WO2022025202A1 - 組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置 - Google Patents

組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置 Download PDF

Info

Publication number
WO2022025202A1
WO2022025202A1 PCT/JP2021/028148 JP2021028148W WO2022025202A1 WO 2022025202 A1 WO2022025202 A1 WO 2022025202A1 JP 2021028148 W JP2021028148 W JP 2021028148W WO 2022025202 A1 WO2022025202 A1 WO 2022025202A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hfo
compressor
disproportionation reaction
endothermic
Prior art date
Application number
PCT/JP2021/028148
Other languages
English (en)
French (fr)
Inventor
佑樹 四元
隆 臼井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180059609.4A priority Critical patent/CN116157488A/zh
Priority to EP21850483.5A priority patent/EP4191160A4/en
Publication of WO2022025202A1 publication Critical patent/WO2022025202A1/ja
Priority to US18/103,164 priority patent/US20230167346A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • composition as a refrigerant in the equipment, the equipment, and the refrigeration cycle equipment.
  • HFO refrigerants hydrofluoroolefins having a lower global warming potential (hereinafter, may be simply referred to as GWP) than HFC refrigerants have been attracting attention as refrigerating devices.
  • 2-Difluoroethylene (HFO-1132) is also studied in Patent Document 1 (Japanese Unexamined Patent Publication No. 2019-196312) as a refrigerant having a low GWP.
  • HFO refrigerants have a low GWP, they have low stability, and therefore, some of them are prone to autolysis reaction called disproportionation reaction under certain conditions.
  • the disproportionation reaction is a chemical reaction in which two or more molecules of the same type react with each other to change into two or more different types of substances. Such a disproportionation reaction of the HFO refrigerant may propagate.
  • the purpose of the present disclosure is to suppress the propagation of the disproportionation reaction of the refrigerant.
  • the present disclosure provides a use as a refrigerant, an apparatus, and a refrigeration cycle apparatus in the apparatus of the composition according to each of the following viewpoints.
  • the use according to the first aspect is the use as a refrigerant in the apparatus of the composition.
  • the composition is selected from the group consisting of ethylene-based fluoroolefins, 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 1,3,3,3-tetrafluoropropene (HFO-1234ze). Includes one or more species to be.
  • the device constitutes a refrigerant circuit together with the refrigerant piping.
  • the device has an endothermic section.
  • the endothermic portion has a heat capacity of 6.5 J / K or more at a portion having a melting point of 1000 ° C. or higher.
  • the device may be a compressor or a control valve such as an expansion valve or a switching valve.
  • the endothermic unit may be composed of one member or may be composed of a plurality of members.
  • the use according to the second aspect is the use of the first aspect, and the composition is 1,2-difluoroethylene (HFO-1132), 1,1-difluoroethylene (HFO-1132a), 1,1,2. - contains one or more selected from the group consisting of trifluoroethylene (HFO-1123), monofluoroethylene (HFO-1141), and perhaloolefins.
  • the 1,2-difluoroethylene may be trans-1,2-difluoroethylene [(E) -HFO-1132] or cis-1,2-difluoroethylene [(Z) -HFO-1132]. It may be a mixture thereof.
  • the use according to the third aspect is the use of the second aspect, wherein the composition is 1,2-difluoroethylene (HFO-1132) and / or 1,1,2-trifluoroethylene (HFO-1123). )including.
  • the device according to the fourth aspect is a device that uses the composition as a refrigerant.
  • the composition is selected from the group consisting of ethylene-based fluoroolefins, 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 1,3,3,3-tetrafluoropropene (HFO-1234ze). Includes one or more species to be.
  • the device constitutes a refrigerant circuit together with the refrigerant piping.
  • the device has an endothermic section.
  • the endothermic portion has a heat capacity of 6.5 J / K or more at a portion having a melting point of 1000 ° C. or higher.
  • the device may be a compressor or a control valve such as an expansion valve or a switching valve.
  • the endothermic unit may be composed of one member or may be composed of a plurality of members.
  • This device can suppress the propagation of the disproportionation reaction even if the disproportionation reaction of the refrigerant occurs in the device.
  • the refrigeration cycle device is provided with a refrigerant circuit.
  • the refrigerant circuit includes a device according to a fourth aspect and a refrigerant pipe.
  • This refrigeration cycle device makes it possible to suppress the propagation of the disproportionation reaction of the refrigerant circulating in the refrigerant circuit.
  • composition according to the present disclosure as a refrigerant, the apparatus, and the refrigeration cycle apparatus will be specifically described with reference to examples, but these descriptions do not limit the contents of the present disclosure.
  • Refrigeration cycle device 1 is a device that processes a heat load in a target space by performing a steam compression type refrigeration cycle, and is, for example, an air conditioner that harmonizes the air in the target space.
  • FIG. 1 shows a schematic configuration diagram of the refrigeration cycle device.
  • FIG. 2 shows a block configuration diagram of the refrigeration cycle device.
  • the refrigerating cycle device 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5 connecting the outdoor unit 20 and the indoor unit 30, a remote controller (not shown), and a refrigerating cycle. It has a controller 7 that controls the operation of the device 1.
  • a refrigerating cycle is performed in which the refrigerant sealed in the refrigerant circuit 10 is compressed, cooled or condensed, depressurized, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with a refrigerant for performing a steam compression type refrigeration cycle.
  • Refrigerant As the refrigerant filled in the refrigerant circuit 10, ethylene-based fluoroolefin, 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 1,3,3,3-tetra A refrigerant containing one or more selected from the group consisting of fluoropropene (HFO-1234ze). Regarding the combustion rate defined by ISO817, 1.2 cm / s of 1,3,3,3-tetrafluoropropene (HFO-1234ze) is 2,3,3,3-tetrafluoropropene (HFO-). It is preferable in that it is lower than 1.5 cm / s of 1234yf).
  • the refrigerants include 1,2-difluoroethylene (HFO-1132), 1,1-difluoroethylene (HFO-1132a), 1,1,2-trifluoroethylene (HFO-1123), and monofluoroethylene. It may contain (HFO-1141) and one or more selected from the group consisting of perhaloolefins.
  • the refrigerant preferably contains 1,2-difluoroethylene (HFO-1132) and / or 1,1,2-trifluoroethylene (HFO-1123).
  • examples of the ethylene-based fluoroolefin include 1,2-difluoroethylene (HFO-1132), 1,1-difluoroethylene (HFO-1132a), and 1,1,2-trifluoroethylene (HFO-1123). ), Monofluoroethylene (HFO-1141), perhaloolefin and the like.
  • examples of the perhaloolefin include chlorotrifluoroethylene (CFO-1113) and tetrafluoroethylene (FO-1114).
  • the refrigerant circuit 10 is filled with refrigerating machine oil together with the above-mentioned refrigerant.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, an outdoor fan 25, a receiver 41, a gas side closing valve 28, and a liquid side closing. It has a valve 29 and a first refrigerant pipe 11 to a seventh refrigerant pipe 17.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • a compressor having a closed structure in which a positive displacement compression element such as a rotary type or a scroll type is rotationally driven by a compressor motor can be used as the compressor 21, a compressor having a closed structure in which a positive displacement compression element such as a rotary type or a scroll type is rotationally driven by a compressor motor can be used. In this embodiment, the rotary compressor is used. I am using it.
  • the compressor motor is for changing the capacity, and the operating frequency can be controlled by an inverter.
  • a third refrigerant pipe 13 including a suction pipe 99 is connected to the suction side of the compressor 21.
  • a first refrigerant pipe 11 which is a discharge pipe is connected to the discharge side of the compressor 21.
  • the four-way switching valve 22 is a valve whose flow path is switched by controlling the movement of a valve body (not shown), and is a valve that switches the refrigerant circuit 10 between a cooling connection state and a heating connection state. Specifically, the four-way switching valve 22 is connected to the fourth refrigerant pipe 14 including the discharge pipe 95 connected to the discharge side of the compressor 21 and the fifth outdoor heat exchanger 23 in the cooling connection state.
  • the third refrigerant pipe 13, the receiver 41, the second refrigerant pipe 12, and the first refrigerant pipe 11 connected to the gas side closing valve 28 while connecting the refrigerant pipe 15 to the suction side of the compressor 21. Can be switched to the connected state.
  • the four-way switching valve 22 connects the fourth refrigerant pipe 14 connected to the discharge side of the compressor 21 and the first refrigerant pipe 11 connected to the gas side closing valve 28.
  • the state is switched to a state in which the third refrigerant pipe 13 connected to the suction side of the compressor 21, the receiver 41, the second refrigerant pipe 12, and the fifth refrigerant pipe 15 connected to the outdoor heat exchanger 23 are connected.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a radiator or a condenser of a high-pressure refrigerant in the refrigeration cycle during the cooling operation and as an evaporator of the low-pressure refrigerant in the refrigeration cycle during the heating operation.
  • the gas side end of the outdoor heat exchanger 23 is connected to the four-way switching valve 22 via the fifth refrigerant pipe 15.
  • the liquid side end of the outdoor heat exchanger 23 is connected to the expansion valve 24 via the sixth refrigerant pipe 16.
  • the expansion valve 24 is provided between the liquid side outlet of the outdoor heat exchanger 23 in the refrigerant circuit 10 and the liquid side closing valve 29.
  • the expansion valve 24 is an electric expansion valve whose valve opening degree can be adjusted by controlling the movement of a valve body (not shown) with respect to a valve seat (not shown).
  • the expansion valve 24 and the liquid side closing valve 29 are connected via a seventh refrigerant pipe 17.
  • the outdoor fan 25 sucks outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then generates an air flow for discharging to the outside.
  • the outdoor fan 25 is rotationally driven by an outdoor fan motor.
  • the receiver 41 is provided between the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22, and is a refrigerant container capable of storing the surplus refrigerant in the refrigerant circuit 10 as a liquid refrigerant. ..
  • the inlet side of the receiver 41 is connected to the four-way switching valve 22 via the second refrigerant pipe 12.
  • the outlet side of the receiver 41 is connected to the suction side of the compressor 21 via the third refrigerant pipe 13.
  • the liquid side closing valve 29 is a manual valve arranged at a connection portion with the liquid side refrigerant connecting pipe 6 in the outdoor unit 20.
  • the gas side closing valve 28 is a manual valve arranged at the connection portion between the outdoor unit 20 and the gas side refrigerant connecting pipe 5.
  • the outdoor unit 20 has an outdoor unit control unit 27 that controls the operation of each unit constituting the outdoor unit 20.
  • the outdoor unit control unit 27 has a microcomputer including a CPU, a memory, and the like.
  • the outdoor unit control unit 27 is connected to the indoor unit control unit 34 of each indoor unit 30 via a communication line, and transmits and receives control signals and the like.
  • the outdoor unit 20 is provided with a discharge pressure sensor 61, a discharge temperature sensor 62, a suction pressure sensor 63, a suction temperature sensor 64, an outdoor heat exchange temperature sensor 65, an outside air temperature sensor 66, and the like. Each of these sensors is electrically connected to the outdoor unit control unit 27, and transmits a detection signal to the outdoor unit control unit 27.
  • the discharge pressure sensor 61 detects the pressure of the refrigerant flowing through the discharge pipe connecting the discharge side of the compressor 21 and one of the connection ports of the four-way switching valve 22.
  • the discharge temperature sensor 62 detects the temperature of the refrigerant flowing through the discharge pipe.
  • the suction pressure sensor 63 detects the pressure of the refrigerant flowing through the suction pipe connecting the suction side of the compressor 21 and the receiver 41.
  • the suction temperature sensor 64 detects the temperature of the refrigerant flowing through the suction pipe.
  • the outdoor heat exchange temperature sensor 65 detects the temperature of the refrigerant flowing through the outlet of the liquid side of the outdoor heat exchanger 23, which is opposite to the side to which the four-way switching valve 22 is connected.
  • the outside air temperature sensor 66 detects the outdoor air temperature before passing through the outdoor heat exchanger 23.
  • the indoor unit 30 is installed, for example, on the wall surface, ceiling, or the like of the room, which is the target space.
  • the indoor unit 30 is connected to the outdoor unit 20 via a liquid-side refrigerant connecting pipe 6 and a gas-side refrigerant connecting pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 30 has an indoor heat exchanger 31, an eighth refrigerant pipe 18, a ninth refrigerant pipe 19, and an indoor fan 32.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator of the low-pressure refrigerant in the refrigeration cycle during the cooling operation and as a condenser of the high-pressure refrigerant in the refrigeration cycle during the heating operation.
  • the indoor fan 32 sucks indoor air into the indoor unit 30, exchanges heat with the refrigerant in the indoor heat exchanger 31, and then generates an air flow for discharging to the outside.
  • the indoor fan 32 is rotationally driven by an indoor fan motor.
  • the indoor unit 30 has an indoor unit control unit 34 that controls the operation of each unit constituting the indoor unit 30.
  • the indoor unit control unit 34 has a microcomputer including a CPU, a memory, and the like.
  • the indoor unit control unit 34 is connected to the outdoor unit control unit 27 via a communication line, and transmits and receives control signals and the like.
  • the indoor unit 30 is provided with an indoor liquid side heat exchange temperature sensor 71, an indoor air temperature sensor 72, and the like. Each of these sensors is electrically connected to the indoor unit control unit 34, and transmits a detection signal to the indoor unit control unit 34.
  • the indoor liquid side heat exchange temperature sensor 71 detects the temperature of the refrigerant flowing through the liquid refrigerant side outlet of the indoor heat exchanger 31.
  • the indoor air temperature sensor 72 detects the indoor air temperature before passing through the indoor heat exchanger 31.
  • Controller 7 In the refrigeration cycle device 1, a controller 7 that controls the operation of the refrigeration cycle device 1 is configured by connecting the outdoor unit control unit 27 and the indoor unit control unit 34 via a communication line.
  • the controller 7 mainly has a CPU (Central Processing Unit) and memories such as ROM and RAM. It should be noted that various processes and controls by the controller 7 are realized by integrally functioning each unit included in the outdoor unit control unit 27 and / or the indoor unit control unit 34.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the refrigeration cycle device 1 can execute at least a cooling operation mode and a heating operation mode.
  • the controller 7 determines whether it is the cooling operation mode or the heating operation mode based on the instruction received from the remote controller or the like, and executes it.
  • the compressor 21 is capacity-controlled, for example, so that the evaporation temperature of the refrigerant in the refrigerant circuit 10 becomes the target evaporation temperature.
  • the gas refrigerant discharged from the compressor 21 is condensed in the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the refrigerant flowing through the outdoor heat exchanger 23 is depressurized as it passes through the expansion valve 24.
  • the refrigerant decompressed by the expansion valve 24 flows through the liquid-side refrigerant connecting pipe 6 via the liquid-side closing valve 29 and is sent to the indoor unit 30. After that, the refrigerant evaporates in the indoor heat exchanger 31 and flows to the gas side refrigerant connecting pipe 5.
  • the refrigerant that has flowed through the gas-side refrigerant connecting pipe 5 is sucked into the compressor 21 again via the gas-side closing valve 28, the four-way switching valve 22, and the receiver 41.
  • the compressor 21 is capacity-controlled, for example, so that the condensation temperature of the refrigerant in the refrigerant circuit 10 becomes the target condensation temperature.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant connecting pipe 5, and then flows into the gas-side end of the indoor heat exchanger 31 of the indoor unit 30, and then flows into the indoor heat exchanger 31. Condenses or dissipates heat in.
  • the refrigerant condensed or dissipated in the indoor heat exchanger 31 flows through the liquid-side refrigerant connecting pipe 6 and flows into the outdoor unit 20.
  • the refrigerant that has passed through the liquid side closing valve 29 of the outdoor unit 20 is depressurized by the expansion valve 24.
  • the refrigerant decompressed by the expansion valve 24 evaporates in the outdoor heat exchanger 23, passes through the four-way switching valve 22 and the receiver 41, and is sucked into the compressor 21 again.
  • the compressor 21 of the present embodiment is a one-cylinder rotary compressor, and has a casing 81 and a drive mechanism 82 arranged in the casing 81. It is a rotary compressor provided with a compression mechanism 88. In the compressor 21, the compression mechanism 88 is arranged below the drive mechanism 82 in the casing 81.
  • the drive mechanism 82 is housed in the upper part of the internal space of the casing 81 and drives the compression mechanism 88.
  • the drive mechanism 82 includes a motor 83 as a drive source and a crankshaft 84 which is a drive shaft attached to the motor 83.
  • the motor 83 is a motor for rotationally driving the crankshaft 84, and mainly has a rotor 85 and a stator 86.
  • a crankshaft 84 is inserted in the internal space of the rotor 85, and the rotor 85 rotates together with the crankshaft 84.
  • the rotor 85 is composed of laminated electromagnetic steel sheets and a magnet embedded in the rotor body.
  • the stator 86 is arranged on the radial outer side of the rotor 85 via a predetermined space.
  • the stator 86 is divided into a plurality of stators 86 at predetermined intervals in the circumferential direction.
  • the stator 86 is composed of laminated electromagnetic steel sheets and coils 86a wound around a stator body 86c having teeth 86b, and a plurality of coils 86a thereof are provided in the circumferential direction.
  • the motor 83 rotates the rotor 85 together with the crankshaft 84 by the electromagnetic force generated in the stator 86 by passing an electric current through the coil 86a.
  • a second endothermic member 52 formed in a ring shape so as to cover the upper end portion of the coil 86a from above is provided above the upper end portion of the coil 86a.
  • a third endothermic member 53 formed in a ring shape so as to cover the lower end of the coil 86a from below is provided.
  • the shortest distance between the upper end of the coil 86a and the second endothermic member 52 and the shortest distance between the lower end of the coil 86a and the second endothermic member 52 are not particularly limited, but may be, for example, 5 cm or less. It is preferably 3 cm or less.
  • the second endothermic member 52 and the third endothermic member 53 are metal members having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher.
  • a terminal portion 98 for supplying electric power to the compressor 21 from the outside is provided at the upper end of the casing 81.
  • Power is supplied to the coil 86a of the stator 86 via a cluster 96 as a connecting member connected to the terminal portion 98 from the inside of the casing 81 and an electric wiring 97 extending from the cluster 96.
  • the terminal portion 98 has a plurality of outer pins 98a extending to the outside of the casing 81 and a plurality of inner pins 98b extending to the inside of the casing 81 as terminal pins.
  • the cluster 96 has a substantially rectangular parallelepiped shape.
  • the outer shape of the cluster 96 is made of resin.
  • the surface of the cluster 96 on the terminal portion 98 side is provided with a portion into which a plurality of inner pins 98b of the terminal portion 98 are inserted.
  • the first endothermic member 51 is a metal member having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher.
  • a current flows through the plurality of outer pins 98a, the plurality of inner pins 98b, the electric wiring 97, and the coil 86a of the terminal portion 98 by receiving a power supply from the outside. ..
  • the crankshaft 84 is a member having a substantially cylindrical shape that is inserted into the rotor 85 and rotates about a rotation axis. Further, as shown in FIG. 4, the crankpin 84a, which is an eccentric portion of the crankshaft 84, is inserted through the roller 89a (described later) of the piston 89 of the compression mechanism 88, and can transmit the rotational force from the rotor 85. It fits in the roller 89a in a good condition.
  • the crankshaft 84 rotates according to the rotation of the rotor 85, eccentrically rotates the crankpin 84a, and revolves the roller 89a of the piston 89 of the compression mechanism 88. That is, the crankshaft 84 has a function of transmitting the driving force of the motor 83 to the compression mechanism 88.
  • the compression mechanism 88 is housed in the lower portion of the casing 81.
  • the compression mechanism 88 compresses the refrigerant sucked through the suction pipe 99.
  • the compression mechanism 88 is a rotary type compression mechanism, and mainly includes a front head 91, a cylinder 92, a piston 89, and a rear head 93. Further, the refrigerant compressed in the compression chamber S1 of the compression mechanism 88 passes through the front head discharge hole 91c formed in the front head 91, the muffler space S2 surrounded by the front head 91 and the muffler 94, and the motor 83. It is discharged to the space where the lower end of the arranged discharge pipe 95 is located.
  • the cylinder 92 is a metal casting member.
  • the cylinder 92 has a cylindrical central portion 92a, a first extension portion 92b extending radially outward from the central portion 92a, and a second extension portion 92c extending from the central portion 92a to the opposite side of the first extension portion 92b. And have.
  • a suction hole 92e for sucking a low-pressure refrigerant in the refrigeration cycle is formed in the first extension portion 92b.
  • the columnar space inside the inner peripheral surface 92a1 of the central portion 92a becomes a cylinder chamber 92d into which the refrigerant sucked from the suction hole 92e flows.
  • the suction hole 92e extends from the cylinder chamber 92d toward the outer peripheral surface of the first extension portion 92b and opens on the outer peripheral surface of the first extension portion 92b.
  • the tip of the suction pipe 99 is inserted into the suction hole 92e.
  • a piston 89 or the like for compressing the refrigerant flowing into the cylinder chamber 92d is housed.
  • the cylinder chamber 92d formed by the cylindrical central portion 92a of the cylinder 92 has an open first end, which is the lower end thereof, and also has a second end, which is the upper end thereof.
  • the first end, which is the lower end of the central portion 92a, is closed by the rear head 93, which will be described later.
  • the second end, which is the upper end of the central portion 92a is closed by the front head 91, which will be described later.
  • the cylinder 92 is formed with a blade swing space 92f in which the bush 89c and the blade 89b, which will be described later, are arranged.
  • the blade swing space 92f is formed so as to straddle the central portion 92a and the first extension portion 92b, and the blade 89b of the piston 89 is swingably supported by the cylinder 92 via the bush 89c.
  • the blade swing space 92f is formed so as to extend in the vicinity of the suction hole 92e from the cylinder chamber 92d toward the outer peripheral side in a plane.
  • the front head 91 has a front head disk portion 91b that closes an opening at the second end, which is the upper end of the cylinder 92, and a front head disk portion 91b. It has an upper bearing portion 91a extending upward from the peripheral edge of the central front head opening.
  • the upper bearing portion 91a has a cylindrical shape and functions as a bearing for the crankshaft 84.
  • a slight gap is formed between the inner peripheral surface of the upper bearing portion 91a and the outer peripheral surface of the crankshaft 84 so that the crankshaft 84 can rotate. Lubricity is ensured by the presence of refrigerating machine oil in this gap.
  • a ring-shaped fourth endothermic member 54 is provided so as to cover this gap from above.
  • the shortest distance between the upper end portion between the inner peripheral surface of the upper bearing portion 91a and the outer peripheral surface of the crankshaft 84 and the fourth heat absorbing member 54 is not particularly limited, but may be, for example, 5 cm or less and 3 cm. The following is preferable.
  • the fourth endothermic member 54 is a metal member having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher.
  • a front head discharge hole 91c is formed in the front head disk portion 91b at a plane position shown in FIG. From the front head discharge hole 91c, the refrigerant compressed in the compression chamber S1 whose volume changes in the cylinder chamber 92d of the cylinder 92 is intermittently discharged.
  • the front head disk portion 91b is provided with a discharge valve that opens and closes the outlet of the front head discharge hole 91c. This discharge valve opens due to a pressure difference when the pressure in the compression chamber S1 becomes higher than the pressure in the muffler space S2, and discharges the refrigerant from the front head discharge hole 91c to the muffler space S2.
  • the muffler 94 is attached to the upper surface of the peripheral edge of the front head disk portion 91b of the front head 91.
  • the muffler 94 forms a muffler space S2 together with the upper surface of the front head disk portion 91b and the outer peripheral surface of the upper bearing portion 91a to reduce noise caused by the discharge of the refrigerant.
  • the muffler space S2 and the compression chamber S1 communicate with each other through the front head discharge hole 91c when the discharge valve is open.
  • the muffler 94 is formed with a central muffler opening (not shown) that penetrates the upper bearing portion 91a and a muffler discharge hole that allows the refrigerant to flow from the muffler space S2 to the accommodation space of the motor 83 above.
  • the muffler space S2 the accommodation space of the motor 83, the space above the motor 83 where the discharge pipe 95 is located, the space below the compression mechanism 88 where the lubricating oil is collected, etc. are all connected and have the same high pressure. It forms a space.
  • the rear head 93 is a bearing that extends downward from the peripheral portion of the central opening of the rear head disk portion 93b and the rear head disk portion 93b that closes the opening of the first end that is the lower end of the cylinder 92. It has a lower bearing portion 93a.
  • the front head disk portion 91b, the rear head disk portion 93b, and the central portion 92a of the cylinder 92 form a cylinder chamber 92d as shown in FIG.
  • the lower bearing portion 93a pivotally supports the crankshaft 84 together with the upper bearing portion 91a described above.
  • a slight gap is formed between the inner peripheral surface of the lower bearing portion 93a and the outer peripheral surface of the crankshaft 84 so that the crankshaft 84 can rotate. Lubricity is ensured by the presence of refrigerating machine oil in this gap.
  • a ring-shaped fifth endothermic member 55 is provided so as to cover this gap from below.
  • the shortest distance between the lower end portion between the inner peripheral surface of the lower bearing portion 93a and the outer peripheral surface of the crankshaft 84 and the fifth heat absorbing member 55 is not particularly limited, but may be, for example, 5 cm or less and 3 cm. The following is preferable.
  • the fifth endothermic member 55 is a metal member having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher.
  • the piston 89 is arranged in the cylinder chamber 92d and is mounted on the crank pin 84a which is an eccentric portion of the crankshaft 84.
  • the piston 89 is a member in which the roller 89a and the blade 89b are integrated.
  • the blade 89b of the piston 89 is arranged in the blade swing space 92f formed in the cylinder 92, and is swingably supported by the cylinder 92 via the bush 89c as described above. Further, the blade 89b is slidable with the bush 89c, and during operation, the blade 89b swings and repeatedly moves away from the crankshaft 84 and approaches the crankshaft 84.
  • the roller 89a and the blade 89b of the piston 89 partition the cylinder chamber 92d to form a compression chamber S1 whose volume changes due to the revolution of the piston 89.
  • the compression chamber S1 is a space surrounded by the inner peripheral surface 92a1 of the central portion 92a of the cylinder 92, the upper surface of the rear head disk portion 93b, the lower surface of the front head disk portion 91b, and the piston 89.
  • the volume of the compression chamber S1 changes according to the revolution of the piston 89, and the low-pressure refrigerant sucked from the suction hole 92e is compressed to become a high-pressure refrigerant, which is discharged from the front head discharge hole 91c to the muffler space S2.
  • the volume of the compression chamber S1 changes due to the movement of the piston 89 of the compression mechanism 88 that revolves due to the eccentric rotation of the crankpin 84a. Specifically, first, while the piston 89 revolves, the low-pressure refrigerant is sucked into the compression chamber S1 from the suction hole 92e. The volume of the compression chamber S1 facing the suction hole 92e gradually increases when the refrigerant is sucked. Further, when the piston 89 revolves, the communication state between the compression chamber S1 and the suction hole 92e is canceled, and the refrigerant compression in the compression chamber S1 starts.
  • the volume of the compression chamber S1 that communicates with the front head discharge hole 91c becomes considerably small, and the pressure of the refrigerant also increases.
  • the high-pressure refrigerant pushes open the discharge valve from the front head discharge hole 91c and is discharged to the muffler space S2.
  • the refrigerant introduced into the muffler space S2 is discharged from the muffler discharge hole of the muffler 94 into the space above the muffler space S2.
  • the refrigerant discharged to the outside of the muffler space S2 passes through the space between the rotor 85 of the motor 83 and the stator 86, cools the motor 83, and then is discharged from the discharge pipe 95.
  • a refrigerant that may cause a disproportionation reaction is used.
  • This refrigerant disproportionation reaction occurs with a certain probability in an environment satisfying predetermined high temperature conditions, high pressure conditions, and ignition energy conditions. Then, the generated disproportionation reaction may propagate from the place where it occurs to the surroundings.
  • the test apparatus was mainly composed of a pressure-resistant container P, an ignition source S, and a mesh member M.
  • the pressure-resistant container P is a container having a cylindrical internal space.
  • the ignition source S is a platinum wire provided so as to connect the two electrodes at the center of the internal space of the pressure resistant container P.
  • the mesh member M is a mesh-like member having a cylindrical outer shape, which is provided so as to cover the periphery of the ignition source S from the outside in the radial direction.
  • the reason why the mesh-shaped member is used in this way is that the pressure of the refrigerant is kept the same on the inside and the outside of the mesh member M for the test.
  • the test apparatus was configured so that the radial size of the internal space of the pressure-resistant container P was sufficiently larger than the radial size of the mesh member M.
  • the mesh member M was formed by winding a mesh-shaped sheet into a cylindrical shape. In each test example, the mesh size of the mesh member M is unified, and in test examples 1 to 9, the same SUS mesh-like sheet is used, and the heat capacity is changed by increasing or decreasing the number of windings. rice field. It should be noted that all the mesh members M are arranged so that the thickness in the radial direction is about 1 to 3 mm.
  • the pressure-resistant container P was filled with 1,2-difluoroethylene (HFO-1132) as a refrigerant, and the temperature of the refrigerant was set to 150 ° C. and the pressure of the refrigerant was set to 1.5 MPa. Whether the disproportionation reaction generated by changing the material, the diameter D, and the heat capacity of the mesh member M and sparking the ignition source S propagates to the outside of the mesh member M in the radial direction. Observed whether or not. The test results are shown below.
  • HFO-1132 1,2-difluoroethylene
  • post-reaction state indicates the result of visually confirming the state of the mesh member M after the disproportionation reaction is generated.
  • temperature rise outside the mesh member indicates the maximum temperature reached when the disproportionation reaction is generated, and is a temperature sensor arranged inside the pressure-resistant container P and outside the mesh member M. It was measured using the detected temperature in.
  • generation of soot outside the mesh member is a visual confirmation of the presence or absence of soot adhesion on the inner wall surface of the pressure-resistant container P after the disproportionation reaction is generated.
  • the mesh member M made of glass fiber in Test Example 10 since the mesh member M made of glass fiber in Test Example 10 has a low melting point of 840 ° C., it is exposed to a high temperature environment due to the occurrence of a disproportionation reaction. , Dissolved and disappeared.
  • the temperature rise of the refrigerant outside the place where the mesh member M was present was confirmed, and soot was confirmed on the inner peripheral surface of the pressure-resistant container P, and the propagation of the disproportionation reaction was suppressed. It was confirmed that it could not be done.
  • the mesh member M made of SUS in Test Examples 1, 2, 4-6, and 8 had a high melting point of 1400 ° C., but the heat capacity was insufficient at less than 6.5 J / K, so that the mesh member M was outside the mesh member M. It was confirmed that the temperature of the refrigerant in the above was increased, and soot was confirmed on the inner peripheral surface of the pressure-resistant container P, and it was confirmed that the propagation of the disproportionation reaction could not be suppressed. Specifically, in Test Examples 1 and 2 having a heat capacity of 0.65 to 1.30 J / K and very small, the entire mesh member M was melted.
  • the mesh member M made of SUS in Test Examples 3, 7 and 9 had a high melting point of 1400 ° C. and a heat capacity of 6.5 J / K or more, so that the mesh member M did not melt and the mesh member M did not melt. Since the temperature rise of the refrigerant outside M was not confirmed and soot on the inner peripheral surface of the pressure resistant vessel P was not confirmed, it was confirmed that the propagation of the disproportionation reaction was suppressed.
  • the disproportionation reaction in Test Example 6 is common even though the mesh member M has a melting point of SUS of 1400 ° C. and a diameter of 13 mm in common.
  • the propagation of the disproportionation reaction was suppressed (the relationship between Test Example 9 and Test Example 1, the relationship between Test Example 7 and Test Example 5, etc.). Therefore, it can be seen that the diameter of the mesh member M is irrelevant to the suppression of the propagation of the disproportionation reaction.
  • the periphery of the electrical contact between the inner pin 98b of the terminal portion 98 and the cluster 96, the periphery of the coil 86a, and the periphery of the upper bearing portion 91a It is easy to satisfy the conditions for generating the disproportionation reaction around the lower bearing portion 93a, and there is a possibility that the disproportionation reaction may occur around the portion. Specifically, the energy required for ignition is likely to be generated at the electrical contact between the inner pin 98b of the terminal portion 98 and the cluster 96.
  • the first endothermic member 51 to the fifth endothermic member 55 having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher are used.
  • the first endothermic member 51 absorbs heat, resulting in an excessive temperature rise of the refrigerant. Is suppressed, and the propagation of the disproportionation reaction is suppressed.
  • the second endothermic member 52 and the third endothermic member 53 absorb heat, thereby suppressing an excessive temperature rise of the refrigerant and propagating the disproportionation reaction. Is suppressed.
  • the fourth endothermic member 54 absorbs heat, thereby suppressing an excessive temperature rise of the refrigerant and suppressing propagation of the disproportionation reaction. ..
  • the fifth endothermic member 55 absorbs heat, thereby suppressing an excessive temperature rise of the refrigerant and suppressing propagation of the disproportionation reaction. ..
  • the place where the disproportionation reaction of the refrigerant may occur is not limited to these places, and for example, a place including a moving part and / or an electric part.
  • a heat absorbing member having a melting point of 1000 ° C. or higher and a heat capacity of 6.5 J / K or higher may be arranged around the surface.
  • the element having such a movable portion and / or an electric portion include an expansion valve 24, a four-way switching valve 22, and the like.
  • a heat absorbing member used for heat absorbing around a place where a disproportionation reaction is likely to occur is separately provided.
  • the present invention is not limited to the case where an endothermic member used for heat absorption is separately provided.
  • the melting point of a member constituting the device itself such as the switching valve 22 is 1000 ° C. or higher and the heat capacity is 6.5 J / K or higher, the member may be used to absorb heat.
  • the member constituting such a device itself include a casing 81 of the compressor 21, an expansion valve 24, a valve body in a four-way switching valve 22, and the like.
  • first heat absorbing member 51 to the fifth heat absorbing member 55 of the above embodiment are each a single member
  • a plurality of heat absorbing members having a melting point of 1000 ° C. or higher are integrally integrated. Therefore, when the heat capacity can be secured at 6.5 J / K or more, the propagation of the disproportionation reaction may be suppressed by the integrated product.
  • the heat absorbing member is not limited to this, and from the viewpoint of more effectively suppressing the propagation of the disproportionation reaction, for example, the heat capacity of the portion having a melting point of 1000 ° C. or higher is 6.7 J.
  • a portion having a melting point of 1200 ° C. or higher may be used, or a portion having a melting point of 1200 ° C. or higher may be used, and a portion having a melting point of 1200 ° C. or higher may be used, and a portion having a melting point of 1200 ° C. or higher may have a heat capacity of 6. It is more preferable that it is 7. J / K or more.
  • the endothermic member it is preferable to use a member having a melting point of 1400 ° C. or higher and a heat capacity of 6.5 J / K or higher, and a heat absorbing member having a melting point of 1400 ° C. or higher having a heat capacity of 6.7 J / K or higher. Is more preferable.
  • the compressor that suppresses the propagation of the disproportionation reaction by using the endothermic member is not limited to the rotary compressor, and a known scroll compressor or swing compressor may be used.
  • Refrigerant cycle device Gas side refrigerant connecting pipe (refrigerant pipe) 6 Liquid side refrigerant connecting pipe (refrigerant pipe) 10 Refrigerant circuit 11-19 1st to 9th refrigerant pipes (refrigerant pipes) 21 Compressor (device) 51 First endothermic member (endothermic part) 52 Second heat absorbing member (heat absorbing part) 53 Third endothermic member (endothermic part) 54 No. 4 endothermic member (endothermic part) 55 Fifth endothermic member (endothermic part)
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-196312

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

冷媒の不均化反応の伝播を抑制する。エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む組成物の、第1~第9冷媒配管(11~19)とガス側冷媒連絡配管(5)と液側冷媒連絡配管(6)とともに冷媒回路(10)を構成し、融点が1000℃以上である部分の熱容量が6.5J/K以上である第1~第5吸熱部(51、52、53、54、55)を有する圧縮機(21)における冷媒としての使用。

Description

組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置
 組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置に関する。
 従来より、冷凍装置には、HFC冷媒より地球温暖化係数(Global Warming Potential:以下、単に、GWPという場合がある。)の低いハイドロフルオロオレフィン(HFO冷媒)が注目されており、例えば、1,2-ジフルオロエチレン(HFO-1132)もGWPの低い冷媒として特許文献1(特開2019-196312号公報)で検討されている。
 このようなHFO冷媒は、GWPが低いものの、安定性が低いことから、一定条件下において不均化反応と呼ばれる自己分解反応が発生しやすいものがある。不均化反応とは、同一種類の分子2個以上が相互に反応するなどの原因により、2種類以上の異なる種類の物質に転じる化学反応である。このようなHFO冷媒の不均化反応は、伝播していく場合がある。
 本開示の目的は、冷媒の不均化反応の伝播を抑制することにある。
 本願の発明者らは冷媒の不均化反応の伝播を抑制すべく鋭意研究を重ねた結果、熱容量の大きな吸熱部を用いることで冷媒の不均化反応の伝播が抑制されうることを新規に見出した。本願の発明者らは、かかる知見に基づきさらに研究を重ね、本開示の内容を完成するに至った。本開示は、以下の各観点に係る組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置を提供する。
 第1観点に係る使用は、組成物の装置における冷媒としての使用である。組成物は、エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む。装置は、冷媒配管とともに冷媒回路を構成する。装置は、吸熱部を有している。吸熱部は、融点が1000℃以上である部分の熱容量が6.5J/K以上である。
 なお、特に限定されないが、当該装置は、圧縮機であってもよいし、膨張弁や切換弁等の制御弁であってもよい。
 また、吸熱部は、1つの部材により構成されていてもよいし、複数の部材により構成されていてもよい。
 この使用によれば、装置において不均化反応が発生したとしても、その不均化反応の伝播を抑制することが可能になる。
 第2観点に係る使用は、第1観点の使用であって、組成物は、1,2-ジフルオロエチレン(HFO-1132)、1,1-ジフルオロエチレン(HFO-1132a)、1,1,2-トリフルオロエチレン(HFO-1123)、モノフルオロエチレン(HFO-1141)、および、パーハロオレフィンからなる群より選択される1種または2種以上を含む。
 なお、1,2-ジフルオロエチレンは、トランス-1,2-ジフルオロエチレン[(E)-HFO-1132]であってもよく、シス-1,2-ジフルオロエチレン[(Z)-HFO-1132]であってもよく、これらの混合物であってもよい。
 第3観点に係る使用は、第2観点の使用であって、組成物は、1,2-ジフルオロエチレン(HFO-1132)、および/または、1,1,2-トリフルオロエチレン(HFO-1123)を含む。
 第4観点に係る装置は、組成物を冷媒として用いる装置である。組成物は、エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む。装置は、冷媒配管とともに冷媒回路を構成する。装置は、吸熱部を有している。吸熱部は、融点が1000℃以上である部分の熱容量が6.5J/K以上である。
 なお、特に限定されないが、当該装置は、圧縮機であってもよいし、膨張弁や切換弁等の制御弁であってもよい。
 また、吸熱部は、1つの部材により構成されていてもよいし、複数の部材により構成されていてもよい。
 この装置は、装置において冷媒の不均化反応が発生したとしても、その不均化反応の伝播を抑制することが可能になる。
 第5観点に係る冷凍サイクル装置は、冷媒回路を備えている。冷媒回路は、第4観点に係る装置と、冷媒配管と、を含んで構成されている。
 この冷凍サイクル装置では、冷媒回路を循環する冷媒の不均化反応の伝播を抑制することが可能になる。
冷凍サイクル装置の概略構成図である。 冷凍サイクル装置のブロック構成図である。 圧縮機の概略構成を示す側面視断面図である。 圧縮機のシリンダ室周辺を示す平面視断面図である。 不均化反応の伝播と熱容量の関係に関する試験で用いた器具を説明する概略図である。
 以下、本開示に係る組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置について、例を挙げつつ具体的に説明するが、これらの記載は本開示内容を限定するものではない。
 (1)冷凍サイクル装置1
 冷凍サイクル装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の熱負荷を処理する装置であって、例えば、対象空間の空気を調和させる空気調和装置等である。
 図1に、冷凍サイクル装置の概略構成図を示す。図2に、冷凍サイクル装置のブロック構成図を示す。
 冷凍サイクル装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、図示しないリモコンと、冷凍サイクル装置1の動作を制御するコントローラ7と、を有している。
 冷凍サイクル装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。
 (2)冷媒
 冷媒回路10に充填されている冷媒としては、エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む冷媒である。なお、ISO817で定義される燃焼速度については、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)の1.2cm/sは、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)の1.5cm/sよりも低い点で好ましい。また、ISO817で定義されるLFL(LowerFlammability Limit:燃焼下限界)については、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)の65000vol.ppm6.5%は、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)の62000vol.ppm6.2%よりも高い点で好ましい。なかでも、当該冷媒としては、1,2-ジフルオロエチレン(HFO-1132)、1,1-ジフルオロエチレン(HFO-1132a)、1,1,2-トリフルオロエチレン(HFO-1123)、モノフルオロエチレン(HFO-1141)、および、パーハロオレフィンからなる群より選択される1種または2種以上を含むものであってよい。当該冷媒としては、特に、1,2-ジフルオロエチレン(HFO-1132)、および/または、1,1,2-トリフルオロエチレン(HFO-1123)を含むものであることが好ましい。
 ここで、エチレン系のフルオロオレフィンとしては、例えば、1,2-ジフルオロエチレン(HFO-1132)、1,1-ジフルオロエチレン(HFO-1132a)、1,1,2-トリフルオロエチレン(HFO-1123)、モノフルオロエチレン(HFO-1141)、パーハロオレフィン等が挙げられる。また、パーハロオレフィンとしては、例えば、クロロトリフルオロエチレン(CFO-1113)、テトラフルオロエチレン(FO-1114)等が挙げられる。
 なお、冷媒回路10には、上述の冷媒と共に冷凍機油が充填される。
 (3)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、膨張弁24と、室外ファン25と、レシーバ41と、ガス側閉鎖弁28と、液側閉鎖弁29と、第1冷媒配管11~第7冷媒配管17と、を有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21としては、ロータリ式やスクロール式等の容積式の圧縮要素が圧縮機モータによって回転駆動される密閉式構造の圧縮機を用いることができ、本実施形態ではロータリ圧縮機を用いている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。圧縮機21の吸入側には、吸入管99を含む第3冷媒配管13が接続されている。圧縮機21の吐出側には、吐出管である第1冷媒配管11が接続されている。
 四路切換弁22は、図示しない弁体が移動制御されることにより流路が切り換えられる弁であり、冷媒回路10を冷房接続状態と暖房接続状態とに切り換える弁である。具体的には、四路切換弁22は、冷房接続状態では、圧縮機21の吐出側に接続された吐出管95を含む第4冷媒配管14と、室外熱交換器23に接続された第5冷媒配管15とを接続しつつ、圧縮機21の吸入側に接続された第3冷媒配管13とレシーバ41と第2冷媒配管12と、ガス側閉鎖弁28に接続された第1冷媒配管11とを接続する状態に切り換えられる。また、四路切換弁22は、暖房接続状態では、圧縮機21の吐出側に接続された第4冷媒配管14と、ガス側閉鎖弁28に接続された第1冷媒配管11とを接続しつつ、圧縮機21の吸入側に接続された第3冷媒配管13とレシーバ41と第2冷媒配管12と、室外熱交換器23に接続された第5冷媒配管15とを接続する状態に切り換えられる。
 室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の放熱器または凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。室外熱交換器23のガス側端部は、第5冷媒配管15を介して四路切換弁22と接続されている。室外熱交換器23の液側端部は、第6冷媒配管16を介して膨張弁24と接続されている。
 膨張弁24は、冷媒回路10における室外熱交換器23の液側出口から液側閉鎖弁29までの間に設けられている。膨張弁24は、図示しない弁座に対して図示しない弁体が移動制御されることで弁開度を調節可能な電動膨張弁である。膨張弁24と液側閉鎖弁29とは、第7冷媒配管17を介して接続されている。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
 レシーバ41は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。レシーバ41の入口側は、第2冷媒配管12を介して四路切換弁22と接続されている。レシーバ41の出口側は、第3冷媒配管13を介して圧縮機21の吸入側に接続されている。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
 室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、室外熱交温度センサ65、外気温度センサ66等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側とレシーバ41とを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。室外熱交温度センサ65は、室外熱交換器23のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。外気温度センサ66は、室外熱交換器23を通過する前の屋外の空気温度を検出する。
 (4)室内ユニット30
 室内ユニット30は、例えば、対象空間である室内の壁面や天井等に設置される。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
 室内ユニット30は、室内熱交換器31と、第8冷媒配管18と、第9冷媒配管19と、室内ファン32を有している。
 室内熱交換器31は、液側が、第8冷媒配管18を介して液側冷媒連絡配管6と接続され、ガス側端が、第9冷媒配管19を介してガス側冷媒連絡配管5と接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
 また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット30には、室内液側熱交温度センサ71、室内空気温度センサ72等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ71は、室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。室内空気温度センサ72は、室内熱交換器31を通過する前の室内の空気温度を検出する。
 (5)コントローラ7
 冷凍サイクル装置1では、室外ユニット制御部27と室内ユニット制御部34とが通信線を介して接続されることで、冷凍サイクル装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (6)運転モード
 冷凍サイクル装置1は、少なくとも冷房運転モードと暖房運転モードとを実行可能である。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
 冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、膨張弁24を通過する際に減圧される。
 膨張弁24で減圧された冷媒は、液側閉鎖弁29を介して、液側冷媒連絡配管6を流れ、室内ユニット30に送られる。その後、冷媒は、室内熱交換器31において蒸発し、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、レシーバ41を経て、再び、圧縮機21に吸入される。
 暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮または放熱する。室内熱交換器31において凝縮または放熱した冷媒は、液側冷媒連絡配管6を流れて、室外ユニット20に流入する。
 室外ユニット20の液側閉鎖弁29を通過した冷媒は、膨張弁24において減圧される。膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22およびレシーバ41を経て、再び、圧縮機21に吸入される。
 (7)圧縮機21の詳細構成
 本実施形態の圧縮機21は、図3に示すように、1シリンダ型のロータリ圧縮機であって、ケーシング81と、ケーシング81内に配置される駆動機構82および圧縮機構88とを備えた、ロータリ圧縮機である。この圧縮機21は、ケーシング81内において、圧縮機構88が、駆動機構82の下側に配置される。
 (7-1)駆動機構
 駆動機構82は、ケーシング81の内部空間の上部に収容されており、圧縮機構88を駆動する。駆動機構82は、駆動源となるモータ83と、モータ83に取り付けられる駆動軸であるクランクシャフト84とを有する。
 モータ83は、クランクシャフト84を回転駆動させるためのモータであり、主として、ロータ85と、ステータ86とを有している。ロータ85は、その内部空間にクランクシャフト84が挿嵌されており、クランクシャフト84と共に回転する。ロータ85は、積層された電磁鋼板と、ロータ本体に埋設された磁石とから成る。ステータ86は、ロータ85の径方向外側に所定の空間を介して配置される。ステータ86は、周方向に所定の間隔を開けて複数に分かれて配置される。ステータ86は、積層された電磁鋼板と、ティース86bを有するステータ本体86cに巻かれたコイル86aとから成り、それが周方向に複数設けられている。モータ83は、コイル86aに電流を流すことによってステータ86に発生する電磁力により、ロータ85をクランクシャフト84と共に回転させる。コイル86aの上端部の上側には、コイル86aの上端部を上から覆うようにリング状に形成された第2吸熱部材52が設けられている。コイル86aの下端部の下側には、コイル86aの下端部を下から覆うようにリング状に形成された第3吸熱部材53が設けられている。なお、コイル86aの上端部と第2吸熱部材52との最短距離、および、コイル86aの下端部と第2吸熱部材52との最短距離は、特に限定されないが、例えば、5cm以下であってよく、3cm以下であることが好ましい。第2吸熱部材52および第3吸熱部材53は、融点が1000℃以上であり、かつ、熱容量が6.5J/K以上の金属部材である。
 ここで、ケーシング81の上端には、圧縮機21に対して外部から電力を供給するための端子部98が設けられている。ステータ86のコイル86aには、端子部98に対してケーシング81の内側から接続された接続部材としてのクラスタ96と、このクラスタ96から伸びる電気配線97と、を介して電力が供給される。
 端子部98は、ターミナルピンとして、ケーシング81の外側に伸びる複数の外側ピン98aと、ケーシング81の内側に伸びる複数の内側ピン98bと、を有している。クラスタ96は、略直方体形状の形状を有している。クラスタ96の外形は、樹脂により形作られている。クラスタ96のうち、端子部98側の面には、端子部98の複数の内側ピン98bが挿入される部分が設けられている。クラスタ96を端子部98の複数の内側ピン98bに連結させた状態では、クラスタ96の端子部98側の面と、ケーシング81の複数の内側ピン98bが延び出している根本部分と、の間には、隙間が生じている。この隙間には、ケーシング81の複数の内側ピン98bの周囲を含めて冷媒が存在する。そして、この隙間の周囲を覆うように、略矩形の第1吸熱部材51が設けられている。なお、内側ピン98bと第1吸熱部材51との最短距離は、特に限定されないが、例えば、5cm以下であってよく、3cm以下であることが好ましい。第1吸熱部材51は、融点が1000℃以上であり、かつ、熱容量が6.5J/K以上の金属部材である。以上の構成において、圧縮機21の駆動時には、外部からの電源供給を受けることで、端子部98の複数の外側ピン98a、複数の内側ピン98b、電気配線97、コイル86aには、電流が流れる。
 クランクシャフト84は、ロータ85に挿嵌され、回転軸を中心に回転する、概略円柱形状の部材である。また、クランクシャフト84の偏芯部であるクランクピン84aは、図4に示すように、圧縮機構88のピストン89のローラ89a(後述)に挿通しており、ロータ85からの回転力を伝達可能な状態でローラ89aに嵌っている。クランクシャフト84は、ロータ85の回転に従って回転し、クランクピン84aを偏芯回転させ、圧縮機構88のピストン89のローラ89aを公転させる。すなわち、クランクシャフト84は、モータ83の駆動力を圧縮機構88に伝達する機能を有している。
 (7-2)圧縮機構
 圧縮機構88は、ケーシング81内の下部側に収容されている。圧縮機構88は、吸入管99を介して吸入した冷媒を圧縮する。圧縮機構88は、ロータリ型の圧縮機構であり、主として、フロントヘッド91と、シリンダ92と、ピストン89と、リアヘッド93とから成る。また、圧縮機構88の圧縮室S1で圧縮された冷媒は、フロントヘッド91に形成されているフロントヘッド吐出孔91cから、フロントヘッド91およびマフラー94に囲われたマフラー空間S2を経て、モータ83が配置され吐出管95の下端が位置する空間へ吐出される。
 (7-2-1)シリンダ
 シリンダ92は、金属製の鋳造部材である。シリンダ92は、円筒状の中央部92aと、中央部92aから径方向外側の一方に延びる第1外延部92bと、中央部92aから第1外延部92bとは反対側に延びる第2外延部92cとを有している。第1外延部92bには、冷凍サイクルにおける低圧の冷媒を吸入する吸入孔92eが形成されている。中央部92aの内周面92a1の内側の円柱状空間は、吸入孔92eから吸入される冷媒が流入するシリンダ室92dとなる。吸入孔92eは、シリンダ室92dから第1外延部92bの外周面に向かって延び、第1外延部92bの外周面において開口している。この吸入孔92eには、吸入管99の先端部が挿入される。また、シリンダ室92d内には、シリンダ室92d内に流入した冷媒を圧縮するためのピストン89等が収容される。
 シリンダ92の円筒状の中央部92aにより形成されるシリンダ室92dは、その下端である第1端が開口しており、また、その上端である第2端も開口している。中央部92aの下端である第1端は、後述するリアヘッド93により塞がれる。また、中央部92aの上端である第2端は、後述するフロントヘッド91により塞がれる。
 また、シリンダ92には、後述するブッシュ89cおよびブレード89bが配置されるブレード揺動空間92fが形成されている。ブレード揺動空間92fは、中央部92aと第1外延部92bとにまたがって形成されており、ブッシュ89cを介してピストン89のブレード89bがシリンダ92に揺動可能に支持される。ブレード揺動空間92fは、平面的には、吸入孔92eの近傍を、シリンダ室92dから外周側に向かって延びるように形成されている。
 (7-2-2)フロントヘッド
 フロントヘッド91は、図3に示すように、シリンダ92の上端である第2端の開口を閉塞するフロントヘッド円板部91bと、フロントヘッド円板部91bの中央のフロントヘッド開口の周縁から上方向に延びる上軸受部91aとを有する。上軸受部91aは、円筒状であり、クランクシャフト84の軸受として機能する。
 上軸受部91aの内周面とクランクシャフト84の外周面は、クランクシャフト84が回転可能となるように、僅かな隙間が形成されている。この隙間には、冷凍機油が存在することで、潤滑性が確保される。そして、この隙間を上方から覆うように、リング状の第4吸熱部材54が設けられている。なお、上軸受部91aの内周面とクランクシャフト84の外周面との間の上端部分と第4吸熱部材54との最短距離は、特に限定されないが、例えば、5cm以下であってよく、3cm以下であることが好ましい。第4吸熱部材54は、融点が1000℃以上であり、かつ、熱容量が6.5J/K以上の金属部材である。
 フロントヘッド円板部91bには、図4に示す平面位置に、フロントヘッド吐出孔91cが形成されている。フロントヘッド吐出孔91cからは、シリンダ92のシリンダ室92dにおいて容積が変化する圧縮室S1で圧縮された冷媒が、断続的に吐出される。フロントヘッド円板部91bには、フロントヘッド吐出孔91cの出口を開閉する吐出弁が設けられている。この吐出弁は、圧縮室S1の圧力がマフラー空間S2の圧力よりも高くなったときに圧力差によって開き、フロントヘッド吐出孔91cからマフラー空間S2へと冷媒を吐出させる。
 (7-2-3)マフラー
 マフラー94は、図3に示すように、フロントヘッド91のフロントヘッド円板部91bの周縁部の上面に取り付けられている。マフラー94は、フロントヘッド円板部91bの上面および上軸受部91aの外周面と共にマフラー空間S2を形成して、冷媒の吐出に伴う騒音の低減を図っている。マフラー空間S2と圧縮室S1とは、上述のように、吐出弁が開いているときにはフロントヘッド吐出孔91cを介して連通する。
 また、マフラー94には、図示しない、上軸受部91aを貫通させる中央マフラー開口と、マフラー空間S2から上方のモータ83の収容空間へと冷媒を流すマフラー吐出孔とが形成されている。
 なお、マフラー空間S2、モータ83の収容空間、吐出管95が位置するモータ83の上方の空間、圧縮機構88の下方に潤滑油が溜まっている空間などは、全てつながっており、圧力が等しい高圧空間を形成している。
 (7-2-4)リアヘッド
 リアヘッド93は、シリンダ92の下端である第1端の開口を閉塞するリアヘッド円板部93bと、リアヘッド円板部93bの中央開口の周縁部から下方に延びる軸受としての下軸受部93aとを有する。フロントヘッド円板部91b、リアヘッド円板部93b、およびシリンダ92の中央部92aは、図4に示すように、シリンダ室92dを形成する。この下軸受部93aは、上述の上軸受部91aと共に、クランクシャフト84を軸支する。
 下軸受部93aの内周面とクランクシャフト84の外周面は、クランクシャフト84が回転可能となるように、僅かな隙間が形成されている。この隙間には、冷凍機油が存在することで、潤滑性が確保される。そして、この隙間を下方から覆うように、リング状の第5吸熱部材55が設けられている。なお、下軸受部93aの内周面とクランクシャフト84の外周面との間の下端部分と第5吸熱部材55との最短距離は、特に限定されないが、例えば、5cm以下であってよく、3cm以下であることが好ましい。第5吸熱部材55は、融点が1000℃以上であり、かつ、熱容量が6.5J/K以上の金属部材である。
 (7-2-5)ピストン
 ピストン89は、シリンダ室92dに配置され、クランクシャフト84の偏芯部であるクランクピン84aに装着されている。ピストン89は、ローラ89aとブレード89bとが一体化された部材である。ピストン89のブレード89bは、シリンダ92に形成されているブレード揺動空間92fに配置され、上述のように、ブッシュ89cを介してシリンダ92に揺動可能に支持される。また、ブレード89bは、ブッシュ89cと摺動可能になっており、運転中には、揺動するとともに、クランクシャフト84から離れたりクランクシャフト84に近づいたりする動きを繰り返す。
 ピストン89のローラ89aおよびブレード89bは、図4に示すように、シリンダ室92dを仕切る形で、ピストン89の公転によって容積が変化する圧縮室S1を形成している。圧縮室S1は、シリンダ92の中央部92aの内周面92a1、リアヘッド円板部93bの上面、フロントヘッド円板部91bの下面およびピストン89によって囲まれる空間である。ピストン89の公転にしたがって圧縮室S1の容積が変化し、吸入孔92eから吸い込まれた低圧の冷媒が圧縮され高圧の冷媒となり、フロントヘッド吐出孔91cからマフラー空間S2へと吐出される。
 (7-3)動作
 以上の圧縮機21では、クランクピン84aの偏芯回転によって公転する圧縮機構88のピストン89の動きによって、圧縮室S1の容積が変化する。具体的には、まず、ピストン89が公転していく間に、吸入孔92eから低圧の冷媒が圧縮室S1に吸入される。吸入孔92eに面した圧縮室S1は、冷媒を吸入しているときには、その容積が段々と大きくなる。さらにピストン89が公転すると、圧縮室S1と吸入孔92eとの連通状態が解消され、圧縮室S1での冷媒圧縮が始まる。その後、フロントヘッド吐出孔91cと連通状態となる圧縮室S1は、その容積がかなり小さくなり、冷媒の圧力も高くなってくる。その後、ピストン89がさらに公転することで、高圧となった冷媒が、フロントヘッド吐出孔91cから吐出弁を押し開いて、マフラー空間S2へと吐出される。マフラー空間S2に導入された冷媒は、マフラー94のマフラー吐出孔からマフラー空間S2の上方の空間へ排出される。マフラー空間S2の外部へ排出された冷媒は、モータ83のロータ85とステータ86との間の空間を通過して、モータ83を冷却した後に、吐出管95から吐出される。
 (8)実施形態の特徴
 本実施形態の冷凍サイクル装置1では、不均化反応が生じるおそれのある冷媒を用いている。この冷媒の不均化反応は、所定の高温条件、高圧条件、および、着火エネルギ条件を満たす環境下において、一定の確率で発生する。そして、発生した不均化反応は、その発生箇所から周囲に伝播してしまう場合がある。
 これに対して、発明者等は、図5に示す試験装置を用意して、不均化反応を発生させ、不均化反応の発生箇所の周囲に存在するメッシュ部材の熱容量等を変化させながら不均化反応の伝播の様子の違いを観察した。試験装置は、主として、耐圧容器Pと、着火源Sと、メッシュ部材Mとから構成した。耐圧容器Pは、円筒形状の内部空間を有する容器である。着火源Sは、耐圧容器Pの内部空間の中心において、2つの電極間を繋ぐように設けた白金線である。メッシュ部材Mは、着火源Sの周囲を径方向外側から覆うように設けられた外形が円筒形状であるメッシュ状の部材である。なお、このようにメッシュ状の部材を用いたのは、メッシュ部材Mの内側と外側とで冷媒の圧力を同じに保って試験するためである。耐圧容器Pの内部空間の径方向の大きさは、メッシュ部材Mの径方向の大きさよりも十分に大きくなるように試験装置を構成した。メッシュ部材Mは、メッシュ状シートを円筒形状となるように巻き上げて構成した。なお、各試験例において、メッシュ部材Mの網目の大きさは統一されており、試験例1~9では、同一のSUSのメッシュ状シートを用い、巻き付ける回数を増減させることで、熱容量を変化させた。なお、いずれのメッシュ部材Mについても、径方向の厚みが1~3mm程度となるようにまとめられたものとした。ここで、耐圧容器Pには、冷媒としての1,2-ジフルオロエチレン(HFO-1132)を充填し、冷媒の温度を150℃、冷媒の圧力を1.5MPaとした。メッシュ部材Mについて、材質と、直径Dと、熱容量と、を変化させ、着火源Sをスパークさせることで発生させた不均化反応の伝播が、メッシュ部材Mの径方向外側まで伝播するか否かを観察した。以下に、試験結果を示す。
 なお、以下の表において、「反応後状態」は、不均化反応を発生させた後のメッシュ部材Mの状態を目視にて確認した結果を示している。また、「メッシュ部材外の温度上昇(℃)」は、不均化反応を発生させた際の最高到達温度を示しており、耐圧容器P内であってメッシュ部材Mの外側に配置した温度センサでの検知温度を用いて測定したものである。また、「メッシュ部材外の煤の発生」は、不均化反応を発生させた後の耐圧容器Pの内壁面について、目視により煤の付着の有無を確認したものである。
Figure JPOXMLDOC01-appb-T000001
 以上の試験結果によれば、試験例10におけるガラス繊維を材質とするメッシュ部材Mは、融点が840℃と低いものであるため、不均化反応の発生により高温環境下に曝されることで、溶解し、消滅していた。この試験例10では、メッシュ部材Mが存在していた箇所よりも外の冷媒の温度上昇が確認され、耐圧容器Pの内周面において煤が確認されており、不均化反応の伝播が抑制できなかったことが確認された。
 また、試験例1、2、4-6、8におけるSUSを材質とするメッシュ部材Mは、融点は1400℃と高いものの、熱容量が6.5J/K未満で不足していたため、メッシュ部材M外の冷媒の温度上昇が確認され、耐圧容器Pの内周面において煤が確認されており、不均化反応の伝播が抑制できなかったことが確認された。具体的には、熱容量が0.65~1.30J/Kで非常に小さい試験例1、2では、メッシュ部材Mの全体が溶解してしまっていた。また、熱容量が1.91~6.49J/Kで比較的小さい試験例4-6、8では、メッシュ部材Mの一部が溶解し、メッシュ部材Mの径方向に貫通した穴が生じていることが確認された。
 他方、試験例3、7、9におけるSUSを材質とするメッシュ部材Mは、融点は1400℃で高く、しかも熱容量が6.5J/K以上であったため、メッシュ部材Mの溶解も無く、メッシュ部材M外の冷媒の温度上昇は確認されず、耐圧容器Pの内周面における煤も確認されなかったことから、不均化反応の伝播が抑制されていることが確認された。
 なお、例えば、試験例3と試験例6を比較すると、いずれもメッシュ部材Mについて融点が1400℃のSUSであり直径が13mmで共通しているにも関わらず、試験例6では不均化反応の伝播が抑制できず、試験例3では不均化反応の伝播が抑制された(試験例9と試験例1の関係、試験例7と試験例5の関係等も同様)。このため、不均化反応の伝播の抑制には、メッシュ部材Mの直径は無関係であることが分かる。
 そして、本実施形態の冷凍サイクル装置1の圧縮機21では、特に、端子部98の内側ピン98bとクラスタ96との電気的接点周辺と、コイル86aの周辺と、上軸受部91aの周辺と、下軸受部93aの周辺等において、不均化反応の発生条件を満たしやすく、当該箇所周辺で不均化反応が発生するおそれがある。具体的には、端子部98の内側ピン98bとクラスタ96との電気的接点において、着火に必要なエネルギが生じやすい。また、コイル86aの周辺では、コイル86aの製造時において電線の絶縁被膜の製造不良が生じている場合や、絶縁被膜が何らかの接触により剥がれてしまっている場合において、通電により着火に必要なエネルギが生じやすい。また、上軸受部91aの周辺と下軸受部93aの周辺については、クランクシャフト84との間の摺動面において、駆動時の摩擦により着火に必要なエネルギが生じやすい。
 これに対して、本実施形態の圧縮機21を備えた冷凍サイクル装置1では、融点が1000℃以上であり熱容量が6.5J/K以上である第1吸熱部材51~第5吸熱部材55が設けられていることで、上述した箇所周辺で不均化反応が発生したとしても、その伝播を抑制することができる。具体的には、端子部98の内側ピン98bとクラスタ96との電気的接点の周辺で不均化反応が発生したとしても、第1吸熱部材51が吸熱することにより、冷媒の過度な温度上昇を抑制し、不均化反応の伝播が抑制される。また、コイル86aの周辺で不均化反応が発生したとしても、第2吸熱部材52、第3吸熱部材53が吸熱することにより、冷媒の過度な温度上昇を抑制し、不均化反応の伝播が抑制される。また、上軸受部91aの周辺で不均化反応が発生したとしても、第4吸熱部材54が吸熱することにより、冷媒の過度な温度上昇を抑制し、不均化反応の伝播が抑制される。さらに、下軸受部93aの周辺で不均化反応が発生したとしても、第5吸熱部材55が吸熱することにより、冷媒の過度な温度上昇を抑制し、不均化反応の伝播が抑制される。
 (9)他の実施形態
 (9-1)他の実施形態A
 上記実施形態では、圧縮機21の内部において不均化反応が発生しやすい箇所の周囲に第1吸熱部材51~第5吸熱部材55を配置する場合を例に挙げて説明した。
 これに対して、冷凍サイクル装置1において冷媒の不均化反応が発生する可能性がある箇所としては、これらの箇所に限定されるものではなく、例えば、可動部分および/または電動部分を含む箇所の周囲に、融点が1000℃以上であり熱容量が6.5J/K以上である吸熱部材を配置するようにしてもよい。このような可動部分および/または電動部分を有する要素としては、例えば、膨張弁24や四路切換弁22等が挙げられる。
 また、上記実施形態では、不均化反応が発生しやすい箇所の周囲において吸熱させるために用いられる吸熱部材を別途設けた例を挙げて説明した。しかし、このように特に吸熱させるためにもちいられる吸熱部材を別途設ける場合に限定されるものではなく、例えば、不均化反応が発生しやすい箇所の周囲において圧縮機21や膨張弁24や四路切換弁22等の装置自体を構成する部材の融点が1000℃以上であり熱容量が6.5J/K以上である場合には、当該部材を用いて吸熱させるようにしてもよい。このような装置自体を構成する部材としては、例えば、圧縮機21のケーシング81や、膨張弁24、四路切換弁22における弁体等が挙げられる。
 また、上記実施形態の第1吸熱部材51~第5吸熱部材55は、それぞれ単一の部材である場合を例に挙げて説明したが、融点が1000℃以上である複数の吸熱部材が一体となって熱容量を6.5J/K以上確保できている場合には、当該一体化物によって不均化反応の伝播を抑制させるようにしてもよい。
 (9-2)他の実施形態B
 上記実施形態では、第1吸熱部材51~第5吸熱部材55として、融点が1000℃以上であり熱容量が6.5J/K以上であるものを例に挙げて説明した。
 これに対して、吸熱部材としては、これに限られるものではなく、不均化反応の伝播をより効果的に抑制する観点から、例えば、融点が1000℃以上である部分の熱容量が6.7J/K以上であるものを用いてもよく、融点が1200℃以上である部分の熱容量が6.5J/K以上であるものを用いてもよく、融点が1200℃以上である部分の熱容量が6.7J/K以上であることがより好ましい。また、吸熱部材としては、融点が1400℃以上である部分の熱容量が6.5J/K以上であるものを用いることが好ましく、融点が1400℃以上である部分の熱容量が6.7J/K以上であることがさらに好ましい。
 (9-3)他の実施形態C
 上記実施形態では、圧縮機21としてロータリ式の圧縮機を用いる場合を例に挙げて説明した。
 これに対して、吸熱部材を用いることで不均化反応の伝播を抑制させる圧縮機としては、ロータリ圧縮機に限られず、公知のスクロール圧縮機やスイング圧縮機を用いるようにしてもよい。
 (付記)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1 冷凍サイクル装置
  5 ガス側冷媒連絡配管(冷媒配管)
  6 液側冷媒連絡配管(冷媒配管)
 10 冷媒回路
 11~19 第1~第9冷媒配管(冷媒配管)
 21 圧縮機(装置)
 51 第1吸熱部材(吸熱部)
 52 第2吸熱部材(吸熱部)
 53 第3吸熱部材(吸熱部)
 54 第4吸熱部材(吸熱部)
 55 第5吸熱部材(吸熱部)
   特許文献1:特開2019-196312号公報

Claims (5)

  1.  エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む組成物の、冷媒配管(11~19、5、6)とともに冷媒回路(10)を構成し、融点が1000℃以上である部分の熱容量が6.5J/K以上である吸熱部(51、52、53、54、55)を有する装置(21)における冷媒としての使用。
  2.  前記組成物は、1,2-ジフルオロエチレン(HFO-1132)、1,1-ジフルオロエチレン(HFO-1132a)、1,1,2-トリフルオロエチレン(HFO-1123)、モノフルオロエチレン(HFO-1141)、および、パーハロオレフィンからなる群より選択される1種または2種以上を含む、
    請求項1に記載の使用。
  3.  前記組成物は、1,2-ジフルオロエチレン(HFO-1132)、および/または、1,1,2-トリフルオロエチレン(HFO-1123)を含む、
    請求項2に記載の使用。
  4.  エチレン系のフルオロオレフィン、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、および、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)からなる群より選択される1種または2種以上を含む組成物を冷媒として用い、冷媒配管(11~19、5、6)とともに冷媒回路(10)を構成し、融点が1000℃以上である部分の熱容量が6.5J/K以上である吸熱部(51、52、53、54、55)を有する装置(21)。
  5.  請求項4に記載の装置(21)と、前記冷媒配管(11~19、5、6)と、を含んで構成された前記冷媒回路(10)を備えた冷凍サイクル装置(1)。
PCT/JP2021/028148 2020-07-31 2021-07-29 組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置 WO2022025202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180059609.4A CN116157488A (zh) 2020-07-31 2021-07-29 组合物在装置中作为制冷剂的用途、装置和制冷循环装置
EP21850483.5A EP4191160A4 (en) 2020-07-31 2021-07-29 USE OF COMPOSITION AS REFRIGERANT IN DEVICE, DEVICE AND REFRIGERATION CYCLE DEVICE
US18/103,164 US20230167346A1 (en) 2020-07-31 2023-01-30 Use of composition as refrigerant in device, device, and refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131014 2020-07-31
JP2020131014 2020-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/103,164 Continuation US20230167346A1 (en) 2020-07-31 2023-01-30 Use of composition as refrigerant in device, device, and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022025202A1 true WO2022025202A1 (ja) 2022-02-03

Family

ID=80036382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028148 WO2022025202A1 (ja) 2020-07-31 2021-07-29 組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置

Country Status (5)

Country Link
US (1) US20230167346A1 (ja)
EP (1) EP4191160A4 (ja)
JP (1) JP7177368B2 (ja)
CN (1) CN116157488A (ja)
WO (1) WO2022025202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210575A1 (ja) * 2022-04-27 2023-11-02 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267912A (ja) * 2009-05-18 2010-11-25 Furukawa Electric Co Ltd:The 冷却装置
WO2012133790A1 (ja) * 2011-03-30 2012-10-04 学校法人東京理科大学 蓄熱装置及び蓄熱装置を備えるシステム
JP2019196312A (ja) 2018-05-07 2019-11-14 ダイキン工業株式会社 1,2−ジフルオロエチレン及び/又は1,1,2−トリフルオロエタンの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479534A (en) * 1981-12-07 1984-10-30 The Air Preheater Company, Inc. Transparent radiation recuperator
JP2012255640A (ja) * 2011-05-16 2012-12-27 Mitsuya Corporation:Kk 冷却方法とその器具及び装置
US10443912B2 (en) * 2013-10-25 2019-10-15 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circulation device, method for circulating refrigerant and acid suppression method
JP2015140946A (ja) * 2014-01-27 2015-08-03 株式会社育水舎アクアシステム 蓄熱システム
JP7117602B2 (ja) * 2018-09-03 2022-08-15 パナソニックIpマネジメント株式会社 冷凍サイクルシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267912A (ja) * 2009-05-18 2010-11-25 Furukawa Electric Co Ltd:The 冷却装置
WO2012133790A1 (ja) * 2011-03-30 2012-10-04 学校法人東京理科大学 蓄熱装置及び蓄熱装置を備えるシステム
JP2019196312A (ja) 2018-05-07 2019-11-14 ダイキン工業株式会社 1,2−ジフルオロエチレン及び/又は1,1,2−トリフルオロエタンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191160A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210575A1 (ja) * 2022-04-27 2023-11-02 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
JP2023162674A (ja) * 2022-04-27 2023-11-09 ダイキン工業株式会社 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置

Also Published As

Publication number Publication date
EP4191160A4 (en) 2024-08-28
EP4191160A1 (en) 2023-06-07
US20230167346A1 (en) 2023-06-01
JP7177368B2 (ja) 2022-11-24
CN116157488A (zh) 2023-05-23
JP2022027634A (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2022025202A1 (ja) 組成物の装置における冷媒としての使用、装置、および、冷凍サイクル装置
JP2018189312A (ja) 冷凍装置
JP2022044019A (ja) 冷媒としての使用、および、冷凍サイクル装置
WO2022014415A1 (ja) 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
CN110234939B (zh) 制冷装置
WO2022004896A1 (ja) 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
WO2023210575A1 (ja) 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
WO2022004895A1 (ja) 圧縮機における冷媒としての使用、圧縮機、および、冷凍サイクル装置
JP6255832B2 (ja) 空気調和機
WO2022050351A1 (ja) 冷媒の冷凍サイクル装置における使用、および、冷凍サイクル装置
KR20150088128A (ko) 냉동장치 및 압축기
JP6906138B2 (ja) 冷凍サイクル装置
JP7212297B2 (ja) 圧縮機における冷媒としての使用、圧縮機、及び冷凍サイクル装置
JP2010053786A (ja) 密閉型圧縮機及び冷凍サイクル装置
JP6238835B2 (ja) 圧縮機、及びその圧縮機を備えたヒートポンプ装置
JP5791760B2 (ja) 冷媒圧縮機
JP2014214910A (ja) ヒートポンプ装置
JP5641801B2 (ja) 冷媒圧縮機
JP6872686B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021850483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850483

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE