps S210 to S220 in the embodiment shown in FIG. 2 by reading and executing the computer program instructions stored in the memory 802, and achieves the corresponding technical effect achieved by the example shown in FIG. The description will not be repeated here.
  • the roadside device may also include a communication interface 803 and a bus 810 .
  • the processor 801 , the memory 802 , and the communication interface 803 are connected through the bus 810 and complete the mutual communication.
  • the communication interface 803 is mainly used to implement communication between modules, apparatuses, units and/or devices in the embodiments of the present application.
  • the bus 810 includes hardware, software, or both, coupling the components that transmit information to each other.
  • the bus may include an Accelerated Graphics Port (AGP) or other graphics bus, an Extended Industry Standard Architecture (EISA) bus, a Front Side Bus (FSB), a Super Transport (Hyper Transport, HT) interconnect, Industry Standard Architecture (ISA) bus, Infinite Bandwidth interconnect, Low Pin Count (LPC) bus, Memory bus, Micro Channel Architecture (MCA) bus, Peripheral Component Interconnect Connectivity (PCI) bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or two or more of these combination.
  • Bus 810 may include one or more buses, where appropriate. Although embodiments herein describe and illustrate a particular bus, embodiments herein contemplate any suitable bus or interconnect.
  • the roadside device may execute the information sending method in this embodiment of the present application based on differential positioning information, environmental information, satellite positioning signals and preset thresholds, thereby implementing the information sending method and apparatus described in conjunction with FIG. 2 and FIG. 7 .
  • the embodiments of the present application may provide a computer storage medium for implementation.
  • Computer program instructions are stored on the computer storage medium; when the computer program instructions are executed by the processor, any one of the information sending methods in the foregoing embodiments is implemented.
  • the functional blocks shown in the above-described structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, and the like.
  • ASIC application specific integrated circuit
  • the elements of the embodiments of the present application are programs or code segments used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave.
  • a "machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, Radio Frequency (RF) links, etc. Wait.
  • the code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.
  • the exemplary embodiments mentioned in the embodiments of this application describe some methods or systems based on a series of steps or devices.
  • the embodiment of the present application is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be performed simultaneously.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It will also be understood that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware for performing the specified functions or actions, or by special purpose hardware and/or A combination of computer instructions is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种信息发送的方法、装置、设备及计算机存储介质,其中方法包括:获取用于终端设备定位的第一信息,第一信息包括差分定位信息;或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息(S210);当第一信息满足预设条件时,向终端设备发送差分定位信息(S220)。该方法能够有效减少发送不必要的差分定位信息,避免了路侧设备和终端设备不必要的能耗浪费,节约终端设备计算位置信息的时间,提高了系统高精度定位的效率。

Description

信息发送的方法、装置、设备及计算机存储介质
相关申请的交叉引用
本申请基于申请号为202010819515.X、申请日为2020年08月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引用的方式引入本申请。
技术领域
本申请实施例属于定位技术领域,尤其涉及一种信息发送的方法、装置、设备及计算机存储介质。
背景技术
从移动互联网到物联网,位置是一个基础的不可或缺的信息。但是从精细化的行业应用需求来说,只有更高精度的定位信息才能带来更高的价值,人们可以更加精确地知道人和物所处的位置,从而更好地为人和物提供服务。因此,高精度定位技术对于移动互联网以及物联网,尤其是车联网的应用至关重要。
最常见的定位方式是卫星定位,但是卫星信号容易受到太阳黑子运动、恶劣天气、电磁干扰等因素的影响,而且这些影响是无法避免的,为了抵消这些干扰,业界通常采用差分定位技术。
在车路协同系统中,通过路侧设备中的路侧单元(Road Side Unit,RSU)向终端设备中的车载单元(On Board Unit,OBU)广播差分定位信息,终端设备根据接收的卫星定位信号和差分定位信息计算出精确的位置。由于不管OBU是否需要差分定位信息,RSU都会持续向OBU发送差分定位信息,终端设备不停地进行高精度定位计算,增长了定位信息的计算时间,造成路侧设备和终端设备的能耗浪费,同时降低了系统高精度定位的效率。
发明内容
本申请实施例提供一种信息发送的方法、装置、设备及计算机存储介质,能够根据终端设备的需要确定发送差分定位信息的时间,减少了定位信息的计算时间,降低了路侧设备和终端设备的能耗,提高了系统高精度定位的效率。
第一方面,本申请实施例提供一种信息发送的方法,该方法包括:
获取用于终端设备定位的第一信息,第一信息包括差分定位信息;或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息;
当第一信息满足预设条件时,向终端设备发送差分定位信息。
在一些实施例中,当第一信息为环境信息以及差分定位信息时,预设条件包括环境信息为第一环境信息。
在一些实施例中,差分定位信息包括差分值;当第一信息为差分值时,预设条件包括大于预设差分阈值。
在一些实施例中,当第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备的计算位置;
根据计算位置和路侧设备的实际位置,确定计算位置和实际位置的距离差值;
当第一信息满足预设条件时,向终端设备发送差分定位信息,包括:
当距离差值大于预设距离差值阈值时,向终端设备发送差分定位信息。
第二方面,本申请实施例提供了一种信息发送的装置,该装置包括:
获取模块,用于获取用于终端设备定位的第一信息,第一信息包括差分定位信息;或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息;
发送模块,用于当第一信息满足预设条件时,向终端设备发送差分定位信息。
在一些实施例中,当第一信息为环境信息以及差分定位信息时,预设条件包括环境信息为第一环境信息。
在一些实施例中,差分定位信息包括差分值;当第一信息为差分值时,预 设条件包括大于预设差分阈值。
在一些实施例中,该装置还包括计算模块,用于当第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备的计算位置;
该装置还包括确定模块,用于根据计算位置和所述路侧设备的实际位置,确定所述计算位置和实际位置的距离差值;
发送单元,具体用于当所述距离差值大于预设距离差值阈值时,向终端设备发送所述差分定位信息。
第三方面,本申请实施例提供了一种路侧设备,该路侧设备包括:处理器,以及存储有计算机程序指令的存储器;处理器读取并执行计算机程序指令,以实现上述信息发送的方法。
第四方面,本申请实施例提供了一种计算机存储介质,该计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现上述的信息发送的方法。
本申请实施例提供的信息发送的方法、装置、设备及计算机存储介质,其中方法包括:路侧设备获取用于终端设备定位的第一信息,第一信息包括差分定位信息,或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息,无需终端设备与高精度定位平台之间建立通信连接,即终端设备无需移动通信模块和开通高精度定位功能,降低了设备成本。当第一信息满足预设条件时,向终端设备发送差分定位信息,可有效减少发送不必要的差分定位信息,避免了路侧设备和终端设备不必要的能耗浪费,节约终端设备计算位置信息的时间,提高了系统高精度定位的效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种信息发送系统的结构示意图;
图2是本申请实施例提供的一种信息发送的方法的流程示意图;
图3是本申请实施例提供的一种路侧信息管理装置的结构示意图;
图4是本申请实施例提供的一种信息发送的方法的流程示意图;
图5是本申请实施例提供的一种信息发送的方法的流程示意图;
图6是本申请实施例提供的一种信息发送的方法的流程示意图;
图7是本申请实施例提供的一种信息发送的装置的结构示意图;
图8是本申请实施例提供的一种路侧设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
目前,最常见的定位方式则是卫星定位,全球四大卫星定位系统分别为中国的北斗、美国的全球定位系统(Global Positioning System,GPS)、俄罗斯的全球卫星导航系统(Global Navigation Satellite System,GLONASS)、欧盟的伽 利略,各种卫星定位系统的工作原理大致相同,以GPS为例可以简单理解为,由24颗工作卫星组成,使得在全球任何地方、任何时间都可观测到4颗以上的卫星,测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。由此可知,接收到的卫星信号质量高低与定位精度有极大的关系,但卫星信号容易受到太阳黑子运动、恶劣天气、电磁干扰等因素的影响,并且这些也是无法避免的。为了抵消这些干扰,业界通常采用的差分定位技术,其原理为通过设置地面基准站对当前卫星信号进行测量,并根据地面基准站已知的实际位置和接收到的卫星信号计算信号的差分参数,该差分参数包含了由各种干扰因素带来的影响,再由基准站向终端设备发送该差分参数,终端设备利用差分参数对其测量结果进行改正,以获得精确的定位结果。因此,为了实现高精度定位,进行定位的设备则需要接收差分定位信息。
现有技术中,终端设备主要有两种方式获取差分定位信息,一种方式是终端设备主要通过移动通信模块与高精度定位平台的服务器进行通信,查询其差分定位信息该方法需要终端设备具备移动通信模块,并开通高精度定位功能,提高了终端设备的成本。另一种方式是在公路场景下,车路协同系统通过路侧设备中的路侧单元(Road Side Unit,RSU)向终端设备中的车载单元(On board Unit,OBU)广播差分定位信息,用于抵消各种干扰因素所带来的影响。但是在天气情况较好的情况下,各种干扰因素被消弱了,此时,终端设备不需要差分定位信息,也可以得到精度较高的定位结果。因此,在环境较好的情况下,如果RSU仍持续广播差分定位信息,会造成不必要的差分定位信息的传输以及终端设备侧的高精度计算,增加了终端设备侧位置信息的计算时间,进而导致RSU、OBU和终端设备的能耗浪费,降低了系统高精度定位的效率。
为了解决现有技术问题,本申请实施例提供了一种信息发送的方法、装置、设备及计算机存储介质。
在本申请实施例中,通过路侧设备获取用于终端设备定位的第一信息,根据第一信息与预设条件的关系判断差分定位信息是否提高了修正定位结果信息的精度,仅在终端设备需要定位差分信息修正定位结果时,控制RSU向路侧的 终端设备发送差分定位信息,使得终端设备利用差分定位信息完成精确定位,避免了路侧设备和终端设备不必要的能耗浪费,节约终端设备计算位置信息的时间,提高了系统高精度定位的效率。
下面首先对本申请实施例所提供的信息发送系统进行介绍。
图1示出了本申请一实施例提供的信息发送系统的结构示意图。
如图1所示,信息发送系统可以包括:卫星110、路侧设备120、地面基准站130、高精度定位平台140、终端设备150。
其中,路侧设备120包括路侧单元121、路侧信息管理装置122。路侧单元121安装在路侧,可采用专用短程通信技术(Dedicated Short Range Communication,DSRC)和/或长期演进技术(Long Term Evolution-Vehicle,LTE-V)与公路上行驶的通信设备之间进行通信,收发各种信息。本申请实施例中的路侧单元121还用于向路侧广播适合该区域定位终端使用的地面基准站130对应的差分定位信息。
终端设备150安装有车载单元151,车载单元151可以采用DSRC和/或LTE-V技术与路侧单元121之间进行通信,收发各种信息。本申请实施例中的车载单元151还可以用于接收路侧单元121向路侧广播的适合该区域终端设备150使用的地面基准站130对应的差分定位信息。路侧单元121向路侧发送差分定位信息可以是路侧单元121定时向路侧发送差分定位信息,也可以是路侧单元121检测到车载单元151时,向路侧发送差分定位信息,还可以是终端设备150需要高精度定位时,车载单元151向路侧单元121请求发送差分定位信息。终端设备150可以是轿车、货车,也可以是其他一些具有定位系统的车辆,此处不做限定。
在卫星定位系统中,卫星110发射卫星定位信号,地面基准站130长期连续观测卫星定位信号,并由通信设备将观测数据实时或定时传送至高精度定位平台140,高精度定位平台140解算各个地面基准站130的观测数据,得到差分定位信息。路侧信息管理装置122获取环境信息和差分定位信息,并接收的卫星110发送的卫星定位信号,根据预设条件判断差分定位信息是否提高了修 正定位结果的精度,得到判决结果1:差分定位信息提高了修正定位结果的精度,以及判决结果2:差分定位信息未提高修正定位结果的精度,并根据两种判决结果形成控制信息。路侧单元121接收控制信息,当控制信息包括判决结果1时,根据控制信息向路侧的设备终端150发送差分定位信息,车载单元151接收差分定位信息,终端设备150根据接收到的卫星定位信号和车载单元151接收到的差分定位信息,计算出终端设备150的高精度的定位结果。
图2示出了本申请一个实施例提供的信息发送的方法的流程示意图。如图2所示,该方法可以包括以下步骤:
S210、获取用于终端设备定位的第一信息,第一信息包括差分定位信息;或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息。
路侧设备120为路侧的终端设备150提供能够修正位置信息的差分定位信息,通过路侧设备120中的路侧信息管理装置122从高精度定位平台140获取差分定位信息,该差分定位信息至少包含卫星和接收机的钟差、大气传播延迟、多路径效应等误差。为了减少路侧设备120中的路侧单元121向终端设备150中的车载单元151发送不必要的差分定位信息,路侧信息管理装置122除了根据差分定位信息判断是否向车载单元151发送差分定位信息之外,还可以根据环境信息或卫星定位信号中的至少一项,以及差分定位信息判断是否向车载单元151发送差分定位信息。其中,环境信息包括气流信息、气温信息、PM值等对天气状况产生影响的因素。
S220、当第一信息满足预设条件时,向终端设备发送差分定位信息。
当第一信息满足预设条件时,终端设备150需要差分定位信息辅助高精度定位,此时,路侧信息管理装置122向终端设备150发送差分定位信息。第一信息可以只包括差分定位信息,也可以包括环境信息以及差分定位信息或者卫星定位信号以及差分定位信息。当第一信息包含的辅助信息不同时,对应的预设条件不同,满足任何路侧信息管理装置122是否需要向终端设备150发送差分定位信息的情况,保证终端设备150在任何环境下计算定位结果的准确性。
在本申请实施例中,通过路侧设备获取用于终端设备定位的第一信息,其 中第一信息包括差分定位信息,或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息,无需终端设备与高精度定位平台之间建立通信连接,即终端设备无需移动通信模块和开通高精度定位功能,降低了设备成本。当第一信息满足预设条件时,向终端设备发送差分定位信息,可有效减少发送不必要的差分定位信息,避免了路侧设备和终端设备不必要的能耗浪费,节约终端设备计算位置信息的时间,提高了系统高精度定位的效率。
在一个实施例中,当第一信息为环境信息以及差分定位信息时,预设条件包括环境信息为第一环境信息。
第一环境信息包括低空气可见度信息、阴雨天信息、气流波动信息等表征天气状况不好的环境信息。路侧设备120中的路侧信息管理装置122可以设置一个环境监测模块获取环境信息,也可以连接环境信息发布平台获取环境信息。
路侧信息管理装置122根据环境信息判断天气状态,若当前空气可见度高,天气晴朗,气流稳定等,说明天气状态很好,即大气层对卫星定位信号的干扰很小,差分定位信息对计算终端设备150的定位结果影响不大,终端设备150可不需要差分定位信息辅助定位。根据这一判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息不向车载单元151发送差分定位信息,终端设备150仅根据卫星定位信号计算出其所在位置。
若环境信息包括第一环境信息时,即当前电闪雷鸣、狂风暴雨、气流汹涌等,说明天气状态不好,即大气层对卫星定位信号的干扰较大,差分定位信息对计算终端设备150的定位结果影响较大,终端设备150需要差分定位信息辅助定位。根据这一判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息向车载单元151发送差分定位信息,终端设备150根据差分定位信息和卫星定位信号计算出其所在位置。
在一个实施例中,差分定位信息包括差分值;当第一信息为差分值时,预设条件包括大于预设差分阈值。
若当前不容易根据环境信息判断天气状态时,获取差分定位信息中的差分值,比较差分值与预设差分阈值之间的关系,差分值可以包括卫星110和接收 机的钟差、大气传播延迟、多路径效应等误差值,比较差分值是否在预设差分阈值范围内。
当差分值在预设差分阈值范围内,即差分值小于预设差分阈值时,则认为卫星定位信号受到的干扰较小,差分定位信息对计算终端设备150的定位结果影响不大,终端设备150可不需要差分定位信息辅助定位。根据这一判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息不向车载单元151发送差分定位信息,终端设备150仅根据卫星定位信号计算出其所在位置。
当差分值超过预设差分阈值的范围,即差分值大于预设差分阈值时,则认为卫星定位信号受到的干扰较大,差分定位信息对计算终端设备150的定位结果影响较大,终端设备150需要差分定位信息辅助定位。根据这一判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息向车载单元151发送差分定位信息,终端设备150根据差分定位信息和卫星定位信号计算出其所在位置。
当路侧单元121发送差分定位信息的过程是车载单元151向路侧单元121请求来触发时,车载单元151可以进一步在请求消息中携带定位所需的精度要求,路侧信息管理装置122根据定位精度要求确定预设差分阈值,定位精度要求越高预设差分阈值设置越小,反之预设差分阈值越大。因此,在定位精度要求不高的情况下,可有效避免发送不必要的差分定位信息,从而达到节约能耗的目的,缩短终端设备150计算位置信息的时间。
在一个实施例中,当第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备120的计算位置,根据计算位置和路侧设备120的实际位置,确定计算位置和实际位置的距离差值。当第一信息满足预设条件时,向终端设备150发送差分定位信息,包括:当距离差值大于预设距离差值阈值时,向终端设备150发送差分定位信息。
路侧信息管理装置122接收卫星110发射的卫星定位信号,获取卫星定位信号中的定位信息,该定位信息至少包括卫星110的坐标、卫星定位信号传播时延。路侧信息管理装置122根据定位信息筛选出一个定位结果,利用差分定 位信息对定位结果进修正,得到路侧设备120的计算位置。根据计算位置和路侧设备120的实际位置,确定计算位置和实际位置的距离差值。
具体地,根据路侧设备120的计算位置,得到计算位置的坐标为(x 1,y 1,z 1),路侧设备120在部署时,记录并存储该路侧设备120的实际位置,根据所述实际位置,得到实际位置的坐标为(x 2,y 2,z 2),根据以下公式(1)计算各组计算位置坐标与实际位置坐标之间的距离:
Figure PCTCN2021085131-appb-000001
比较路侧设备120的计算位置与实际位置之间的距离d是否在预设距离差值阈值范围内,若距离d在预设距离差值阈值范围内,即距离d小于预设距离差值阈值,差分定位信息对计算终端设备150的定位结果影响不大,终端设备150可无需差分定位信息进行修正。根据这一判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息不向车载单元151发送差分定位信息,终端设备150仅根据卫星定位信号计算出其所在位置。
若距离d超过预设距离差值阈值范围,即距离d大于预设距离差值阈值,差分定位信息对计算终端设备150的定位结果影响较大,终端设备150需要差分定位信息进行修正。根据判决结果生成控制信息发送给路侧单元121,路侧单元121根据控制信息向车载单元151发送差分定位信息,终端设备150根据差分定位信息和卫星定位信号计算出其所在位置。
