WO2022022300A1 - 化妆品用原料苯氧乙醇的制备工艺 - Google Patents

化妆品用原料苯氧乙醇的制备工艺 Download PDF

Info

Publication number
WO2022022300A1
WO2022022300A1 PCT/CN2021/106807 CN2021106807W WO2022022300A1 WO 2022022300 A1 WO2022022300 A1 WO 2022022300A1 CN 2021106807 W CN2021106807 W CN 2021106807W WO 2022022300 A1 WO2022022300 A1 WO 2022022300A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenoxyethanol
phenol
purity
macroporous adsorbent
detected
Prior art date
Application number
PCT/CN2021/106807
Other languages
English (en)
French (fr)
Inventor
寇然
王伟松
金一丰
万庆梅
高洪军
Original Assignee
浙江皇马科技股份有限公司
浙江皇马尚宜新材料有限公司
浙江绿科安化学有限公司
浙江皇马特种表面活性剂研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江皇马科技股份有限公司, 浙江皇马尚宜新材料有限公司, 浙江绿科安化学有限公司, 浙江皇马特种表面活性剂研究院有限公司 filed Critical 浙江皇马科技股份有限公司
Publication of WO2022022300A1 publication Critical patent/WO2022022300A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of fine chemicals, in particular to a preparation process of phenoxyethanol, a raw material for cosmetics.
  • Phenoxyethanol is a high boiling point, low volatility solvent, and a low sensitization, low toxicity, chemically stable, efficient, broad-spectrum antiseptic and bactericide. Because it is soluble in both oil and water, it has been used more and more frequently in the light industry and daily chemical industry in recent years. Among them, phenoxyethanol for cosmetics has high added value, and its quality index is also the most stringent. The light industry industry standard of the People's Republic of China requires that the content of phenoxyethanol of cosmetic raw materials is ⁇ 99.0%, and the content of phenol is ⁇ 10ppm.
  • the industrial production method of phenoxyethanol uses phenol and ethylene oxide as raw materials, and is prepared by catalytic ring-opening addition.
  • the content of phenoxyethanol is not high (about 90% of the content), and the residual phenol is high (about 5000 ppm). Since the above-mentioned phenoxyethanol for cosmetics requires high purity and less phenol residues, the crude product of technical-grade phenoxyethanol needs to be purified to meet the use requirements of cosmetics.
  • the purification process of the existing technical grade phenoxyethanol crude product is mainly vacuum distillation, vacuum distillation or cooling crystallization.
  • Chinese patent CN104926618A discloses a process of distillation under reduced pressure, and the purity of the prepared phenoxyethanol is about 95%.
  • Chinese patent CN110642706A discloses a process of cooling and crystallization to prepare high-purity phenoxyethanol with a content of ⁇ 99.5%.
  • the object of the present invention is to provide a kind of preparation technology of cosmetic raw material phenoxyethanol, and the present invention can be implemented through the following technical solutions:
  • a preparation process of cosmetic raw material phenoxyethanol comprising the following steps:
  • S4 is also included: after the saturated macroporous adsorbent is activated and dried by alkaline water, it is used to adsorb phenol in high-purity phenoxyethanol again.
  • the molar ratio of the phenol described in S1 to ethylene oxide is 1:1.1; the reaction temperature is 100-130° C., and the reaction time is 5-6 hours; the alkali catalyst is one or two mixtures of KOH and NaOH ; The added mass of the base catalyst is 1-3 ⁇ of the sum of the mass of phenol and ethylene oxide. .
  • the temperature of the still liquid in the vacuum distillation described in S2 is less than or equal to 120°C.
  • the macroporous adsorbent used in S3 is one or both of a non-polar macroporous adsorbent and a weakly polar macroporous adsorbent; the temperature of the adsorption experiment is controlled at 20-60 °C.
  • the macroporous adsorbent described in S3 includes three types of non-polar macroporous adsorbents, weakly polar macroporous adsorbents and polar macroporous adsorbents.
  • the alkaline water described in S4 is one or both of KOH and NaOH aqueous solutions, preferably a 5% NaOH aqueous solution; the volume of alkaline water used for activation is 2 to 5 times the volume of the macroporous adsorbent.
  • the present invention has the following advantages:
  • the activated macroporous adsorbent is used to adsorb phenol in high-purity phenoxyethanol and reduce the phenol content in phenoxyethanol, which is simple and easy to implement and has low cost;
  • the macroporous adsorbent can be recycled and used by lye activation, the production cost is low, and it is suitable for industrial production;
  • the phenoxyethanol prepared by this process has high purity ( ⁇ 99.9%, GC) and low phenol content ( ⁇ 10ppm, LC), which reaches the standard of phenoxyethanol for cosmetics in the national light industry.
  • the present embodiment provides a preparation process of cosmetic raw material phenoxyethanol, comprising the following steps:
  • Step 1 taking phenol as an initiator, reacts with ethylene oxide in the presence of an alkali catalyst to obtain a phenoxyethanol crude product;
  • Step 2 rectifying the crude product of technical grade phenoxyethanol under vacuum to obtain high-purity phenoxyethanol, the GC purity of the high-purity phenoxyethanol is ⁇ 99.9%;
  • Step 3 using the activated macroporous adsorbent to adsorb phenol in the high-purity phenoxyethanol to obtain saturated macroporous adsorbent and cosmetic raw material phenoxyethanol, the GC purity of cosmetic raw material phenoxyethanol is ⁇ 99.9%, and the phenol content is ⁇ 10ppm; the activation treatment is activation with alkaline water;
  • Step 4 After the saturated macroporous adsorbent is activated and dried by alkaline water, it is used to adsorb phenol in high-purity phenoxyethanol again.
  • the molar ratio of phenol to ethylene oxide described in step 1 is about 1:1.1; the reaction temperature is 100-130° C., and the reaction time is 5-6 hours; the alkali catalyst is one of KOH and NaOH. One or two mixtures; the added mass of the catalyst is 1-3 ⁇ of the sum of the mass of phenol and ethylene oxide.
  • the temperature of the still liquid in the vacuum distillation described in step 2 is less than or equal to 120°C.
  • the macroporous adsorbent used in step 3 is one or both of a non-polar macroporous adsorbent and a weakly polar macroporous adsorbent; the temperature of the adsorption experiment is controlled at 20-60°C.
  • the alkaline water described in steps 3 and 4 is one or both of KOH and NaOH aqueous solutions, preferably the mass fraction is 5% NaOH aqueous solution; the volume of alkaline water used for activation is 2-5 times the volume of the macroporous adsorbent.
  • the saturated non-polar macroporous adsorbent of high purity phenoxyethanol was decomposed and activated by using 5% NaOH aqueous solution three times that of the saturated non-polar macroporous adsorbent. After drying, the adsorption capacity was recovered.
  • Non-polar macroporous adsorbent In a 3L three-necked flask with a 70cm rectifying column, add 2125g of phenoxyethanol crude product, be warming up to 120 ° C and carry out rectification under reduced pressure, collect the front fraction to obtain 1882g of high-purity phenoxyethanol, the content detected by GC is 99.91%, HPLC The detected phenol content is about 326ppm.
  • a non-polar macroporous adsorbent with restored adsorption capacity was used to adsorb phenol in high-purity phenoxyethanol.
  • the phenol residue was detected by HPLC to be less than 10 ppm, the adsorption test was stopped, and a saturated non-polar macroporous adsorbent was obtained.
  • the yield is 87.5%.
  • the purity of the product detected by GC was 99.93%, and the residue of phenol detected by HPLC was 6.6 ppm.
  • Saturated non-polar macroporous adsorbents can be reused after alkaline water activation and drying until the adsorption capacity is lost.
  • the saturated weakly polar macroporous adsorbent of high purity phenoxyethanol was decomposed and activated by using 5% NaOH aqueous solution three times that of the saturated weakly polar macroporous adsorbent. After drying, the adsorption capacity was recovered. Weak polar macroporous adsorbent.
  • Add 2125g industrial phenoxyethanol crude product be warming up to 110 DEG C and carry out rectification under reduced pressure, collect front fraction, obtain 1865g high-purity phenoxyethanol, GC detection content is 99.97%, The phenol content was about 292 ppm detected by HPLC.
  • a weakly polar macroporous adsorbent with restored adsorption capacity was used to adsorb phenol in high-purity phenoxyethanol.
  • the phenol residue was detected by HPLC to be less than 10 ppm, the adsorption test was stopped, and a saturated weakly polar macroporous adsorbent was obtained.
  • 1847g cosmetic raw material phenoxyethanol the yield is 86.9%.
  • the purity of the product detected by GC was 99.97%, and the residual phenol detected by HPLC was 4.6 ppm.
  • Saturated weakly polar macroporous adsorbents can be reused after being activated by alkaline water and dried until the adsorption capacity is lost.
  • the mixture of activated non-polar macroporous adsorbent and weakly polar macroporous adsorbent (the mass ratio of the two is 1:1) was used to adsorb phenol in high-purity phenoxyethanol, and the phenol residue was detected by HPLC
  • the concentration is less than 10 ppm
  • the adsorption test is stopped, and a mixture of saturated non-polar macroporous adsorbent and weakly polar macroporous adsorbent (the mass ratio of the two is 1:1) and 1825g of cosmetic raw material phenoxyethanol are obtained, with a yield of 85.9%.
  • the purity of the product detected by GC was 99.94%, and the residual phenol detected by HPLC was 3.3 ppm.
  • the adsorption test is stopped, and a mixture of saturated non-polar macroporous adsorbent and weakly polar macroporous adsorbent (the mass ratio of the two is 1:1) and 1822g of cosmetic raw material phenoxyethanol are obtained, with a yield of 85.7% .
  • the purity of the product was 99.94% detected by GC, and the residual phenol was detected by HPLC at 5.6 ppm.
  • the mixture of saturated non-polar macroporous adsorbent and weakly polar macroporous adsorbent (the mass ratio of the two is 1:1) can be reused after being activated by alkaline water and dried until the adsorption capacity is lost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

化妆品用原料苯氧乙醇的制备工艺包括以下步骤:以苯酚为起始剂,在碱催化剂的存在下与环氧乙烷反应得到苯氧乙醇粗品;将苯氧乙醇粗品减压精馏,得到高纯度苯氧乙醇;采用活化处理的大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,得到饱和大孔吸附剂和化妆品用原料苯氧乙醇;苯氧乙醇纯度高,苯酚含量低,工艺简洁,大孔吸附剂经碱液活化后可循环使用。

Description

化妆品用原料苯氧乙醇的制备工艺 技术领域
本发明涉及精细化工的技术领域,具体涉及一种化妆品用原料苯氧乙醇的制备工艺。
背景技术
苯氧乙醇是一种高沸点,低挥发溶剂,又是一种低致敏、低毒性、化学性质稳定、高效、广谱的防腐杀菌剂。由于它既能溶于油,又能溶于水中,所以近年来它在轻工业和日化行业中的使用频度越来越高。其中化妆品用苯氧乙醇的产品附加值高,同时其质量指标也最为严格,中华人民共和国轻工业行业标准要求化妆品用原料苯氧乙醇含量≥99.0%,苯酚含量≤10ppm等。
目前,工业上苯氧乙醇的生产方法是以苯酚和环氧乙烷为原料,经催化开环加成制得。所得工业级苯氧乙醇粗品中,苯氧乙醇含量不高(含量约90%左右),苯酚残留高(约5000ppm)。由于上文所述的化妆品用苯氧乙醇要求纯度高,苯酚残留少,所以,工业级苯氧乙醇粗品要通过纯化才能达到化妆品的使用要求。
现有工业级苯氧乙醇粗品的纯化工艺主要为减压蒸馏、减压精馏或降温结晶。中国专利CN104926618A公布了一种通过减压蒸馏的工艺,制备的苯氧乙醇纯度约为95%。中国专利CN110642706A公布了一种通过降温结晶的工艺,制备了高纯度苯氧乙醇,含量≥99.5%。然而,所报道的专利中并没有能够降低苯氧乙醇中苯酚残留的工艺。
发明内容
为了解决现有技术存在的不足,本发明的目的在于提供一种化妆品用原料苯氧乙醇的制备工艺,本发明可通过以下技术方案实施:
一种化妆品用原料苯氧乙醇的制备工艺,具有以下步骤:
S1、以苯酚为起始剂,在碱催化剂的存在下与环氧乙烷进行反应,得到工业级苯氧乙醇粗品;
S2、将所述工业级苯氧乙醇粗品减压精馏,获得高纯度苯氧乙醇,所述高纯 度苯氧乙醇GC的纯度≥99.9%;
S3、采用活化处理的大孔吸附剂吸附所述高纯度苯氧乙醇中的苯酚,得到饱和大孔吸附剂和化妆品用原料苯氧乙醇,化妆品用原料苯氧乙醇GC纯度≥99.9%,苯酚含量≤10ppm。
上述工艺之后,还包括S4:饱和大孔吸附剂通过碱水活化和干燥后,再次用于吸附高纯度苯氧乙醇中的苯酚。
S1所述的苯酚与环氧乙烷的摩尔比为1:1.1;反应温度为100~130℃,反应时间为5~6小时;所述碱催化剂是KOH、NaOH中的一种或两种混合物;所述碱催化剂的加入质量为苯酚和环氧乙烷质量之和的1-3‰。。
S2所述的减压精馏的釜液温度≤120℃。
S3所用的大孔吸附剂为非极性大孔吸附剂和弱极性大孔吸附剂的一种或两种;吸附实验温度控制在20~60℃。
S3中所述大孔吸附剂大孔吸附剂包括非极性大孔吸附剂、弱极性大孔吸附剂和极性大孔吸附剂三种种类。
S4中所述碱水为KOH、NaOH水溶液中的一种或两种,优选浓度为5%的NaOH水溶液;活化所用碱水体积为大孔吸附剂体积的2~5倍。
与现有技术相比,本发明具有以下优点:
1、采用活化处理的大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,降低苯氧乙醇中的苯酚含量,简单易行,成本低廉;
2、大孔吸附剂可以通过碱液活化循环使用,工艺生产成本较低,适合工业化生产;
3、本工艺制备出的苯氧乙醇纯度高(≥99.9%,GC),苯酚含量低(≤10ppm,LC),达到国家轻工业行业中化妆品用原料苯氧乙醇的标准。
具体实施方式
本实施例提供一种化妆品用原料苯氧乙醇的制备工艺,包含以下步骤:
步骤1、以苯酚为起始剂,在碱催化剂的存在下与环氧乙烷进行反应,得到苯氧乙醇粗品;
步骤2、将工业级苯氧乙醇粗品减压精馏,获得高纯度苯氧乙醇,所述高纯度苯氧乙醇GC纯度≥99.9%;
步骤3、采用活化处理的大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,得到饱和大孔吸附剂和化妆品用原料苯氧乙醇,化妆品用原料苯氧乙醇GC纯度≥99.9%,苯酚含量≤10ppm;所述活化处理为采用碱水活化;
步骤4、饱和大孔吸附剂通过碱水活化和干燥后,再次用于吸附高纯度苯氧乙醇中的苯酚。
步骤1所述的苯酚与环氧乙烷的摩尔比约为1:1.1;所述反应温度为100~130℃,反应时间为5~6小时;所述的碱催化剂是KOH、NaOH中的一种或两种混合物;所述催化剂的加入质量为苯酚和环氧乙烷质量之和的1-3‰。
步骤2所述的减压精馏的釜液温度≤120℃。
步骤3所用的大孔吸附剂为非极性大孔吸附剂和弱极性大孔吸附剂的一种或两种;吸附实验温度控制在20~60℃。
步骤3和4所述的碱水为KOH、NaOH水溶液中的一种或两种,优选质量分数为5%NaOH水溶液;活化所用碱水体积为大孔吸附剂体积的2~5倍。
下面结合实施例对本发明予以详细说明。
实施例1:
在5L耐压反应釜中加入1888g苯酚和8.56gNaOH固体催化剂,将环氧乙烷计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约100℃,开始通入968g环氧乙烷,维持反应温度约100℃,反应3小时。反应完毕后,脱气,冷却,得到约2860g苯氧乙醇粗品。GC检测产品纯度为91.3%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至120℃,进行减压精馏,收集前馏份,得到1885g高纯度苯氧乙醇,GC检测纯度为99.91%,HPLC检测苯酚含量约557ppm。在20℃条件下,采用活化处理的非极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和非极性大孔吸附剂和1855g化妆品用原料苯氧乙醇,收率为87.3%。GC检测产品纯度99.91%,HPLC检测苯酚残留7.6ppm。
在45℃条件下,使用3倍于饱和非极性大孔吸附剂的5%NaOH水溶液解析活化处理过高纯度苯氧乙醇的饱和非极性大孔吸附剂,经过干燥后得到恢复吸附能力的非极性大孔吸附剂。在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙 醇粗品,升温至120℃进行减压精馏,收集前馏份,得到1882g高纯度苯氧乙醇,GC检测含量为99.91%,HPLC检测苯酚含量约326ppm。在20℃条件下,采用恢复吸附能力的非极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和非极性大孔吸附剂和1860g化妆品用原料苯氧乙醇,收率为87.5%。GC检测产品纯度99.93%,HPLC检测苯酚残留6.6ppm。饱和非极性大孔吸附剂可经过碱水活化和干燥后重复使用,直至丧失吸附能力。
实施例2:
在5L耐压反应釜中加入1888g苯酚和5.71gNaOH和KOH混合固体催化剂,将环氧乙烷计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约115℃,开始通入968g环氧乙烷,维持反应温度约115℃,反应2小时。反应完毕后,脱气,冷却,得到约2857g苯氧乙醇粗品。GC检测产品纯度为91.6%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g工业苯氧乙醇粗品,升温至110℃进行减压精馏,收集前馏份,得到1855g高纯度苯氧乙醇,GC检测含量为99.92%,HPLC检测苯酚含量约433ppm。在40℃条件下,采用活化处理的弱极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和弱极性大孔吸附剂和1827g化妆品用原料苯氧乙醇,收率为86.0%。GC检测产品纯度99.93%,HPLC检测苯酚残留4.7ppm。
在45℃条件下,使用3倍于饱和弱极性大孔吸附剂的5%NaOH水溶液解析活化处理过高纯度苯氧乙醇的饱和弱极性大孔吸附剂,经过干燥后得到恢复吸附能力的弱极性大孔吸附剂。在带有70cm精馏柱的3L三口烧瓶中加入2125g工业苯氧乙醇粗品,升温至110℃进行减压精馏,收集前馏份,得到1865g高纯度苯氧乙醇,GC检测含量为99.97%,HPLC检测苯酚含量约292ppm。在40℃条件下,采用恢复吸附能力的弱极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和弱极性大孔吸附剂和1847g化妆品用原料苯氧乙醇,收率为86.9%。GC检测产品纯度99.97%,HPLC检测苯酚残留4.6ppm。饱和弱极性大孔吸附剂可经过碱水活化和干燥后重复使用,直至丧失吸附能力。
实施例3:
在5L耐压玻璃反应釜中加入1888g苯酚和2.86gKOH固体催化剂,将环氧乙烷计量罐与耐压反应釜连接。用氮气置换反应釜内的空气3次,加热反应釜至约130℃,开始通入968g环氧乙烷,维持反应温度约130℃,反应2小时。反应完毕后,脱气,冷却,得到约2856g苯氧乙醇粗品。GC检测产品纯度为91.0%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至100℃进行减压精馏,收集前馏份,得到1845g高纯度苯氧乙醇,GC检测含量为99.94%,HPLC检测苯酚含量约429ppm。在60℃条件下,采用活化处理的非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)和1825g化妆品用原料苯氧乙醇,收率为85.9%。GC检测产品纯度99.94%,HPLC检测苯酚残留3.3ppm。
在45℃条件下,使用3倍于饱和非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)的5%NaOH水溶液解析活化处理过高纯度苯氧乙醇的饱和非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1),经过干燥后得到恢复吸附能力的非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)。在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至110℃进行减压精馏,收集前馏份,得到1840g高纯度苯氧乙醇,GC检测含量为99.94%,HPLC检测苯酚含量约372ppm。在40℃条件下,采用恢复吸附能力的非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)吸附高纯度苯氧乙醇中的苯酚,经HPLC检测苯酚残留小于10ppm时,停止吸附试验,得到饱和非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)和1822g化妆品用原料苯氧乙醇,收率为85.7%。GC检测产品纯度99.94%,HPLC检测苯酚残留5.6ppm。饱和非极性大孔吸附剂与弱极性大孔吸附剂混合物(两者质量比1:1)可经过碱水活化和干燥后重复使用,直至丧失吸附能力。
对比例1:
在5L耐压反应釜中加入1888g苯酚和8.56gNaOH固体催化剂,将环氧乙烷 计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约100℃,开始通入968g环氧乙烷,维持反应温度约100℃,反应3小时。反应完毕后,脱气,冷却,得到约2860g苯氧乙醇粗品。GC检测产品纯度为91.3%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至120℃,进行减压精馏,收集前馏份,得到1884g高纯度苯氧乙醇,GC检测纯度为99.92%,HPLC检测苯酚含量约416ppm。在10℃条件下,采用活化处理的极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,每间隔12小时取样测量样品中的苯酚含量,经HPLC检测连续三次苯酚含量无变化时,即认为极性大孔吸附树脂吸附达到平衡状态。当极性大孔吸附树脂吸附达到平衡状态时,GC检测产品纯度99.91%,HPLC检测苯酚残留156ppm。
对比例2:
在5L耐压反应釜中加入1888g苯酚和5.71gNaOH和KOH混合固体催化剂,将环氧乙烷计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约115℃,开始通入968g环氧乙烷,维持反应温度约115℃,反应2小时。反应完毕后,脱气,冷却,得到约2857g苯氧乙醇粗品。GC检测产品纯度为91.6%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g工业苯氧乙醇粗品,升温至110℃进行减压精馏,收集前馏份,得到1838g高纯度苯氧乙醇,GC检测含量为99.94%,HPLC检测苯酚含量约383ppm。在80℃条件下,采用活化处理的极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,每间隔12小时取样测量样品中的苯酚含量,经HPLC检测连续三次苯酚含量无变化时,即认为极性大孔吸附树脂吸附达到平衡状态。当极性大孔吸附树脂吸附达到平衡状态时,GC检测产品纯度99.94%,HPLC检测苯酚残留69ppm。
对比例3:
在5L耐压反应釜中加入1888g苯酚和8.56gNaOH固体催化剂,将环氧乙烷计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约100℃,开始通入968g环氧乙烷,维持反应温度约100℃,反应3小时。反应完毕后,脱气,冷却,得到约2860g苯氧乙醇粗品。GC检测产品纯度为91.3%,HPLC 检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至120℃,进行减压精馏,收集前馏份,得到1881g高纯度苯氧乙醇,GC检测纯度为99.92%,HPLC检测苯酚含量约436ppm。在20℃条件下,采用活化处理的极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,每间隔12小时取样测量样品中的苯酚含量,经HPLC检测连续三次苯酚含量无变化时,即认为极性大孔吸附树脂吸附达到平衡状态。当极性大孔吸附树脂吸附达到平衡状态时,GC检测产品纯度99.91%,HPLC检测苯酚残留434ppm。
对比例4:
在5L耐压反应釜中加入1888g苯酚和5.71gNaOH和KOH混合固体催化剂,将环氧乙烷计量罐与耐压反应釜连接;用氮气置换反应釜内的空气3次,加热反应釜至约115℃,开始通入968g环氧乙烷,维持反应温度约115℃,反应2小时。反应完毕后,脱气,冷却,得到约2857g苯氧乙醇粗品。GC检测产品纯度为91.6%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g工业苯氧乙醇粗品,升温至110℃进行减压精馏,收集前馏份,得到1846g高纯度苯氧乙醇,GC检测含量为99.93%,HPLC检测苯酚含量约392ppm。在40℃条件下,采用活化处理的极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,每间隔12小时取样测量样品中的苯酚含量,经HPLC检测连续三次苯酚含量无变化时,即认为极性大孔吸附树脂吸附达到平衡状态。当极性大孔吸附树脂吸附达到平衡状态时,GC检测产品纯度99.9O%,HPLC检测苯酚残留392ppm。
对比例5:
在5L耐压玻璃反应釜中加入1888g苯酚和2.86gKOH固体催化剂,将环氧乙烷计量罐与耐压反应釜连接。用氮气置换反应釜内的空气3次,加热反应釜至约130℃,开始通入968g环氧乙烷,维持反应温度约130℃,反应2小时。反应完毕后,脱气,冷却,得到约2856g苯氧乙醇粗品。GC检测产品纯度为91.0%,HPLC检测苯酚含量约5000ppm。
在带有70cm精馏柱的3L三口烧瓶中加入2125g苯氧乙醇粗品,升温至100℃进行减压精馏,收集前馏份,得到1844g高纯度苯氧乙醇,GC检测含量为99.95%, HPLC检测苯酚含量约338ppm。在60℃条件下,采用活化处理的极性大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,每间隔12小时取样测量样品中的苯酚含量,经HPLC检测连续三次苯酚含量无变化时,即认为极性大孔吸附树脂吸附达到平衡状态。当极性大孔吸附树脂吸附达到平衡状态时,GC检测产品纯度99.93%,HPLC检测苯酚残留338ppm。

Claims (8)

  1. 一种化妆品用原料苯氧乙醇的制备工艺,其特征在于,包括以下步骤:
    S1、以苯酚为起始剂,在碱催化剂的存在下与环氧乙烷进行反应,得到苯氧乙醇粗品;
    S2、将所述苯氧乙醇粗品减压精馏,获得高纯度苯氧乙醇,所述高纯度苯氧乙醇GC纯度≥99.9%;
    S3、采用活化处理的大孔吸附剂吸附高纯度苯氧乙醇中的苯酚,得到饱和大孔吸附剂和化妆品用原料苯氧乙醇,化妆品用原料苯氧乙醇GC纯度≥99.9%,苯酚含量≤10ppm。
  2. 根据权利要求1所述的制备工艺,其特征在于,
    在所述S3之后,还包括S4:所述饱和大孔吸附剂通过碱水活化和干燥后,再次用于吸附高纯度苯氧乙醇中的苯酚。
  3. 根据权利要求1所述的工艺,其特征在于,所述S1中所述苯酚与环氧乙烷的摩尔比为1:1.1;反应温度为100~130℃,反应时间为5~6小时。
  4. 根据权利要求1所述的工艺,其特征在于,所述S1中所述碱催化剂是KOH、NaOH中的一种或两种混合物;所述碱催化剂的加入质量为所述苯酚和环氧乙烷质量之和的1-3‰。
  5. 根据权利要求1所述的工艺,其特征在于,所述S2中所述的减压精馏的釜液温度≤120℃。
  6. 根据权利要求1所述的工艺,其特征在于,所述S3中所述的大孔吸附剂为非极性大孔吸附剂和弱极性大孔吸附剂的一种或两种;吸附温度在20~60℃。
  7. 根据权利要求2所述的工艺,其特征在于,所述S4中所述碱水为KOH、NaOH水溶液中的一种或两种;活化所用碱水体积为大孔吸附剂体积的2~5倍。
  8. 根据权利要求7所述的工艺,其特征在于,所述S4中所述碱水为浓度为5%的NaOH水溶液。
PCT/CN2021/106807 2020-07-28 2021-07-16 化妆品用原料苯氧乙醇的制备工艺 WO2022022300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010738700.6A CN111718244B (zh) 2020-07-28 2020-07-28 化妆品用原料苯氧乙醇的制备工艺
CN202010738700.6 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022022300A1 true WO2022022300A1 (zh) 2022-02-03

Family

ID=72573780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106807 WO2022022300A1 (zh) 2020-07-28 2021-07-16 化妆品用原料苯氧乙醇的制备工艺

Country Status (2)

Country Link
CN (1) CN111718244B (zh)
WO (1) WO2022022300A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718244B (zh) * 2020-07-28 2023-06-27 浙江皇马科技股份有限公司 化妆品用原料苯氧乙醇的制备工艺
CN115181011B (zh) * 2022-07-27 2023-11-17 国药集团化学试剂有限公司 一种高纯苯氧乙醇的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD282448A5 (de) * 1989-04-19 1990-09-12 Bitterfeld Chemie Verfahren zur herstellung von phenoxyethanol
JP2004143075A (ja) * 2002-10-24 2004-05-20 Yokkaichi Chem Co Ltd 高純度2−フェノキシエタノール反応液の製造方法
CN104926618A (zh) * 2015-06-04 2015-09-23 聂超 一种苯氧乙醇的制备方法
EP3266807A1 (de) * 2016-07-07 2018-01-10 Basf Se Verfahren zur herstellung von hochreinen phenylpolyethylenglykolethern
CN110642706A (zh) * 2019-10-08 2020-01-03 江苏东南纳米材料有限公司 一种高纯苯氧乙醇的制备方法
CN111454129A (zh) * 2020-04-29 2020-07-28 浙江皇马科技股份有限公司 一种高纯苯氧乙醇的制备方法
CN111718244A (zh) * 2020-07-28 2020-09-29 浙江皇马科技股份有限公司 化妆品用原料苯氧乙醇的制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079813B (zh) * 2010-11-18 2012-05-30 浙江皇马科技股份有限公司 一种苯酚聚氧乙烯醚磷酸酯的制备方法
CN106478385B (zh) * 2015-09-02 2019-07-23 奇里茨应用技术(上海)有限公司 一种制备痕量苯酚的高纯丙二醇苯醚或乙二醇苯醚的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD282448A5 (de) * 1989-04-19 1990-09-12 Bitterfeld Chemie Verfahren zur herstellung von phenoxyethanol
JP2004143075A (ja) * 2002-10-24 2004-05-20 Yokkaichi Chem Co Ltd 高純度2−フェノキシエタノール反応液の製造方法
CN104926618A (zh) * 2015-06-04 2015-09-23 聂超 一种苯氧乙醇的制备方法
EP3266807A1 (de) * 2016-07-07 2018-01-10 Basf Se Verfahren zur herstellung von hochreinen phenylpolyethylenglykolethern
CN110642706A (zh) * 2019-10-08 2020-01-03 江苏东南纳米材料有限公司 一种高纯苯氧乙醇的制备方法
CN111454129A (zh) * 2020-04-29 2020-07-28 浙江皇马科技股份有限公司 一种高纯苯氧乙醇的制备方法
CN111718244A (zh) * 2020-07-28 2020-09-29 浙江皇马科技股份有限公司 化妆品用原料苯氧乙醇的制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fundamental Principles of Environmental Chemical Engineering", 30 June 2017, ISBN: 978-7-5603-6132-1, article WU, YINING ET AL.: "Regeneration of Adsorbents", pages: 225, XP009534056 *

Also Published As

Publication number Publication date
CN111718244B (zh) 2023-06-27
CN111718244A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2022022300A1 (zh) 化妆品用原料苯氧乙醇的制备工艺
US4692535A (en) Purification of propylene oxide
TWI698423B (zh) 2,2,4,4-四甲基-1,3-環丁二酮的合成方法
WO2020258542A1 (en) Method for producing taurine and method for removing impurity from reaction system for producing taurine
US11208380B2 (en) Process for the purification of caprolactam from a solution of crude caprolactam without organic solvent extraction
CN109608363A (zh) 一种纯化己二腈的方法
CN110922292A (zh) 一种氯甲烷的制备方法
KR100809877B1 (ko) 초고순도 알킬렌카보네이트의 정제 방법
CN111018660A (zh) 一种氯甲烷物料的分离方法
CN108148089A (zh) 一种四(二甲氨基)钛的制备方法
TW202110793A (zh) 二甲亞碸之純化方法
CN109456275A (zh) 一种1h-1,2,3-三氮唑的制备方法
CN109665998B (zh) 己内酰胺的精制方法和装置
CN111116306B (zh) 一种六氟苯的制备方法
CN102020586B (zh) 异氟尔酮腈的制备方法
CN112608242A (zh) 一种溶剂回用的葡甲胺生产工艺
CN112961111A (zh) 一种高纯度1-乙基-3-甲基咪唑乙基硫酸离子液体制备方法
CN114249480B (zh) 一种6,8-二氯辛酸乙酯的生产废水处理方法
CN110922295A (zh) 一种氯甲烷的分离方法
CN108558680B (zh) 一种生产二甘醇单-3-氨基丙基醚的方法
CN113735737B (zh) 一种对苯醌二肟的制备方法
CN117815848A (zh) 一种低共熔溶剂体系及其制备方法和在回收尾气中正丙胺的应用
CN117126067A (zh) 一种苯乙烯阻聚剂及在苯乙烯生产过程中的应用
CN106187947B (zh) 一种吗啉与乙烯脲的联合制备方法
CN115160136A (zh) 一种三氟乙酸乙酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849305

Country of ref document: EP

Kind code of ref document: A1