WO2022021507A1 - 钛基合金粉末及制备方法、钛基合金制件的制备方法 - Google Patents

钛基合金粉末及制备方法、钛基合金制件的制备方法 Download PDF

Info

Publication number
WO2022021507A1
WO2022021507A1 PCT/CN2020/110527 CN2020110527W WO2022021507A1 WO 2022021507 A1 WO2022021507 A1 WO 2022021507A1 CN 2020110527 W CN2020110527 W CN 2020110527W WO 2022021507 A1 WO2022021507 A1 WO 2022021507A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
powder
based alloy
alloy powder
hydrogenated
Prior art date
Application number
PCT/CN2020/110527
Other languages
English (en)
French (fr)
Inventor
路新
徐伟
刘博文
吴渊
于爱华
张嘉振
张策
潘宇
曲选辉
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to EP20946867.7A priority Critical patent/EP4012060A4/en
Publication of WO2022021507A1 publication Critical patent/WO2022021507A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the technical field of metal materials and preparation thereof, in particular to a titanium-based alloy powder and a preparation method thereof, and a preparation method of a titanium-based alloy part.
  • Titanium is an important strategic metal widely used in aerospace, biomedical and military materials.
  • the use of additive manufacturing technology to prepare titanium and its alloy materials can meet the needs of free design, lightweight and rapid development, and can effectively solve the shortcomings of traditional methods of titanium alloy processing difficulty and high cost.
  • the atomized powder required for additive manufacturing inevitably has defects such as hollow powder, low yield (the yield of fine powder is generally lower than 35%), and the disadvantage of high cost (with Ti-6Al-4V powder as the For example, the price of aerosolized spherical powder is generally higher than 2.5 million yuan / ton). Therefore, it is of great significance to develop low-cost, high-performance titanium-based alloy powders suitable for additive manufacturing processes.
  • titanium-based alloys have the problem of not being able to combine high strength and high plasticity.
  • Ti-6Al-4V alloy has high strength (>1000MPa), but its plasticity is lower than 10%, and pure titanium has higher Plasticity (>25%), but its strength is low (400 ⁇ 600MPa). Therefore, how to prepare titanium-based alloys with both high strength and high plasticity is the direction of unremitting efforts in the manufacture of titanium and its alloys.
  • This patent proposes to use hydrogenation dehydrogenation (HDH) titanium-based alloy powder to prepare powder suitable for selective laser melting process, and add trace amounts of N, O and other interstitial atoms and alloying elements to improve the strength and plasticity index of titanium-based alloy. See report.
  • HDH hydrogenation dehydrogenation
  • the main purpose of the present invention is to provide a titanium-based alloy powder and a preparation method thereof, and a preparation method of a titanium-based alloy part.
  • the titanium-hydrogen powder is obtained by shaping and micro-alloying, which significantly improves the sphericity and flow properties of the non-spherical HDH titanium powder, meets the powder requirements of selective laser melting process and has low preparation cost.
  • the prepared titanium-based alloy parts have ultra-fine grains.
  • the microstructure and nano-scale non-uniform structure have the characteristics of high strength and high plasticity at the same time, so as to solve the technical problems of insufficient fluidity and high cost of titanium-based alloy powder in the prior art.
  • a titanium-based alloy powder is provided.
  • interstitial atoms are N or O atoms or a combination of the two.
  • alloy elements include main group II-VI elements and transition elements.
  • the main group II-VI elements include at least one of Si, Al, P, Ga, In, Sn, Pb, Ge, As, Sb, Te, Mg and Ca; the transition elements include V, At least one of Mn, Fe, Co, Ni, Cu, Zn, Au, Ag, Pd, Pt, Cd, Ru, Cr, W, Mo, Y, and rare earth elements.
  • the alloy element includes at least one of Al and V.
  • the preparation method of the titanium-based alloy powder comprises the following steps:
  • the interstitial atoms of N and O are fully dissolved; at the same time, the titanium powder is softened at high temperature, and under the action of the grinding ball, the hydrogenated and dehydrogenated titanium powder with irregular morphology is spheroidized, and the particle size is uniform, which enhances its flow.
  • the mixed powder after alloying and shaping is cooled to room temperature with the furnace under the protective atmosphere of argon.
  • step S1 the tube furnace rotates at a rotational speed of 10-60 rad/min; the particle size of the hydrogenated titanium powder is -325 mesh; the mass of the grinding ball and the hydrogenated titanium powder The ratio is 0.5-2:1; or the mass ratio of the grinding ball to the hydrogenated titanium powder and the alloy element mixed powder is 0.5-2:1.
  • step S2 the tube furnace is heated to 140-200°C at a heating rate of 5-10°C/min, and kept for 30min-3h.
  • step S2 the volume fraction of the gas containing interstitial atoms is 0-15 vol.%.
  • the optimal range of the volume fraction of the interstitial gas containing the interstitial gas is comprehensively determined according to the heating rate, holding temperature and time set in the present invention, of course, it can be adjusted accordingly in actual operation.
  • step S2 the protective gas is argon.
  • step S3 the tube furnace is heated to 450-600°C at a heating rate of 5-10°C/min, and kept for 30min-3h; the protective gas is argon.
  • a preparation method of a titanium-based alloy part is provided.
  • the preparation method of the titanium-based alloy part comprises the following steps:
  • Titanium-based alloy parts were prepared by selective laser melting 3D printing equipment.
  • the invention innovatively improves the sphericity and flow properties of the non-spherical HDH titanium powder through high-temperature ball milling, and obtains alloy powder suitable for the selective laser melting process, thereby reducing the cost of its raw materials. Alloying elements further improve the mechanical properties of low-cost titanium-based alloys, which have important application prospects for the entire metal material field.
  • the invention uses high temperature ball milling to shape non-spherical hydrodehydrogenation (HDH) titanium powder, and microalloys N, O interstitial elements and alloy elements such as Al and V during the shaping process, thereby significantly improving the SLM titanium base parts. mechanical properties.
  • HDH non-spherical hydrodehydrogenation
  • the invention innovatively micro-alloys interstitial atoms and alloying elements to the titanium-based powder in the high-temperature shaping process of the powder, thereby significantly improving the mechanical properties of the SLM titanium-based parts, especially the resistance of Ti 98.5 Al 0.5 O 1.0 titanium-based alloys.
  • the tensile strength reaches 1500MPa, while the elongation exceeds 15%, and the comprehensive tensile properties are significantly better than the existing titanium-based alloys.
  • the preparation of nearly spherical titanium-based alloy powder can be realized by alloying and high-temperature shaping of hydrogenation dehydrogenation powder, which is not only suitable for the cost reduction and alloying treatment of selective laser melting powder, but also suitable for for other powder metallurgy preparation methods.
  • the prepared titanium-based alloy parts Under the action of microalloying of interstitial atoms such as N and O and elements such as Al and V, the prepared titanium-based alloy parts have an ultra-fine grain structure and a nano-scale non-uniform structure. The parts have the characteristics of high strength and high plasticity.
  • the invention provides a preparation method of high-strength and high-plastic titanium alloy parts based on high-temperature shaping and micro-alloying treatment of irregular titanium powder.
  • the shaping powder meets the requirements of selective laser melting process and can be widely used in aerospace, biomedical and military materials.
  • Fig. 1a is a scanning electron microscope photo of the titanium-based alloy powder prepared in the embodiment of the present invention before shaping;
  • Fig. 1b is a scanning electron microscope photograph of the titanium-based alloy powder prepared in the embodiment of the present invention after shaping;
  • FIG. 2a is a Möbius strip product prepared by selective laser melting (SLM) in an embodiment of the present invention
  • Fig. 2b is the emblem part of Beijing University of Science and Technology prepared by selective laser melting (SLM) in the embodiment of the present invention
  • Fig. 3 is the tensile curve diagram of the article prepared in the embodiment of the present invention.
  • FIG. 4 is a performance comparison diagram of the parts prepared in the embodiment of the present invention.
  • the invention discloses an interstitial atom-strengthened titanium-based alloy powder.
  • X are interstitial atoms, specifically, interstitial atoms are N or O atoms or a combination of the two.
  • the present invention also discloses a preparation method of interstitial atom-strengthened titanium-based alloy powder, which specifically comprises the following steps:
  • the present invention discloses a titanium-based alloy part and a preparation method for the titanium-based alloy part, specifically: sieving the interstitial atom-strengthened titanium-based alloy powder prepared by the above method to obtain a particle size of - 500 mesh titanium-based alloy powder, and then use selective laser melting 3D printing equipment to prepare titanium-based alloy parts.
  • the invention also discloses a titanium-based alloy powder strengthened by interstitial atoms and alloy elements.
  • the alloying element M is one or more of Al and V.
  • the invention also discloses a preparation method of the titanium-based alloy powder strengthened by interstitial atoms and alloy elements, which specifically includes the following steps:
  • S1 Weigh the non-spherical hydrogenated titanium powder, alloy element powder and grinding ball, and put them into a rotary tube furnace, and the tube furnace rotates at a speed of 10-60 rad/min.
  • the particle size of the hydrogenated titanium powder is -325 mesh
  • the mass ratio of the grinding ball to the hydrogenated titanium powder and the mixed powder of alloy elements is 0.5-2:1.
  • the present invention discloses a titanium-based alloy part and a preparation method of the titanium-based alloy part. Specifically, the alloyed titanium-based alloy powder prepared by the above method is sieved to obtain a particle size of -500 mesh. Titanium-based alloy powder, and then use selective laser melting 3D printing equipment to prepare titanium-based alloy parts.
  • hydrodehydrogenated titanium powder As raw material, the particle size of hydrodehydrogenated titanium powder is -325 mesh. Put titanium powder and zirconia grinding balls into a tubular quartz boat with a mass ratio of 1:1, put them into a rotary sintering furnace, heat up to 160 °C at 5 °C/min, and keep the temperature for 30 minutes. The whole process is heated by argon and oxygen. (Oxygen volume fraction 10vol%) mixed atmosphere. After the heat preservation, the atmosphere was changed to a pure argon protective atmosphere, and the heating rate was increased to 450 °C at a heating rate of 5 °C/min, and the temperature was maintained for 60 minutes to promote the full solution of O in the powder.
  • the alloyed titanium-based alloy powder is sieved to obtain -500 mesh powder.
  • complex titanium-based parts can be prepared without defects such as bending, as shown in Figure 2a and Figure 2b shown.
  • hydrodehydrogenated titanium powder As raw material, the particle size of hydrodehydrogenated titanium powder is -325 mesh. Put titanium powder and zirconia grinding balls into a tubular quartz boat with a mass ratio of 0.5:1, put them into a rotary sintering furnace, heat up to 200 °C at 10 °C/min, and keep the temperature for 3 hours. The whole process is carried out in argon and nitrogen. (nitrogen volume fraction 10 vol%) mixed atmosphere. After the heat preservation, the atmosphere was changed to a pure argon protective atmosphere, and the heating rate was increased to 600 °C at a heating rate of 10 °C/min, and the temperature was maintained for 3 hours to promote the full solution of N in the powder.
  • Embodiments 3 to 12 respectively disclose a Ti a K b interstitial atom-alloyed titanium-based alloy powder and a product, and the same preparation process is adopted as that of embodiment 1, the difference lies in the alloy composition of each alloy powder Different, the alloy compositions of the Ti a K b -based interstitial atom-alloyed titanium-based alloy powders in Examples 1 to 12 are summarized, as shown in Table 1 for details.
  • Example 1 due to the solid solution of a small amount of O interstitial atoms, the mechanical properties of the prepared pure Ti parts were significantly improved, and the tensile strength reached 939.5MPa, and the elongation was 939.5MPa. The rate was 18.1%. Its strength is about 1.5 times of grade 4 pure titanium (Grade 4 CP-Ti, 550MPa), reaching the strength of forged Ti-6Al-4V (TC4) (923.4MPa), and its plasticity is comparable to that of grade 4 pure titanium (18%). Basically the same, about 2 times (10.7%) of Ti-6Al-4V.
  • first-grade pure titanium Compared with selective laser melting of titanium (SLM-Ti), its strength is increased by about 150MPa without substantially reducing its plasticity.
  • second-grade pure titanium Compared with selective laser melting of titanium (SLM-Ti), its strength is increased by about 150MPa without substantially reducing its plasticity.
  • second-grade pure titanium Compared with selective laser melting of titanium (SLM-Ti), its strength is increased by about 150MPa without substantially reducing its plasticity.
  • second-grade pure titanium Compared with other pure titanium, such as first-grade pure titanium (Grade 1 CP-Ti, 240MPa, 24%), second-grade pure titanium (Grade 2 CP-Ti, 345MPa, 20%), third-grade pure titanium (Grade 3 CP-Ti, 345MPa, 20%) -Ti, 450MPa, 20%) and other ⁇ -type titanium alloys, such as TA19 (Ti-6Al-2Sn-4Zr-2Mo-0.1Si, 930MPa, 11%),
  • the particle size of hydrogenation dehydrogenation titanium powder is -325 mesh
  • the average particle size of Al powder is 2 ⁇ m
  • zirconia grinding balls are loaded into a tubular quartz boat together, and the mass ratio of ball to material is 1 : 1, put it into a rotary sintering furnace, heat up to 200°C at 5°C/min, and keep the temperature for 30min.
  • the whole process is carried out in a mixed atmosphere of argon and oxygen (oxygen volume fraction 8vol%). After the insulation, the atmosphere was replaced with a pure argon protective atmosphere, and the temperature was raised to 500°C at a heating rate of 5°C/min.
  • the hydrogenation dehydrogenation powder is spheroidized with irregular morphology and uniform in particle size, and the alloyed titanium-based alloy powder is obtained by cooling.
  • the particle size of hydrogenation dehydrogenation titanium powder is -325 mesh
  • the average particle size of Al powder is 2 ⁇ m
  • zirconia grinding balls are loaded into a tubular quartz boat together, and the mass ratio of balls to materials is 0.5:1, put it into a rotary sintering furnace, heat up to 200 °C at 10 °C/min, and keep it for 3 h.
  • the whole process is carried out in a mixed atmosphere of argon and nitrogen (nitrogen volume fraction 10 vol%).
  • the atmosphere was changed to a pure argon protective atmosphere, and the heating rate was increased to 600 °C at a heating rate of 10 °C/min, and the temperature was maintained for 3 hours to promote the full solution of N in the powder.
  • hydrogenation under the combined action of mechanical force and high temperature, hydrogenation
  • the irregular shape of the dehydrogenated powder is spheroidized, the particle size is uniform, and the alloyed titanium-based alloy powder is obtained by cooling, and the powder is nearly spherical, and the irregular acute angle disappears.
  • Embodiments 15 to 20 respectively disclose a Ti a K b M c interstitial atom-alloyed titanium-based alloy powder and a product, and the same preparation process as that of The alloy compositions are different.
  • the alloy compositions of the Ti a K b Mc system interstitial atom-alloyed titanium-based alloy powders in Examples 13 to 20 are summarized, as shown in Table 3.
  • Example 13 the free diffusion of interstitial O atoms is hindered under the action of Al alloying elements, thereby forming a nano-scale non-uniform structure, which further improves the mechanical properties of the prepared parts.
  • the tensile strength is 1495MPa and the elongation is 15.1%.
  • the oxygen element continues to increase, the strength of the part increases, but the plasticity decreases sharply.
  • 1.5wt% O is added, the strength is 1595MPa and the elongation is 6.1 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

提供了一种钛基合金粉末及制备方法、钛基合金制件的制备方法,该钛基合金粉末的组成为Ti aX bM c,其中:0<a<100,0<b≤5,0≤c≤1,且a+b+c=100;X为间隙原子;M为至少一种合金元素;所述钛基合金粉末为采用间隙原子和/或合金元素在一定温度下对氢化脱氢钛粉进行整形及微合金化得到,所制备的钛基合金制件具有超细晶组织结构及纳米尺度非均匀结构,同时具有高强度、高塑性的特点。通过高温整形,显著提高非球形HDH钛粉球形度以及流动性能,得到适配选择性激光熔化工艺的合金粉末,同时微合金化间隙原子及合金元素从而显著提高钛基合金制件的力学性能,对于整个金属材料领域具有重要的应用前景。

Description

钛基合金粉末及制备方法、钛基合金制件的制备方法 技术领域
本发明涉及金属材料及其制备技术领域,具体涉及一种钛基合金粉末及制备方法、钛基合金制件的制备方法。
背景技术
钛是一种重要的战略金属,广泛应用于航空航天、生物医用以及军工材料领域。利用增材制造技术制备钛及其合金材料可以满足自由设计、轻量化以及快速研制的需求,可以有效解决传统方式钛合金加工困难,成本较高的缺点。然而,增材制造所需的雾化粉末不可避免的存在空心粉、收得率低(细粉收得率普遍低于35%)等缺陷以及造价昂贵的劣势(以Ti-6Al-4V粉末为例,气雾化球形粉末价格普遍高于250万元/吨)。因此,开发适合增材制造工艺的低成本高性能钛基合金粉末具有重大意义。
另一方面,目前常用的钛基合金存在不能兼具高强度与高塑性的问题,如Ti-6Al-4V合金具有高强度(>1000MPa),但是其塑性低于10%,纯钛具有较高塑性(>25%),但是其强度较低(400~600MPa)。因此,如何制备兼具高强度高塑性的钛基合金是钛及其合金制造不懈努力的方向。目前关于通过合金化的方式制备兼具高强度高塑性的钛基合金的国内外报道较少。其中,Wysocki等通过调整选择性激光熔化工艺气氛中O 2/Ar比例,当SLM-Ti氧含 量提高至0.50wt%,其抗拉强度为830MPa,断后延伸率为16%(Wysocki B,Maj P,Krawczynska A,Rozniatowski K,Zdunek J,
Figure PCTCN2020110527-appb-000001
K J,Swieszkowski W.Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting(SLM)[J].Journal of Materials Processing Technology,2017,241:13-23.);Wang等利用选择性激光熔化过程Ar/N 2混合气制备了钛制件,制件利用0.43wt.%N形成均质固溶体,在N元素的固溶强化和细晶强化作用下,其抗拉屈服强度达到797MPa,伸长率为17.98%(Wang D W,Zhou Y H,Shen J,Liu Y,Li D F,Zhou Q,Sha G,Xu P,Ebel T,Yan M.Selective laser melting under the reactive atmosphere:A convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J].Materials Science & Engineering A,2019,762:138078)。然而,这些方法都是利用选择性激光熔化工艺制备过程中的气氛调控来实现钛制件的合金化,未能进一步通过微合金化元素的方法增强钛基合金。此外,在这些研究当中,所采用的粉末均为球形粉末,成本较高。
本专利提出利用氢化脱氢(HDH)钛基合金粉末制备适配选择性激光熔化工艺用粉,添加微量N、O等间隙原子及合金元素来提高钛基合金的强度与塑性指标,目前还未见报道。
发明内容
本发明的主要目的在于提供一种钛基合金粉末及制备方法、钛 基合金制件的制备方法,该钛基合金粉末呈近球形,采用间隙原子和/或合金元素在一定温度下对氢化脱氢钛粉进行整形及微合金化得到,显著提高非球形HDH钛粉球形度以及流动性能,满足选择性激光熔化工艺用粉要求并且制备成本低,所制备的钛基合金制件具有超细晶组织结构以及纳米尺度非均匀结构,同时具有高强度、高塑性的特点,以解决现有技术中钛基合金粉末流动性不足,且成本高的技术问题。
为了实现上述目的,根据本发明的第一方面,提供了一种钛基合金粉末。
该钛基合金粉末的组成为Ti aX bM c,其中:a、b、c分别代表Ti、X和M在所述钛基合金粉末中所占的重量百分比,并且0<a<100,0<b≤5,0≤c≤1,且a+b+c=100;X为间隙原子;M为至少一种合金元素,且不为钛,与K元素不同;所述钛基合金粉末为采用间隙原子和/或合金元素在一定温度下对氢化脱氢钛粉进行整形及微合金化得到。
进一步的,所述间隙原子为N或O原子或者二者的组合。
进一步的,所述合金元素包括主族Ⅱ~Ⅵ元素以及过渡元素。
进一步的,所述主族Ⅱ~Ⅵ元素包括Si、Al、P、Ga、In、Sn、Pb、Ge、As、Sb、Te、Mg和Ca中的至少一种;所述过渡元素包括V、Mn、Fe、Co、Ni、Cu、Zn、Au、Ag、Pd、Pt、Cd、Ru、Cr、W、Mo、Y和稀土元素中的至少一种。
进一步的,所述合金元素包括Al和V中的至少一种。
为了实现上述目的,根据本发明的第二方面,提供了一种钛基合金粉末的制备方法。
该钛基合金粉末的制备方法包括以下步骤:
S1:当c=0时,称取非球形氢化脱氢钛粉和磨球,并装入旋转管式炉中;当c≠0时,称取非球形氢化脱氢钛粉、合金元素粉末和磨球,并装入旋转管式炉中;
S2:向所述旋转管式炉中通入保护气体与包含所述间隙原子气体的混合气体,然后升温至所述间隙原子与所述非球形氢化脱氢钛粉或者所述间隙原子与所述非球形氢化脱氢钛粉以及合金元素粉末均匀反应;
S3:向所述旋转管式炉中通入保护气体,然后升温至所述间隙原子与所述非球形氢化脱氢钛粉或者所述间隙原子与所述非球形氢化脱氢钛粉以及合金粉末充分固溶,并随炉冷却得到钛基合金粉末。
在该过程中,N、O间隙原子充分固溶;同时,高温下钛粉软化,在磨球的作用下,形貌不规则的氢化脱氢钛粉球化,以及粒度均匀化,增强其流动性能;合金化以及整形后的混合粉末在氩气保护气氛下,随炉冷却至室温。
进一步的,步骤S1中,所述管式炉以10~60rad/min的转速旋转;所述氢化脱氢钛粉的粒度为-325目;所述磨球与所述氢化脱氢钛粉的质量比为0.5~2:1;或者所述磨球与所述氢化脱氢钛粉及合金元素混合粉末的质量比为0.5~2:1。
进一步的,步骤S2中,所述管式炉以5~10℃/min的升温速率, 升温至140~200℃,保温30min~3h。
进一步的,步骤S2中,所述包含间隙原子气体的体积分数为0~15vol.%。在该步骤中,针对本发明中设定的升温速率、保温温度以及时间综合确定上述包含间隙原子气体的体积分数最佳范围值,当然在实际操作中可以根据需要进行相应的调整。
进一步的,步骤S2中,所述保护气体为氩气。
进一步的,步骤S3中,所述管式炉以5~10℃/min升温速率,升温至450~600℃,保温30min~3h;所述保护气体为氩气。
为了实现上述目的,根据本发明的第三方面,提供了一种钛基合金制件的制备方法。
该钛基合金制件的制备方法包括以下步骤:
选取利用上述的钛基合金粉末的制备方法制备得到的钛基合金粉末,并筛分得到粉末的粒度为-500目;
利用选择性激光熔化3D打印设备制备得到钛基合金制件。
本发明创新性的通过高温球磨提高非球形HDH钛粉的球形度以及流动性能,得到适配选择性激光熔化工艺的合金粉末,从而降低其原料成本,同时在高温球磨过程中微合金化间隙及合金元素进一步提高低成本钛基合金的力学性能,这对于整个金属材料领域具有重要的应用前景。
本发明利用高温球磨对非球形氢化脱氢(HDH)钛粉进行整形,并在整形过程中将N、O间隙元素及Al、V等合金元素进行微合金 化,从而显著提高SLM钛基制件的力学性能。
本发明创新性地在粉末高温整形过程中对钛基粉末进行微合金化间隙原子及合金元素,从而显著提高SLM钛基制件的力学性能,尤其是Ti 98.5Al 0.5O 1.0钛基合金的抗拉强度达到1500MPa,同时延伸率超过15%,综合拉伸性能显著优于现有的钛基合金。
本发明的优势在于:
(1)通过对氢化脱氢粉末进行合金化及高温整形,可实现钛基合金近球形粉末的制备,不仅可以适用于选择性激光熔化用粉的低成本化,以及合金化处理,还可以适用于其他粉末冶金制备方法。
(2)在N、O等间隙原子及Al、V等元素微合金化的作用下,所制备的钛基合金制件具有超细晶组织结构以及纳米尺度非均匀结构,所制备钛基合金制件具有高强度、高塑性的特点。
(3)适当调节合金成分,间隙原子含量,以及后续热处理等技术手段,还能适当调控获得不同的力学性能。
(4)工艺方法简单、制备周期短,可实现数控操作,制备工艺可重复性强。
本发明提供了基于不规则钛粉高温整形及微合金化处理的一种高强度高塑性钛合金制件的制备方法,整形粉末符合选择性激光熔化工艺要求,可广泛应用于航空航天、生物医用及军工材料领域。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益 处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1a为本发明实施例中制备得到的钛基合金粉末整形前的扫描电镜照片;
图1b为本发明实施例中制备得到的钛基合金粉末整形后的扫描电镜照片;
图2a为本发明实施例中通过选择性激光熔化(SLM)制备的莫比乌斯带制件;
图2b为本发明实施例中通过选择性激光熔化(SLM)制备的北京科技大学校徽制件;
图3为本发明实施例中制备得到的制件的拉伸曲线图;
图4为本发明实施例中制备得到的制件的性能对比图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明公开了一种间隙原子强化的钛基合金粉末,该钛基合金粉末的组成为Ti aX b,其中:0<a<100,0<b≤5,且a+b=100;X为间 隙原子,具体地,间隙原子为N或O原子或者二者的组合。
同时,本发明还公开了一种间隙原子强化的钛基合金粉末的制备方法,该方法具体包括以下步骤:
S100:称取非球形氢化脱氢钛粉以及磨球,并装入旋转管式炉中,并且管式炉以10~60rad/min的转速旋转。其中:氢化脱氢钛粉的粒度为-325目;磨球与氢化脱氢钛粉的质量比为0.5~2:1。
S200:向上述旋转管式炉中通入氩气与包含间隙原子气体的混合气体,管式炉以5~10℃/min的升温速率,升温至140~200℃,保温30min~3h,使得间隙原子与非球形氢化脱氢钛基合金粉末充分且均匀反应。
S300:向上述旋转管式炉中通入氩气,管式炉以5~10℃/min升温速率,升温至450~600℃,保温30min~3h,使得间隙原子与非球形氢化脱氢钛基合金粉末充分固溶,并随炉冷却得到间隙原子强化的钛基合金粉末。
进一步地,本发明公开了一种钛基合金制件及钛基合金制件的制备方法,具体地:将利用上述方法制备得到的间隙原子强化的钛基合金粉末经过筛分,得到粒度为-500目钛基合金粉末,然后利用选择性激光熔化3D打印设备制备得到钛基合金制件。
本发明还公开了一种间隙原子及合金元素强化的钛基合金粉末,该钛基合金粉末的组成为Ti aK bM c,其中:0<a<100,0<b≤5,0<c≤1,且a+b+c=100;K为N或O原子;M为合金元素,具体地, M包括主族Ⅱ~Ⅵ元素以及过渡元素,主族Ⅱ~Ⅵ元素包括Si、Al、P、Ga、In、Sn、Pb、Ge、As、Sb、Te、Mg和Ca;过渡元素包括V、Mn、Fe、Co、Ni、Cu、Zn、Au、Ag、Pd、Pt、Cd、Ru、Cr、W、Mo、Y和稀土元素。
作为本发明的优选实施方式,合金元素M为Al和V中的一种或多种。
同时,本发明还公开了一种间隙原子及合金元素强化的钛基合金粉末的制备方法,具体包括以下步骤:
S1:称取非球形氢化脱氢钛粉、合金元素粉末以及磨球,并装入旋转管式炉中,并且管式炉以10~60rad/min的转速旋转。其中:氢化脱氢钛粉的粒度为-325目;磨球与氢化脱氢钛粉及合金元素混合粉末的质量比为0.5~2:1。
S2:向上述旋转管式炉中通入氩气与包含间隙原子气体的混合气体,管式炉以5~10℃/min的升温速率,升温至140~200℃,保温30min~3h,使得间隙原子与非球形氢化脱氢钛粉以及合金元素粉末充分且均匀反应,得到混合粉末。
S3:向上述旋转管式炉中通入氩气,管式炉以5~10℃/min升温速率,升温至450~600℃,保温30min~3h,使得间隙原子与混合粉末充分固溶,并随炉冷却得到合金化钛基合金粉末。
进一步地,本发明公开了一种钛基合金制件及钛基合金制件的制备方法,具体地:将利用上述方法制备得到的合金化钛基合金粉末经过筛分,得到粒度为-500目钛基合金粉末,然后利用选择性激 光熔化3D打印设备制备得到钛基合金制件。
以下将通过具体实施例对本发明中的Ti aX b系间隙原子合金化钛基合金粉末与制件以及Ti aX bM c系间隙原子合金化钛基合金粉末与制件的制备工艺进行详细说明。
Ti aX b系间隙原子合金化钛基合金粉末及制件制备过程如下所述。
实施例1:
以氢化脱氢钛粉为原料,氢化脱氢钛粉粒度为-325目。将钛粉以及氧化锆磨球装入管式石英舟,球料质量比为1:1,放入旋转烧结炉,以5℃/min升温至160℃,保温30min,整个过程在氩气与氧气(氧气体积分数10vol%)混合气氛中进行。保温结束后将气氛更换为单纯氩气保护气氛,以5℃/min升温速率升至450℃,保温60min,促使粉末中的O充分固溶,同时,在机械力与高温的共同作用下,氢化脱氢粉末不规则形貌球化,粒径均匀化,冷却得到合金化钛基合金粉末,粉末形貌如图1b所示,粉末成近球形,不规则锐角消失。
合金化钛基合金粉末经过筛分后得到-500目粉末,利用SLM-125选择性激光熔化3D打印设备,可以制备出复杂的钛基零部件,并且无弯曲等缺陷,如图2a和图2b所示。
实施例2:
以氢化脱氢钛粉为原料,氢化脱氢钛粉粒度为-325目。将钛粉以及氧化锆磨球装入管式石英舟,球料质量比为0.5:1,放入旋转烧 结炉,以10℃/min升温至200℃,保温3h,整个过程在氩气与氮气(氮气体积分数10vol%)混合气氛中进行。保温结束后将气氛更换为单纯氩气保护气氛,以10℃/min升温速率升至600℃,保温3h,促使粉末中的N充分固溶,同时,在机械力与高温的共同作用下,氢化脱氢粉末不规则形貌球化,粒径均匀化,冷却得到合金化钛基合金粉末,粉末成近球形,不规则锐角消失。
实施例3~实施例12分别公开了一种Ti aK b系间隙原子合金化钛基合金粉末与制件,并且采用与实施例1相同的制备工艺,不同之处在于各合金粉末的合金组成不同,现将实施例1~12中Ti aK b系间隙原子合金化钛基合金粉末的合金组成进行汇总,详见表1。
表1
Figure PCTCN2020110527-appb-000002
以下将对实施例1~12中制备得到的间隙原子合金化钛基合金制件的力学性能进行总结,详见表2及图3和图4。
表2
Figure PCTCN2020110527-appb-000003
Figure PCTCN2020110527-appb-000004
由表2以及结合图3可以看出,在实施案例1中,由于少量O间隙原子的固溶作用,使所制备的纯Ti制件力学性能得到显著提高,其抗拉强度达到939.5MPa,延伸率为18.1%。其强度约为4级纯钛(Grade 4 CP-Ti,550MPa)1.5倍,达到了锻造Ti-6Al-4V(TC4)的强度(923.4MPa),且其塑性与4级纯钛(18%)基本相当,约为Ti-6Al-4V的2倍(10.7%)。相比选择性激光熔化钛制件(SLM-Ti),其在塑性基本不降低的前提下,强度提高约150MPa。此外,相比其他纯钛,如一级纯钛(Grade 1 CP-Ti,240MPa,24%)、二级纯钛(Grade 2 CP-Ti,345MPa,20%)、三级纯钛(Grade 3 CP-Ti,450MPa,20%)以及其他α型钛合金,如TA19(Ti-6Al-2Sn-4Zr-2Mo-0.1Si,930MPa,11%)、TA7(Ti-5Al-2.5Sn,785MPa,11%)、TA5(Ti-4Al-0.005B,680MPa,14%)、TA18(Ti-3Al-2.5V,620MPa,14%)等,本发明所制备的合金在保持塑性基本相当的时候,强度得到了显著提高,或者在保持强度基本相当的时候,塑性得到了显著提高,从而得到了兼具高强度高塑性的钛基合金,具体如图4所示。
Ti aK bM c系间隙原子合金化钛基合金粉末及制件制备过程如下 所述。
实施例13:
以氢化脱氢钛粉以及Al粉为原料,氢化脱氢钛粉粒度为-325目,Al粉末的平均粒度为2μm,以及氧化锆磨球一并装入管式石英舟,球料质量比1:1,放入旋转烧结炉,以5℃/min升温至200℃,保温30min,整个过程在氩气与氧气(氧气体积分数8vol%)混合气氛中进行。保温结束后将气氛更换为单纯氩气保护气氛,以5℃/min升温速率升至500℃。保温60min,促使粉末中的O充分固溶,以及Al金属粉末与Ti充分合金化。同时,在机械力与高温的共同作用下,氢化脱氢粉末不规则形貌球化,粒径均匀化,冷却得到合金化钛基合金粉末。
经过筛分后得到-500目合金化粉末,利用SLM-125选择性激光熔化3D打印设备,制备钛基合金制件。
实施例14:
以氢化脱氢钛粉以及V粉为原料,氢化脱氢钛粉粒度为-325目,Al粉末的平均粒度为2μm,以及氧化锆磨球一并装入管式石英舟,球料质量比为0.5:1,放入旋转烧结炉,以10℃/min升温至200℃,保温3h,整个过程在氩气与氮气(氮气体积分数10vol%)混合气氛中进行。保温结束后将气氛更换为单纯氩气保护气氛,以10℃/min升温速率升至600℃,保温3h,促使粉末中的N充分固溶,同时,在机械力与高温的共同作用下,氢化脱氢粉末不规则形貌球化,粒径均匀化,冷却得到合金化钛基合金粉末,粉末成近球形,不规则 锐角消失。
经过筛分后得到-500目合金化粉末,利用SLM-125选择性激光熔化3D打印设备,制备钛基合金制件。
实施例15~实施例20分别公开了一种Ti aK bM c系间隙原子合金化钛基合金粉末与制件,并且采用与实施例13相同的制备工艺,不同之处在于各合金粉末的合金组成不同,现将实施例13~20中Ti aK bM c系间隙原子合金化钛基合金粉末的合金组成进行汇总,详见表3。
表3
Figure PCTCN2020110527-appb-000005
以下将对实施例13~实施例20中制备得到的间隙原子合金化钛基合金制件的力学性能进行总结,详见表4。
表4
Figure PCTCN2020110527-appb-000006
Figure PCTCN2020110527-appb-000007
从表4可以看出,实施例13中在Al合金元素的作用下,阻碍了间隙O原子的自由扩散,进而形成了纳米尺度非均匀结构,使所制备的制件的力学性能进一步提高,其抗拉强度为1495MPa,延伸率15.1%,随着氧元素的继续提高,制件的强度有所升高,但是塑性急剧降低,当添加1.5wt%O时,其强度为1595MPa,延伸率为6.1%。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种钛基合金粉末,其特征在于,所述钛基合金粉末的组成为Ti aX bM c,其中:a、b、c分别代表Ti、X和M在所述钛基合金粉末中所占的重量百分比,并且0<a<100,0<b≤5,0≤c≤1,且a+b+c=100;X为间隙原子;M为至少一种合金元素,且不为钛,与X元素不同;所述钛基合金粉末为采用间隙原子和/或合金元素在一定温度下对氢化脱氢钛粉进行整形及微合金化得到。
  2. 根据权利要求1所述的钛基合金粉末,其特征在于,所述间隙原子为N或O原子或者二者的组合。
  3. 根据权利要求1所述的钛基合金粉末,其特征在于,所述合金元素包括主族Ⅱ~Ⅵ元素以及过渡元素中的至少一种。
  4. 根据权利要求3所述的钛基合金粉末,其特征在于,所述主族Ⅱ~Ⅵ元素包括Si、Al、P、Ga、In、Sn、Pb、Ge、As、Sb、Te、Mg和Ca中的至少一种;所述过渡元素包括V、Mn、Fe、Co、Ni、Cu、Zn、Au、Ag、Pd、Pt、Cd、Ru、Cr、W、Mo、Y和稀土元素中的至少一种。
  5. 根据权利要求4所述的钛基合金粉末,其特征在于,所述合金元素包括Al和V中的至少一种。
  6. 根据权利要求1所述的钛基合金粉末,其特征在于,所述钛基合金粉末的组成为Ti aX bM c,其中:98<a<100,0<b≤2.5,0≤c≤1,且a+b+c=100。
  7. 一种权利要求1-6任一项所述的钛基合金粉末的制备方法,其特征在于,包括以下步骤:
    S1:当c=0时,称取非球形氢化脱氢钛粉和磨球,并装入旋转管式炉中;当c≠0时,称取非球形氢化脱氢钛粉、合金化元素粉末和磨球,并装入旋转管式炉中;
    S2:向所述旋转管式炉中通入保护气体与包含所述间隙原子气体的混合气体,然后升温至所述间隙原子与所述非球形氢化脱氢钛粉或者所述间隙原子与所述非球形氢化脱氢钛粉以及合金化元素粉末均匀反应;
    S3:向所述旋转管式炉中通入保护气体,然后升温至所述间隙原子与所述非球形氢化脱氢钛粉或者所述间隙原子与所述非球形氢化脱氢钛粉以及合金化元素粉末充分固溶,并随炉冷却得到钛基合金粉末。
  8. 根据权利要求7所述的钛基合金粉末的制备方法,其特征在于,步骤S1中,所述管式炉以10~60rad/min的转速旋转;所述氢化脱氢钛粉的粒度为-325目;所述磨球与所述氢化脱氢钛粉的质量比为0.5~2:1;或者所述磨球与所述氢化脱氢钛粉及合金化元素混合粉末的质量比为0.5~2:1。
  9. 根据权利要求7所述的钛基合金粉末的制备方法,其特征在于,步骤S2中,所述管式炉以5~10℃/min的升温速率,升温至140~200℃,保温30min~3h。
  10. 根据权利要求7所述的钛基合金材料的制备方法,其特征在于,步骤S3中,所述管式炉以5~10℃/min升温速率,升温至450~600℃,保温30min~3h;所述保护气体为氩气。
  11. 一种钛基合金制件的制备方法,其特征在于,包括以下步骤:
    选取利用权利要求7-10任一项所述的钛基合金粉末的制备方法制备得到的钛基合金粉末,并筛分得到粉末的粒度为-500目;
    利用选择性激光熔化3D打印设备制备得到钛基合金制件。
PCT/CN2020/110527 2020-07-29 2020-08-21 钛基合金粉末及制备方法、钛基合金制件的制备方法 WO2022021507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20946867.7A EP4012060A4 (en) 2020-07-29 2020-08-21 TITANIUM-BASED ALLOY POWDER AND PREPARATION METHOD AND METHOD FOR PREPARING A TITANIUM-BASED ALLOY WORKPIECE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010745072.4 2020-07-29
CN202010745072.4A CN112048638B (zh) 2020-07-29 2020-07-29 钛基合金粉末及制备方法、钛基合金制件的制备方法

Publications (1)

Publication Number Publication Date
WO2022021507A1 true WO2022021507A1 (zh) 2022-02-03

Family

ID=73601864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110527 WO2022021507A1 (zh) 2020-07-29 2020-08-21 钛基合金粉末及制备方法、钛基合金制件的制备方法

Country Status (3)

Country Link
EP (1) EP4012060A4 (zh)
CN (1) CN112048638B (zh)
WO (1) WO2022021507A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708796B (zh) * 2021-01-19 2021-10-29 南昌航空大学 一种生物医用多孔Ti-Zn合金及其制备方法
RU2763806C1 (ru) * 2021-03-23 2022-01-11 Государственное Научное Учреждение Институт Порошковой Металлургии Имени Академика О.В. Романа Способ нанесения тугоплавкого керамического покрытия на порошок титана
CN113618058A (zh) * 2021-08-11 2021-11-09 浙江工业大学 一种自整形制备低成本球形金属粉体的方法
CN114635056B (zh) * 2022-05-17 2022-07-29 北京煜鼎增材制造研究院有限公司 一种高温高强钛合金及其增材制备方法
CN116117133A (zh) * 2023-01-09 2023-05-16 北京科技大学 钛基复合材料粉末及利用旋转高温整形法制备其的方法
CN116716501B (zh) * 2023-08-07 2023-10-31 成都先进金属材料产业技术研究院股份有限公司 一种航空航天用钛合金及其熔炼工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572084A (zh) * 2013-10-28 2014-02-12 中南大学 一种含氧的钛基合金的粉末冶金制备方法
CN108080621A (zh) * 2017-11-21 2018-05-29 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
CN109865833A (zh) * 2019-02-22 2019-06-11 北京科技大学 钛或钛合金制品的粉末冶金制备方法、钛或钛合金制品
CN109877329A (zh) * 2019-04-16 2019-06-14 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN109877332A (zh) * 2019-04-16 2019-06-14 上海材料研究所 一种提高钛或钛合金气雾化粉末细粉率的方法
US20190218650A1 (en) * 2018-01-12 2019-07-18 General Electric Company Methods of forming spherical metallic particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649689A (ja) * 1992-08-03 1994-02-22 Toyo Alum Kk Ti−Al系耐熱・耐酸化性金属間化合物材料
EP1574589B1 (en) * 2004-03-12 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy having excellent high-temperature oxidation and corrosion resistance
EP3093085B1 (en) * 2014-01-10 2022-04-27 Katsuyoshi Kondoh Method for producing oxygen solid solution titanium powder material
CN106413944B (zh) * 2014-01-24 2019-06-14 近藤胜义 固溶有氮的钛粉末材料、钛材以及固溶有氮的钛粉末材料的制备方法
CN104831122A (zh) * 2015-05-19 2015-08-12 南京工业大学 一种低成本高性能钛合金及其制备方法
US11066727B2 (en) * 2015-07-29 2021-07-20 Nippon Steel Corporation Titanium composite material and titanium material for hot working

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572084A (zh) * 2013-10-28 2014-02-12 中南大学 一种含氧的钛基合金的粉末冶金制备方法
CN108080621A (zh) * 2017-11-21 2018-05-29 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
US20190218650A1 (en) * 2018-01-12 2019-07-18 General Electric Company Methods of forming spherical metallic particles
CN109865833A (zh) * 2019-02-22 2019-06-11 北京科技大学 钛或钛合金制品的粉末冶金制备方法、钛或钛合金制品
CN109877329A (zh) * 2019-04-16 2019-06-14 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN109877332A (zh) * 2019-04-16 2019-06-14 上海材料研究所 一种提高钛或钛合金气雾化粉末细粉率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG D WZHOU YHSHEN JLIU YLI D FZHOU QSHA GXU PEBEL TYAN M: "Selective laser melting under the reactive atmosphere: A convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J", MATERIALS SCIENCE & ENGINEERING A, vol. 762, 2019, pages 138078, XP085737195, DOI: 10.1016/j.msea.2019.138078
WYSOCKI BMAJ PKRAWCZYNSKA AROZNIATOWSKI KZDUNEK JKURZYDLOWSKI K JSWIESZKOWSKI W: "Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)[J", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 241, 2017, pages 13 - 23, XP029825785, DOI: 10.1016/j.jmatprotec.2016.10.022

Also Published As

Publication number Publication date
EP4012060A4 (en) 2023-09-20
CN112048638A (zh) 2020-12-08
EP4012060A1 (en) 2022-06-15
CN112048638B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2022021507A1 (zh) 钛基合金粉末及制备方法、钛基合金制件的制备方法
US20230241677A1 (en) Atomized picoscale composition aluminum alloy and method thereof
WO2010122960A1 (ja) 高強度銅合金
JP5837407B2 (ja) チタン合金およびその製造方法
CN112593123B (zh) 一种锆基非晶颗粒增强铝基复合材料及其制备方法
CN112692275A (zh) 一种适合3dp打印技术的低密度双相高熵合金粉体及其制备方法
JP7278704B2 (ja) 粉末チタン合金組成物及びこれによって形成される物品
WO2013080390A1 (ja) α+β型またはβ型チタン合金およびその製造方法
JP2019516017A (ja) チタン、アルミニウム、ニオビウム、バナジウム、及びモリブデンのbcc材料、並びにそれから製造される生成物
JP5759426B2 (ja) チタン合金及びその製造方法
CN101348869B (zh) 晶粒尺寸可控双峰分布的块体超细/纳米晶合金制备方法
CN109865833B (zh) 钛或钛合金制品的粉末冶金制备方法、钛或钛合金制品
CN113832369B (zh) 增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金
CN114703391A (zh) 一种纳米氧化物弥散强化铜合金及其制备方法
WO2019069651A1 (ja) 輸送機用圧縮機部品及びその製造方法
WO2017077922A1 (ja) 酸素固溶チタン焼結体およびその製造方法
JP5837406B2 (ja) チタン合金およびその製造方法
JP7118705B2 (ja) 高温における機械的特性に優れたアルミニウム合金製輸送機用圧縮機部品及びその製造方法
CN116174733B (zh) 一种合金粉末及其制备方法和应用、一种零件模型
JP2009091624A (ja) アルミニウム系材料及びその製造方法
CN115287504B (zh) 一种轻质Al-Sc-Zr-Y-O耐热铝合金及其制备方法
US20120118433A1 (en) Method of modifying thermal and electrical properties of multi-component titanium alloys
CN112593161B (zh) 高强度Sc复合纳米氧化物弥散强化Fe基合金及其制备方法
JPS61113741A (ja) 高強度耐食ニツケル基合金およびその製造法
JPH0293029A (ja) 酸化物粒子分散強化型合金の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020946867

Country of ref document: EP

Effective date: 20220309

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE