WO2022021816A1 - Acier résistant à la chaleur pour tuyau en acier et pièce coulée - Google Patents

Acier résistant à la chaleur pour tuyau en acier et pièce coulée Download PDF

Info

Publication number
WO2022021816A1
WO2022021816A1 PCT/CN2021/072875 CN2021072875W WO2022021816A1 WO 2022021816 A1 WO2022021816 A1 WO 2022021816A1 CN 2021072875 W CN2021072875 W CN 2021072875W WO 2022021816 A1 WO2022021816 A1 WO 2022021816A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
casting
resistant steel
steel
steel pipe
Prior art date
Application number
PCT/CN2021/072875
Other languages
English (en)
Chinese (zh)
Inventor
梅林波
孙林根
安春香
王煜
Original Assignee
上海电气电站设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气电站设备有限公司 filed Critical 上海电气电站设备有限公司
Priority to DE112021001054.9T priority Critical patent/DE112021001054T5/de
Priority to JP2022557133A priority patent/JP7428822B2/ja
Publication of WO2022021816A1 publication Critical patent/WO2022021816A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the invention belongs to the technical field of metal materials, and relates to a heat-resistant steel for steel pipes and castings.
  • the boiler in the pressure vessel is an energy conversion device.
  • the energy input to the boiler includes chemical energy and electrical energy in the fuel, and the boiler outputs steam, high-temperature water or organic heat carrier with certain thermal energy.
  • the steam turbine in the power machinery also known as the steam turbine, is a rotary steam power device.
  • the high-temperature and high-pressure steam passes through the fixed nozzle to become an accelerated airflow and then sprays onto the blades, so that the rotor equipped with the blade row rotates and does external work at the same time.
  • Boilers and steam turbines are the main equipment of modern thermal power plants.
  • Improving the steam temperature parameters of thermal power and coal-fired units can improve unit efficiency, reduce fossil fuel consumption, and achieve energy conservation and emission reduction.
  • the operating temperature of boilers and steam turbines is limited by the maximum service temperature of key components such as steel pipes such as boiler pipes, castings such as cylinders and valves in steam turbines.
  • High-temperature materials for boiler pipes, cylinders and valves in steam turbines have been developed from Cr-Mo steel to various 9% to 12% Cr ferritic steels.
  • T92/P92, etc. are currently available for high-temperature materials of existing steel pipes such as boiler pipes;
  • ZG13Cr9Mo2Co1NiVNbNB, etc. are currently available for high-temperature materials of existing castings such as cylinders and valves in steam turbines.
  • the maximum working temperature of these steel grades cannot exceed 630°C, and there is currently no heat-resistant steel for steel pipes and castings that can meet the working temperature of 650°C.
  • the purpose of the present invention is to provide a heat-resistant steel for steel pipes and castings, which can be made into boiler pipes and steam turbine castings, and can meet the requirements of pressure vessels or power machinery zero at 650°C and below. Component usage requirements.
  • a first aspect of the present invention provides a kind of heat-resistant steel for steel pipes and castings, which is composed of the following elements by mass percentage:
  • the impurities are selected from P (phosphorus), S (sulfur), Al (aluminum), Ti (titanium), Zr (zirconium), Cu (copper), Sn (tin), As (arsenic), Sb ( one or more elements of antimony).
  • the mass percentage content of the elements in the impurities meets the following requirements: P: ⁇ 0.020wt%, S: ⁇ 0.010wt%, Al: ⁇ 0.02wt%, Ti: ⁇ 0.02wt%, Zr: ⁇ 0.02wt%, Cu: ⁇ 0.15wt%, Sn: ⁇ 0.02wt%, As: ⁇ 0.02wt%, Sb: ⁇ 0.005wt%.
  • the Cr (chromium) equivalent should be ⁇ 8.5% according to Cr+6Si+4Mo+1.5W+11V+5Nb-40C-2Mn-4Ni-2Co-30N, and all The mass ratio of the B element to the N element is 0.65-2.40:1.
  • the heat-resistant steel for steel pipes and castings is composed of the following elements by mass percentage:
  • the mass percentage content of the elements in the impurities meets the following requirements: P: ⁇ 0.020wt%, S: ⁇ 0.005wt%, Al: ⁇ 0.01wt%, Ti: ⁇ 0.01wt%, Zr: ⁇ 0.01wt% %, Cu: ⁇ 0.10wt%, Sn: ⁇ 0.01wt%, As: ⁇ 0.01wt%, Sb: ⁇ 0.003wt%.
  • the Cr (chromium) equivalent should be ⁇ 8.0% according to Cr+6Si+4Mo+1.5W+11V+5Nb-40C-2Mn-4Ni-2Co-30N, and The mass ratio of the B element to the N element is 0.75-2.10:1.
  • element C ensures hardenability.
  • C combines with other elements to form M23C6 carbides at the grain boundaries and martensitic lath boundaries, and form MX-type carbonitrides inside the martensitic laths, which can improve the high temperature strength.
  • C is also an indispensable element to suppress the formation of harmful phases ⁇ -ferrite and BN.
  • the C content should be limited to 0.08 to 0.14%. Further, the optimum content of element C should be limited to 0.08-0.13%.
  • Si acts as a deoxidizer for molten steel, and works together with Cr to improve the oxidation resistance of the steel.
  • the amount of Si added is too large, the deoxidized product SiO2 will remain in the steel, reducing the purity and toughness of the molten steel.
  • Si also promotes the precipitation of the intermetallic compound Laves phase and reduces the creep plasticity. Si increases temper brittleness when used at high temperatures. Therefore, the Si content should be limited to 0.20 to 0.40%. Further, the optimum content of Si element should be limited to 0.20-0.30%.
  • Mn element can remove oxygen and sulfur elements in molten steel, improve the hardenability and strength of steel, inhibit the formation of ⁇ -ferrite and BN, and promote M23C6 Carbide precipitation. But with the increase of Mn content, the creep rupture strength decreases. Therefore, the content of Mn element should be limited to 0.30-0.60%. Further, the optimum content of Mn element should be limited to 0.40-0.50%.
  • Ni element can increase the hardenability of the steel, inhibit the formation of ⁇ -ferrite and BN, and improve the strength and toughness at room temperature.
  • the addition of Ni element is not conducive to the high temperature creep properties of the steel and increases the temper brittleness of the steel.
  • the addition amount of Ni should be as low as possible, preferably not more than 0.20%, and preferably not more than 0.10%.
  • Cr element can improve oxidation resistance and corrosion resistance, and improve high-temperature strength by precipitating M23C6 carbides.
  • the content of Cr element in the heat-resistant steel of the present invention is at least 9.00%. However, if it exceeds 10.00%, ⁇ -ferrite is easily formed, and the high-strength temperature and toughness are lowered. Therefore, the content of Cr element should be limited to 9.00-10.00%. Further, the optimum content of Cr element should be limited to 9.00-9.60%.
  • the Cr equivalent (Cr+6Si+4Mo+1.5W+11V+5Nb-40C-2Mn-4Ni-2Co-30N) of the heat-resistant steel of the present invention is limited to less than 8.5%, more preferably less than 8.0%. Precipitation of delta-ferrite can be avoided.
  • Mo element can improve the hardenability, suppress temper brittleness, promote the dispersion and precipitation of M23C6 carbides, and improve the tensile strength and creep rupture strength of the steel.
  • excessive Mo element will promote the precipitation of ⁇ -ferrite and intermetallic compound Laves phase, and significantly reduce the toughness. Therefore, the content of Mo element is limited to 0.55 to 0.80%. Further, the optimum content of Mo element should be limited to 0.60-0.75%.
  • W element is very effective in suppressing the coarsening of M23C6 carbides, and its effect exceeds that of Mo element, which can significantly improve the creep rupture strength.
  • the Co element can suppress the precipitation of ⁇ -ferrite while solid solution strengthening.
  • Co element interacts with Mo element and W element, which obviously improves the high temperature strength and improves the toughness of the steel.
  • the content of Co element should not be too high.
  • the content of Co element should be limited to 2.80-3.30%. Further, the optimum content of Co element should be limited to 2.90-3.20%.
  • the V element can improve the tensile strength.
  • fine carbonitrides of the V element are formed inside the martensitic lath to increase the creep rupture strength. Adding a certain amount of V element can refine the grains and improve the toughness. However, if the addition amount is too large, the toughness will be lowered, and the carbon will be fixed excessively, resulting in a decrease in the precipitation amount of M23C6 carbides. Therefore, its content is 0.15 to 0.25%. The expected value should be 0.18-0.25%.
  • Nb element like V element, can improve tensile strength and creep rupture strength.
  • Nb element and C element generate fine NbC, which can refine grains and improve toughness.
  • the MX carbonitride formed by Nb element and V element has the effect of improving high temperature strength, and its minimum content should be 0.03%.
  • carbon is excessively fixed to reduce the precipitation amount of M23C6 carbides, resulting in a decrease in high temperature strength. Therefore, it needs to be limited to 0.03 to 0.08%.
  • the expected value should be 0.04-0.07%.
  • N element can precipitate VN nitride with V element, and the solid solution state is combined with Mo element and W element to improve high temperature strength, and the minimum content should be 0.005%.
  • the addition exceeds 0.015%, the plasticity will be impaired.
  • B element it is easy to form eutectic Fe2B and BN, which damages the creep performance and toughness of steel. Therefore, the N element content is limited to 0.006 to 0.015%. Further, the optimum content of N element should be limited to 0.007-0.014%.
  • element B has the effect of strengthening grain boundaries, has the effect of inhibiting the coarsening of M23C6 carbides, and improves high-temperature strength.
  • the B element content is limited to 0.009 to 0.015%.
  • the optimum content of element B should be limited to 0.010-0.015%.
  • the mass ratio of B element to N element should be controlled to be 0.65-2.40:1, more preferably, 0.75-2.10:1.
  • the above-mentioned unavoidable impurities are inclusion elements that are inevitably contaminated in the steel smelting process.
  • the content of these elements should be as low as possible. If the steelmaking raw materials are strictly screened, the cost will rise. Therefore, the P content should be limited to not higher than 0.020%, the S content to be not higher than 0.010%, and the Cu content to be not higher than 0.15%.
  • other inclusion elements such as Al, Ti, Zr, Sn, As, Sb, etc. have adverse effects on the mechanical properties of this heat-resistant steel, and their content should be reduced as much as possible.
  • the second aspect of the present invention provides a method for preparing a steel pipe.
  • the heat-resistant steel is mixed with raw materials according to the element ratio, and then smelted, and firstly prepared by any one of continuous casting, die casting, hot rolling or hot forging.
  • the tube blank is then made into a steel tube by any one of hot rolling, hot extrusion, hot expansion, cold drawing, cold rolling or forging and boring, and then the steel tube is normalized or quenched and then tempered to obtain .
  • the temperature of the normalizing or quenching is 1070-1160°C.
  • the tempering includes at least one time, and the tempering temperature is 740-790°C.
  • a third aspect of the present invention provides a method for preparing a casting.
  • the heat-resistant steel is mixed with raw materials according to the element ratio, smelted and casted to obtain a casting, and then the casting is normalized or quenched and then tempered.
  • the temperature of the normalizing or quenching is 1070-1160°C.
  • the tempering includes at least one time, and the tempering temperature is 730-780°C.
  • a fourth aspect of the present invention provides the use of the above heat-resistant steel or steel pipe in a pressure vessel.
  • the pressure vessel is a boiler tube.
  • a fifth aspect of the present invention provides the use of the above-mentioned heat-resistant steel or casting in a power machine.
  • the power machine is a steam turbine.
  • the smelting includes alloy smelting and refining processes.
  • the alloy smelting and refining processes in the above-mentioned smelting are all well-known technical processes in the field of steel manufacturing.
  • the heat-resistant steel for steel pipes and castings provided by the present invention can obtain steel pipes and castings with excellent performance through the preferred element components and preparation steps thereof.
  • Co element is added, the ratio of B and N is adjusted, the content of Cr, Mo and B elements is increased, and the content of Nb, N and Ni elements is reduced.
  • the content of Si and W elements has been more strictly limited, and the limit of impurity elements Cu, Sn, As, and Sb has been increased; compared with the existing casting material ZG13Cr9Mo2Co1NiVNbNB, W element has been added, and the ratio of B and N has been adjusted.
  • the contents of Co and B elements are increased, the contents of Mn, Mo, N and Ni elements are decreased, and the limits of impurity elements Ti, Zr, Cu, Sn, As, and Sb are increased.
  • the invention provides a heat-resistant steel for steel pipes and castings, which improves the high-temperature creep rupture strength and oxidation resistance, which will increase the operating temperature, thereby improving the thermal efficiency of the generator set and reducing coal consumption and carbon dioxide emissions.
  • the material grade is abbreviated as TB4 (small-diameter pipe)/PB4 (large-diameter pipe), and the material grade is abbreviated as CB4 when used as a casting material.
  • the heat-resistant steel for steel pipes and castings provided by the present invention can be used to prepare pressure vessels and power machinery, especially boiler pipes and steam turbine castings. It has good high temperature creep rupture strength and oxidation resistance in the environment, and can meet the requirements of boilers and steam turbines with a working temperature of 650 °C and below.
  • each component is composed of the following elements by mass percentage:
  • the mass percentage contents of the elements in the impurities are: P: 0.008wt%, S: 0.003wt%, Al: 0.01wt%, Ti: 0.003wt%, Zr: 0.001wt%, Cu: 0.05wt% , Sn: 0.001wt%, As: 0.001wt%, Sb: 0.001wt%.
  • the Cr equivalent is 7.62%.
  • the mass ratio of B element to N element is 1:1.
  • smelting is carried out, that is, alloy smelting and refining are carried out in sequence, and then die-casting into a tube blank. That is, the steel pipe sample 1# is obtained.
  • the normalizing temperature is 1100°C
  • the tempering includes one time
  • the tempering temperature is 780°C.
  • Steel tube sample 1# is a boiler tube.
  • each component is composed of the following elements by mass percentage:
  • the mass percentage contents of the elements in the impurities are: P: 0.012wt%, S: 0.005wt%, Al: 0.01wt%, Ti: 0.005wt%, Zr: 0.001wt%, Cu: 0.06wt% , Sn: 0.001wt%, As: 0.002wt%, Sb: 0.0015wt%.
  • the Cr equivalent is 6.7%.
  • the mass ratio of B element to N element is 1.4:1.
  • smelting is carried out, that is, alloy smelting and refining are carried out in sequence, and then cast into castings.
  • the castings are normalized and tempered to obtain casting sample 1*.
  • the normalizing temperature is 1140°C
  • the tempering includes 2 times
  • the tempering temperature is 755°C.
  • Casting sample 1* is a steam turbine valve casing casting.
  • Example 1 Example 2 C 0.10 0.12 Si 0.30 0.25 Mn 0.50 0.45 Cr 9.30 9.60
  • Example 1 Example 2 P 0.008 0.012 S 0.003 0.005 Al 0.01 0.01 Ti 0.003 0.005 Zr 0.001 0.001 Cu 0.05 0.06 Sn 0.001 0.001 As 0.001 0.002 Sb 0.001 0.0015
  • the steel pipe sample 1# obtained in Example 1 and the casting sample 1* obtained in Example 2 were tested for creep rupture strength according to the national standard GB/T 2039, and then extrapolated according to the national standard GB/T 2039.
  • the method deduces the creep rupture strength limit R u100000h/650°C at 650°C/100,000 hours, and compares it with the creep rupture strength of T92/P92 and ZG13Cr9Mo2Co1NiVNbNB at 650°C/100,000 hours respectively.
  • the results are as follows shown in Table 4.
  • the samples were placed in a water vapor environment of 620°C/650°C and 27MPa flowing for a maximum time of 2000h, and the weight gain of each sample during this period was tested. The smaller the oxidation weight gain, the better the oxidation resistance of the material.
  • test results show that at the same temperature, the oxidation resistance of steel pipe sample 1# is significantly better than that of T92/P92, and the oxidation resistance of casting sample 1* is significantly better than that of ZG13Cr9Mo2Co1NiVNbNB.
  • the oxidation weight gain of steel pipe sample 1# is similar to that of T92/P92 at 620°C, and the oxidation weight gain of casting sample 1* is similar to that of ZG13Cr9Mo2Co1NiVNbNB at 620°C similar. It shows that the steel pipes and castings prepared from the heat-resistant steel of the present invention can basically meet the needs of long-term use under the working condition of 650°C without using a surface protective coating to resist oxidation.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un acier résistant à la chaleur pour un tuyau en acier et une pièce coulée, constitué des éléments suivants : 0,08 à 0,14 % en poids de C, 0,20 à 0,40 % en poids de Si, 0,30 à 0,60 % en poids de Mn, 9,00 à 10,00 % en poids de Cr, 2,80 à 3,30 % en poids de Co, 1,65 à 1,90 % en poids de W, 0,55 à 0,80 % en poids de Mo, 0,15 à 0,25 % en poids de V, 0,03 à 0,08 % en poids de Nb, 0,006 à 0,015 % en poids de N, 0,009 à 0,015 % en poids de B, ≤ 0,20 % en poids de Ni, et le reste étant du Fe et des impuretés inévitables. Un procédé de préparation du tuyau en acier comprend les étapes consistant à : pour l'acier résistant à la chaleur, prendre des matières premières selon un rapport d'éléments, mélanger puis faire fondre ; tout d'abord, fabriquer une ébauche de tuyau à l'aide d'une étape quelconque parmi la coulée continue, la coulée sous pression, le laminage à chaud ou le forgeage à chaud ; puis transformer l'ébauche de tuyau en un tuyau en acier à l'aide d'une étape quelconque parmi le laminage à chaud, l'extrusion à chaud, l'expansion à chaud, le tréfilage à froid, le laminage à froid ou l'alésage - forgeage ; puis normaliser ou tremper le tuyau en acier et ensuite soumettre à un revenu pour obtenir un tuyau en acier fini. Un procédé de préparation de la pièce coulée selon la présente invention comprend les étapes consistant à : pour l'acier résistant à la chaleur, prendre des matières premières selon un rapport d'éléments, mélanger puis faire fondre ; couler ensuite pour obtenir une pièce coulée ; puis normaliser ou tremper la pièce coulée et ensuite la soumettre à un revenu pour obtenir une pièce coulée finie.
PCT/CN2021/072875 2020-07-30 2021-01-20 Acier résistant à la chaleur pour tuyau en acier et pièce coulée WO2022021816A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021001054.9T DE112021001054T5 (de) 2020-07-30 2021-01-20 Hitzebeständiger Stahl für Stahlrohre und Gussteile
JP2022557133A JP7428822B2 (ja) 2020-07-30 2021-01-20 鋼管及び鋳造品用耐熱鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010749897.3 2020-07-30
CN202010749897.3A CN114058939A (zh) 2020-07-30 2020-07-30 一种钢管和铸件用耐热钢

Publications (1)

Publication Number Publication Date
WO2022021816A1 true WO2022021816A1 (fr) 2022-02-03

Family

ID=80037092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072875 WO2022021816A1 (fr) 2020-07-30 2021-01-20 Acier résistant à la chaleur pour tuyau en acier et pièce coulée

Country Status (4)

Country Link
JP (1) JP7428822B2 (fr)
CN (1) CN114058939A (fr)
DE (1) DE112021001054T5 (fr)
WO (1) WO2022021816A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836689A (zh) * 2022-04-25 2022-08-02 宁国东方碾磨材料股份有限公司 一种高铬耐磨钢球及其制备方法
CN114959431A (zh) * 2022-06-02 2022-08-30 邯郸慧桥复合材料科技有限公司 一种大型半自磨机衬板及其制造方法
CN116676470A (zh) * 2023-08-03 2023-09-01 成都先进金属材料产业技术研究院股份有限公司 一种耐热钢无缝钢管及其热处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828010A2 (fr) * 1996-09-10 1998-03-11 Mitsubishi Heavy Industries, Ltd. Acier de moulage avec une résistance méchanique et une ténacité élevées, et résistant à la chaleur
EP1001044A2 (fr) * 1997-07-16 2000-05-17 Mitsubishi Heavy Industries, Ltd. Acier coulé thérmoresistant
JP2009293063A (ja) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd 高Crフェライト系耐熱鋼材の製造方法
CN102560275A (zh) * 2010-12-28 2012-07-11 株式会社东芝 耐热铸钢及其制造方法、汽轮机的铸造部件及其制造方法
CN110106436A (zh) * 2019-03-18 2019-08-09 东北大学 一种耐高温耐蒸汽耐腐蚀锅炉用钢及其制备方法
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759304B2 (ja) 2011-08-17 2015-08-05 株式会社日本製鋼所 TIG溶接またはサブマージアーク溶接による高Cr鋼製タービンロータの多層肉盛溶接部およびその製造方法
CN104726779B (zh) 2015-04-21 2016-09-14 武汉科技大学 一种高Cr铁素体耐热钢及其制备方法
JP6575392B2 (ja) 2015-05-19 2019-09-18 日本製鉄株式会社 高Crフェライト系耐熱鋼
CN105695881B (zh) * 2016-04-18 2017-06-16 东北大学 一种650℃超超临界铸件用耐热钢

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828010A2 (fr) * 1996-09-10 1998-03-11 Mitsubishi Heavy Industries, Ltd. Acier de moulage avec une résistance méchanique et une ténacité élevées, et résistant à la chaleur
EP1001044A2 (fr) * 1997-07-16 2000-05-17 Mitsubishi Heavy Industries, Ltd. Acier coulé thérmoresistant
JP2009293063A (ja) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd 高Crフェライト系耐熱鋼材の製造方法
CN102560275A (zh) * 2010-12-28 2012-07-11 株式会社东芝 耐热铸钢及其制造方法、汽轮机的铸造部件及其制造方法
CN110106436A (zh) * 2019-03-18 2019-08-09 东北大学 一种耐高温耐蒸汽耐腐蚀锅炉用钢及其制备方法
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836689A (zh) * 2022-04-25 2022-08-02 宁国东方碾磨材料股份有限公司 一种高铬耐磨钢球及其制备方法
CN114959431A (zh) * 2022-06-02 2022-08-30 邯郸慧桥复合材料科技有限公司 一种大型半自磨机衬板及其制造方法
CN114959431B (zh) * 2022-06-02 2023-02-28 邯郸慧桥复合材料科技有限公司 一种大型半自磨机衬板及其制造方法
CN116676470A (zh) * 2023-08-03 2023-09-01 成都先进金属材料产业技术研究院股份有限公司 一种耐热钢无缝钢管及其热处理方法
CN116676470B (zh) * 2023-08-03 2023-12-01 成都先进金属材料产业技术研究院股份有限公司 一种耐热钢无缝钢管及其热处理方法

Also Published As

Publication number Publication date
JP7428822B2 (ja) 2024-02-06
JP2023530808A (ja) 2023-07-20
CN114058939A (zh) 2022-02-18
DE112021001054T5 (de) 2023-02-02

Similar Documents

Publication Publication Date Title
JP4561834B2 (ja) 低合金鋼
WO2022021816A1 (fr) Acier résistant à la chaleur pour tuyau en acier et pièce coulée
KR20150023935A (ko) 높은 사용 온도에서 우수한 크리프 강도 및 내산화성 및 내식성을 갖는 오스테나이트계 강 합금
JPH0621323B2 (ja) 耐食、耐酸化性に優れた高強度高クロム鋼
WO2021147810A1 (fr) Acier moulé résistant à la chaleur, son procédé de préparation et son utilisation
JP2001073066A (ja) 高温強度と靱性に優れた低Crフェライト系耐熱鋼およびその製造方法
JP5137934B2 (ja) フェライト系耐熱鋼
JP3982069B2 (ja) 高Crフェライト系耐熱鋼
JPH062927B2 (ja) 耐食、耐酸化性に優れた高強度低合金鋼
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
JPS5935427B2 (ja) 連続鋳造設備に使用するロ−ル材料
JPH11209851A (ja) ガスタービンディスク材
JP3531228B2 (ja) 高Crフェライト系耐熱鋼
JPS616256A (ja) 12%Cr耐熱鋼
JP5793556B2 (ja) 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法
JPH1161342A (ja) 高Crフェライト鋼
JPS6013056A (ja) マルテンサイト系耐熱鋼
JP3662151B2 (ja) 耐熱鋳鋼及びその熱処理方法
JP3775371B2 (ja) 低合金鋼
JPH11350076A (ja) 析出強化型フェライト系耐熱鋼
JP4284010B2 (ja) 耐熱鋼
JP2001152293A (ja) 高Crフェライト系耐熱鋼
JPH07166303A (ja) 耐応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼とその製造方法
KR100290653B1 (ko) 650℃급 증기터빈 로터용15Cr 26Ni 1.25Mo 내열강
JP6289873B2 (ja) 析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17909826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022557133

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21848145

Country of ref document: EP

Kind code of ref document: A1