JP6906138B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6906138B2
JP6906138B2 JP2017146159A JP2017146159A JP6906138B2 JP 6906138 B2 JP6906138 B2 JP 6906138B2 JP 2017146159 A JP2017146159 A JP 2017146159A JP 2017146159 A JP2017146159 A JP 2017146159A JP 6906138 B2 JP6906138 B2 JP 6906138B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
refrigeration cycle
working fluid
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017146159A
Other languages
English (en)
Other versions
JP2019027655A (ja
Inventor
護 西部
護 西部
淳 作田
作田  淳
啓晶 中井
啓晶 中井
宏治 室園
宏治 室園
森本 敬
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017146159A priority Critical patent/JP6906138B2/ja
Publication of JP2019027655A publication Critical patent/JP2019027655A/ja
Application granted granted Critical
Publication of JP6906138B2 publication Critical patent/JP6906138B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、HFO1123を含む作動流体を用いる冷凍サイクル装置に関する。
一般に、冷凍サイクル装置は、圧縮機、必要に応じて四方弁、放熱器(または凝縮器)、キャピラリーチューブや膨張弁等の減圧器、蒸発器、等を配管接続して冷凍サイクルを構成し、その内部に冷媒を循環させることにより、冷却または加熱作用を行っている。
これらの冷凍サイクル装置における冷媒としては、フロン類(フロン類はR○○またはR○○○と記すことが、米国ASHRAE34規格により規定されている。以下、R○○またはR○○○と示す)と呼ばれるメタンまたはエタンから誘導されたハロゲン化炭化水素が知られている。
上記のような冷凍サイクル装置用冷媒としては、R410Aが多く用いられているが、R410A冷媒の地球温暖化係数(GWP)は2090と大きく、地球温暖化防止の観点から問題がある。
そこで、地球温暖化防止の観点からは、GWPの小さな冷媒として、例えば、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)が提案されている(例えば特許文献1または特許文献2)。
国際公開第2012/157764号 国際公開第2012/157765号
しかしながら、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)は、R410Aなどの従来の冷媒に比べて安定性が低く、ラジカルを生成した場合、不均化反応により別の化合物に変化する恐れがある。不均化反応は大きな熱放出を伴うため、圧縮機や冷凍サイクル装置の信頼性を低下させる恐れがある。このため、HFO1123やHFO1132を圧縮機や冷凍サイクル装置に用いる場合には、この不均化反応を抑制する必要がある。
このような不均化反応は、過度に高温高圧となった冷媒雰囲気下にて、高エネルギが付加されると、これが起点となって発生する。
例えば、一例を挙げると、正常な運転条件下ではない状態、すなわち、凝縮器側の送風ファン停止、冷凍サイクル回路の閉塞等によって、吐出圧力(冷凍サイクルの高圧側)が過度に上昇し、これに伴い温度も過度に上昇する。
このような状態下で圧縮機のロック異常が生じ、このロック異常下においても、圧縮機への電力供給を続けると、圧縮機の電動機へ電力が過剰に供給され、電動機が異常に発熱する。その結果、電動機の固定子を構成する固定子巻線の導線同士でレイヤーショートと呼ばれる現象を引き起こし、これが高エネルギ源となって不均化反応を誘起することになる。そして、一旦、不均化反応が発生すると、連鎖反応により瞬間的に且つ部分的(圧縮
機内部)に高い圧力上昇が生じるため、不均化反応発生前に不均化必要条件を回避させることが重要である。
本発明は、このような不均化反応を誘起する作動流体の過度な高温高圧現象に鑑みてなしたもので、HFO1123を含む作動流体を用いた圧縮機や冷凍サイクル装置の信頼性を向上させることを目的としたものである。
本発明は、上記目的を達成するため、冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロメタンを含む作動流体を封入して冷凍サイクル装置を構成し、この冷凍サイクル装置における圧縮機の吐出作動流体が存する空間を当該空間の圧力が所定圧力以上になると前記圧縮機の吸入管もしくはアキュームレータに連通させて吐出作動流体を前記吸入管もしくはアキュームレータに放出する構成としてある。
上記構成によれば、作動流体が外部エネルギ源によって不均化反応を起こす圧力になる前の所定圧力に達すると圧縮機の吐出作動流体が存する空間を前記圧縮機の吸入管もしくはアキュームレータに連通させて吐出作動流体を前記吸入管もしくはアキュームレータに放出するので、吐出作動流体の圧力を下げて不均化反応を未然に防止することができ、吐出作動流体を外部に放出することなく冷凍サイクル装置の信頼性を向上させることができる。
本発明は、上記構成により、HFO1123を含む作動流体を用いた安全で信頼性の高い冷凍サイクル装置を提供することができる。
本発明の実施の形態1に係る冷凍サイクル装置の概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する内部高圧型圧縮機の要部を拡大して示す概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する内部高圧型圧縮機の集中巻の電動機の概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する内部高圧型圧縮機の要部拡大概略断面図 本発明の実施の形態2に係る冷凍サイクル装置を構成する内部高圧型圧縮機の要部拡大概略断面図
第1の発明は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続して冷凍サイクル回路を構成し、前記冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロメタンを含む作動流体を封入して構成した冷凍サイクル装置であって、前記圧縮機の吐出作動流体が存する空間を当該空間の圧力が所定圧力以上になると前記圧縮機の吸入管もしくはアキュームレータに連通させて前記吐出作動流体を前記吸入管もしくはアキュームレータに放出する構成としてある。
上記構成によれば、作動流体が外部エネルギ源によって不均化反応を起こす圧力となる前の所定圧力に達すると圧縮機の吐出作動流体が存する空間を前記圧縮機の吸入管もしくはアキュームレータに連通させて圧縮機内の吐出作動流体を前記吸入管もしくはアキュームレータに放出するので、吐出作動流体の圧力を下げて不均化反応を未然に防止することができ、吐出作動流体を外部に放出することなく冷凍サイクル装置の信頼性を向上させることができる。
第2の発明は、第1の発明において、圧縮機の吐出作動流体が存する空間と当該圧縮機の吸入管もしくはアキュームレータとを連通路によって連結するとともに、前記連通路を通常は閉塞状態とする圧力検知開閉手段を備え、前記圧縮機内の吐出作動流体が存する空間圧力が所定圧力以上になると前記圧力検知開閉手段が前記連通路を連通状態として前記圧縮機内の吐出作動流体を前記吸入管もしくはアキュームレータに放出する構成としてある。
これにより、作動流体が不均化反応を起こす前に作動流体を外部に放出して圧力を下げ不均化反応を防止するとともに、連通路によって圧縮機と吸入管もしくはアキュームレータとを機械的に連結しているので、吸入管もしくはアキュームレータを圧縮機に合理的に固定することができ、構成の合理化を図りつつ信頼性を向上させることができる。
第3の発明は、第1または第2の発明において、前記圧力検知開閉手段は圧力検知機能と通路開閉機能を併せ持つ圧力感知開閉体で構成してある。
これにより、バイメタル弁、形状記憶合金弁、可溶栓等の圧力検知機能と通路開閉機能を併せ持つ圧力感知開閉体を設けるだけで不均化反応の防止ができ、簡単かつ安価に不均化反応防止を実現することができる。
第4の発明は、第2または第3の発明において、前記圧力検知開閉手段は不可逆動作タイプのものとしてある。
これにより、連通路を開成した後、再度、圧力検知開閉手段が連通路を閉じて圧縮機内の吐出作動流体空間圧力が高まって不均化反応が生じやすい状態となることを防止でき、より確実に冷凍サイクル装置の信頼性を高めることができる。
第5の発明は、第1〜第4の発明において、前記冷凍サイクル装置は圧縮機の吐出作動流体が存する空間圧力が所定圧力以上になって当該吐出作動流体を吸入管もしくはアキュームレータに放出した時、さらに前記圧縮機を駆動する電動機への電気入力を遮断する構成としてある。
これにより、圧力検知開閉手段が連通路を開成した後、再度、連通路を閉じるような可逆動作タイプのものであったとしても、電動機を停止させるので、圧縮機内の吐出作動流体空間圧力が再上昇して不均化反応が生じやすい状態となるのを防止でき、より確実に冷凍サイクル装置の信頼性を高めることができる。
第6の発明は、第5の発明において、前記圧縮機を駆動する電動機への電気入力遮断は圧力センサによって行う構成としてある。
これにより、圧力検知開閉手段に電動機への電気入力遮断機能、すなわちスイッチ機能を持たせる必要がなく、汎用タイプの圧力検知開閉手段を用いることができるので安価に提供することができるとともに、構成の簡素化も図ることができる。
第7の発明は、第5の発明において、前記圧縮機を駆動する電動機への電気入力遮断はサーマルプロテクタによって行う構成としてある。
これにより、圧力検知開閉手段に電動機への電気入力遮断機能、すなわちスイッチ機能を持たせる必要が無く、構成の簡素化を図ることができるとともに、汎用タイプの圧力検知開閉手段を用いることができ、しかも電動機もサーマルプロテクタを有する汎用の電動
機を使用することができ、圧力センサも不要とすることができてより安価に提供することができる。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1に、本発明の第1の実施の形態に係る冷凍サイクル装置100を示す。本実施の形態の冷凍サイクル装置100は、室内機ユニット101aと室外機ユニット101bとが冷媒配管及び制御配線等により互いに接続された、所謂セパレート型の空気調和機である。
室内機ユニット101aは、室内熱交換器103と、室内熱交換器103に送風するとともに、室内熱交換器103で熱交換した空気を室内に吹き出す貫流ファン(クロスフローファン)である室内送風ファン107aを備えている。室外機ユニット101bは、圧縮機102、減圧手段である膨張弁104、室外熱交換器105、四方弁106、室外熱交換器105に送風するプロペラファンである室外送風ファン107bを備えている。
室内機ユニット101aと室外機ユニット101bとを分離できるように、室内機ユニット101aは、配管接続部112を備えている。室外機ユニット101bは、配管接続部112、配管接続部112と四方弁106との間に設けられた三方弁108、配管接続部112と膨張弁104との間に設けられた二方弁109を備えている。また、室外機ユニット101bは、圧縮機102内に設けられた電動機を駆動する電動機駆動装置115を備えている。
そして、室内機ユニット101aの一方の配管接続部112と室外機ユニット101bの二方弁109が設けられた側の配管接続部112とは、冷媒配管の1つである液管111aで接続されている。また、室内機ユニット101aの他方の配管接続部112と室外機ユニット101bの三方弁108が設けられた側の配管接続部112とは、冷媒配管の1つであるガス管111bで接続されている。
このように、本実施の形態の冷凍サイクル装置100は、主に、圧縮機102、室内熱交換器103、膨張弁104、室外熱交換器105の順に冷媒配管で接続し、冷凍サイクル回路を構成している。冷凍サイクル回路は、圧縮機102と室内熱交換器103または室外熱交換器105との間に、圧縮機102から吐出された冷媒の流れ方向を室内熱交換器103または室外熱交換器105のいずれかに切替える四方弁106を備えている。
四方弁106を備えることで、本実施の形態の冷凍サイクル装置100は、冷房運転と、暖房運転の切り替えが可能となる。つまり、冷房運転時には、圧縮機102の吐出側と室外熱交換器105とを連通させるとともに、室内熱交換器103と圧縮機102の吸入側とを連通されるように、四方弁106を切換える。これによって、室内熱交換器103を蒸発器として作用させ、周囲大気(室内空気)から熱を吸熱し、室外熱交換器105を凝縮器として作用させ、室内で吸熱した熱を周囲大気(室外空気)へ放熱する。一方、暖房運転時には、圧縮機102の吐出側と室内熱交換器103とを連通させるとともに、室外熱交換器105と圧縮機102の吸入側とを連通されるように、四方弁106を切換える。これによって、室外熱交換器105を蒸発器として作用させ、(室外空気)から吸熱し、室内熱交換器103を凝縮器として作用させ、室外で吸熱した熱を室内空気へ放熱する。
なお、四方弁106は、制御装置(図示せず)からの電気的信号によって、冷房と暖房
と切り替える電磁弁式のものが用いられている。
また、冷凍サイクル回路は、四方弁106をバイパスし、圧縮機102の吸入側と吐出側とを連通するバイパス手段113と、バイパス手段113の冷媒の流れを開放、閉止する開閉弁113aを備えている。
冷凍サイクル回路内には、作動流体(冷媒)が封入されている。作動流体について説明する。本実施の形態の冷凍サイクル装置100に封入される作動流体は、(1)HFO1123(1,1,2−トリフルオロエチレン)と、(2)R32(ジフオロメタン)からなる2成分系の混合作動流体であり、特に、R32が30重量%以上60重量%以下の混合作動流体である。
HFO1123にR32を30重量%以上混合することで、HFO1123の不均化反応を抑制できる。また、R32の濃度が高いほど不均化反応をより抑制できる。これは、R32のフッ素原子への分極が小さいことによる不均化反応を緩和する作用と、HFO1123とR32は物理特性が似ていることから凝縮・蒸発など相変化時の挙動が一体となることによる不均化の反応機会を減少させる作用とにより、HFO1123の不均化反応を抑制することができる。
また、HFO1123とR32の混合冷媒は、R32が30重量%、HFO1123が70%で共沸点を持ち、温度すべりがなくなる為、単一冷媒と同様な取り扱いが可能である。つまり、R32を60重量%以上混合すると、温度すべりが大きくなり、単一冷媒と同様な取り扱いが困難となる可能性があるため、R32を60重量%以下で混合することが望ましい。特に、不均化を防止するとともに、共沸点に近づくため温度すべりをより小さくし、機器の設計が容易とするために、R32を40重量%以上50重量%以下で混合することが望ましい。
表1、表2は、HFO1123とR32の混合作動流体のうち、R32が30重量%以上60重量%以下となる混合割合での、冷凍サイクルの圧力、温度、圧縮機の押しのけ容積が同じ場合の冷凍能力およびサイクル効率(COP)を計算し、R410AとHFO1123と比較したものである。
まず、表1、表2の計算条件について説明する。近年、機器のサイクル効率を向上するため、熱交換器の高性能化が進み、実際の運転状態では、凝縮温度は低下し、蒸発温度は上昇する傾向にあり、吐出温度も低下する傾向にある。このため、実際の運転条件を考慮し、表1の冷房計算条件は、冷凍サイクル装置100の冷房運転時(室内乾球温度 27℃、湿球温度 19℃、室外乾球温度 35℃)に対応し、蒸発温度は15℃、凝縮温度は45℃、圧縮機の吸入冷媒の過熱度は5℃、凝縮器出口の過冷却度は8℃とした。
また、表2の暖房計算条件は、冷凍サイクル装置100の暖房運転時(室内乾球温度20℃、室外乾球温度 7℃、湿球温度 6℃)に対応した計算条件で、蒸発温度は2℃、凝縮温度は38℃、圧縮機の吸入冷媒の過熱度は2℃、凝縮器出口の過冷却度は12℃とした。
Figure 0006906138
Figure 0006906138
表1、表2より、R32を30重量%以上60重量%以下で混合することにより、冷房および暖房運転時に、R410Aと比較して、冷凍能力は約20%増加し、サイクル効率(COP)は94〜97%となり、温暖化係数はR410Aの10〜20%に低減できる。
以上説明したように、HFO1123とR32の2成分系において、不均化の防止、温度すべりの大きさ、冷房運転時・暖房運転時の能力、COPを総合的に鑑みると(すなわち、後述する圧縮機を用いた空気調和機器に適した混合割合を特定すると)、30重量%以上60重量%以下のR32を含む混合物が望ましく、さらに望ましくは、40重量%以上50重量%以下のR32を含む混合物が望ましい。
次に、冷凍サイクル回路を構成する各構成要素について説明する。
室内熱交換器103、室外熱交換器105には、フィンアンドチューブ型熱交換器やパラレルフロー形(マイクロチューブ型)熱交換器などが用いられる。なお、なお、図1に示したようなセパレート型の空気調和機ではなく、例えば、室内熱交換器103の周囲媒体としてブライン(ブラインを居住スペースの冷暖房に使用)を用いる場合や、二元式冷凍サイクルの冷媒を用いる場合には、熱交換器の形態として、二重管熱交換器やプレート式熱交換器、シェルアンドチューブ熱交換器を用いてもよい(図示せず)。この場合、室内熱交換器103は、被冷却、加熱対象(セパレート型の空気調和機の場合、室内空気)を直接、冷却、加熱はしないので、必ずしも、室内に配置されなくともよい。膨張弁104には、例えば、パルスモータ駆動方式の電子膨張弁などが使用される。
圧縮機102の詳細について、図2を用いて説明する。圧縮機102はいわゆる密閉型のロータリ式圧縮機であり、電動機を備える部分が高圧の作動流体で満たされる内部高圧型圧縮機である。
圧縮機102はその外郭となる密閉容器102gの内部に、電動機102e、圧縮機構102cが収納され、内部は高温高圧の吐出冷媒と、冷凍機油で満たされ、底部は冷凍機油を溜める貯油部102fとなっている。電動機(モータ)102eは、所謂ブラシレス・モータである。電動機102eは、圧縮機構102cのクランクシャフト102mに接続された回転子1021eと、回転子1021eの周囲に設けられた固定子1022eとを備えている。
固定子1022eには三相の固定子巻線が施され、固定子1022e上下方向の端部でコイルエンド1023eを形成している。そして、三相の固定子巻線の端部はそれぞれリード線102iとなっている。つまり、固定子1022eは、三相の固定子巻線それぞれから延びる3本のリード線102iを備えている。3本のリード線102iの他端は、給電ターミナル102hに接続される。給電ターミナル102hは、3つの端子を備え、それぞれの端子は、電動機駆動装置115に接続されている。そして、上記三相の固定子巻線は絶縁体(図示せず)によって絶縁されている。
図2に示すように、3本のリード線102iのそれぞれは、電動機102eの水平断面において、コイルエンド1023eの離れた位置から延びている。より詳細には、3本のリード線102iのそれぞれは、固定子1022e側(後述するコイルエンド1023e側)の隣接するリード線102i同士の間隔が、給電ターミナル102h側の隣接するリード線同士の間隔より大きくなっている。また、3本のリード線102iは、電動機102eの水平断面において、回転子1021eの回転中心を中心として約120度ごとに配置されていてもよい。
図4は、電動機102eの横断面図である。電動機102eはいわゆる集中巻の電動機である。固定子1022eは、1つのティース31と、ティース31をつなぐ環状のヨーク32からなり、固定子1022eの内周部に対向して、略円筒形の回転子コア33とその外周部に配置された永久磁石34からなる回転子1021eがクランクシャフト102mを中心として回転自在に保持されている。永久磁石34は、外周をステンレス等の非磁性体の環35を外周に挿入することにより固定されている。
なお、永久磁石の固定方法は、エポキシ樹脂等の接着剤を用いて固定しても構わない。
また、永久磁石の配置方法として、上記では、永久磁石34を回転子コア33の外周部に配置する構造として説明したが、永久磁石を回転子コアの内部に配置した構造(図示せず)としてもよい。
一方、固定子1022eは、圧縮機のシェルに焼きばめされることによって密閉容器102g内部で固定されている。固定子1022eの固定方法は、これに限らず、例えば、溶接等の方法で固定しても構わない。
ティース31には、三相の固定子巻線が施され、インバータ式の電動機駆動装置(図示せず)のスイッチング素子により、回転子1021eに回転磁界が発生するように巻線に電流を流している。回転磁界は、インバータにより可変速で発生させることが可能であり、圧縮機102の運転開始直後等には高速で、安定運転時等には低速で運転される。
固定子1022eの外周部に切り欠き、または溝、穴37を設けることにより、密閉容器102gと固定子1022eとの間または固定子1022eそのものに、固定子1022eの全長に貫通した部分があり、そこを冷凍機油が通るようになっている。
電動機102eを集中巻の電動機とすることで、巻線抵抗が低減でき、大幅に銅損が低減できると共に、モータ全長も小さくできる。
なお、電動機102eは、集中巻きの電動機であるとして説明したが、分布巻きの電動機であってもよい。
圧縮機構102cは、圧縮室1021cを形成するシリンダ1022cと、シリンダ1022c内の圧縮室1021cに配置したローリングピストン1023cを有している。ローリングピストン1023cは、前記クランクシャフト102mの回転によりベーン(図示せず)に当接しながら圧縮室内で回転運動し、吸入管102aから冷媒を吸引して圧縮する。圧縮した冷媒は、吐出マフラー102lから密閉容器102g内の吐出冷媒空間102dに移動し、吐出管102bから圧縮機102の外へと吐出される。
なお、この圧縮機構102cはシリンダ1022cを上下二段有するタイプとしているが、これはシリンダ1022cが一段だけのタイプであってもよいものである。
また、上記圧縮室1021cでの液圧縮を防止するため、吸入管102aにはアキュームレータ119が設けられている。アキュームレータ119は、冷媒を気液分離し、冷媒ガスだけを吸入管102aに導く。アキュームレータ119は、円筒状の容器1190の上部に冷媒ガス導入管1191、下部に冷媒ガス導出管1192が接続されている。冷媒ガス導出管1192の一端は吸入管102aに接続され、冷媒ガス導出管1192の他端は容器1190の内部空間の上部まで延出している。
以上のようにして構成した圧縮機102において、蒸発器から流出した低圧冷媒は、四方弁106を介して、吸入管102aから吸入され、圧縮機構102cで昇圧される。昇圧され、高温高圧となった吐出冷媒は、吐出マフラー102lから吐出され、電動機102e周囲で構成される隙間(回転子1021eと固定子1022e間、固定子1022eと密閉容器102g間)を通って、吐出冷媒空間102dへと流動する。その後、吐出管102bから圧縮機102の外へと吐出され、四方弁106を介して、凝縮器へと向う。
圧縮機構102cは、電動機102eと、クランクシャフト102mを介して接続されている。電動機102eでは、外部電源から受け取った電力を電気的エネルギから機械的(回転)エネルギに変換している。圧縮機構102cでは、電動機102eからクランクシャフト102mを介して伝達される機械的エネルギを用いて、冷媒を昇圧する圧縮仕事を行っている。
ここで、既述した通り正常な運転条件下ではない状態、すなわち、凝縮器側の送風ファン停止、冷凍サイクル回路の閉塞等が生じると、作動流体の吐出圧力(冷凍サイクルの高圧側)が過度に上昇し、これに伴い作動流体の温度も過度に上昇する。
この状態下において、圧縮機102への電力供給を続けていると、圧縮機102を構成する電動機102eへ電力が過剰に供給され、電動機102eが異常に発熱し、電動機102eの固定子巻線40の絶縁が破損して、巻線の導線同士が直接接触し、レイヤーショートを引き起こしかねない状態となる。すなわち、不均化反応が生じ難い作動流体、例えばHFO1123に対するR32の混合比率が30重量%以上60重量%以下となるような作動流体を用いていても、冷媒が過度に高温高圧になって、そのような高温高圧下の冷
媒雰囲気下にて、高エネルギ源が付加されると、不均化反応が発生し、圧縮機102内の圧力が急激に上昇する可能性がある。
そこでこの冷凍サイクル装置は、圧縮機102の吐出冷媒空間102dと当該圧縮機102のアキュームレータ119とを通常は閉塞状態とした連通路120で連結し、前記圧縮機102内の吐出冷媒空間102dの圧力が前記不均化反応を起こす前の所定圧力になると前記閉塞状態の連通路を開成し前記圧縮機内の吐出冷媒を前記アキュームレータ119に放出する構成としてある。
具体的には、図4に示すように前記圧縮機102の吐出冷媒空間102dとアキュームレータ119とを閉塞状態とした連通路120となる連通管120a、より具体的には常閉型の圧力検知開閉手段121により閉塞状態とした連通管120aによって連結し、前記圧縮機102内の吐出冷媒空間102dの圧力が不均化反応を起こす前の所定圧力になると前記圧力検知開閉手段121が作動して閉塞状態の連通管120aを開成し前記圧縮機102内の吐出冷媒を前記アキュームレータ119に放出する構成としてある。
これによって、この圧縮機102では、前記不均化反応を起こす前の所定圧力、例えば、作動流体の不均化反応を誘起するレイヤーショートが発生する前の所定温度時における圧力になると、連通管120aの圧力検知開閉手段121が作動して閉塞状態の連通管120aを開成し前記圧縮機102内の吐出冷媒を前記アキュームレータ119に放出する。これにより、圧縮機102内の圧力は急激に低下し、作動流体は不均化反応を起こさない状態となる。すなわち、作動流体の不均化反応を未然に防止することができる。
しかも、上記吐出作動流体は外部に放出しないので、外部環境を悪化させるようなことも防止することができる。
上記連通管120aを開成する圧力検知開閉手段121は圧力弁等の圧力検知機能と通路開閉機能を併せ持つ圧力感知開閉弁で構成したり、或いは圧力検知素子と常閉型弁との組み合わせ等のように圧力検知機能と通路開閉機能が別々のものによって構成したりすることができる。
図4に示す圧縮機102では圧力弁からなる圧力検知開閉手段121を用いており、所定圧力になると作動して連通管120aを開成し、吐出冷媒空間102dの吐出冷媒を白抜き矢印で示すようにアキュームレータ119内に放出するようになっている。
前記圧力弁等の圧力感知開閉弁で圧力検知開閉手段121を構成すれば、それ自体が圧力を検知して作動し連通管120aを開成するので、圧力検知素子と常閉型弁を別々に設ける必要がなくなって構成を簡素化でき、安価に提供することができる。
また、上記圧力感知開閉弁からなる圧力検知開閉手段121は、圧力が所定圧力より低くなると元の状態に復帰する可逆動作タイプのものであってもよいが、一旦作動すると元の状態には復帰せず連通管120aを開成したままとする不可逆動作タイプのものとするのが好ましい。
この不可逆動作タイプの圧力検知開閉手段121とすることによって、連通管120aを開成した後、再度、圧力検知開閉手段121が連通管120aを閉じて圧縮機102内の吐出冷媒空間圧力が高まり不均化反応が生じやすい状態となることを防止でき、より確実に冷凍サイクル装置の信頼性を高めることができる。
或いは、前記圧力検知開閉手段121が連通管120aを開成すると、圧縮機102を
駆動する電動機102eへの電気入力を遮断する構成としてもよい。
これにより、圧力検知開閉手段121が連通管120aを開成した後、再度、連通管120aを閉じるような可逆動作タイプのものであったとしても、電動機102eを停止させるので、圧縮機102内の吐出冷媒空間圧力が高まって不均化反応が生じやすい状態となるのを防止できる。したがって、より確実に冷凍サイクル装置の信頼性を高めることができる。
この場合、上記電動機102eを停止させる圧力を不均化反応前の所定圧力として圧力検知開閉手段121が連通管120aを開成する圧力を若干低めに設定しておき、かつ、前記圧力検知開閉手段121を可逆動作タイプのものとしておけば、使い勝手が良く、より信頼性の高い冷凍サイクル装置とすることができる。すなわち、何らかの原因で瞬間的に圧力が上昇するようなことがあったとしても、当該瞬間的な圧力を圧力検知開閉手段121の開成で低下させて元の状態に戻るようであれば圧力検知開閉手段121が復帰し(閉じ)てそのまま運転を継続することができ、使い勝手が良く、より信頼性の高い冷凍サイクル装置とすることができる。
上記圧縮機102を駆動する電動機102eへの電気入力遮断は、電動機102eへの通電回路に設けたスイッチを前記圧力検知開閉手段121自体の開成動作によって動作させる方式、或いは圧力検知開閉手段121とは別に設けた圧力センサ(図示せず)からの出力によって作動させるようにする方式、或いはさらにサーマルプロテクタ(図示せず)を用いた電動機102eとする、等々の方式が考えられるが、特に限定するものではない。
圧力センサからの出力によって電動機102eへの電気入力を遮断する方式とすれば、圧力検知開閉手段121に電動機102eへの電気入力遮断機能、すなわちスイッチ機能を持たせる必要がなく、汎用タイプの圧力検知開閉手段121を用いることができるので安価に提供することができるとともに、構成の簡素化も図ることができる。
また、サーマルプロテクタによって電動機102eへの電気入力を遮断する方式とすれば、圧力検知開閉手段121に電動機102eへの電気入力遮断機能、すなわちスイッチ機能を持たせる必要がなく、構成の簡素化を図ることができるとともに、汎用タイプの圧力検知開閉手段121を用いることができ、しかも電動機102eもサーマルプロテクタを有する汎用の電動機を使用することができ、圧力センサも不要とすることができてより安価に提供することができる。
また、圧縮機102の吐出冷媒空間102dから放出する冷媒はこの例ではアキュームレータ119に放出する構成としているが、吸入管102aに放出、すなわち圧縮機102の吐出冷媒空間102dと吸入管102aを連通管120aにより連結して吸入管102aに放出するようにしてもよく、アキュームレータ119を有さないタイプの圧縮機、例えばスクロール式圧縮機等にあってはこの方式で不均化反応を防止すればよい。
なお、圧縮機102の吐出冷媒空間102dからの冷媒をアキュームレータ119に放出するように構成すれば、アキュームレータ119はその空間容積が大きいのでその分だけ吐出冷媒空間102dの圧力低下を大きなものとすることができ、不均化反応防止効果を高めることができる。
ところで、上記圧力検知開閉手段121が連通管120aを開成する所定圧力は実験等により不均化反応が生じる前の圧力に適宜設定すればよいが、例えば以下のようにして設定することもできる。
すなわち、不均化反応は、既述した通り、作動流体が、過度に高温高圧となった雰囲気下にて、高エネルギが付加されると、これが起点となって発生する。
したがって、高エネルギが付加される温度が一つの条件となる。この高エネルギは、圧縮機102の場合、圧縮機102の駆動源となる電動機102eの固定子巻線の絶縁体が溶融破壊された時に生じるレイヤーショートが最も発生確率の高いものであり、よってこの絶縁体の溶融温度の時の圧力を所定圧力と設定することができる。この絶縁体の溶融温度は絶縁体の材料によって異なるが、例えばポリエチレンテレフタレート(PET)であれば130℃、ポリエチレンナフタレート(PEN)であれば155℃、アラミドポリマーであれば220℃、ポリフェニレン サルファイド(PPS)であれば155℃等々である。よって、溶融温度が最も低い温度、この例では130℃の温度の時の圧力とすればよい。
図5はHFO1123とR32の比率が60対40(HFO1123/R32=60/40)の作動流体における不均化反応発生条件を示し、図中折れ線の上側が不均化反応する領域で、この不均化反応が生じる圧力は温度によって変化し、この例で示す冷媒の場合、前記した溶融温度130℃の温度の時の圧力は9MPa程度である。
よって、圧力検知開閉手段121が作動する圧力は上記9MPaに対し10%の余裕を見て8MPa(≒9MPa×90%)に設定すればよい。
このように設定すれば、ポリエチレンテレフタレート(PET)のような廉価な絶縁紙を採用してコストダウンにつなげることができるとともに、正常運転で不用意に圧力検知開閉手段121が作動してしまうのを防止することもでき、より安価で信頼性の高い冷凍サイクル装置とすることができる。
(実施の形態2)
図6は実施の形態2の冷凍サイクル装置における圧縮機102の要部を拡大して示すもので、 この実施の形態2では、圧縮機102の密閉容器102gとアキュームレータ119の容器1190にそれぞれ透孔120bを設け、この透孔120bを筒状カシメピン120cもしくは孔縁部を溶接で接合して前記透孔を連通路120としたものである。そして、前記連通路120を圧力検知開閉手段121、この例では可溶栓で閉塞状態としたものである。
この実施の形態2のような構成としても、前記実施の形態1と同様の効果が得られる。そして、この実施の形態2では前記実施の形態1で示した連通管120aが不要となり、構成の簡素化が図れる。
以上、本発明の実施の形態では、圧縮機の吐出冷媒が存する空間圧力、すなわち吐出冷媒圧力を検出して連通路120を開成するもので説明してきたが、これは例えば圧縮機102を駆動する電動機102eの駆動電流を検出し、この電動機駆動電流が上昇して所定値になると連通路120を開成するように構成してもよいものである。
また、上記連通路120を開成する吐出冷媒圧力もしくは電動機駆動電流の所定値を不均化反応が生じる前の所定値としたが、不均化反応が生じたときの所定値として不均化反応が生じてもこの不均化反応の進行を抑制するようにしてもよく、この場合も冷凍サイクル装置の安全性を図ることはできる。
また、圧縮機もロータリ式圧縮機を例にして説明したが、これは他の形式、例えば、ス
クロール式、レシプロ式などの容積式圧縮機、もしくは、遠心式圧縮機等、いずれの圧縮機であってもよいものである。
上述したように本発明は、HFO1123を含む作動流体を用いた冷凍サイクル装置の信頼性を向上させることができ、住居及び業務用の各エアコン、カーエアコン、給湯器、冷凍冷蔵庫、ショーケース、除湿機等の用途に幅広く適用することができる。
100 冷凍サイクル装置
101a 室内機ユニット
101b 室外機ユニット
102 圧縮機
102a 吸入管
102b 吐出管
102c 圧縮機構
102e 電動機
102g 密閉容器
1021e 回転子
1022e 固定子
103 室内熱交換器
105 室外熱交換器
106 四方弁
107a 室内送風ファン
107b 室外送風ファン
119 アキュームレータ
1190 容器
1191 冷媒ガス導入管
1192 冷媒ガス導出管
120 連通路
120a 連通管
120b 透孔
120c 筒状カシメピン
121 圧力検知開閉手段

Claims (7)

  1. 圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続して冷凍サイクル回路を構成し、前記冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロメタンを含む作動流体を封入して構成した冷凍サイクル装置であって、前記圧縮機の吐出作動流体が存する空間を当該空間の圧力が所定圧力以上になると前記圧縮機の吸入管もしくはアキュームレータに連通させて前記吐出作動流体を前記吸入管もしくはアキュームレータに放出する構成とし、前記所定圧力は、8MPaであり、前記圧縮機の電動機の固定子巻線の絶縁体は、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミドポリマー、ポリフェニレンサルファイドのいずれから選択される冷凍サイクル装置。
  2. 圧縮機の吐出作動流体が存する空間と当該圧縮機の吸入管もしくはアキュームレータとを連通路によって連結するとともに、前記連通路を通常は閉塞状態とする圧力検知開閉手段を備え、前記圧縮機内の吐出作動流体が存する空間圧力が所定圧力以上になると前記圧力検知開閉手段が前記連通路を連通状態として前記圧縮機内の吐出作動流体を前記吸入管もしくはアキュームレータに放出する構成とした請求項1記載の冷凍サイクル装置。
  3. 前記圧力検知開閉手段は圧力検知機能と通路開閉機能を併せ持つ圧力感知開閉体で構成した請求項2記載の冷凍サイクル装置。
  4. 前記圧力検知開閉手段は不可逆動作タイプのものとした請求項2または3記載の冷凍サイクル装置。
  5. 冷凍サイクル装置は圧縮機の吐出作動流体が存する空間圧力が所定圧力以上になって当該吐出作動流体を吸入管もしくはアキュームレータに放出した時、さらに前記圧縮機を駆動する電動機への電気入力を遮断する構成とした請求項1〜4のいずれか1項記載の冷凍サイクル装置。
  6. 圧縮機を駆動する電動機への電気入力遮断は圧力センサによって行う構成とした請求項5記載の冷凍サイクル装置。
  7. 圧縮機を駆動する電動機への電気入力遮断はサーマルプロテクタによって行う構成とした請求項5記載の冷凍サイクル装置。
JP2017146159A 2017-07-28 2017-07-28 冷凍サイクル装置 Active JP6906138B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017146159A JP6906138B2 (ja) 2017-07-28 2017-07-28 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146159A JP6906138B2 (ja) 2017-07-28 2017-07-28 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2019027655A JP2019027655A (ja) 2019-02-21
JP6906138B2 true JP6906138B2 (ja) 2021-07-21

Family

ID=65478099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146159A Active JP6906138B2 (ja) 2017-07-28 2017-07-28 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP6906138B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168892B2 (ja) * 2020-09-04 2022-11-10 ダイキン工業株式会社 冷媒としての使用、および、冷凍サイクル装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847267Y2 (ja) * 1976-09-08 1983-10-28 松下冷機株式会社 冷凍装置
US6560978B2 (en) * 2000-12-29 2003-05-13 Thermo King Corporation Transport temperature control system having an increased heating capacity and a method of providing the same
JP2003156259A (ja) * 2001-11-20 2003-05-30 Fujitsu General Ltd 圧縮機
JP6453849B2 (ja) * 2014-03-14 2019-01-16 三菱電機株式会社 冷凍サイクル装置
CN105980794B (zh) * 2014-03-17 2019-06-25 三菱电机株式会社 冷冻装置以及冷冻装置的控制方法
JP6223546B2 (ja) * 2014-03-17 2017-11-01 三菱電機株式会社 冷凍サイクル装置
JP6105511B2 (ja) * 2014-04-10 2017-03-29 三菱電機株式会社 ヒートポンプ装置
MY190716A (en) * 2014-05-12 2022-05-12 Panasonic Ip Man Co Ltd Refrigeration cycle device

Also Published As

Publication number Publication date
JP2019027655A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
CN107532825B (zh) 制冷循环装置
KR101892880B1 (ko) 냉동 사이클 장치
JP2018025372A (ja) 冷凍サイクル装置
JP6710325B2 (ja) 空気調和機および空気調和機の運転制御方法
WO2013088638A1 (ja) 冷凍サイクル装置
JP6342006B2 (ja) 冷凍サイクル装置
JP2001174075A (ja) 冷凍装置
JP2018138867A (ja) 冷凍サイクル装置
WO2015140880A1 (ja) 圧縮機及び冷凍サイクル装置
JP6906138B2 (ja) 冷凍サイクル装置
JP6805794B2 (ja) 冷凍サイクル装置
JP6861341B2 (ja) 冷凍サイクル装置
JP6596667B2 (ja) 圧縮機及びそれを用いた冷凍サイクル装置
JP6872686B2 (ja) 冷凍サイクル装置
JP6667071B2 (ja) 冷凍サイクル装置
JP2018096652A (ja) 冷凍サイクル装置
JPWO2015140881A1 (ja) 冷凍サイクル装置
WO2015104822A1 (ja) 冷凍サイクル装置
JP6624809B2 (ja) 圧縮機、及びその圧縮機を備えたヒートポンプ装置
JP2020070942A (ja) 冷凍サイクル装置
JP2020169782A (ja) 冷凍サイクル装置
CN108368849A (zh) 压缩机以及制冷循环装置
JP2021025460A (ja) 圧縮機
JP2020188640A (ja) 冷凍サイクル装置
JP2020172897A (ja) 圧縮機およびそれを用いた冷凍サイクル装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6906138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151