WO2022032956A1 - 硫化物固态电解质材料及其原料的气相合成方法及应用 - Google Patents

硫化物固态电解质材料及其原料的气相合成方法及应用 Download PDF

Info

Publication number
WO2022032956A1
WO2022032956A1 PCT/CN2020/137882 CN2020137882W WO2022032956A1 WO 2022032956 A1 WO2022032956 A1 WO 2022032956A1 CN 2020137882 W CN2020137882 W CN 2020137882W WO 2022032956 A1 WO2022032956 A1 WO 2022032956A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
source
sulfide
sulfur
phase synthesis
Prior art date
Application number
PCT/CN2020/137882
Other languages
English (en)
French (fr)
Inventor
吴凡
卢普顺
李泓
Original Assignee
天目湖先进储能技术研究院有限公司
长三角物理研究中心有限公司
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天目湖先进储能技术研究院有限公司, 长三角物理研究中心有限公司, 中国科学院物理研究所 filed Critical 天目湖先进储能技术研究院有限公司
Priority to US18/040,706 priority Critical patent/US20240030485A1/en
Publication of WO2022032956A1 publication Critical patent/WO2022032956A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/002Compounds containing, besides arsenic, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/002Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of materials, in particular to a gas-phase synthesis method and application of a sulfide solid-state electrolyte material and its raw materials.
  • the traditional lithium-ion battery using liquid electrolyte and carbon negative electrode is facing the upper limit “bottleneck" of 350Wh/kg in terms of energy density, and there are safety hazards such as spontaneous ignition and explosion, which can no longer meet the requirements of electric vehicles and energy storage grids and other fields. High requirements for indicators such as battery energy density and safety performance.
  • solid-state electrolytes Compared with liquid electrolytes, solid-state electrolytes have high thermal stability and compactness. Therefore, the use of solid-state electrolytes instead of liquid electrolytes and separators to assemble all-solid-state batteries will greatly improve the safety. At the same time, the all-solid-state battery can use lithium metal as the negative electrode, so that the energy density of the battery is expected to increase by 40%-50% under the same positive electrode system. All-solid-state batteries are classified according to the solid-state electrolyte used, and the main development routes are polymer, oxide, and sulfide all-solid-state batteries.
  • sulfide electrolytes have high ionic conductivity comparable to or even surpass those of liquid electrolytes (such as Li 10 GeP 2 S 12 and Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 ).
  • the room temperature lithium ion conductivity reached 12 mS/cm and 25 mS/cm, respectively. ), and excellent mechanical ductility (the battery can be assembled by cold pressing at room temperature), which has become one of the research focuses in the field of all-solid-state batteries.
  • the synthesis method of sulfide electrolytes directly affects its future capacity for industrial-scale production.
  • the commonly used synthesis methods of sulfide solid electrolytes include solid-phase method (including high-temperature solid-phase method and mechanochemical method) and liquid-phase method.
  • the first step of the solid phase method is to mix raw materials such as Li source, S source, and P source.
  • the mixing method is mortar grinding or ball milling.
  • the second step is to press the mixed powder into tablets or directly in powder form for vacuum sealing.
  • the tube is sintered or sintered under the protection of an inert atmosphere, the sintering temperature is in the range of 100°C-700°C, and the sintering time is generally more than 20 hours.
  • the liquid phase method is to add Li source, S source, P source and other raw material powders into an organic solvent, followed by stirring and mixing, centrifugation, filtration, and drying to obtain a precursor, and then heat treatment at a certain temperature to obtain a sulfide electrolyte final product.
  • Patent CN108878962A points out that when using ball milling, raw materials and abrasives need to be placed in anhydrous and oxygen-free airtight containers to reduce side reactions with air and moisture, thereby improving the performance of sulfide solid electrolytes.
  • Patent CN110165293A also points out that the moisture content of the organic solvent and the moisture content of the operating environment need to be considered.
  • the patent CN108352567A carried out the synthesis of the P element-free air-stable sulfide electrolyte Li 13 Sn 2 InS 12 , but the raw materials used contained expensive lithium sulfide, and the synthesis process still required vacuum sealing, multi-step heat treatment and long sintering.
  • Both the solid-phase method and the liquid-phase method require the use of sulfides Li 2 S, P 2 S 5 , SiS 2 , Al 2 S 3 that are sensitive to air/air stability, and halides LiCl, LiBr, LiI, etc.
  • Starting materials Li 2 S and SiS 2 are expensive), and the whole preparation process needs to be isolated from air or carried out under the protective conditions of inert atmosphere.
  • the solid-phase method requires long-term ball milling, high-pressure tableting, vacuum sealing and long-term sintering. Therefore, the solid-phase method has the disadvantages of many process steps, complicated operation, long time consumption, high energy consumption, high cost, and the whole process needs to be protected in a vacuum environment or an inert atmosphere.
  • the liquid phase method also requires long-term heating and stirring, solid-liquid separation, long-term drying and heat treatment. Therefore, the liquid phase method also has the disadvantages of many process steps, long time, high cost, and the whole process needs to be protected in a vacuum environment or an inert atmosphere.
  • the introduced solvent is difficult to remove, which seriously affects the ionic conductivity of the sulfide electrolyte. Since the preparation process needs to be protected in a vacuum environment or an inert atmosphere, the two synthesis methods are difficult to be compatible with the existing lithium battery process line equipment placed in a dry room environment.
  • Patent CN103098288A discloses growing the same or different sulfide dense film layers on a sulfide powder-forming layer by gas phase method, such as evaporating and depositing a low-boiling sulfide electrolyte on a sulfide powder-forming layer substrate that has been cold-pressed , to form a denser film layer. Therefore, the synthesis of sulfide solid electrolytes by gas-phase method has not been realized in a real sense at present.
  • the embodiments of the present invention provide a gas-phase synthesis method and application of a sulfide solid electrolyte material and its raw materials.
  • the synthesis method uses air-stable and low-cost raw materials to synthesize the sulfide solid electrolyte material in one step by a gas-phase method, which greatly simplifies the process.
  • the steps and operations are complex, the requirements for synthesis equipment are low, and the process is easy to produce on a large scale.
  • an embodiment of the present invention provides a gas-phase synthesis method for a sulfide solid-state electrolyte material, the method comprising:
  • the Li source and the M source are weighed and mixed according to the required ratio, and the mixed raw materials are put into the heating furnace;
  • the Li source includes Li 2 CO 3 , Li 2 O, Li 2 S, LiOH, LiCl, At least one of lithium acetate, lithium sulfate, lithium nitrate or lithium metal;
  • the M source is at least one of elemental, oxide and sulfide of M element, wherein M element is selected from the first element in the periodic table of elements. At least one of the elements of Groups 4, 5, 6, 13, 14, and 15 in the 3rd period to the 6th period;
  • the S source is added to the sulfur source gas generating device;
  • the S source includes one or more of S-containing gas, sulfur-containing organic compounds, polysulfides, sulfates or metal sulfides; according to the carrier gas generating device,
  • the gas flow meter, the sulfur source gas generating device, the heating furnace and the tail gas treatment device are connected in sequence to form a gas phase synthesis device;
  • the carrier gas is used to carry the gas containing the S source, and the heating furnace is purged for a certain period of time at a set ventilation rate;
  • the heating furnace is heated to 200°C-800°C at the set heating rate under the environment where the gas containing the S source is introduced at the set ventilation rate, and then cooled to room temperature after the heat preservation for the set period of time;
  • the substance taken out of the heating furnace is the sulfide solid electrolyte.
  • the M element specifically includes: at least one of Sn, Sb, As, P, Si, Ge, and Bi;
  • the M source specifically includes: Sn source, Sb source, As source, P source, Si source At least one of , Ge source and Bi source;
  • the Sn source includes: at least one of Sn element, SnO 2 , SnS 2 , SnCl 4 and hydrates thereof;
  • the Sb source includes: Sb element, Sb 2 At least one of O 5 , Sb 2 O 3 , Sb 2 S 5 , Sb 2 S 3 ;
  • the As source includes: As element, As 2 O 5 , As 2 O 3 , As 2 S 5 , As 2 S At least one of 3 ;
  • the P source includes: at least one of P element, P 2 S 3 , P 2 S 5 , and P 2 O 5 ;
  • the Si source includes Si element, SiO, SiO 2 , SiS 2 , At least one of SiCl 4 and its hydrate;
  • the S-containing gas includes: at least one of hydrogen sulfide, sulfur dioxide, sulfur trioxide, sulfur-containing natural gas, sulfur vapor, and carbon disulfide vapor;
  • the sulfur-containing organic compound includes: at least one of methyl mercaptan, methyl sulfide, dimethyl disulfide, thiophene, ethyl mercaptan, ethyl sulfide, methyl ethyl sulfide, and thiourea;
  • the carrier gas includes any one of N 2 , CO 2 and Ar gas.
  • the mixing method specifically includes mortar grinding or mechanical mixing
  • the grinding time of the mortar grinding is 10min-120min;
  • the mechanical mixing includes using a roller mill, a ball mill, and a jet mill for mechanical mixing, and the mixing time is 1 hour to 8 hours.
  • the certain duration is 10min-120min; the set duration is 10 hours-72 hours;
  • the set heating rate is 1 °C/min-10 °C/min; the cooling is specifically cooling at the set cooling rate, or, natural cooling and cooling; wherein the set cooling rate is 1 °C/min -10°C/min;
  • the set ventilation rate is 1ml/min-30ml/min.
  • an embodiment of the present invention provides a method for gas-phase synthesis of a raw material of a sulfide solid state electrolyte material, wherein the chemical formula of the raw material of the sulfide solid state electrolyte material is A x S y , and the A is Li, Si, Ge , any one of Sn, P, As, Sb, Bi, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 5, and the gas phase synthesis includes:
  • the A source is weighed according to the required amount and put into the heating furnace; the A source includes at least one of A's oxide, hydroxide, carbonate or A element;
  • the S source is added to the sulfur source gas generating device;
  • the S source includes one or more of S-containing gas, sulfur-containing organic compounds, polysulfides, sulfates or metal sulfides;
  • the carrier gas is used to carry the gas containing the S source, and the heating furnace is purged for a certain period of time at a set ventilation rate;
  • the heating furnace is heated to 200°C-800°C at the set heating rate under the environment where the gas containing the S source is introduced at the set ventilation rate, and then cooled to room temperature after the heat preservation for the set period of time;
  • the material taken out of the heating furnace is the raw material of the sulfide solid electrolyte.
  • the carrier gas includes any one of N 2 , CO 2 and Ar gas;
  • the S-containing gas includes: at least one of hydrogen sulfide, sulfur dioxide, sulfur trioxide, sulfur-containing natural gas, sulfur vapor, and carbon disulfide vapor;
  • the sulfur-containing organic compound includes: at least one of methyl mercaptan, methyl sulfide, dimethyl disulfide, thiophene, ethyl mercaptan, ethyl sulfide, methyl ethyl sulfide, and thiourea.
  • the certain duration is 10min-120min; the set duration is 10 hours-72 hours;
  • the set heating rate is 1 °C/min-10 °C/min; the cooling is specifically cooling at the set cooling rate, or, natural cooling and cooling; wherein the set cooling rate is 1 °C/min -10°C/min;
  • the set ventilation rate is 1ml/min-30ml/min.
  • an embodiment of the present invention provides a sulfide solid state electrolyte material synthesized based on the gas-phase synthesis method described in the first aspect, and the sulfide solid state electrolyte material is used as an electrode material for a lithium battery.
  • an embodiment of the present invention provides a raw material for a sulfide solid state electrolyte material synthesized based on the gas-phase synthesis method described in the second aspect above, and the raw material is used for the sulfide solid state electrolyte material described in the third aspect above. Synthesis.
  • an embodiment of the present invention provides a lithium battery, the lithium battery comprising the sulfide solid electrolyte material synthesized by the gas-phase synthesis method described in the first aspect.
  • the gas-phase synthesis method for sulfide solid-state electrolyte materials uses air-stable and low-cost raw materials to synthesize sulfide solid-state electrolyte materials in one step through a gas-phase method, which greatly simplifies the process steps and operational complexity, and requires less synthesis equipment. , easy to process large-scale production. Since the raw material used is air-stable, and the synthesized sulfide solid-state electrolyte material also has good air stability, the synthesis method does not need to be synthesized in a vacuum environment or under the protection of an inert atmosphere, and can be directly synthesized in an air environment (humid air and dry air).
  • Dry air in the room so as to achieve air stability in the whole process of preparation of sulfide solid electrolyte materials from raw materials to final reaction products, and is compatible with the existing lithium battery production process line equipment placed in a dry room environment, and then from It fundamentally solves the problem of strict requirements on the environment and atmosphere in the production, storage, transportation and use of sulfide solid electrolyte materials, and greatly promotes its application.
  • FIG. 1 is a flow chart of a gas-phase synthesis method of a sulfide solid-state electrolyte material provided in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a gas-phase synthesis device provided in an embodiment of the present invention.
  • Fig. 3 is the flow chart of the gas-phase synthesis method of the raw material of sulfide solid-state electrolyte material provided in the embodiment of the present invention
  • Fig. 4 is the Li-Sn-S system crystalline sulfide solid state electrolyte Li 4 SnS 4 Li 3.85 Sn 0.85 Sb 0.15 S 4 , Li 3.8 Sn 0.8 As 0.2 S 4 , Li 3.8 Sn 0.8 As 0.2 S 4 , prepared in Examples 1, 2, 3 and 4 of the present invention.
  • Fig. 5 shows Li-Sn-S system crystalline sulfide solid state electrolytes Li 4 SnS 4 Li 3.85 Sn 0.85 Sb 0.15 S 4 , Li 3.8 Sn 0.8 As 0.2 S 4 , Li 3.8 Sn 0.8 As 0.2 S 4 , prepared in Examples 1, 2, 3 and 4 of the present invention.
  • Fig. 9 is the XRD pattern of the raw material Li 2 S of the solid electrolyte material prepared in Example 6 of the present invention and the comparison with the Li 2 S PDF card 65-2981;
  • Example 10 is the first-week charge-discharge curve of the all-solid-state battery assembled with the Li 3.8 Sn 0.8 As 0.2 S 4 electrolyte prepared in Example 3 of the present invention in Example 7 of the present invention.
  • the main steps of the gas phase synthesis method of the sulfide solid state electrolyte material of the present invention include:
  • Step 110 the Li source and the M source are weighed and mixed according to the required ratio, and the mixed raw materials are put into the heating furnace;
  • the Li source includes at least one of Li 2 CO 3 , Li 2 O, Li 2 S, LiOH, LiCl, lithium acetate, lithium sulfate, lithium nitrate or metallic lithium;
  • M source is at least one of elemental substance, oxide and sulfide of M element, wherein M element is selected from the 4th, 5th, 6th, 13th, 14th, At least one of Group 15 elements.
  • M element is selected from the 4th, 5th, 6th, 13th, 14th, At least one of Group 15 elements.
  • it can be at least one of Sn, Sb, As, and P, that is, the M source is preferably at least one of Sn source, Sn source, As source, and P source.
  • the Sn source includes: at least one of Sn element, SnO 2 , SnS 2 , SnCl 4 and hydrates thereof;
  • the Sb source includes: Sb element, Sb 2 O 5 , Sb 2 O 3 , Sb 2 S 5 , at least one of Sb 2 S 3 ;
  • As source includes: at least one of As element, As 2 O 5 , As 2 O 3 , As 2 S 5 , As 2 S 3 ;
  • P source includes: P element, At least one of P 2 S 3 , P 2 S 5 , and P 2 O 5 ;
  • the Si source includes at least one of Si, SiO, SiO 2 , SiS 2 , SiCl 4 and hydrates thereof;
  • the Ge source includes Ge At least one of simple substance, GeO 2 , GeS, GeS 2 , GeCl 4 and its hydrate;
  • Bi source includes at least one of simple substance Bi, Bi 2 O 3 , Bi 2 S 3 , Bi(OH) 3 .
  • the manner of mixing specifically includes mortar grinding or mechanical mixing.
  • the grinding time of the mortar grinding is 10min-120min;
  • the mechanical mixing includes mechanical mixing using a roller mill, a ball mill and a jet mill, and the mixing time is 1 hour to 8 hours.
  • Step 120 adding the S source to the sulfur source gas generating device
  • the S source includes one or more of S-containing gas, sulfur-containing organic compound, polysulfide, sulfate or metal sulfide; more specifically, the S-containing gas includes: hydrogen sulfide, sulfur dioxide, sulfur trioxide, At least one of sulfur natural gas, sulfur vapor, and carbon disulfide vapor;
  • the sulfur-containing organic compound includes: at least one of methyl mercaptan, methyl sulfide, dimethyl disulfide, thiophene, ethane mercaptan, ethyl sulfide, methyl ethyl sulfide, and thiourea;
  • Polysulfides in the S source can be decomposed in acidic solution to generate H 2 S and S; sulfates can undergo thermochemical reduction with organic matter to generate H 2 S, and metal sulfides can react with hydrochloric acid or sulfuric acid to generate H 2 S, thereby producing The gas containing the S source that the carrier gas can carry.
  • Step 130 connect the carrier gas generating device, the gas flow meter, the sulfur source gas generating device, the heating furnace, and the tail gas treatment device in sequence to form a gas-phase synthesis device;
  • FIG. 2 A schematic structural diagram of a specific gas-phase synthesis device is shown in FIG. 2 .
  • the carrier gas provided in the carrier gas generating device is high-purity nitrogen, and the output end of the carrier gas generating device is connected to a flow meter to regulate the flow of the carrier gas, and then passes into the sulfur source gas generating device.
  • the sulfur source gas generator is shown with carbon disulfide contained in a bottle.
  • the gas output end of the sulfur source gas generating device is connected to the input end of the heating furnace.
  • the mixed raw materials of the Li source and the M source are pre-placed in the heating furnace, specifically a tubular heating furnace, and the mixed raw materials are placed first. into the crucible and then into the quartz tube of the tubular heating furnace.
  • Step 140 use the carrier gas to carry the gas containing the S source, and carry out a certain period of time to purge the heating furnace at a set ventilation rate;
  • the cleaning time is preferably 10min-120min.
  • the carrier gas can specifically adopt any gas including N 2 , CO 2 , Ar gas and the like.
  • the set ventilation rate is specifically 1ml/min-30ml/min.
  • Step 150 after the gas scrubbing is completed, the heating furnace is heated to 200 °C-800 °C at the set heating rate under the environment where the gas containing the S source is introduced at the set ventilation rate, and the temperature is maintained for 10 hours to 72 hours. then cooled to room temperature;
  • the aeration conditions are the same as in the washing step.
  • the set heating rate is 1°C/min-10°C/min.
  • the cooling can be specifically carried out at a set cooling rate of 1°C/min-10°C/min, or natural cooling.
  • the gas containing the S source reacts with the mixed raw material of the Li source and the M source.
  • the M source as M oxide
  • the S source as CS 2
  • Step 160 after cooling down, the product taken out from the heating furnace is the sulfide solid electrolyte.
  • the resulting product is stored in a glove box inert atmosphere, a vacuum environment or a dry room with a dew point of -50°C.
  • the technical scheme of the gas-phase synthesis method of the present invention can realize synthesis at a temperature of about 500° C., and the measured yield is close to 100° C. %, 2g of material can be synthesized in a single batch in the laboratory.
  • the sulfide solid electrolyte material synthesized by the above gas-phase synthesis method can be used as an electrode material for a lithium battery, including a positive electrode material and a negative electrode material.
  • the above gas-phase synthesis method in addition to synthesizing sulfide solid state electrolyte materials, can also be used to synthesize raw materials of sulfide solid state electrolyte materials.
  • the chemical formula of the raw materials of synthesized sulfide solid state electrolyte materials is A x S y , wherein A is Li, Any of Si, Ge, Sn, P, As, Sb, Bi, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 5.
  • A is Li, Any of Si, Ge, Sn, P, As, Sb, Bi, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 5.
  • Li 2 S which is currently expensive, can be synthesized by this method.
  • Step 210 weigh the A source according to the required amount and put it into the heating furnace;
  • a source includes A oxide, hydroxide, carbonate or A element.
  • the A source is a Li source, including at least one of Li 2 CO 3 , Li 2 O, LiOH, or metallic lithium.
  • a x S y is Li 2 S.
  • the A source is a Si source, including elemental Si, SiO2, and SiO.
  • a x S y is SiS 2 .
  • the A source is a Ge source, including Ge elemental substance and GeO 2 .
  • a x S y is GeS 2 .
  • a source is Sn source, including elemental Sn, SnO 2 , Sn 2 O 3 ;
  • a x S y is SnS 2 .
  • the A source is a P source, including elemental P, P 2 O 3 , and P 2 O 5 ;
  • a x S y is P 2 S 5 .
  • a source is As source, including As element, As 2 O 5 , As 2 O 3 ;
  • a x S y is As 2 S 3 and/or As 2 S 5 .
  • the A source is a Sb source, including elemental Sb, Sb 2 O 3 , and Sb 2 O 5 ;
  • a x S y is Sb 2 S 3 and/or Sb 2 S 5 .
  • a source is a Bi source, including Bi elemental substance and Bi 2 O 3 ;
  • a x S y is Bi 2 S 3 .
  • Step 220 adding the S source to the sulfur source gas generating device
  • the S source specifically includes one or more of S-containing gas, sulfur-containing organic compound, polysulfide, sulfate or metal sulfide; further specifically, the S gas includes: hydrogen sulfide, sulfur dioxide, sulfur trioxide, At least one of sour natural gas, sulfur steam, and carbon disulfide steam;
  • the sulfur-containing organic compound includes: at least one of methyl mercaptan, methyl sulfide, dimethyl disulfide, thiophene, ethane mercaptan, ethyl sulfide, methyl ethyl sulfide, and thiourea;
  • Polysulfides in the S source can be decomposed in acidic solution to generate H 2 S and S; sulfates can undergo thermochemical reduction with organic matter to generate H 2 S, and metal sulfides can react with hydrochloric acid or sulfuric acid to generate H 2 S, thereby producing The gas containing the S source that the carrier gas can carry.
  • Step 230 connect the carrier gas generating device, the gas flow meter, the sulfur source gas generating device, the heating furnace, and the tail gas treatment device in sequence to form a gas-phase synthesis device;
  • the gas-phase synthesis device in this embodiment is the same as that in the previous embodiment, and will not be repeated here.
  • Step 240 use the carrier gas to carry the gas containing the S source, and carry out a certain period of gas cleaning to the heating furnace at a set ventilation rate;
  • step 140 The specific process is the same as that of step 140, and details are not repeated here.
  • Step 250 after the gas scrubbing is completed, the heating furnace is heated to 200°C-800°C at the set heating rate under the environment where the gas containing the S source is introduced at the set ventilation rate, and the temperature is lowered after the heat preservation for the set time period. to room temperature;
  • the aeration conditions are the same as in the washing step.
  • the set heating rate is 1°C/min-10°C/min.
  • the cooling can be specifically carried out at a set cooling rate of 1°C/min-10°C/min, or natural cooling.
  • Step 260 after cooling down, the material in the heating furnace is taken out, which is the raw material of the sulfide solid electrolyte.
  • raw materials such as Li 2 S for the synthesis of sulfide solid state electrolyte materials can be prepared, which solves the problems that these raw materials are expensive and difficult to obtain.
  • Li source commercialized low-cost Li 2 CO 3 is used as the Li source
  • CS 2 is the S source
  • SnO 2 is the Sn source
  • the sulfide electrolyte Li 4 SnS 4 is synthesized. The specific steps are as follows:
  • Li 2 CO 3 and SnO 2 raw materials were weighed according to the required ratio and ground in a mortar for 30min, the powder mass was 2g in total, and placed in two alumina crucibles (1g each);
  • step (1) two crucibles that step (1) are housed with raw materials are put into the center of the quartz tube of the tube furnace in parallel, facing the thermocouple;
  • step (5) After the gas washing is completed, under the same ventilation conditions, the tube furnace is heated from room temperature 30°C to 500°C, the heating rate is 5°C/min, the holding time is 24h, and then the temperature is lowered, and the cooling rate is is 2°C/min.
  • the Li 4 SnS 4 solid electrolyte obtained in this example has good air stability, and after being exposed to water in humid air, the original crystal structure can be restored by removing water/crystal water by heating.
  • Li 2 CO 3 , SnO 2 , Sb 2 O 5 raw materials are weighed according to the required proportions and ground in a mortar for 30 min, the powder mass is 1 g in total, and placed in an alumina crucible;
  • step (1) the crucible that step (1) is housed with raw materials is put into the center of the quartz tube of the tube furnace, facing the thermocouple;
  • step (5) After the gas washing is completed, under the same ventilation conditions, the tube furnace is heated from room temperature 30°C to 500°C, the heating rate is 5°C/min, the holding time is 24h, and then the temperature is lowered, and the cooling rate is is 2°C/min.
  • the Li 3.85 Sn 0.85 Sb 0.15 S 4 solid electrolyte obtained in this example has good air stability, and after being exposed to water in humid air, the original crystal structure can be restored by removing water/crystal water by heating.
  • Li source commercialized low-cost Li 2 CO 3 is used as the Li source
  • CS 2 is the S source
  • SnO 2 is the Sn source
  • As 2 S 3 is the As source
  • the sulfide electrolyte Li 3.8 Sn 0.8 As 0.2 S is synthesized. 4 , the specific steps are as follows:
  • Li 2 CO 3 , SnO 2 , As 2 S 3 raw materials are weighed according to the required proportions and ground in a mortar for 30 min, the powder mass is 1 g in total, and placed in an alumina crucible;
  • step (1) the crucible that step (1) is housed with raw materials is put into the center of the quartz tube of the tube furnace, facing the thermocouple;
  • step (6) After the gas washing in step (5), under the same ventilation conditions, the tube furnace was heated from room temperature 30°C to 500°C, the heating rate was 5°C/min, the holding time was 24h, and then the temperature was naturally cooled.
  • the Li 3.8 Sn 0.8 As 0.2 S 4 solid electrolyte obtained in this example has good air stability, and the original crystal structure can be restored by heating to remove moisture/crystal water after being exposed to water in humid air.
  • Li source commercialized low-cost Li 2 CO 3 is used as the Li source
  • CS 2 is the S source
  • SnO 2 is the Sn source
  • micron-scale silicon powder is the Si source
  • the sulfide electrolyte Li 4 Sn 0.9 Si 0.1 is used to synthesize S4 , the specific steps are as follows:
  • Li 2 CO 3 , SnO 2 , and Si raw materials were weighed according to the required proportions and ground in a mortar for 30 min, the powder mass was 1 g in total, and placed in an alumina crucible;
  • step (1) the crucible that step (1) is housed with raw materials is put into the center of the quartz tube of the tube furnace, facing the thermocouple;
  • step (5) After the gas washing is completed, under the same ventilation conditions, the tube furnace is heated from room temperature 30°C to 500°C, the heating rate is 5°C/min, the holding time is 24h, and then the temperature is lowered, and the cooling rate is is 2°C/min.
  • the Li 3.8 Sn 0.8 Si 0.2 S 4 solid electrolyte obtained in this example has good air stability. After being exposed to water in humid air, the original crystal structure can be restored by removing water/crystal water by heating.
  • the sulfide electrolytes Li 4 SnS 4 , Li 3.85 Sn 0.85 Sb 0.15 S 4 , Li 3.8 Sn 0.8 As 0.2 S of the Li-Sn-S system prepared in Examples 1, 2, 3, and 4 were tested by various test methods. 4. The composition and electrochemical properties of Li 4 Sn 0.9 Si 0.1 S 4 are accurately characterized. The results are as follows:
  • the products obtained in Examples 1, 2, 3, and 4 were measured by X-ray diffraction using Cu-K ⁇ rays with a wavelength of 1.5418 angstroms, and the results are shown in Figure 4 . It can be seen from the figure that the XRD results of the products obtained in Examples 1, 2, 3, and 4 are consistent with the main peaks of the PDF card, all belong to the orthorhombic Pnma (No.62) space group, and belong to the Li-Sn-S system crystal. Material.
  • the Li 4 SnS 4 prepared in Example 1 contains an impurity phase Li 2 SnS 3 , and after doping, the impurity phase disappears and the purity is improved.
  • the conductivity formula it can be calculated that the ionic conductivity of Li 4 SnS 4 , Li 3.85 Sn 0.85 Sb 0.15 S 4 , Li 3.8 Sn 0.8 As 0.2 S 4 , and Li 4 Sn 0.9 Si 0.1 S 4 is 4.75 ⁇ 10 ⁇ 5 S/cm -1 , 1.62 ⁇ 10 -4 S/cm -1 , 1.66 ⁇ 10 -3 S/cm -1 , 1.68 ⁇ 10 -5 S/cm -1 .
  • Li source commercialized low-cost Li 2 CO 3 is used as the Li source
  • CS 2 is the S source
  • SnO 2 is the Sn source
  • P 2 O 5 is the P source
  • the sulfide electrolyte Li 10 SnP 2 S 12 is synthesized. Specific steps are as follows:
  • Li 2 CO 3 , SnO 2 , P 2 O 5 raw materials were weighed according to the required proportions and ground in a mortar for 30 min, the powder mass was 1 g in total, and placed in an alumina crucible;
  • step (1) the crucible that step (1) is housed with raw materials is put into the center of the quartz tube of the tube furnace, facing the thermocouple;
  • step (6) After the gas washing in step (5), under the same ventilation conditions, the tube furnace was heated from room temperature 30°C to 500°C, the heating rate was 5°C/min, the holding time was 24h, and then the temperature was naturally cooled.
  • composition characterization of Li 10 SnP 2 S 12 prepared in Example 5 is as follows:
  • the obtained product Li 10 SnP 2 S 12 was subjected to X-ray diffraction measurement using Cu-K ⁇ rays with a wavelength of 1.5418 angstroms, and the results are shown in FIG. 7 .
  • the high and low temperature EIS test of the electrolyte can be used to obtain the EIS corresponding to different temperature points.
  • the ionic conductivity corresponding to each temperature point can be calculated from the calculation formula of ionic conductivity and the measured thickness and area of the electrolyte.
  • This embodiment provides a process for preparing Li 2 S, a raw material of sulfide electrolyte, by a gas-phase synthesis method.
  • Select commercialized low-cost Li 2 CO 3 as the Li source and CS 2 as the S source to synthesize the currently expensive raw material Li 2 S for synthesizing sulfide electrolytes.
  • the specific steps are as follows:
  • Li 2 CO 3 powder with a total mass of 1 g is placed in an alumina crucible;
  • step (1) the crucible that step (1) is housed with raw materials is put into the center of the quartz tube of the tube furnace, facing the thermocouple;
  • step (5) After the gas washing is completed, under the same ventilation conditions, the tube furnace is heated from room temperature 30°C to 500°C, the heating rate is 5°C/min, the holding time is 24h, and then the temperature is lowered, and the cooling rate is is 2°C/min.
  • the Li 2 S prepared in this example is characterized by its composition and the results are as follows:
  • the obtained product Li 2 S was subjected to X-ray diffraction measurement using Cu-K ⁇ rays with a wavelength of 1.5418 angstroms, and the results are shown in FIG. 9 .
  • Li 2 S's PDF card 65-2981 except the 21.5° peak comes from the PE film protective material used in the XRD test, the remaining 8 diffraction peaks can all correspond one-to-one.
  • This example provides the specific application of the Li 3.8 Sn 0.8 As 0.2 S 4 solid electrolyte synthesized in Example 3 in electrode materials.
  • Li 3.8 Sn 0.8 As 0.2 S 4 synthesized in Example 3 was used as the solid electrolyte, LiCoO 2 coated with LiNbO 2 was used as the positive electrode active material, Li 4 Ti 5 O 12 was used as the negative electrode active material, and nanometer Carbon tubes (VGCF) as conductive additive.
  • the lithium battery is prepared as follows:
  • the charge-discharge curve in the first week is shown in Figure 10.
  • the all-solid-state powder battery assembled with the electrolyte Li 3.8 Sn 0.8 As 0.2 S 4 has a discharge capacity of 162mAh/g in the first week and a Coulombic efficiency of 79.11% in the first week.
  • the gas-phase synthesis method for sulfide solid electrolyte material uses air-stable and low-cost raw materials, and can synthesize sulfide solid-state electrolyte material and its raw materials in one step through the gas-phase method, which greatly simplifies the process steps and the complexity of operations, and is not suitable for synthesis.
  • the equipment requirements are low, and it is easy to process large-scale production.
  • the synthesis method does not need to be synthesized under the protective conditions of a vacuum environment or an inert atmosphere, and can It is directly carried out in the air environment (humid air and dry air in the dry room), so that the whole process of the preparation of the sulfide solid electrolyte material from the raw material to the final product of the reaction is air-stable, and is compatible with the existing lithium placed in the dry room environment.
  • the battery production process line equipment is compatible, which fundamentally solves the severe requirements of the environment and atmosphere in the production, storage, transportation and use of sulfide solid electrolyte materials, and greatly promotes its application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

一种硫化物固态电解质材料及其原料的气相合成方法及应用;所述气相合成方法包括:将Li源,M源按所需比例称量后进行混合,并将混合后的原料放入加热炉中;M源为M元素的单质、氧化物、硫化物中的至少一种,其中,M元素选自元素周期表中的第3周期至第6周期中的第4、5、6、13、14、15族元素中的至少一种;将S源加入硫源气体发生装置中;利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;降温后取出加热炉中的物质即为硫化物固态电解质。

Description

硫化物固态电解质材料及其原料的气相合成方法及应用
本申请要求于2020年08月08日提交中国专利局、申请号为202010792068.3、发明名称为“硫化物固态电解质材料及其原料的气相合成方法及应用”的中国专利申请的优先权。
本发明涉及材料技术领域,尤其涉及一种硫化物固态电解质材料及其原料的气相合成方法及应用。
背景技术
传统的使用液态电解液和碳负极的锂离子电池由于在能量密度方面面临着350Wh/kg的上限“瓶颈”,并且存在着自燃起火爆炸等安全隐患,已经无法满足电动汽车和储能电网等领域对电池能量密度和安全性能等指标的高要求。
而固态电解质相比液态电解质,具备高热稳定性和致密性,因此采用固态电解质替代液态电解质和隔膜组装全固态电池,在安全性方面将得到极大的提升。同时全固态电池可采用金属锂作为负极,使得在相同正极体系下电池能量密度有望提升40%-50%。全固态电池按照所使用的固态电解质为分类依据,主要发展路线有聚合物、氧化物、硫化物全固态电池。其中硫化物电解质以其媲美甚至超越液态电解质的高离子电导率(如Li 10GeP 2S 12和Li 9.54Si 1.74P 1.44S 11.7Cl 0.3室温锂离子电导率分别达到了12mS/cm和25mS/cm),和优良的机械延展性(室温冷压即可组装电池),成为全固态电池领域的研究焦点之一。
硫化物电解质的合成方法直接影响着其未来工业化规模生产的能力。 目前普遍使用的硫化物固态电解质的合成方法有固相法(包括高温固相法和机械化学法)、液相法。固相法第一步是将Li源,S源,P源等原材料混合,混合方式为研钵研磨或球磨机球磨,第二步是将混合后的粉末压成片或直接以粉末形式进行真空封管烧结或在惰性气氛保护下进行烧结,烧结温度在100℃-700℃范围,烧结时间一般在20小时以上。液相法是将Li源,S源,P源等原材料粉末加入有机溶剂中,依次进行搅拌混合、离心、过滤、干燥,得到前驱体,再经过一定温度热处理得到硫化物电解质终产物。专利CN108878962A指出使用球磨法时,原料和磨料需要置于无水无氧的密封容器中,减少与空气和水分发生副反应,从而提高了硫化物固态电解质的性能。专利CN110165293A也指出需要考虑有机溶剂的含水量,以及操作环境的含水量。专利CN108352567A进行了不含P元素的空气稳定的硫化物电解质Li 13Sn 2InS 12的合成,但使用的原料包含价格昂贵的硫化锂,同时合成过程中仍然需要进行真空封管,多步热处理和长时间的烧结。固相法和液相法都需要使用对空气敏感/空气稳定性差的硫化物Li 2S、P 2S 5、SiS 2、Al 2S 3以及易吸湿潮解的卤化物LiCl、LiBr、LiI等作为起始原料(其中Li 2S和SiS 2价格昂贵),且整个制备过程都需要隔绝空气或在惰性气氛保护条件下进行。其中固相法需要进行长时间的球磨,高压压片、真空封管及长时间的烧结。因此固相法存在工艺步骤多且操作复杂、耗时长、能耗大、成本高、整个过程需要在真空环境或惰性气氛保护的缺点。液相法也需要进行长时间的加热搅拌、固液分离、长时间的干燥和热处理。因此液相法也存在工艺步骤多、耗时长、成本高、整个过程需要在真空环境或惰性气氛保护的缺点,此外还存在由于引入的溶剂难以去除,严重影响硫化物电解质离子电导率的缺点。两种合成方法由于制备过程需要在真空环境或惰性气氛保护,难以与现有的放置于干房环境中的锂电池工艺线设备兼容。
专利CN103098288A公开了通过气相法在一种硫化物粉末形成层上生 长相同或不同的硫化物致密膜层,如将低沸点的硫化物电解质蒸发沉积于已经进行冷压的硫化物粉末形成层基底上,以形成更加致密的膜层。因此目前并没有真正意义上实现利用气相法合成硫化物固态电解质。
发明内容
本发明实施例提供了一种硫化物固态电解质材料及其原料的气相合成方法及应用,该合成方法使用空气稳定且成本低廉的原料,通过气相法一步合成硫化物固态电解质材料,大大简化了工艺步骤和操作复杂性,对合成设备要求较低,易于工艺规模化生产。
第一方面,本发明实施例提供了一种硫化物固态电解质材料的气相合成方法,所述方法包括:
将Li源,M源按所需比例称量后进行混合,并将混合后的原料放入加热炉中;所述Li源包括Li 2CO 3、Li 2O、Li 2S、LiOH、LiCl、醋酸锂、硫酸锂、硝酸锂或金属锂中的至少一种;所述M源为M元素的单质、氧化物、硫化物中的至少一种,其中,M元素选自元素周期表中的第3周期至第6周期中的第4、5、6、13、14、15族元素中的至少一种;
将S源加入硫源气体发生装置中;所述S源包括含S的气体、含硫有机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;
降温后取出加热炉中的物质即为硫化物固态电解质。
优选的,所述M元素具体包括:Sn、Sb、As、P、Si、Ge、Bi中的至少一种;所述M源具体包括:Sn源、Sb源、As源、P源、Si源、Ge源、Bi源中的至少一种;所述Sn源包括:Sn单质、SnO 2、SnS 2、SnCl 4及其水合物中的至少一种;所述Sb源包括:Sb单质、Sb 2O 5、Sb 2O 3、Sb 2S 5、Sb 2S 3中的至少一种;所述As源包括:As单质、As 2O 5、As 2O 3、As 2S 5、As 2S 3中的至少一种;所述P源包括:P单质、P 2S 3、P 2S 5、P 2O 5中的至少一种;Si源包括Si单质、SiO、SiO 2、SiS 2、SiCl 4及其水合物中的至少一种;Ge源包括Ge单质、GeO 2、GeS、GeS 2、GeCl 4及其水合物中的至少一种;Bi源包括Bi单质、Bi 2O 3、Bi 2S 3、Bi(OH) 3中的至少一种;
所述含S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
所述含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种;
所述载气包括N 2、CO 2、Ar气中的任一种。
优选的,所述混合的方式具体包括研钵研磨或机械混合;
所述研钵研磨的研磨时间为10min-120min;
所述机械混合包括采用辊磨机、球磨机、喷磨机进行机械混合,混合时间1小时-8小时。
优选的,所述一定时长为10min-120min;所述设定时长为10小时-72小时;
所述设定的升温速率为1℃/min-10℃/min;所述降温具体为以设定的降温速率降温,或者,自然冷却降温;其中所述设定的降温速率为1℃/min-10℃/min;
所述设定通气速率为1ml/min-30ml/min。
第二方面,本发明实施例提供了一种硫化物固态电解质材料的原料的气相合成方法,所述硫化物固态电解质材料的原料的化学式为A xS y,所述A 为Li、Si、Ge、Sn、P、As、Sb、Bi中的任一种,0<x≤2,0<y≤5,所述气相合成包括:
将A源按所需用量称量后放入加热炉中;所述A源包括A的氧化物、氢氧化物、碳酸盐或A单质中的至少一种;
将S源加入硫源气体发生装置中;所述S源包括含S的气体、含硫有机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;
按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;
降温后取出加热炉中的物质即为硫化物固态电解质的原料。
优选的,所述载气包括N 2、CO 2、Ar气中的任一种;
所述含S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
所述含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种。
优选的,所述一定时长为10min-120min;所述设定时长为10小时-72小时;
所述设定的升温速率为1℃/min-10℃/min;所述降温具体为以设定的降温速率降温,或者,自然冷却降温;其中所述设定的降温速率为1℃/min-10℃/min;
所述设定通气速率为1ml/min-30ml/min。
第三方面,本发明实施例提供了一种基于上述第一方面所述的气相合 成方法合成的硫化物固态电解质材料,所述硫化物固态电解质材料用于锂电池的电极材料。
第四方面,本发明实施例提供了一种基于上述第二方面所述的气相合成方法合成的硫化物固态电解质材料的原料,所述原料用于上述第三方面所述的硫化物固态电解质材料的合成。
第五方面,本发明实施例提供了一种锂电池,所述锂电池包括上述第一方面所述的气相合成方法合成的硫化物固态电解质材料。
本发明提供的硫化物固态电解质材料的气相合成方法,使用空气稳定且成本低廉的原料,通过气相法一步合成硫化物固态电解质材料,大大简化了工艺步骤和操作复杂性,对合成设备要求较低,易于工艺规模化生产。由于使用的原料空气稳定,且合成的硫化物固态电解质材料也具备良好的空气稳定性,因此本合成方法无需在真空环境或惰性气氛保护条件下进行合成,可以直接在空气环境(湿润空气和干房内的干燥空气)中进行,从而实现硫化物固态电解质材料从原材料到反应终产物的制备全过程空气稳定,并与现有的放置于干房环境的锂电池生产工艺线设备兼容,进而从根本上解决硫化物固态电解质材料生产制备、储存、运输、使用四大环节对环境氛围的严苛要求难题,极大地促进其应用。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的硫化物固态电解质材料的气相合成方法的流程图;
图2为本发明实施例提供的气相合成装置的结构示意图;
图3为本发明实施例提供的硫化物固态电解质材料的原料的气相合成方法的流程图;
图4为本发明实施例1、2、3、4所制备的Li-Sn-S体系晶体硫化物固 态电解质Li 4SnS 4Li 3.85Sn 0.85Sb 0.15S 4、Li 3.8Sn 0.8As 0.2S 4、Li 4Sn 0.9Si 0.1S 4的X射线衍射(XRD)图谱以及与正交晶系Li 4SnS 4的PDF卡片04-019-27403的对比图;
图5为本发明实施例1、2、3、4所制备的Li-Sn-S体系晶体硫化物固态电解质Li 4SnS 4Li 3.85Sn 0.85Sb 0.15S 4、Li 3.8Sn 0.8As 0.2S 4、Li 4Sn 0.9Si 0.1S 4的电化学阻抗谱(EIS);
图6为本发明实施例1、2所制备的Li-Sn-S体系晶体硫化物固态电解质Li 4SnS 4Li 3.85Sn 0.85Sb 0.15S 4的阿仑尼乌斯曲线及计算得到的活化能;
图7为本发明实施例5所制备的含P型硫化物固态电解质Li 10SnP 2S 12的XRD图谱;
图8为本发明实施例5所制备的含P型硫化物固态电解质Li 10SnP 2S 12的阿仑尼乌斯曲线及计算得到的活化能。
图9为本发明实施例6制备的固态电解质材料的原料Li 2S的XRD图谱以及与Li 2S的PDF卡片65-2981的对比;
图10为本发明实施例7中应用本发明实施例3制备的Li 3.8Sn 0.8As 0.2S 4电解质组装全固态电池的首周充放电曲线。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明的硫化物固态电解质材料的气相合成方法,其主要方法步骤如图1的流程图所示,下面结合流程图进行介绍。
本发明的硫化物固态电解质材料的气相合成方法主要步骤包括:
步骤110,将Li源,M源按所需比例称量后进行混合,并将混合后的原料放入加热炉中;
其中,Li源包括Li 2CO 3、Li 2O、Li 2S、LiOH、LiCl、醋酸锂、硫酸锂、硝酸锂或金属锂中的至少一种;
M源为M元素的单质、氧化物、硫化物中的至少一种,其中,M元素选自元素周期表中的第3周期至第6周期中的第4、5、6、13、14、15族元素中的至少一种。优选的,可以是Sn、Sb、As、P中的至少一种,即M源优选为Sn源、Sn源、As源、P源中的至少一种。进一步具体的,Sn源包括:Sn单质、SnO 2、SnS 2、SnCl 4及其水合物中的至少一种;Sb源包括:Sb单质、Sb 2O 5、Sb 2O 3、Sb 2S 5、Sb 2S 3中的至少一种;As源包括:As单质、As 2O 5、As 2O 3、As 2S 5、As 2S 3中的至少一种;P源包括:P单质、P 2S 3、P 2S 5、P 2O 5中的至少一种;Si源包括Si单质、SiO、SiO 2、SiS 2、SiCl 4及其水合物中的至少一种;Ge源包括Ge单质、GeO 2、GeS、GeS 2、GeCl 4及其水合物中的至少一种;Bi源包括Bi单质、Bi 2O 3、Bi 2S 3、Bi(OH) 3中的至少一种。
混合的方式具体包括研钵研磨或机械混合。其中,研钵研磨的研磨时间为10min-120min;机械混合包括采用辊磨机、球磨机、喷磨机进行机械混合,混合时间1小时-8小时。
步骤120,将S源加入硫源气体发生装置中;
S源包括含S的气体、含硫有机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;进一步具体的,S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种;
S源中的多硫化物可在酸性溶液中分解产生H 2S和S;硫酸盐可与有机物发生热化学还原生成H 2S、金属硫化物可与盐酸或硫酸反应产生H 2S,从而产生载气能够携带的含S源的气体。
步骤130,按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
图2中示出了一个具体的气相合成装置的结构示意图。
图中,载气发生装置中提供的载气为高纯氮气,载气发生装置的输出端接流量计,以调控载气流量,然后通入硫源气体发生装置。在本例中,硫源气体发生装置以瓶内容置的二硫化碳示出。
硫源气体发生装置的气体输出端接加热炉的输入端,在步骤110中,Li源,M源的混合原料被预先放置在加热炉中,具体的可以是管式加热炉,混合原料先放入坩埚再送入管式加热炉的石英管内。
最后,加热炉的排气接尾气处理。
步骤140,利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
具体的,为了保证加热炉内达到反应环境,需预先通入S源气体或含S源的载气对加热炉进行洗气一段时间,洗气时长优选为10min-120min。
在具体的实施方案中,载气可以具体采用包括N 2、CO 2、Ar气等中的任一种气体。设定通气速率具体为1ml/min-30ml/min。
步骤150,洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温10小时-72小时后,再降温至室温;
具体的,通气条件与洗气步骤相同。
设定的升温速率为1℃/min-10℃/min。
降温可以具体采用以设定的降温速率1℃/min-10℃/min进行降温,或者自然冷却降温。
在本步骤中,含S源的气体与Li源和M源的混合原料反应。以M源为M的氧化物,S源为CS 2为例,CS 2的硫化作用反应机理为:由于CS 2中的C=S相比C=O弱,易被氧化物原料中的O攻击,进而形成C=O,C以CO 2气体形式离开,而C=S中的S则形成单质或者与氧化物原料中的M结合,最后在加热条件下生成硫化物电解质。
步骤160,降温后取出加热炉中的产物即为硫化物固态电解质。
优选地,所得产物放入手套箱惰性气氛、真空环境或-50℃露点的干房中储存。
本发明的气相合成方法的技术方案,通过优化气体流量值(以精密调控气体流量计实现)、加热炉管道尺寸、升降温速率等参数,可实现500℃左右温度的合成,实测产率接近100%,在实验室中单批次就可合成2g材料。
采用以上气相合成方法合成的硫化物固态电解质材料,可以用于锂电池的电极材料,包括正极材料和负极材料。
以上的气相合成方法,除了能够合成硫化物固态电解质材料,还能用于合成硫化物固态电解质材料的原料,合成的硫化物固态电解质材料的原料的化学式为A xS y,其中A为Li、Si、Ge、Sn、P、As、Sb、Bi中的任一种,0<x≤2,0<y≤5。例如可以使用本方法合成目前价格昂贵的Li 2S等。
以下结合图3所示硫化物固态电解质材料的原料的气相合成方法的流程图进行说明。
步骤210,将A源按所需用量称量后放入加热炉中;
A源包括A的氧化物、氢氧化物、碳酸盐或A单质。
例如,A源为Li源,包括Li 2CO 3、Li 2O、LiOH、或金属锂中的至少一种。A xS y为Li 2S。
例如,A源为Si源,包括单质Si、SiO2、SiO。A xS y为SiS 2
例如,A源为Ge源,包括Ge单质、GeO 2。A xS y为GeS 2
例如,A源为Sn源,包括单质Sn、SnO 2、Sn 2O 3;A xS y为SnS 2
例如,A源为P源,包括单质P、P 2O 3、P 2O 5;A xS y为P 2S 5
例如,A源为As源,包括As单质、As 2O 5、As 2O 3;A xS y为As 2S 3和/或As 2S 5
例如,A源为Sb源,包括单质Sb、Sb 2O 3、Sb 2O 5;A xS y为Sb 2S 3和/或Sb 2S 5
例如,A源为Bi源,包括Bi单质、Bi 2O 3;A xS y为Bi 2S 3
步骤220,将S源加入硫源气体发生装置中;
S源具体包括含S的气体、含硫有机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;进一步具体的,S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种;
S源中的多硫化物可在酸性溶液中分解产生H 2S和S;硫酸盐可与有机物发生热化学还原生成H 2S、金属硫化物可与盐酸或硫酸反应产生H 2S,从而产生载气能够携带的含S源的气体。
步骤230,按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
本实施例中的气相合成装置与上一实施例相同,不再赘述。
步骤240,利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
具体过程同步骤140,不再赘述。
步骤250,洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;
具体的,通气条件与洗气步骤相同。
设定的升温速率为1℃/min-10℃/min。
降温可以具体采用以设定的降温速率1℃/min-10℃/min进行降温,或者自然冷却降温。
步骤260,降温后取出加热炉中的物质即为硫化物固态电解质的原料。
通过以上方法,可以制备得到如Li 2S等用于硫化物固态电解质材料合成的原料,解决这些原料价格昂贵,不易得的问题。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明应用本发明上述实施例提供的方法合成硫化物固态电解质材料的具体过程和材料特性。
实施例1
本实施例选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,SnO 2为Sn源,合成硫化物电解质Li 4SnS 4,具体步骤如下:
(1)将Li 2CO 3、SnO 2原料按照所需比例称量并在研钵中研磨30min,粉末质量共计2g,置于两个氧化铝坩埚中(每个坩埚1g);
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶;
(3)将步骤(1)装有原料的两个坩埚并列平行地放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后降温,降温速率为2℃/min。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到Li 4SnS 4固态电解质。
本实施例所得Li 4SnS 4固态电解质具有良好的空气稳定性,在湿润空气中暴露吸水后可通过加热除去水分/结晶水恢复原有的晶体结构。
实施例2
本实施例选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,SnO 2为Sn源,Sb 2O 5为Sb源,合成硫化物电解质Li 3.85Sn 0.85Sb 0.15S 4,具体步骤如下:
(1)将Li 2CO 3、SnO 2、Sb 2O 5原料按照所需比例称量并在研钵中研磨30min,粉末质量共计1g,置于氧化铝坩埚中;
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶中;
(3)将步骤(1)装有原料的坩埚放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后降温,降温速率为2℃/min。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到Li 3.85Sn 0.85Sb 0.15S 4固态电解质。
本实施例所得Li 3.85Sn 0.85Sb 0.15S 4固态电解质具有良好的空气稳定性,在湿润空气中暴露吸水后可通过加热除去水分/结晶水恢复原有的晶体结构。
实施例3
本实施例选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,SnO 2为Sn源,As 2S 3为As源,合成硫化物电解质Li 3.8Sn 0.8As 0.2S 4,具体步骤如下:
(1)将Li 2CO 3、SnO 2、As 2S 3原料按照所需比例称量并在研钵中研磨30min,粉末质量共计1g,置于氧化铝坩埚中;
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶中;
(3)将步骤(1)装有原料的坩埚放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后自然冷却降温。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到Li 3.8Sn 0.8As 0.2S 4固态电解质。
本实施例所得Li 3.8Sn 0.8As 0.2S 4固态电解质具有良好的空气稳定性,在湿润空气中暴露吸水后可通过加热除去水分/结晶水恢复原有的晶体结构。
实施例4
本实施例选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,SnO 2为Sn源,微米级硅粉单质为Si源,合成硫化物电解质Li 4Sn 0.9Si 0.1S 4,具体步骤如下:
(1)将Li 2CO 3、SnO 2、Si原料按照所需比例称量并在研钵中研磨30min,粉末质量共计1g,置于氧化铝坩埚中;
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶中;
(3)将步骤(1)装有原料的坩埚放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后降温,降温速率为2℃/min。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到Li 3.8Sn 0.8Si 0.2S 4固态电解质。
本实施例所得Li 3.8Sn 0.8Si 0.2S 4固态电解质具有良好的空气稳定性,在湿润空气中暴露吸水后可通过加热除去水分/结晶水恢复原有的晶体结构。
采用多种测试方法对实施例1、2、3、4中制备得到的Li-Sn-S体系的硫化物电解质Li 4SnS 4、Li 3.85Sn 0.85Sb 0.15S 4、Li 3.8Sn 0.8As 0.2S 4、Li 4Sn 0.9Si 0.1S 4的成分、电化学性能进行准确的表征,结果如下:
1、采用波长为1.5418埃的Cu-K α射线对实施例1、2、3、4得到的产物进行X射线衍射测定,结果如图4所示。由图可知,实施例1、2、3、4得到的产物的XRD结果与PDF卡片的主峰均一致,均属于正交晶系Pnma(No.62)空间群,属于Li-Sn-S体系晶体材料。其中实施例1制备得到的Li 4SnS 4含有杂质相Li 2SnS 3,而进行掺杂后,该杂质相消失,纯度得到提高。
2、利用压力模具将150mg电解质材料在800MPa的压力下,压制成饼状。利用模拟电池壳组装成C/SSE/C三明治结构的测试电池,在Zahniumpro电化学工作站上,以5-20mV微扰,测试100mHz-8MHz频率范围下的交流阻抗谱,结果以-Nyquist图形式展示,结果如图5所示。使用螺旋测微器测量电解质片厚度,电解质片直径等于模具直径10mm。根据电导率公式可计算得到Li 4SnS 4、Li 3.85Sn 0.85Sb 0.15S 4、Li 3.8Sn 0.8As 0.2S 4、Li 4Sn 0.9Si 0.1S 4的离子电导率高,分别为4.75×10 -5S/cm -1、1.62×10 -4S/cm -1、1.66×10 -3S/cm -1、 1.68×10 -5S/cm -1
3、将结果2中所述的测试电池放入高低温精密控制箱,实现对不同温度下的交流阻抗测试,从而测得各个温度点下的阻抗值,然后计算离子电导率,绘制出阿仑尼乌斯曲线。由图6可知实施例1、2所制备的电解质的活化能分别为0.453eV、0.425eV。
实施例5
本实施例选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,SnO 2为Sn源,P 2O 5为P源,合成硫化物电解质Li 10SnP 2S 12,具体步骤如下:
(1)将Li 2CO 3、SnO 2、P 2O 5原料按照所需比例称量并在研钵中研磨30min,粉末质量共计1g,置于氧化铝坩埚中;
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶中;
(3)将步骤(1)装有原料的坩埚放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后自然冷却降温。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到Li 10SnP 2S 12固态电解质。
对实施例5中制备得到的Li 10SnP 2S 12进行成分表征其结果如下:
采用波长为1.5418埃的Cu-K α射线对得到的产物Li 10SnP 2S 12进行X射线衍射测定,结果如图7所示。对该电解质进行高低温EIS测试,可得到 不同温度点对应的EIS,由离子电导率计算公式以及测量的电解质厚度和面积可计算得到每个温度点对应的离子电导率,由此拟合得到阿仑尼乌斯曲线,如图8所示,最后计算出活化能。
实施例6
本实施例提供了采用气相合成方法制备硫化物电解质的原料Li 2S的过程。选用已经商业化的价格低廉的Li 2CO 3为Li源,CS 2为S源,合成目前价格昂贵的用于合成硫化物电解质的原料Li 2S,具体步骤如下:
(1)将质量共计1g的Li 2CO 3粉末,置于氧化铝坩埚中;
(2)将约80mL的CS 2液体,加入容量为100mL的洗气瓶中;
(3)将步骤(1)装有原料的坩埚放入管式炉的石英管中央,正对热电偶处;
(4)使用硅胶软管,依次将氮气气瓶、气体流量计、洗气瓶、管式炉、尾气瓶连接好,管式炉的石英管两端用法兰连接好;
(5)调节气体流量计旋钮,使通气速率为10mL/min,并预先进行洗气60min左右;
(6)在步骤(5)洗气结束后,在同样通气条件下,将管式炉从室温30℃升温至500℃,升温速率为5℃/min,保温时间为24h,之后降温,降温速率为2℃/min。
(7)降温完成后,将石英管一端的法兰拆下,并将坩埚取出,即可得到固态电解质的原料Li 2S。
对本实施例制备得到的Li 2S进行成分表征其结果如下:
采用波长为1.5418埃的Cu-K α射线对得到的产物Li 2S进行X射线衍射测定,结果如图9所示。与Li 2S的PDF卡片65-2981的对比,除了21.5°的峰来自于XRD测试使用的PE膜保护材料,其余8个衍射峰,都能一一对应。
实施例7
本实施例提供了实施例3中合成的Li 3.8Sn 0.8As 0.2S 4固态电解质在电极材料中的具体应用。
在本例中,将实施例3中合成的Li 3.8Sn 0.8As 0.2S 4作为固态电解质,经过LiNbO 2包覆过的LiCoO 2作为正极活性物质,Li 4Ti 5O 12作为负极活性物质,纳米碳管(VGCF)作为导电添加剂。锂电池制备按照如下方法进行:
(1)将活性物质Li 4Ti 5O 12、固态电解质Li 3.8Sn 0.8As 0.2S 4、导电添加剂VGCF按照所需比例进行质量称量,并进行研钵研磨,混合成负极材料;
(2)将活性物质LiCoO 2、固态电解质Li 3.8Sn 0.8As 0.2S 4、导电添加剂VGCF按照所需比例进行质量称量,并进行研钵研磨,混合成正极材料;
(3)称取2.5mg负极材料并放入电池模具中,用不锈钢模具抹平粉末层表面,再称取固态电解质材料Li 3.8Sn 0.8As 0.2S 4100mg并放入电池模具中,用不锈钢模具抹平粉末层表面,然后称取正极材料2mg并放入电池模具中,用不锈钢模具抹平粉末层表面。使用压机对整个电池加压至30MPa,拧紧螺丝,涂上真空硅脂密封以隔绝空气中的水氧。
(4)将电池连接蓝电测试通道,设置充放电循环程序使电池在0.1C倍率下进行充放电。首周充放电曲线如图10所示,由电解质Li 3.8Sn 0.8As 0.2S 4组装的全固态粉末电池,首周放电容量达162mAh/g,首周库伦效率为79.11%。
本发明提供的硫化物固态电解质材料的气相合成方法,使用空气稳定且成本低廉的原料,通过气相法能够一步合成硫化物固态电解质材料及其原料,大大简化了工艺步骤和操作复杂性,对合成设备要求较低,易于工艺规模化生产。合成硫化物固态电解质材料的方法中由于使用的原料空气稳定,且合成的硫化物固态电解质材料也具备良好的空气稳定性,因此本 合成方法无需在真空环境或惰性气氛保护条件下进行合成,可以直接在空气环境(湿润空气和干房内的干燥空气)中进行,从而实现硫化物固态电解质材料从原材料到反应终产物的制备全过程空气稳定,并与现有的放置于干房环境的锂电池生产工艺线设备兼容,进而从根本上解决硫化物固态电解质材料生产制备、储存、运输、使用四大环节对环境氛围的严苛要求难题,极大地促进其应用。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种硫化物固态电解质材料的气相合成方法,其特征在于,所述方法包括:
    将Li源,M源按所需比例称量后进行混合,并将混合后的原料放入加热炉中;所述Li源包括Li 2CO 3、Li 2O、Li 2S、LiOH、LiCl、醋酸锂、硫酸锂、硝酸锂或金属锂中的至少一种;所述M源为M元素的单质、氧化物、硫化物中的至少一种,其中,M元素选自元素周期表中的第3周期至第6周期中的第4、5、6、13、14、15族元素中的至少一种;
    将S源加入硫源气体发生装置中;所述S源包括含S的气体、含硫有机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;
    按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
    利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
    洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;
    降温后取出加热炉中的物质即为硫化物固态电解质。
  2. 根据权利要求1所述的硫化物固态电解质材料的气相合成方法,其特征在于,所述M元素具体包括:Sn、Sb、As、P、Si、Ge、Bi中的至少一种;所述M源具体包括:Sn源、Sb源、As源、P源中的至少一种;所述Sn源包括:Sn单质、SnO 2、SnS 2、SnCl 4及其水合物中的至少一种;所述Sb源包括:Sb单质、Sb 2O 5、Sb 2O 3、Sb 2S 5、Sb 2S 3中的至少一种;所述As源包括:As单质、As 2O 5、As 2O 3、As 2S 5、As 2S 3中的至少一种;所述P源包括:P单质、P 2S 3、P 2S 5、P 2O 5中的至少一种;Si源包括Si单质、SiO、SiO 2、SiS 2、SiCl 4及其水合物中的至少一种;Ge源包括Ge单质、GeO 2、GeS、GeS 2、 GeCl 4及其水合物中的至少一种;Bi源包括Bi单质、Bi 2O 3、Bi 2S 3、Bi(OH) 3中的至少一种;
    所述含S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
    所述含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种;
    所述载气包括N 2、CO 2、Ar气中的任一种。
  3. 根据权利要求1所述的硫化物固态电解质材料的气相合成方法,其特征在于,所述混合的方式具体包括研钵研磨或机械混合;
    所述研钵研磨的研磨时间为10min-120min;
    所述机械混合包括采用辊磨机、球磨机、喷磨机进行机械混合,混合时间1小时-8小时。
  4. 根据权利要求1所述的硫化物固态电解质材料的气相合成方法,其特征在于,所述一定时长为10min-120min;所述设定时长为10小时-72小时;
    所述设定的升温速率为1℃/min-10℃/min;所述降温具体为以设定的降温速率降温,或者,自然冷却降温;其中所述设定的降温速率为1℃/min-10℃/min;
    所述设定通气速率为1ml/min-30ml/min。
  5. 一种硫化物固态电解质材料的原料的气相合成方法,其特征在于,所述硫化物固态电解质材料的原料的化学式为A xS y,所述A为Li、Si、Ge、Sn、P、As、Sb、Bi中的任一种,0<x≤2,0<y≤5,所述气相合成方法包括:
    将A源按所需用量称量后放入加热炉中;所述A源包括A的氧化物、氢氧化物、碳酸盐或A单质中的至少一种;
    将S源加入硫源气体发生装置中;所述S源包括含S的气体、含硫有 机化合物、多硫化物、硫酸盐或金属硫化物中的一种或几种;
    按照载气发生装置、气体流量计、硫源气体发生装置、加热炉、尾气处理装置顺序连接,组成气相合成装置;
    利用载气携带含S源的气体,以设定通气速率对加热炉进行一定时长的洗气;
    洗气结束后,再以设定通气速率通入含S源的气体的环境下,将加热炉以设定的升温速率升温至200℃-800℃,保温设定时长后,再降温至室温;
    降温后取出加热炉中的物质即为硫化物固态电解质的原料。
  6. 根据权利要求5所述的硫化物固态电解质材料的气相合成方法,其特征在于,所述载气包括N 2、CO 2、Ar气中的任一种;
    所述含S的气体包括:硫化氢、二氧化硫、三氧化硫、含硫天然气、硫蒸气、二硫化碳蒸汽中的至少一种;
    所述含硫有机化合物包括:甲硫醇、甲硫醚、二甲二硫醚、噻吩、乙硫醇、乙硫醚、甲乙硫醚、硫脲中的至少一种。
  7. 根据权利要求5所述的硫化物固态电解质材料的气相合成方法,其特征在于,所述一定时长为10min-120min;所述设定时长为10小时-72小时;
    所述设定的升温速率为1℃/min-10℃/min;所述降温具体为以设定的降温速率降温,或者,自然冷却降温;其中所述设定的降温速率为1℃/min-10℃/min;
    所述设定通气速率为1ml/min-30ml/min。
  8. 一种基于上述权利要求1-4任一所述的气相合成方法合成的硫化物固态电解质材料,其特征在于,所述硫化物固态电解质材料用于锂电池的电极材料。
  9. 一种采用上述权利要求5-8任一所述的气相合成方法合成的硫化物 固态电解质材料的原料,其特征在于,所述原料用于上述权利要求8所述的硫化物固态电解质材料的合成。
  10. 一种锂电池,其特征在于,所述锂电池包括上述权利要求1-4任一所述的气相合成方法合成的硫化物固态电解质材料。
PCT/CN2020/137882 2020-08-08 2020-12-21 硫化物固态电解质材料及其原料的气相合成方法及应用 WO2022032956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/040,706 US20240030485A1 (en) 2020-08-08 2020-12-21 Sulfide solid electrolyte material, gas-phase synthesis method for materials thereof and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010792068.3A CN111977681B (zh) 2020-08-08 2020-08-08 硫化物固态电解质材料及其原料的气相合成方法及应用
CN202010792068.3 2020-08-08

Publications (1)

Publication Number Publication Date
WO2022032956A1 true WO2022032956A1 (zh) 2022-02-17

Family

ID=73444645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137882 WO2022032956A1 (zh) 2020-08-08 2020-12-21 硫化物固态电解质材料及其原料的气相合成方法及应用

Country Status (3)

Country Link
US (1) US20240030485A1 (zh)
CN (1) CN111977681B (zh)
WO (1) WO2022032956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117023534A (zh) * 2023-08-16 2023-11-10 黄冈师范学院 一种钠离子硫化物固态电解质的低成本制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977681B (zh) * 2020-08-08 2023-10-10 天目湖先进储能技术研究院有限公司 硫化物固态电解质材料及其原料的气相合成方法及应用
CN114361579B (zh) * 2021-12-30 2022-09-13 北京科技大学 一种低成本高效制备硫化物固态电解质的方法
CN114583253A (zh) * 2022-02-23 2022-06-03 惠州锂威新能源科技有限公司 一种固态电解质、正极材料及其制备方法和应用
CN115636397B (zh) * 2022-10-18 2024-04-19 甘肃光轩高端装备产业有限公司 制备硫化物电解质的方法、硫化物电解质及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210154A (zh) * 2013-07-04 2015-12-30 三井金属矿业株式会社 结晶性固体电解质及其制造方法
CN105229841A (zh) * 2013-07-25 2016-01-06 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质
CN105518923A (zh) * 2014-07-16 2016-04-20 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质
CN106972195A (zh) * 2017-04-17 2017-07-21 哈尔滨工业大学无锡新材料研究院 一种无机硫化物电解质及其制备方法
CN107112586A (zh) * 2014-12-26 2017-08-29 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质和固体电解质化合物
CN108232308A (zh) * 2016-12-09 2018-06-29 丰田自动车株式会社 硫化物固体电解质的制造方法
CN108352567A (zh) * 2016-01-12 2018-07-31 株式会社Lg化学 硫化物型固体电解质和应用其的全固态电池
JP2019147732A (ja) * 2019-03-27 2019-09-05 古河機械金属株式会社 硫化リチウムの製造方法
CN110800149A (zh) * 2017-07-07 2020-02-14 三井金属矿业株式会社 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
CN111977681A (zh) * 2020-08-08 2020-11-24 天目湖先进储能技术研究院有限公司 硫化物固态电解质材料及其原料的气相合成方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2921210C (en) * 2013-09-02 2021-08-17 Mitsubishi Gas Chemical Company, Inc. Solid-state battery with a sulfur-polyacrylonitrile, s-carbon composite, or nis as a positive electrode active material
CN108604705B (zh) * 2015-12-04 2022-03-01 昆腾斯科普电池公司 含锂、磷、硫、碘的电解质和阴极电解液组成,用于电化学装置的电解质膜,及制备这些电解质和阴极电解液的退火方法
CN111244535B (zh) * 2020-02-27 2022-07-08 浙江大学 对锂稳定性高的硫化物固体电解质材料及其制备方法和应用
CN111430688A (zh) * 2020-03-18 2020-07-17 蜂巢能源科技有限公司 固态电池及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105210154A (zh) * 2013-07-04 2015-12-30 三井金属矿业株式会社 结晶性固体电解质及其制造方法
CN105229841A (zh) * 2013-07-25 2016-01-06 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质
CN105518923A (zh) * 2014-07-16 2016-04-20 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质
CN107112586A (zh) * 2014-12-26 2017-08-29 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质和固体电解质化合物
CN108352567A (zh) * 2016-01-12 2018-07-31 株式会社Lg化学 硫化物型固体电解质和应用其的全固态电池
CN108232308A (zh) * 2016-12-09 2018-06-29 丰田自动车株式会社 硫化物固体电解质的制造方法
CN106972195A (zh) * 2017-04-17 2017-07-21 哈尔滨工业大学无锡新材料研究院 一种无机硫化物电解质及其制备方法
CN110800149A (zh) * 2017-07-07 2020-02-14 三井金属矿业株式会社 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
JP2019147732A (ja) * 2019-03-27 2019-09-05 古河機械金属株式会社 硫化リチウムの製造方法
CN111977681A (zh) * 2020-08-08 2020-11-24 天目湖先进储能技术研究院有限公司 硫化物固态电解质材料及其原料的气相合成方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117023534A (zh) * 2023-08-16 2023-11-10 黄冈师范学院 一种钠离子硫化物固态电解质的低成本制备方法
CN117023534B (zh) * 2023-08-16 2024-05-07 黄冈师范学院 一种钠离子硫化物固态电解质的低成本制备方法

Also Published As

Publication number Publication date
CN111977681A (zh) 2020-11-24
CN111977681B (zh) 2023-10-10
US20240030485A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2022032956A1 (zh) 硫化物固态电解质材料及其原料的气相合成方法及应用
CN102214823B (zh) 非水电解质二次电池用负极材料及其制造方法以及锂离子二次电池
JP7390692B2 (ja) リチウム二次電池固体電解質材料、電極及び電池
US8053116B2 (en) Lithium ion-conductive solid electrolyte
CN105355890B (zh) 锂离子电池负极硫化锌‑石墨烯复合材料的制备方法及应用
Yu et al. MoP QDs@ graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries
CN113471521B (zh) 一种无机硫化物固体电解质及其制备方法
TW200529247A (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
JP2011222151A (ja) 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
WO2013145480A1 (ja) 硫化物系固体電解質の製造方法
Kong et al. Multi-electron reactions for the synthesis of a vanadium-based amorphous material as lithium-ion battery cathode with high specific capacity
CN111725560B (zh) 化合物晶体及其制备方法和固体电解质材料、固态锂电池
CN109888376B (zh) 一种硫化物钠离子固体电解质及其制备方法
Kuo et al. LiSnOS/gel polymer hybrid electrolyte for the safer and performance-enhanced solid-state LiCoO2/Li lithium-ion battery
CN113363569B (zh) 一种高稳定性无机硫化物固体电解质及其制备方法
JP2022550137A (ja) 硫化物固体電解質およびその前駆体
Yang et al. The study on synthesis and modification for iron phosphate
CN117117299A (zh) 一种无机硫化物固体电解质及其制备方法
Li et al. Synthesis of Li4Ti5O12 with theoretical capacity in Li2CO3-ammonia-ballmilling system
CN117117298A (zh) 湿空气稳定的无机硫化物固体电解质材料、电池及制备方法
TW200911692A (en) Process for preparing lithium-rich metal oxides
Mi et al. Preparation and degradation of high air stability sulfide solid electrolyte 75Li2S· 25P2S5 glass-ceramic
CN112599740B (zh) 一种锂离子电池二硫化锡/碳负极复合材料及其制备方法与应用
CN106058310B (zh) 一种气固法合成三硫化锡酸锂材料的方法
Awaka et al. Structural and electrochemical properties of Li0. 44+ xMn1− yTiyO2 as a novel 4 V positive electrode material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18040706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949448

Country of ref document: EP

Kind code of ref document: A1