在一个实施例中,如图3所示,路侧信息管理装置122包括:卫星信号接收模块1221、通信模块1222、位置计算模块1223、差分定位信息判决模块1224、路侧信息管理模块1225。
路侧信息管理装置122通过卫星信号接收模块1221接收卫星定位信号,获取卫星定位信号中的定位信息,通信模块1222从高精度定位平台140上获取差分定位信息,位置计算模块1223根据定位信息和差分定位信息计算出路侧设备120的计算位置,根据路侧设备120的计算位置和实际位置得到据路侧设备120的计算位置和实际位置之间的距离差值。
差分定位信息判决模块1224根据环境信息或者差分定位信息或者据路侧设备120的计算位置和实际位置之间的距离差值与预设条件之间的关系,判决差分定位信息是否影响路侧设备150的定位结果,其判决方法有三种:
1、如图4所示,该判决方法包括:
S401、获取环境信息,根据环境信息判断天气状态。
S402、判决差分定位信息是否影响了终端设备的定位结果,当天气情况较好时,差分定位信息对计算终端设备的定位结果影响不大,终端设备无需差分定位信息辅助定位,则跳过S403直接执行S404。在天气状态不好的情况下,差分定位信息对计算终端设备的定位结果影响较大,终端设备需要差分定位信息辅助定位,则执行S403。
S403、接收地面基准站的观测数据,获取差分定位信息。其中,差分定位信息至少包含卫星和接收机的钟差、大气传播延迟、多路径效应等误差。
S404、根据判决结果生成控制信息,并向路侧单元发送控制信息。
判决结果包括判决结果1:需要差分定位信息参与解算终端设备的定位结果,以及判决结果2:无需差分定位信息参与解算终端设备的定位结果。若是判决结果1,控制信息中包含差分定位信息,若是判决结果2,控制信息中不包含差分定位信息,路侧信息管理模块1225并向路侧单元发送控制信息。
S405、根据控制信息生成广播消息,并向终端设备发送广播信息。
若控制信息中包含判决结果1,即控制信息中包含差分定位信息,则广播消息中包含差分定位信息,向终端设备发送广播消息,用于提高解算终端设备的定位结果的精度。若控制信息中包含判决结果2,即控制信息中不包含差分定位信息,则广播消息中不包含差分定位信息,向终端设备发送广播消息。
其中,路侧单元向路侧的终端设备发送差分定位信息的方式包括以下三种:
(1)、路侧单元向路侧的终端设备定时发送差分定位信息。
(2)、路侧单元检测到终端设备的车载单元时,发送差分定位信息。
(3)、终端设备需要高精度定位时,车载单元向路侧单元请求发送差分定位信息。
S406、根据从卫星接收的卫星定位信号和广播消息,解算定位结果。
车载单元接收广播消息,当广播消息中包含差分定位信息时,终端设备根据从卫星接收到的卫星定位信号中的定位信息和差分定位信息,解算出精确的定位结果。当广播消息不包含差分定位信息时,终端设备仅根据从卫星接收到的卫星定位信号中的定位信息解算出定位结果。尽管没有采用差分定位信息进行修正,由于卫星定位信号受外界环境影响较小,该定位结果也是比较精准的。
该判决方法无需启用卫星信号接收模块1221和位置计算模块1223,最大限度地减少了路侧设备的能耗浪费。
2、如图5所示,该判决方法包括:
S501、接收地面基准站的观测数据,获取差分定位信息。
S502、判决差分定位信息是否影响了终端设备的定位结果。
根据差分定位信息获取差分值,比较差分值与预设差分阈值之间的关系,当差分值大于预设差分阈值时,差分定位信息对计算终端设备的定位结果影响较大,生成判决结果1:终端设备需要差分定位信息辅助定位。当差分值小于预设差分阈值时,差分定位信息对计算终端设备的定位结果影响不大,生成判决结果2:终端设备无需差分定位信息辅助定位。
S503-S505与S404-S406的过程相同,此处不再赘述。
该判决方法无需启用卫星信号接收模块1221和位置计算模块1223,最大限度地减少了路侧设备的能耗浪费。
3、如图6所示,该判决方法包括:
S601、接收卫星定位信号,获取定位信息。其中,定位信息至少包含卫星的坐标、卫星定位信号传播时延。
S602、接收地面基准站的观测数据,获取差分定位信息。
S603、判决差分定位信息是否影响了终端设备的定位结果。
位置计算模块1223计算路侧设备的计算位置,根据路侧设备的计算位置和实际位置得到距离差值,比较距离差值与预设距离差值阈值之间的关系。当距离差值大于预设距离差值阈值时,差分定位信息对计算终端设备的定位结果影 响较大,生成判决结果1:终端设备需要差分定位信息辅助定位。当距离差值小于预设距离差值阈值时,差分定位信息对计算终端设备的定位结果影响不大,生成判决结果2:终端设备无需差分定位信息辅助定位。
S604-S606与S404-S406的过程相同,此处不再赘述。
路侧信息管理装置的功能可由如图3所示的一个装置单独实现,同时除卫星信号接收模块以外的其他模块也可集成在路侧单元或车载单元或高精度定位平台中,若以单独装置的形式设置在路侧或集成在路侧单元或车载单元中则会提高设备的成本,但可减小车载单元获取差分定位信息的时延。若集成在高精度定位平台中则会降低路侧或车端设备的成本,但会加大车载单元获取差分定位信息的时延,技术人员可根据设备成本、时延要求选择合适的方式执行该装置的功能。
本申请实施例路侧设备获取用于终端设备定位的第一信息,第一信息包括差分定位信息,或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息,无需终端设备与高精度定位平台之间建立通信连接,即终端设备无需移动通信模块和开通高精度定位功能,降低了设备成本。当第一信息满足预设条件时,向终端设备发送差分定位信息,可有效减少发送不必要的差分定位信息,避免了路侧设备和终端设备不必要的能耗浪费,节约终端设备计算位置信息的时间,提高了系统高精度定位的效率。本申请实施例适用于包含但不限于高速公路、城市公路之类车路协同场景的高精度卫星定位需求。
图7是本申请实施例提供的一种装置结构示意图。如图7所示,该装置可以包括获取模块710,发送模块720。
获取模块710,用于获取用于终端设备定位的第一信息,第一信息包括差分定位信息;或者第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息;
发送模块720,用于当第一信息满足预设条件时,向终端设备发送差分定位信息。
在一个实施例中,当第一信息为环境信息以及差分定位信息时,预设条件 包括环境信息为第一环境信息。
在一个实施例中,差分定位信息包括差分值;当第一信息为差分值时,预设条件包括大于预设差分阈值。
在一个实施例中,该装置还包括计算模块,用于当第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备的计算位置;
该装置还包括确定模块,用于根据计算位置和所述路侧设备的实际位置,确定所述计算位置和实际位置的距离差值;
发送单元,具体用于当所述距离差值大于预设距离差值阈值时,向终端设备发送差分定位信息。
图7所示装置中的各个模块具有实现图2中各个步骤的功能,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
图8示出了本申请实施例提供的信息发送的硬件结构示意图。
在路侧设备可以包括处理器801以及存储有计算机程序指令的存储器802。
具体地,上述处理器801可以包括中央处理器(Central Processing Unit,CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器802可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器802可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在一个实例中,存储器802可以包括可移除或不可移除(或固定)的介质,或者存储器802是非易失性固态存储器。存储器802可在综合网关容灾设备的内部或外部。
在一个实例中,存储器802可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器802包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如, 存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本申请实施例的一方面的方法所描述的操作。
处理器801通过读取并执行存储器802中存储的计算机程序指令,以实现图2所示实施例中的步骤S210至S220,并达到图2所示实例执行其步骤达到的相应技术效果,为简洁描述在此不再赘述。
在一个示例中,路侧设备还可包括通信接口803和总线810。其中,如图8所示,处理器801、存储器802、通信接口803通过总线810连接并完成相互间的通信。
通信接口803,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线810包括硬件、软件或两者,将信息发送的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线810可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请实施例考虑任何合适的总线或互连。
该路侧设备可以基于差分定位信息、环境信息以及卫星定位信号与预设阈值执行本申请实施例中的信息发送的方法,从而实现结合图2和图7描述的信息发送的方法和装置。
另外,结合上述实施例中的信息发送的方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种信息发送的方法。
需要明确的是,本申请实施例并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请实施例的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请实施例的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请实施例的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请实施例中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请实施例不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本申请的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方 框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种信息发送的方法,其中,包括:
    获取用于终端设备定位的第一信息,所述第一信息包括差分定位信息;或者所述第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息;
    当所述第一信息满足预设条件时,向终端设备发送所述差分定位信息。
  2. 根据权利要求1所述的方法,其中,当所述第一信息为所述环境信息以及差分定位信息时,所述预设条件包括环境信息为第一环境信息。
  3. 根据权利要求1所述的方法,其中,所述差分定位信息包括差分值;当所述第一信息为所述差分值时,所述预设条件包括大于预设差分阈值。
  4. 根据权利要求1所述的方法,其中,当所述第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备的计算位置;
    根据所述计算位置和所述路侧设备的实际位置,确定所述计算位置和实际位置的距离差值;
    当所述第一信息满足预设条件时,向终端设备发送所述差分定位信息,包括:
    当所述距离差值大于预设距离差值阈值时,向终端设备发送所述差分定位信息。
  5. 一种信息发送的装置,其中,所述装置包括:
    获取模块,用于获取用于终端设备定位的第一信息,所述第一信息包括差分定位信息;或者所述第一信息包括环境信息或卫星定位信号中的至少一项,以及差分定位信息;
    发送模块,用于当所述第一信息满足预设条件时,向终端设备发送所述差分定位信息。
  6. 根据权利要求5所述的装置,其中,当所述第一信息为所述环境信息以及差分定位信息时,所述预设条件包括环境信息为第一环境信息。
  7. 根据权利要求5所述的装置,其中,所述差分定位信息包括差分值,当所述第一信息为所述差分值时,所述预设条件包括大于预设差分阈值。
  8. 根据权利要求5所述的装置,其中,所述装置还包括计算模块,用于当所述第一信息为卫星定位信号以及差分定位信息时,根据卫星定位信号和差分定位信息计算路侧设备的计算位置;
    所述装置还包括确定模块,用于根据所述计算位置和所述路侧设备的实际位置,确定所述计算位置和实际位置的距离差值;
    所述发送模块,具体用于当所述距离差值大于预设距离差值阈值时,向终端设备发送所述差分定位信息。
  9. 一种路侧设备,其中,所述路侧设备包括:处理器,以及存储有计算机程序指令的存储器;所述处理器读取并执行所述计算机程序指令,以实现如权利要求1-4任意一项所述的信息发送的方法。
  10. 一种计算机存储介质,其中,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-4任意一项所述的信息发送的方法。
PCT/CN2021/085131 2020-08-14 2021-04-01 信息发送的方法、装置、设备及计算机存储介质 WO2022033046A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/002,660 US20230236325A1 (en) 2020-08-14 2021-04-01 Information sending method, apparatus and device, and computer storage medium
JP2022576201A JP2023530651A (ja) 2020-08-14 2021-04-01 情報送信方法、装置、デバイス及びコンピュータ記憶媒体
EP21855102.6A EP4155678A4 (en) 2020-08-14 2021-04-01 METHOD, APPARATUS AND DEVICE FOR SENDING INFORMATION, AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010819515.X 2020-08-14
CN202010819515.XA CN113074742B (zh) 2020-08-14 2020-08-14 一种信息发送的方法、装置、设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022033046A1 true WO2022033046A1 (zh) 2022-02-17

Family

ID=76609040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085131 WO2022033046A1 (zh) 2020-08-14 2021-04-01 信息发送的方法、装置、设备及计算机存储介质

Country Status (5)

Country Link
US (1) US20230236325A1 (zh)
EP (1) EP4155678A4 (zh)
JP (1) JP2023530651A (zh)
CN (1) CN113074742B (zh)
WO (1) WO2022033046A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114396960A (zh) * 2021-12-21 2022-04-26 智道网联科技(北京)有限公司 路侧通信和定位数据处理的方法、设备及车辆导航系统
CN114624751A (zh) * 2022-01-29 2022-06-14 上海移为通信技术股份有限公司 辅助定位方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388506A (zh) * 2015-12-25 2016-03-09 北京无线电计量测试研究所 一种用于地下管线定位的定位设备及定位方法
CN105929432A (zh) * 2016-04-15 2016-09-07 浪潮集团有限公司 一种混合定位方法、定位终端及混合定位系统
CN105974453A (zh) * 2015-11-05 2016-09-28 乐卡汽车智能科技(北京)有限公司 基于智能车路协同系统的差分定位方法及智能车路协同系统
CN106971579A (zh) * 2017-04-25 2017-07-21 北京星云互联科技有限公司 一种智能网联汽车的路侧业务支持系统及方法
CN108845339A (zh) * 2018-05-28 2018-11-20 广州吉欧电子科技有限公司 一种gnss定位方法及gnss定位设备
US20190088041A1 (en) * 2017-09-19 2019-03-21 Samsung Electronics Co., Ltd. Electronic device for transmitting relay message to external vehicle and method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545640B2 (ja) * 1999-04-30 2004-07-21 株式会社東芝 ローカルエリア統合測位システム
JP2001109998A (ja) * 1999-10-08 2001-04-20 Hitachi Ltd 車両走行支援装置
JP3734792B2 (ja) * 2002-12-06 2006-01-11 富士通株式会社 補正情報取得装置及び補正情報取得方法における処理をコンピュータに行なわせるためのプログラム
JP2007333636A (ja) * 2006-06-16 2007-12-27 Mitsubishi Electric Corp 路側装置、端末装置およびdgps測位システム
JP4169056B2 (ja) * 2006-07-20 2008-10-22 セイコーエプソン株式会社 通信基地局、通信基地局の制御方法、及び、プログラム
KR101231534B1 (ko) * 2011-10-17 2013-02-07 현대자동차주식회사 차량간 통신을 이용한 위치보정신호 정확도 개선 방법 및 그 시스템
CN102608632B (zh) * 2012-02-16 2017-01-04 厦门雅迅网络股份有限公司 北斗gps双模云差分定位方法及系统
TW201543058A (zh) * 2014-02-27 2015-11-16 Nec Corp 衛星測位用電波干涉偵測機構、衛星測位用電波干涉偵測方法以及具有該衛星測位用電波干涉偵測機構之補強資訊發送系統
US11016198B2 (en) * 2015-05-06 2021-05-25 Here Global B.V. Broadcast transmission of information indicative of a pseudorange correction
CN108347437A (zh) * 2018-02-05 2018-07-31 长沙智能驾驶研究院有限公司 差分校准数据传输方法、路侧单元、车载单元及存储介质
CN108897025B (zh) * 2018-05-15 2021-11-26 艾欧创想智能科技(武汉)有限公司 高精度定位方法、装置、终端设备及计算机可读存储介质
CN108983263A (zh) * 2018-07-16 2018-12-11 北京星云互联科技有限公司 一种基于车路协同系统的差分定位系统及方法
CN111158033B (zh) * 2018-11-08 2022-03-18 腾讯科技(深圳)有限公司 基于gnss的差分定位方法、装置、设备和存储介质
CN109672996B (zh) * 2018-12-29 2022-02-11 重庆邮电大学 一种基于v2x路侧设备系统及其信息分发方法
CN109975846A (zh) * 2019-04-12 2019-07-05 深圳成有科技有限公司 Dsrc和卫星定位融合的定位车载终端、路侧单元和系统
CN111190202A (zh) * 2020-01-13 2020-05-22 腾讯科技(深圳)有限公司 差分定位方法、装置和系统
CN111314849B (zh) * 2020-03-16 2023-04-07 Oppo广东移动通信有限公司 定位方法、装置、移动终端及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974453A (zh) * 2015-11-05 2016-09-28 乐卡汽车智能科技(北京)有限公司 基于智能车路协同系统的差分定位方法及智能车路协同系统
CN105388506A (zh) * 2015-12-25 2016-03-09 北京无线电计量测试研究所 一种用于地下管线定位的定位设备及定位方法
CN105929432A (zh) * 2016-04-15 2016-09-07 浪潮集团有限公司 一种混合定位方法、定位终端及混合定位系统
CN106971579A (zh) * 2017-04-25 2017-07-21 北京星云互联科技有限公司 一种智能网联汽车的路侧业务支持系统及方法
US20190088041A1 (en) * 2017-09-19 2019-03-21 Samsung Electronics Co., Ltd. Electronic device for transmitting relay message to external vehicle and method thereof
CN108845339A (zh) * 2018-05-28 2018-11-20 广州吉欧电子科技有限公司 一种gnss定位方法及gnss定位设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155678A4 *

Also Published As

Publication number Publication date
EP4155678A4 (en) 2023-12-20
CN113074742A (zh) 2021-07-06
US20230236325A1 (en) 2023-07-27
CN113074742B (zh) 2022-06-10
JP2023530651A (ja) 2023-07-19
EP4155678A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US11092696B2 (en) Grouping for efficient cooperative positioning calculations
WO2022033046A1 (zh) 信息发送的方法、装置、设备及计算机存储介质
US9418549B2 (en) Apparatus and method for recognizing position of vehicle
KR101241171B1 (ko) 영상센서를 이용한 gps 위치정보 보정방법
JP5537944B2 (ja) 大気中乱気流位置測定システムおよび方法
US10986478B2 (en) Using ranging over C-V2X to supplement and enhance GPS performance
JPH10148665A (ja) 車車間通信による相対位置算出装置
WO2022237454A1 (zh) 车路协同定位方法、装置、车载定位系统及路侧设备
JP6671570B1 (ja) 位置推定装置および位置推定方法
CN110839208B (zh) 用于校正多路径偏移和确定无线站点位置的方法及装置
CN105792135A (zh) 一种定位车辆所在车道的方法及装置
JP2006242911A (ja) 位置検出装置
WO2022033056A1 (zh) 一种基站确定的方法、装置、设备及计算机存储介质
CN107003412B (zh) 定位方法、定位系统、校正信息生成方法、校正信息生成装置以及定位系统中的中继站、终端
US11412363B2 (en) Context-adaptive RSSI-based misbehavior detection
US11647366B2 (en) Adaptive RSSI adjustment
KR101448268B1 (ko) 물류 추적 장비의 gps 오차 보정 장치 및 방법
KR20170110218A (ko) 차선 별 교통량 측정 방법 및 이를 이용한 지능형 교통정보 제공 시스템
JP6430125B2 (ja) 位置検出システムおよび位置検出システムの位置検出方法
CN113079566A (zh) 一种终端定位方法、装置、设备及计算机存储介质
WO2022198166A1 (en) Adaptive rssi adjustment
CN115166798A (zh) 轨道交通场景下的模糊度固定方法、装置及列车定位终端
CN103605146A (zh) 一种基于北斗定位和3g定位的车载设备位置校准方法
JP2022182705A (ja) 測位装置、測位方法、および測位プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576201

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021855102

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE