WO2022017448A1 - 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型 - Google Patents

一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型 Download PDF

Info

Publication number
WO2022017448A1
WO2022017448A1 PCT/CN2021/107814 CN2021107814W WO2022017448A1 WO 2022017448 A1 WO2022017448 A1 WO 2022017448A1 CN 2021107814 W CN2021107814 W CN 2021107814W WO 2022017448 A1 WO2022017448 A1 WO 2022017448A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
crystal
composition
disease
ray powder
Prior art date
Application number
PCT/CN2021/107814
Other languages
English (en)
French (fr)
Inventor
吴舰
马昌友
田禾
赵建良
陈东晖
徐丹
朱春霞
田舟山
Original Assignee
南京正大天晴制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京正大天晴制药有限公司 filed Critical 南京正大天晴制药有限公司
Priority to JP2023504141A priority Critical patent/JP7472391B2/ja
Priority to CN202180049179.8A priority patent/CN115843298B/zh
Priority to CA3186562A priority patent/CA3186562A1/en
Priority to US18/017,421 priority patent/US20230271958A1/en
Publication of WO2022017448A1 publication Critical patent/WO2022017448A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the application belongs to the field of medicinal chemistry, and in particular relates to a salt of a dihydropyrido[2,3-d]pyrimidinone derivative, its crystal form, its preparation method and its medicinal use.
  • PI3K/AKT/mTOR pathway composed of phosphatidylinositol 3-kinase (PI3K) and its downstream protein AKT (also known as protein kinase B, PKB) and mammalian target of rapamycin (mTOR) is very important in cells.
  • Signal transduction pathway plays an extremely important biological function in the process of cell growth, survival, proliferation, apoptosis, angiogenesis, and autophagy. Aberrant activation of this pathway causes a range of diseases, including cancer, neuropathy, autoimmune diseases, and hemolymphatic disorders.
  • AKT a class of serine/threonine kinases, affects cell survival, growth, metabolism, proliferation, migration and differentiation through numerous downstream effectors.
  • AKT overactivation especially prostate cancer, pancreatic cancer, bladder cancer, ovarian cancer, and breast cancer. AKT overactivation can lead to tumorigenesis, metastasis and drug resistance.
  • AKT has three subtypes: AKT1, AKT2, and AKT3.
  • each isoform consists of an amino-terminal PH domain (Pleckstrin homology domain), a central ATP-binding kinase domain, and a carboxy-terminal regulatory domain.
  • About 80% of the amino acid sequences of the three isoforms are homologous, and only the PH domain and the kinase domain link region vary greatly.
  • the targeted drugs for the PI3K/AKT/mTOR signaling pathway are mainly PI3K inhibitors and mTOR inhibitors, and AKT is at the core of this signal transduction pathway. Inhibition of AKT activity can not only avoid the serious side effects caused by the inhibition of upstream PI3K, but also avoid the negative feedback mechanism caused by the inhibition of downstream mTOR.
  • CN101631778A discloses a class of cyclopentadieno[D]pyrimidine derivatives
  • CN101578273A discloses a class of hydroxylated and methoxylated cyclopentadieno[D]pyrimidine derivatives
  • CN101511842A discloses a class of two tetrahydrofuran and pyrimidine derivatives
  • CN101970415A discloses a class 5H- cyclopenta [d] pyrimidine derivatives
  • these compounds have IC 50 of less than 10 ⁇ M in AKT1 inhibition.
  • the search for effective and selective AKT inhibitors is still an important direction of current tumor-targeted drug development.
  • crystal form A a crystal form of fumarate hydrate having the following structure
  • X 2.0 ⁇ 3.0
  • the X-ray powder diffraction pattern expressed in 2 ⁇ angles has characteristic peaks at 2 ⁇ values of 9.28° ⁇ 0.2° and 3.63° ⁇ 0.2°.
  • the above-mentioned fumarate hydrate is the fumarate hydrate of compound 1, and compound 1 has the following structure:
  • the X-ray powder diffraction pattern of Form A in 2 ⁇ angles has 2 ⁇ values of 9.28° ⁇ 0.2°, 19.45° ⁇ 0.2°, 21.60° ⁇ 0.2°, and 23.63° ⁇ 0.2° Characteristic peaks.
  • the X-ray powder diffraction pattern of Form A in 2 theta angles has 2 theta values of 9.28° ⁇ 0.2°, 14.22° ⁇ 0.2°, 19.45° ⁇ 0.2°, 21.60° ⁇ 0.2°, and 23.63° There are characteristic peaks at ° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of Form A in 2 ⁇ angles has 2 ⁇ values of 9.28° ⁇ 0.2°, 10.72° ⁇ 0.2°, 14.22° ⁇ 0.2°, 19.45° ⁇ 0.2°, 21.60 There are characteristic peaks at ° ⁇ 0.2°, 23.63° ⁇ 0.2°, 24.50° ⁇ 0.2°, 24.83° ⁇ 0.2°, 25.08° ⁇ 0.2° and 30.33° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of Form A in 2 ⁇ angles has 2 ⁇ values of 5.29° ⁇ 0.2°, 9.28° ⁇ 0.2°, 10.72° ⁇ 0.2°, 11.24° ⁇ 0.2°, 12.13 ° ⁇ 0.2°, 12.51° ⁇ 0.2°, 13.60° ⁇ 0.2°, 14.22° ⁇ 0.2°, 15.64 ⁇ 0.2°, 16.14° ⁇ 0.2°, 16.52° ⁇ 0.2°, 17.38° ⁇ 0.2°, 17.99° ⁇ 0.2 °, 18.68° ⁇ 0.2°, 19.00° ⁇ 0.2°, 19.45° ⁇ 0.2°, 19.80° ⁇ 0.2°, 20.53° ⁇ 0.2°, 21.60° ⁇ 0.2°, 21.89° ⁇ 0.2°, 22.58° ⁇ 0.2°, 23.63° ⁇ 0.2°, 24.50° ⁇ 0.2°, 24.83° ⁇ 0.2°, 25.08° ⁇ 0.2°, 25.66° ⁇ 0.2°, 26.09° ⁇ 0.2°, 26.84° ⁇ 0.2°, 27.43° ⁇ 0.2°, 27.94
  • the X-ray powder diffraction of Form A in 2 theta angles has a pattern as shown in FIG. 4 .
  • the X-ray powder diffraction of Form A in 2 theta angles has a pattern as shown in FIG. 8 .
  • the X-ray powder diffraction of Form A in 2 theta angles has a pattern as shown in FIG. 10 .
  • the crystal form A has an endothermic peak at an onset temperature of 118°C to 128°C in a thermogram measured by differential scanning calorimetry.
  • the crystal form A has an endothermic peak at an onset temperature of 120°C to 125°C in a thermogram measured by differential scanning calorimetry.
  • the Form A has an endothermic peak at an onset temperature of 123° C. in a thermogram measured by differential scanning calorimetry.
  • the Form A has a DSC pattern as shown in FIG. 5 .
  • the Form A has the following absorption bands in the spectrum measured by Fourier Transform Attenuated Total Reflectance Infrared Spectroscopy, expressed in inverse wavelengths (cm ⁇ 1 ): 3451 ⁇ 2,2981 ⁇ 2, 2953 ⁇ 2, 2882 ⁇ 2, 2824 ⁇ 2, 2477 ⁇ 2, 1698 ⁇ 2, 1631 ⁇ 2, 1596 ⁇ 2, 1544 ⁇ 2, 1490 ⁇ 2, 1465 ⁇ 2, 1441 ⁇ 2, 1390 ⁇ 2, 1362 ⁇ 2, 1320 ⁇ 2, 1302 ⁇ 2, 1283 ⁇ 2, 1254 ⁇ 2, 1197 ⁇ 2, 1135 ⁇ 2, 1091 ⁇ 2, 1058 ⁇ 2, 1014 ⁇ 2, 983 ⁇ 2, 929 ⁇ 2, 894 ⁇ 2, 867 ⁇ 2, 834 ⁇ 2, 802 ⁇ 2, 784 ⁇ 2, 761 ⁇ 2, 739 ⁇ 2, 718 ⁇ 2, 663 ⁇ 2, 647 ⁇ 2, 640 ⁇ 2, 584 ⁇ 2, 560 ⁇ 2 and 497 ⁇ 2.
  • the Form A has the following absorption bands in the spectrum measured by Fourier transform Raman spectroscopy, expressed as reciprocal wavelengths (cm ⁇ 1 ): 1699 ⁇ 2, 1664 ⁇ 2, 1602 ⁇ 2, 1340 ⁇ 2, 867 ⁇ 2, 829 ⁇ 2, 809 ⁇ 2, 747 ⁇ 2 and 669 ⁇ 2.
  • the Form A has a TGA pattern as shown in FIG. 6 .
  • the Form A has a TGA pattern as shown in FIG. 7 .
  • the Form A has a TGA pattern as shown in FIG. 9 .
  • the crystal form A is a hydrate containing 2.0 to 2.5 water molecules, that is, X in the structural formula is 2.0 to 2.5.
  • the present application provides a crystal form composition of crystal form A, wherein the weight of the crystal form A accounts for more than 50% of the weight of the crystal form composition; preferably more than 80%; more preferably more than 90%; more More preferably 95% or more; most preferably 98% or more.
  • the present application also provides a pharmaceutical composition comprising the crystal form A or the crystal form composition.
  • the pharmaceutical composition further comprises one or more pharmaceutically acceptable carriers.
  • the pharmaceutical composition is a solid pharmaceutical formulation suitable for oral administration, preferably a tablet or capsule.
  • the present application also provides crystal form A or a crystal form composition or a pharmaceutical composition for use as a medicament.
  • the present application also provides the use of the crystalline form A or a pharmaceutical composition thereof in the preparation of a medicament for preventing and/or treating a disease or disease state mediated by AKT protein kinase.
  • the present application also provides the use of the crystalline composition in the preparation of a medicament for preventing and/or treating a disease or disease state mediated by AKT protein kinase.
  • the present application also provides the use of the crystalline form A or a pharmaceutical composition thereof for preventing and/or treating a disease or disease state mediated by AKT protein kinase.
  • the present application also provides the use of the crystalline composition for preventing and/or treating AKT protein kinase-mediated diseases or disease states.
  • the present application also provides a method for preventing and/or treating a disease or disease state mediated by AKT protein kinase, comprising administering the crystalline form A of the present application or a pharmaceutical composition thereof to an individual in need thereof .
  • the present application also provides a method for preventing and/or treating an AKT protein kinase-mediated disease or disease state, comprising administering to an individual in need thereof the crystalline composition described herein.
  • the present application also provides the crystalline form A of the present application or a pharmaceutical composition thereof for preventing and/or treating a disease or disease state mediated by AKT protein kinase.
  • the present application also provides the crystalline composition of the present application for preventing and/or treating AKT protein kinase-mediated diseases or disease states.
  • the AKT protein kinase-mediated disease or disease state is cancer.
  • the cancer is breast cancer, prostate cancer, or ovarian cancer.
  • the cancer is prostate cancer.
  • pharmaceutically acceptable carrier refers to those carriers which are not significantly irritating to the body and which do not impair the biological activity and properties of the active compound. Including but not limited to any diluent, disintegrant, binder, glidant, wetting agent approved by the State Food and Drug Administration for human or animal use.
  • the "X-ray powder diffraction pattern" in this application is measured using Cu-K ⁇ radiation.
  • the diffraction pattern obtained from a crystalline compound is often characteristic for a particular crystal, where the relative intensities of the bands (especially at low angles) may vary due to The effect of dominant orientation due to differences in crystallization conditions, particle size and other measurement conditions varies. Therefore, the relative intensities of the diffraction peaks are not characteristic of the crystals targeted. When judging whether it is identical to a known crystal, it is the relative positions of the peaks rather than their relative intensities that should be considered. Furthermore, for any given crystal, there may be slight errors in the positions of the peaks, which are also well known in the crystallography art.
  • the position of the peak may shift due to changes in temperature during sample analysis, sample movement, or calibration of the instrument, and the measurement error of the 2 ⁇ value may be about ⁇ 0.2°. Therefore, this error should be taken into account when determining each crystalline structure.
  • the peak positions of the XRPD spectra are similar on the whole, and the relative intensity error may be larger. It should also be pointed out that in the identification of mixtures, due to factors such as content reduction, some diffraction lines may be missing. Definite crystallization is characteristic.
  • DSC Differential Scanning Calorimetry
  • the thermal transition temperature and melting point error are typically within about 5°C, usually within about 3°C, in successive analyses.
  • DSC peak or melting point is ⁇ 5°C.
  • DSC provides an auxiliary method for identifying different crystal forms. Different crystal forms can be identified based on their different transition temperature characteristics. It should be pointed out that for the mixture, the DSC peak or melting point may fluctuate in a wider range. Furthermore, since the melting of the substance is accompanied by decomposition, the melting temperature is related to the heating rate.
  • Thermogravimetric analysis refers to a thermal analysis technique that measures the relationship between the mass of a sample to be tested and the temperature change at a programmed temperature. When the measured substance sublimates or vaporizes during the heating process, it decomposes into gas or loses crystal water, causing the quality of the measured substance to change. At this time, the thermogravimetric curve is not a straight line but a drop. By analyzing the thermogravimetric curve, you can know at what temperature the measured substance changes, and according to the weight loss, you can calculate how much substance is lost.
  • HATU 2-(7-Azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate
  • TK tyrosine kinase
  • Fig. 1 is the single molecule schematic diagram of compound 1 of embodiment 1;
  • Figure 2 is a schematic diagram of the asymmetric structural unit of the oxalate single crystal of Compound 1 of Example 1;
  • Fig. 3 is the XRPD spectrum of the fumarate amorphous of embodiment 2 method A;
  • Fig. 4 is the XRPD spectrum of crystal form A of embodiment 2 method B;
  • Fig. 5 is the DSC spectrum of crystal form A of embodiment 2 method B;
  • Fig. 6 is the TGA spectrum of crystal form A of embodiment 2 method B;
  • Fig. 7 is the TGA spectrum of crystal form A of embodiment 2 method A;
  • Fig. 8 is the XRPD spectrum of crystal form A of embodiment 2 method A;
  • Fig. 9 is the TGA spectrum of the crystal form A of embodiment 3.
  • FIG. 10 is the XRPD pattern of Form A of Example 3.
  • test conditions of each instrument are as follows:
  • Scanning mode continuous scanning, scanning step (°2 ⁇ ) 0.043°, scanning range (°2 ⁇ ) 3-40°
  • Heating range room temperature -300°C
  • Heating range 20-250°C
  • Exposure time 20 seconds
  • sodium methoxide methanol solution (30 wt%, 50.32 g) was added to methanol (900 mL) at 20 °C, then the temperature was raised to 70 °C, and dimethyl malonate (461.12 g) and ethyl crotonate ( 349.46g) mixed uniformly, added dropwise to the methanol solution of sodium methoxide, and reacted at 70° C. for 3 hours.
  • reaction solution was cooled to 10°C, adjusted to pH 3-4 with 3M hydrochloric acid, 500 mL of ethyl acetate was added, filtered with suction, the filter cake was washed with ethyl acetate (600 mL), separated, and saturated aqueous sodium bicarbonate solution (100 mL) was added. ), washed, separated, and concentrated the organic phase to obtain 26.89 g of pale yellow liquid.
  • reaction solution was cooled to 0°C, 100 mL of ethyl acetate was added, the pH was adjusted to 7-8 with saturated sodium bicarbonate solution, extracted with ethyl acetate (50 mL ⁇ 3), and the organic phase was evaporated under reduced pressure to obtain The yellow solid 13.89g was used directly in the next step.
  • Reaction conditions a) tert-butyl 2,5-diazabicyclo[4.1.0]heptane-2-carboxylate, N-methylpyrrolidone, 4-dimethylaminopyridine; b) hydrogen chloride/1,4- Dioxane (4.0M), dichloromethane; c) (S)-3-((tert-butoxycarbonyl)(isopropyl)amino)-2-(4-chlorophenyl)-propionic acid, 2 -(7-benzotriazole oxide)-N,N,N',N'-tetramethylurea hexafluorophosphate, 4-dimethylaminopyridine, N,N-dimethylformamide; d) Trifluoroacetic acid, dichloromethane.
  • the application determined the configuration of the compound of Example 1 by single crystal diffraction, thus confirming that the isomer 2 is the compound 1 of the application:
  • AKT1 (Item #01-101, Carna)
  • AKT2 (Item #01-102, Carna)
  • AKT3 (Item #PV3185, Invitrogen)
  • 1 mL of kinase AKT1, 2, 3 in 1x kinase reaction buffer contains 200 ⁇ L of 5 ⁇ kinase reaction buffer, 5 ⁇ L of 1M MgCl 2 , 1 ⁇ L of 1 M DTT, and 794 ⁇ L of ultrapure water.
  • the concentrations used in enzyme screening are shown in Table 1. Prepare 5X enzyme working solution with 1X Kinase Reaction Buffer.
  • the europium-labeled tyrosine kinase substrate antibody was diluted 100-fold with detection reaction buffer as a working solution.
  • Inhibition rate (ER positive control- ER sample )/(ER positive control- ER negative control ) ⁇ 100%
  • the DSC spectrum of Form A is shown in Figure 5, and the onset temperature and peak temperature of the endothermic peak are 123°C and 128°C, respectively.
  • Crystal form A has the following absorption bands in the infrared spectrum measured by Fourier transform attenuated total reflection infrared spectroscopy (FT-IR), expressed by the reciprocal of wavelength (cm -1 ): 3451 ⁇ 2, 2981 ⁇ 2, 2953 ⁇ 2, 2882 ⁇ 2, 2824 ⁇ 2, 2477 ⁇ 2, 1698 ⁇ 2, 1631 ⁇ 2, 1596 ⁇ 2, 1544 ⁇ 2, 1490 ⁇ 2, 1465 ⁇ 2, 1441 ⁇ 2, 1390 ⁇ 2, 1362 ⁇ 2, 1320 ⁇ 2, 1302 ⁇ 2, 1283 ⁇ 2, 1254 ⁇ 2, 1197 ⁇ 2, 1135 ⁇ 2, 1091 ⁇ 2, 1058 ⁇ 2, 1014 ⁇ 2, 983 ⁇ 2, 929 ⁇ 2, 894 ⁇ 2, 867 ⁇ 2, 834 ⁇ 2, 802 ⁇ 2, 784 ⁇ 2, 761 ⁇ 2, 739 ⁇ 2, 718 ⁇ 2, 663 ⁇ 2, 647 ⁇ 2, 640 ⁇ 2, 584 ⁇ 2, 560 ⁇ 2 and 497 ⁇ 2.
  • FT-IR Fourier transform attenuated total reflection infrared spectroscopy
  • the Raman spectrum measured by Fourier transform Raman spectroscopy has the following absorption bands, expressed in inverse wavelengths (cm -1 ): 1699 ⁇ 2, 1664 ⁇ 2, 1602 ⁇ 2, 1340 ⁇ 2, 867 ⁇ 2, 829 ⁇ 2, 809 ⁇ 2, 747 ⁇ 2 and 669 ⁇ 2.
  • the TGA spectrum is shown in Figure 6, showing that the mass fraction of weight loss is about 5.9% when heated to 150°C.
  • N-heptane (12.5 mL) and crystal form A seed crystals (5 mg) were successively added to the reaction kettle, and the mixture was stirred for 30 minutes.
  • N-heptane (10.0 mL) and fumarate crystal form A seed crystals (5 mg) were successively added to the reaction kettle to induce crystallization, and kept for 1 hour for aging.
  • n-heptane (27.5 mL) was added to the reaction kettle, the temperature was naturally cooled to room temperature, and the mixture was stirred overnight. After suction filtration, the wet cake was dried under vacuum at 45° C. for 4 hours to obtain crystal form A (2.8 g) as a white solid powder.
  • the TGA spectrum is shown in Figure 9, showing that the mass fraction of the weight loss when heated to 150°C is about 6.7%.
  • phase A Weigh 1.32 g of diammonium hydrogen phosphate, add 1000 ml of water to dissolve, adjust the pH to 7.2 with phosphoric acid, and filter to obtain phase A; phase B is acetonitrile
  • Phase A Phase A (%) Phase B (%) 0 90 10 5 90 10 50 15 85 55 15 85 55.5 90 10 60 90 10
  • Compound 1 of the present application has an inhibitory effect on AKT kinase activity, so the crystalline form of Compound 1 of the present application also has an inhibitory effect on AKT kinase activity, Furthermore, the crystal form of the fumarate salt hydrate of Compound 1 of the present application and the crystal form composition and pharmaceutical composition comprising the same can be used for the prevention and/or treatment of AKT protein kinase-mediated diseases or disease states, and further can For the preparation of a medicament for preventing and/or treating a disease or disease state mediated by AKT protein kinase. Further, the crystal form of the fumarate salt hydrate of compound 1 of the present application has higher stability, improves the physicochemical properties of compound 1, and has better bioavailability, making it beneficial to production and application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本申请公开了一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型,具体涉及化合物(1)富马酸盐水合物的晶型及其制备。该晶型具有良好的稳定性,能够更好应用于临床。

Description

一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型
本申请要求于2020年7月22日提交中国专利局、申请号为202010709837.9、发明名称为“一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于药物化学领域,具体涉及一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐、其晶型、其制备方法以及医药用途。
背景技术
磷脂酰肌醇3-激酶(PI3K)及其下游蛋白AKT(又称蛋白激酶B,PKB)和哺乳动物雷帕霉素靶蛋白(mTOR)组成的PI3K/AKT/mTOR通路作为细胞内非常重要的信号转导途径,在细胞的生长、存活、增殖、凋亡、血管生成、自吞噬等过程中发挥着极其重要的生物学功能。该通路的异常激活会引起一系列的疾病,包括癌症、神经病变、自身免疫性疾病和血液淋巴系统疾病。
AKT,是一类丝氨酸/苏氨酸激酶,通过下游众多效应器影响细胞存活、生长、代谢、增殖、迁移和分化。超过50%的人类肿瘤存在AKT过度活化的现象,尤以前列腺癌、胰腺癌、膀胱癌、卵巢癌、乳腺癌为主。AKT过活化可导致肿瘤发生、转移以及耐药性产生。
AKT具有三种亚型:AKT1、AKT2和AKT3。作为典型的蛋白激酶,每种亚型均由氨基末端的PH结构域(Pleckstrin homology domain)、中部结合ATP的激酶结构域以及羧基末端的调节结构域组成。3种亚型约80%的氨基酸序列同源,仅在PH结构域和激酶结构域连接区变化较大。
目前,针对PI3K/AKT/mTOR信号通路的靶向药物主要是PI3K抑制剂和mTOR抑制剂,而AKT处于该信号转导通路的核心部位。抑制AKT活性既可避免抑制上游PI3K造成的严重副作用,也可避免抑制下游mTOR引起的负反馈机制影响药效。例如,CN101631778A公开了一类环戊二烯并[D]嘧啶衍生物,CN101578273A公开了一类羟基化和甲氧基化的环戊二烯并[D]嘧啶衍生物,CN101511842A公开了一类二氢呋喃并嘧啶衍生物,CN101970415A公开了一类5H-环戊二烯并[d]嘧啶衍生物,这些化合物具有小于10μM的抑制AKT1的IC 50。然而,寻找有效和选择性的AKT抑制剂仍然是当前肿瘤靶向药物 研发的重要方向。
发明内容
一方面,本申请提供了具有如下结构的富马酸盐水合物的晶型(下文简称晶型A),
Figure PCTCN2021107814-appb-000001
其中,X为2.0~3.0,
使用Cu-Ka辐射,以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°和3.63°±0.2°处具有特征峰。
上述富马酸盐水合物为化合物1的富马酸盐水合物,化合物1具有如下结构:
Figure PCTCN2021107814-appb-000002
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、19.45°±0.2°、21.60°±0.2°和23.63°±0.2°处具有特征峰。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、14.22°±0.2°、19.45°±0.2°、21.60°±0.2°和23.63°±0.2°处具有特征峰。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、10.72°±0.2°、14.22°±0.2°、19.45°±0.2°、21.60°±0.2°、23.63°±0.2°、24.50°±0.2°、24.83°±0.2°、25.08°±0.2°和30.33°±0.2°处具有特征峰。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射图在2θ值为5.29°±0.2°、9.28°±0.2°、10.72°±0.2°、11.24°±0.2°、12.13°±0.2°、12.51°±0.2°、13.60°±0.2°、14.22°±0.2°、15.64±0.2°、16.14°±0.2°、16.52°±0.2°、17.38°±0.2°、17.99°±0.2°、18.68°±0.2°、19.00°±0.2°、19.45°±0.2°、19.80°±0.2°、20.53°±0.2°、21.60°±0.2°、21.89°±0.2°、22.58°±0.2°、23.63°±0.2°、24.50°±0.2°、24.83°±0.2°、25.08°±0.2°、25.66°±0.2°、26.09°±0.2°、26.84°±0.2°、27.43°±0.2°、27.94°±0.2°、28.81°±0.2°、29.52°±0.2°、29.98°±0.2°、30.33°±0.2°、30.92°±0.2°、32.03°±0.2°、32.80°±0.2°、33.34°±0.2°、34.14°±0.2°、34.72°±0.2°、35.83°±0.2°、36.55°±0.2°、37.35°±0.2°、38.11°±0.2°和38.93°±0.2°处具有特征峰。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射具有如图4所示的图谱。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射具有如图8所示的图谱。
在一些实施方案中,所述晶型A以2θ角度表示的X射线粉末衍射具有如图10所示的图谱。
在一些实施方案中,所述晶型A在差示扫描量热法测得的热分析图中,在起始温度为118℃~128℃处有吸热峰。
在一些实施方案中,所述晶型A在差示扫描量热法测得的热分析图中,在起始温度为120℃~125℃处有吸热峰。
在一些实施方案中,所述晶型A在差示扫描量热法测得的热分析图中,在起始温度为123℃处有吸热峰。
在一些典型的实施方案中,所述晶型A具有如图5所示的DSC图谱。
在一些实施方案中,所述晶型A在傅里叶变换衰减全反射红外光谱法测得的光谱中具有下列吸收光带,以波长的倒数表示(cm -1):3451±2,2981±2,2953±2,2882±2,2824±2,2477±2,1698±2,1631±2,1596±2,1544±2,1490±2,1465±2,1441±2,1390±2,1362±2,1320±2,1302±2,1283±2,1254±2,1197±2,1135±2,1091±2,1058±2,1014±2,983±2,929±2,894±2,867±2,834±2,802±2,784±2,761±2,739±2,718±2,663±2,647±2,640±2,584±2,560±2和497±2。
在一些实施方案中,所述晶型A在傅里叶变换拉曼光谱法测得的光谱中具有下列吸收 光带,以波长的倒数表示(cm -1):1699±2,1664±2,1602±2,1340±2,867±2,829±2,809±2,747±2和669±2。
在一些实施方案中,所述晶型A具有如图6所示的TGA图谱。
在一些实施方案中,所述晶型A具有如图7所示的TGA图谱。
在一些实施方案中,所述晶型A具有如图9所示的TGA图谱。
在一些典型的实施方案中,所述晶型A为包含2.0至2.5个水分子的水合物,即结构式中X为2.0~2.5。
另一方面,本申请提供了一种晶型A的晶型组合物,其中所述晶型A的重量占晶型组合物重量的50%以上;优选80%以上;进一步优选90%以上;更进一步优选95%以上;最优选98%以上。
另一方面,本申请还提供了包含所述晶型A或晶型组合物的药物组合物。
在一些实施方案中,所述药物组合物进一步包含一种或多种药学上可接受的载体。
在一些实施方案中,所述药物组合物为适于口服的固体药物制剂,优选片剂或胶囊。
另一方面,本申请还提供了用作药物的晶型A或晶型组合物或药物组合物。
另一方面,本申请还提供了所述晶型A或其药物组合物在制备用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的药物中的用途。
另一方面,本申请还提供了所述晶型组合物在制备用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的药物中的用途。
另一方面,本申请还提供了所述晶型A或其药物组合物用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的用途。
另一方面,本申请还提供了所述晶型组合物用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的用途。
另一方面,本申请还提供了用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的方法,其包括向有需要的个体给予本申请的所述晶型A或其药物组合物。
另一方面,本申请还提供了用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的方法,其包括向有需要的个体给予本申请所述的晶型组合物。
另一方面,本申请还提供了用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态 的本申请的所述晶型A或其药物组合物。
另一方面,本申请还提供了用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的本申请的所述晶型组合物。
在一些实施方案中,所述AKT蛋白激酶介导的疾病或疾病状态为癌症。
在一些典型的实施方案中,所述癌症为乳腺癌、前列腺癌或卵巢癌。
在一些典型的实施方案中,所述癌症为前列腺癌。
相关定义
除非有特定说明,下列用在说明书和权利要求书中的术语具有下述含义:
术语“药学上可接受的载体”是指对机体无明显刺激作用,而且不会损害该活性化合物的生物活性及性能的那些载体。包括但不限于国家食品药品监督管理局许可的可用于人或动物的任何稀释剂、崩解剂、粘合剂、助流剂、润湿剂。
本申请中的“X-射线粉末衍射图谱”为使用Cu-Kα辐射测量得到。
本申请中的“2θ”或“2θ角度”是指衍射角,θ为布拉格角,单位为°或度;每个特征峰2θ的误差范围为±0.20°。
需要说明的是,在X射线粉末衍射光谱(XRPD)中,由结晶化合物得到的衍射谱图对于特定的结晶往往是特征性的,其中谱带(尤其是在低角度)的相对强度可能会因为结晶条件、粒径和其它测定条件的差异而产生的优势取向效果而变化。因此,衍射峰的相对强度对所针对的结晶并非是特征性的。判断是否与已知的结晶相同时,更应该注意的是峰的相对位置而不是它们的相对强度。此外,对任何给定的结晶而言,峰的位置可能存在轻微误差,这在结晶学领域中也是公知的。例如,由于分析样品时温度的变化、样品移动、或仪器的标定等,峰的位置可以移动,2θ值的测定误差有时约为±0.2°。因此,在确定每种结晶结构时,应该将此误差考虑在内。在XRPD图谱中通常用2θ角或晶面距d表示峰位置,两者之间具有简单的换算关系:d=λ/2sinθ,其中d代表晶面距,λ代表入射X射线的波长,θ为衍射角。对于同种化合物的同种结晶,其XRPD谱的峰位置在整体上具有相似性,相对强度误差可能较大。还应指出的是,在混合物的鉴定中,由于含量下降等因素会造成部分衍射线的缺失,此时,无需依赖高纯试样中观察到的全部谱带,甚至一条谱带也可能对给定的结晶是特征性的。
差示扫描量热法(DSC)测定当晶体由于其晶体结构发生变化或晶体熔融而吸收或释放热时的转变温度。对于同种化合物的同种晶型,在连续的分析中,热转变温度和熔点误差典型的在约5℃之内,通常在约3℃之内。当描述某个化合物具有某一给定的DSC峰或熔点时,指的是该DSC峰或熔点±5℃。DSC提供了一种辨别不同晶型的辅助方法。不同的晶体形态可根据其不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其DSC峰或熔点可能会在更大的范围内波动。此外,由于在物质熔化的过程中伴有分解,因此熔化温度与升温速率相关。
热重分析(TGA)指的是在程序控制温度下测量待测样品的质量与温度变化之间关系的一种热分析技术。当被测物质在加热过程中有升华或汽化现象时,其分解出了气体或失去了结晶水时,引起被测物质量发生变化。这时,热重曲线就不是直线而是有所下降。通过分析热重曲线,即可知道被测物质在什么温度下产生变化,并且根据所失重量,可计算失去了多少物质量。
在提到例如XRPD图谱、DSC图谱或TGA图谱时,术语“如……所示”包括与本文描绘的那些不一定相同,但在被本领域技术人员考虑时落入实验误差的限度内的图谱。
如无特殊说明,本申请的简称具有如下含义:
M:mol/L
mM:mmol/L
nM:nmol/L
Boc:叔丁氧羰基
DCM:二氯甲烷
DEA:二乙胺
DIEA:N,N-二异丙基乙胺
HATU:2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
RT:保留时间
SFC:超临界流体色谱
h:小时
min:分
TK:酪氨酸激酶
SEB:荧光信号增强剂
HTRF:均相时间分辨荧光
DTT:二硫苏糖醇
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为实施例1化合物1的单分子示意图;
图2为实施例1化合物1的草酸盐单晶的不对称结构单元示意图;
图3为实施例2方法A的富马酸盐无定型的XRPD图谱;
图4为实施例2方法B的晶型A的XRPD图谱;
图5为实施例2方法B的晶型A的DSC图谱;
图6为实施例2方法B的晶型A的TGA图谱;
图7为实施例2方法A的晶型A的TGA图谱;
图8为实施例2方法A的晶型A的XRPD图谱;
图9为实施例3的晶型A的TGA图谱;
图10为实施例3的晶型A的XRPD图谱。
具体实施方式
下面通过实施例更详细地描述本申请。但这些具体描述仅用于说明本申请的技术方案,不对本申请构成任何限制。
各仪器测试条件如下:
(1)X-射线粉末衍射仪(X-ray Powder Diffraction,XRPD)
仪器型号:Bruker D2 Phaser 2 nd
X-射线:Cu-Kα,λ=1.5406
狭缝系统:发射狭缝=0.4°,接受狭缝=0.075mm
X射线光管设定:管电压30KV,管电流10mA
扫描方式:连续扫描,扫描步长(°2θ)0.043°,扫描范围(°2θ)3-40°
(2)热重分析仪(Thermogravimetric,TGA)
仪器型号:TA Instruments TGA55
吹扫气:氮气
升温速率:10℃/min
升温范围:室温-300℃
(3)差示扫描量热仪(Differential Scanning Calorimeter,DSC)
仪器型号:TA Instruments DSC25
吹扫气:氮气
升温速率:10℃/min
升温范围:20-250℃
(4)傅里叶变换红外光谱法(FT-IR)
仪器型号:Thermo傅里叶红外光谱仪IS5
仪器校正:聚苯乙烯薄膜
测试条件:KBr压片法
(5)傅里叶变换拉曼光谱法(FT-Raman)
仪器型号:尼高力傅里叶变换拉曼光谱仪DXR780
曝光时间:20秒
曝光次数:10次
背景曝光次数:512次
光源:780nm
狭缝:400lines/mm
激光强度:14mW
扫描范围:50cm -1-3000cm -1
实施例1化合物1的制备
制备例1中间体(R)-4-氯-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮的制备
Figure PCTCN2021107814-appb-000003
a)2-甲基丙烷-1,1,3-三羧酸三甲酯
氮气保护下,于20℃将甲醇钠甲醇溶液(30wt%,50.32g)加入到甲醇中(900mL),然后升温至70℃,将丙二酸二甲酯(461.12g)和巴豆酸乙酯(349.46g)混合均匀,滴加到上述甲醇钠甲醇溶液中,70℃反应3小时。反应完全后,减压蒸去溶剂,加入乙酸乙酯(1L),用4M盐酸调节pH至7-8,随后加入500mL水,分液,减压蒸去有机相,得到黄色液体777.68g。 1H NMR(400MHz,DMSO-d 6)δ(ppm)3.67(s,3H),3.65(s,3H),3.59(s,3H),3.56(d,J=6.8Hz,1H),2.45-2.58(m,2H),2.23-2.29(m,1H),0.93(d,J=6.8Hz,3H)。
b)(R)-2-甲基丙烷-1,1,3-三羧酸三甲酯
25℃时,将磷酸氢二钠(4.5g)溶解在1.5L去离子水中,用2N盐酸调节pH=7.05,加入2-甲基丙烷-1,1,3-三羧酸三甲酯(150.46g)和脂肪水解酶(皱褶假丝酵母菌,40g分6天加入),用2N的氢氧化钠溶液调节pH至7.0-7.6之间,35℃反应6天,手性检测ee%>98%,手性检测条件(Chiralpak IC,4.6×250mm,5μm,正己烷:乙醇=9:1,体积比)。将反应液冷却至10℃,用3M的盐酸调节pH至3-4,加入500mL乙酸乙酯,抽滤,滤饼用乙酸乙酯洗涤(600mL),分液,加入饱和碳酸氢钠水溶液(100mL)洗涤,分液,浓缩有机相,得到淡黄色液体26.89g。 1H NMR(400MHz,CDCl 3)δ(ppm)3.74(s,6H),3.68(s,3H),3.46(d,J=7.2Hz,1H),2.71-2.79(m,1H),2.54(dd,J=15.6、4.8Hz,1H),2.32(dd,J=16.0、8.4Hz,1H),1.06(d,J=6.8Hz,3H)。
c)(R)-3-(4,6-二羟基嘧啶-5-基)丁酸甲酯
在氮气保护下,于20℃将乙酸甲脒(11.33g)溶解在甲醇中(200mL),冷却至0℃,滴加甲醇钠甲醇溶液(30wt%,55.62g),0℃反应60min,滴加(R)-2-甲基丙烷-1,1,3-三羧酸三甲酯(24.07g)的甲醇(60mL)溶液,自然升温至20℃,反应10小时。反应完全后,将反应液冷却至0℃,加入3N的盐酸调节pH至5-6,减压蒸去溶剂,随后冷却至0℃,加入3N的盐酸调节pH=3,有固体析出,抽滤收集固体,滤饼用冰水洗涤(100mL),真空干 燥滤饼,得到白色固体18.79g,直接用于下一步。
d)(R)-3-(4,6-二氯嘧啶-5-基)丁酸甲酯
在氮气保护下,22℃时将(R)-3-(4,6-二羟基嘧啶-5-基)丁酸甲酯(14.63g)分散在乙腈中(70mL),先后滴加三氯氧磷(26.42g)及二异丙基乙胺(12.51g),体系放热明显,随后升温至60℃,固体逐渐溶清,继续反应18小时。反应完全后,将反应液冷却至0℃,加入100mL乙酸乙酯,用饱和碳酸氢钠溶液调节pH至7-8,以乙酸乙酯(50mL×3)萃取,减压蒸去有机相,得到黄色固体13.89g,直接用于下一步。
e)(R)-4-氯-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮
20℃时将(R)-3-(4,6-二氯嘧啶-5-基)丁酸甲酯(13.89g)和氨水(25-28wt%,70mL)加入到100mL高压釜中,升温至50℃,反应18小时。反应完全后,将反应液冷却至0℃,抽滤,滤饼用(石油醚:乙酸乙酯=10:1,体积比)30mL打浆,得到淡黄色固体7.32g。LC-MS(ESI)m/z:198(M+H). 1H NMR(300MHz,CDCl 3)δ(ppm)1.30(d,J=7.2Hz,3H),2.65-2.69(m,1H),2.86-2.92(m,1H),3.47-3.54(m,1H),8.64(s,1H),10.10(s,1H)。
制备例2(R)-4-((1S,6R)-5-((S)-2-(4-氯苯基)-3-(异丙基氨基)丙酰基)-2,5-二氮杂双环[4.1.0]庚烷-2-基)-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮(化合物1)的制备
Figure PCTCN2021107814-appb-000004
反应条件:a)2,5-二氮杂双环[4.1.0]庚烷-2-羧酸叔丁酯,N-甲基吡咯烷酮,4-二甲氨基吡啶;b)氯化氢/1,4-二氧六环(4.0M),二氯甲烷;c)(S)-3-((叔丁氧羰基)(异丙基)氨基)-2-(4-氯苯基)-丙酸,2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯,4-二甲氨基吡啶,N,N-二甲基甲酰胺;d)三氟乙酸,二氯甲烷。
a)5-((R)-5-甲基-7-氧代-5,6,7,8-四氢吡啶并[2,3-d]嘧啶-4-基)-2,5-二氮杂双环[4.1.0] 庚烷-2-羧酸叔丁酯
氮气保护下,于22℃将(R)-4-氯-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮(0.21g),2,5-二氮杂双环[4.1.0]庚烷-2-羧酸叔丁酯(0.31g)和4-二甲氨基吡啶(0.39g)溶解在N-甲基吡咯烷酮(5mL),然后加热至140℃,反应3小时。反应完全后,将反应液冷却至20℃,倒入20mL冰水中,乙酸乙酯(20mL×2)萃取,饱和食盐水洗涤(10mL×3),减压蒸除溶剂,硅胶柱层析(石油醚:乙酸乙酯=3:1~1:1)分离,得到淡黄色液体0.28g。LC-MS(ESI)m/z:360(M+H)。
b)(5R)-4-(2,5-二氮杂双环[4.1.0]庚烷-2-基)-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮盐酸盐
20℃将5-((R)-5-甲基-7-氧代-5,6,7,8-四氢吡啶并[2,3-d]嘧啶-4-基)-2,5-二氮杂双环[4.1.0]庚烷-2-羧酸叔丁酯(0.28g)溶解于二氯甲烷(5mL),加入氯化氢/1,4-二氧六环(4.0mL)反应1小时。反应完全后,反应液减压蒸除溶剂,得到黄色固体0.23g,直接用于下一步。
c)(2S)-2-(4-氯苯基)-3-(5-((R)-5-甲基-7-氧代-5,6,7,8-四氢吡啶并[2,3-d]嘧啶-4-基)-2,5-二氮杂双环[4.1.0]庚烷-2-基)-3-氧代丙基)(异丙基)氨基甲酸叔丁酯
在氮气保护下,于20℃将(5R)-4-(2,5-二氮杂双环[4.1.0]庚烷-2-基)-5-甲基-5,8-二氢吡啶[2,3-d]嘧啶-7(6H)-酮盐酸盐(0.20g)和(S)-3-((叔丁氧羰基)(异丙基)氨基)-2-(4-氯苯基)-丙酸(0.22g)溶解于N,N-二甲基甲酰胺(5mL),加入2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(0.59g)和4-二甲氨基吡啶(0.48g),25℃反应4小时。反应完全后,向反应液中加入20ml水,以乙酸乙酯(10mL×3)萃取,有机相用饱和食盐水洗涤(10mL×2),减压蒸除有机相,柱层析(二氯甲烷:甲醇=50:1)分离,得到黄色固体0.18g。LC-MS(ESI)m/z:583(M+H)。
d)(R)-4-((1S,6R)-5-((S)-2-(4-氯苯基)-3-(异丙基氨基)丙酰基)-2,5-二氮杂双环[4.1.0]庚烷-2-基)-5-甲基-5,8-二氢吡啶并[2,3-d]嘧啶-7(6H)-酮
20℃将(2S)-2-(4-氯苯基)-3-(5-((R)-5-甲基-7-氧代-5,6,7,8-四氢吡啶并[2,3-d]嘧啶-4-基)-2,5-二氮杂双环[4.1.0]庚烷-2-基)-3-氧代丙基)(异丙基)氨基甲酸叔丁酯(0.18g)溶解于二氯甲烷(2mL),加入三氟乙酸(0.86mL),反应3小时。反应完全后,向反应液中加入二氯甲烷(10mL),于0℃滴加2M的氢氧化钠溶液,调节pH=12,分液,饱和食盐水洗涤(5mL)有机相,无水硫酸钠干燥,减压蒸除有机相,得到黄色固体0.10g。 经高效制备液相色谱拆分,得到异构体1(3mg),异构体2(12mg)。高效制备液相色谱条件:色谱柱:Aglient 5μm prep-C18 50×21.2mm,流动相A:水(含0.1vol%氨水(25-28wt%));流动相B:甲醇。梯度:时间0-10min,B相60-70%(体积比)。
异构体1:RT 1=5.3min,LC-MS(ESI)m/z:483(M+H)。
异构体2:RT=5.9min;LC-MS(ESI)m/z:483(M+H); 1H NMR(400MHz,CDCl 3)δ(ppm)8.27(d,J=7.6Hz,1H),7.92(s,1H),7.27-7.30(m,4H),4.23-4.29(m,1H),3.90-3.95(m,1H),3.81-3.85(m,1H),3.69-3.72(m,1H),3.44-3.59(m,1H),3.20-3.38(m,3H),3.01-3.05(m,1H),2.70-2.85(m,3H),2.47-2.57(m,1H),2.21-2.25(m,1H),1.25-1.28(m,3H),1.03-1.11(m,6H),0.82-0.90(m,2H)。
本申请通过单晶衍射测定实施例1的化合物的构型,从而确认异构体2即为本申请的化合物1:
单晶制备:将30.0mg异构体2、2.0mL异丙醇加入5mL螺口玻璃瓶中,搅拌5min,固体溶清。称取3.9mg二水合草酸加入上述玻璃瓶中,玻璃瓶中逐渐有白色固体析出,室温搅拌3h,玻璃瓶中析出大量白色固体。向玻璃瓶中加入1.0mL甲醇,白色固体逐渐消失,溶液变澄清,继续搅拌1h。溶液经0.22μm微孔滤膜滤至3mL螺口玻璃瓶中,玻璃瓶口用保鲜膜覆盖。用针头在瓶口处扎8个小孔,室温放置7天,制得异构体2的草酸盐单晶。
单晶衍射实验:
单晶X射线衍射仪:BRUKER D8 VENTURE PHOTON II
波长:Ga Kα
Figure PCTCN2021107814-appb-000005
测试温度:190K
用于结构解析的计算机程序:SHELXL-2018
单晶数据:分子式:C 55H 72Cl 2N 12O 9;分子量:1116.14;晶系:六方晶系;空间群:P61;晶胞参数:
Figure PCTCN2021107814-appb-000006
α=90°,β=90°,γ=120°;单位晶胞体积:
Figure PCTCN2021107814-appb-000007
单位晶胞中包含的分子式个数:Z=12;计算密度:D calc=0.838g/cm 3;R(F o):0.0730;R W(F o 2):0.2069;拟合优度(S):1.034;Flack参数:0.066(9)。
结构描述:单晶X射线衍射及结构解析表明,所制得的单晶为异构体2的草酸盐异丙醇合物。晶体的不对称结构单元中包含四个异构体2分子、两个草酸分子及两个异丙醇分子, 其中异构体2和草酸形成草酸盐。异构体2的单分子示意图如图1所示,草酸盐单晶的不对称结构单元如图2所示。结构式表示如下:
Figure PCTCN2021107814-appb-000008
测试例1AKT激酶抑制活性的测定
1.材料和试剂
Envision型号读板仪(Molecular Devices)
白色384孔板(货号#264706,Thermo)
HTRF kinEASE TK试剂盒包含的主要试剂(货号#62TKOPEC,Cisbio)
TK-生物素底物
链霉亲和素-XL665
铕标记的酪氨酸激酶底物抗体
5×酶反应缓冲液
SEB
HTRF检测缓冲液
AKT1(货号#01-101,Carna)
AKT2(货号#01-102,Carna)
AKT3(货号#PV3185,Invitrogen)
ATP 10mM(货号#PV3227,Invitrogen)
DTT 1M(货号#D5545,Sigma)
MgCl 2 1M(货号#M8266,Sigma)
本申请实施例1的异构体1和异构体2
阳性对照物:GDC-0068
2.实验步骤
2.1试剂配制
表1激酶的反应体系各组分及浓度表
Figure PCTCN2021107814-appb-000009
1×激酶反应缓冲液
1mL激酶AKT1,2,3的1x激酶反应缓冲液中含有200μL 5×激酶反应缓冲液、5μL 1M MgCl 2、1μL 1M DTT、794μL超纯水。
5×TK-生物素底物和ATP工作液
TK-生物素底物和ATP的具体浓度见表1。
用1×激酶反应缓冲液稀释底物和ATP至反应浓度的5倍。
5×激酶工作液
酶筛选时所用的浓度见表1。用1×激酶反应缓冲液配制5×酶工作液。
4×链霉亲和素-XL665工作液
链霉亲和素-XL665在反应中的浓度参见表1。用检测缓冲液配制4×链霉亲和素-XL665工作液。
4×铕标记的酪氨酸激酶底物抗体工作液
用检测反应缓冲液将铕标记的酪氨酸激酶底物抗体稀释100倍作为工作液。
2.2实验流程
所有试剂按照上述方法配好后,除酶外,平衡到室温以后,开始进行加样。
a)首先用DMSO将化合物储液(10mM的DMSO溶液)稀释至100μM化合物溶液,然后用1倍激酶反应缓冲液稀释至2.5μM化合物工作液(含2.5%的DMSO)。使用1×激酶反应缓冲液配制2.5%的DMSO溶液,然后用2.5%的DMSO溶液稀释2.5μM化合物工作液,4倍倍比梯度稀释7次,共8个浓度(2500nM,625nM,156nM,39nM,9.8nM,2.4nM,0.6nM,0.15nM)的化合物工作液。除对照孔外,向所有反应孔中加入4μL的稀释好的化合物工作液,向对照孔中加入4μL先前配制的2.5%DMSO/激酶缓冲溶液。
b)向所有反应孔中加入2μL先前配制好的TK-生物素底物溶液(酶筛选时底物的浓度见表1)。
c)向除阴性孔外的所有反应孔中加入2μL先前配制好的酶溶液(酶的浓度见表1),阴性孔用2μL酶对应1×激酶反应缓冲液补足体积。用封板膜封板,混匀后室温孵育10分钟,让化合物和酶充分作用结合。
d)向所有反应孔中加入2μL的ATP溶液来启动激酶反应(酶筛选时的ATP浓度和反应时间见表1)。
e)在激酶反应结束前5分钟开始配制检测液。使用试剂盒中的检测缓冲液配制链霉亲和素-XL665和铕标记的酪氨酸激酶底物抗体(1:100)检测液(酶筛选时检测试剂浓度见表1)。
f)待激酶反应结束后,向所有反应孔中加入5μL稀释好的链霉亲和素-XL665,混匀后立即加入稀释好的铕标记的酪氨酸激酶底物抗体检测液。
g)封板混匀,室温反应1h后,用ENVISION(Perkinelmer)仪器检测荧光信号(320nm刺激,665nm,615nm发射)。通过全活性孔和背景信号孔计算出每个孔的抑制率,复孔取平均值,同时用专业的画图分析软件PRISM 6.0对每个待测化合物进行半数抑制活性(IC50)的拟合。
表2:实验加样流程表
Figure PCTCN2021107814-appb-000010
Figure PCTCN2021107814-appb-000011
2.3数据分析
ER=665nm荧光值/615nm荧光值
抑制率=(ER 阳性对照-ER 样品)/(ER 阳性对照-ER 阴性对照)×100%
3.实验结果
实验结果如表3所示:
表3:AKT抑制活性
Figure PCTCN2021107814-appb-000012
Figure PCTCN2021107814-appb-000013
实施例2晶型A的制备
(1)方法A通过化合物1富马酸盐的无定形制备晶型A
制备化合物1富马酸盐无定形:
向3mL玻璃小瓶中添加化合物1(25mg)和异丙醇(1mL),在室温下磁力搅拌溶清。向3mL玻璃小瓶中加入富马酸固体(6.31mg),在室温下磁力搅拌反应。搅拌18小时后,向3mL玻璃小瓶中加入正庚烷(2mL),继续搅拌18小时。抽滤,湿滤饼在真空下于40℃下干燥3小时,得到白色固体粉末状的化合物1富马酸盐无定形,用 1HNMR、XRPD表征,XRPD图谱见图3。
1HNMR(400MHz,DMSO-d 6):10.49(s,1H),8.20(s,1H),7.34–7.48(m,4H),6.52(s,2H),4.37-4.76(m,1H),3.88–4.18(m,1H),3.70–3.81(m,2H),3.34–3.54(m,2H),3.03–3.21(m,4H),2.90(dd,J=11.6,4.8Hz,1H),2.76(dd,J=16.4,6.0Hz,1H),2.22–2.30(m,1H),1.04–1.32(m,8H),0.85–0.93(m,4H),0.08(q,J=5.2Hz,1H)。
制备晶型A:
向3mL玻璃小瓶中添加化合物1富马酸盐无定形(100mg)和水(2mL),在室温下磁力搅拌溶清。搅拌18小时后,抽滤,湿滤饼在真空下于40℃下干燥5小时,得到白色固体粉末状晶型A。
TGA图谱如图7所示,显示加热至150℃时,重量损失的质量分数约为6.1%。
XRPD图谱如图8所示。
(2)方法B:通过加入晶种的方法制备晶型A
向100mL双层玻璃夹套反应釜中添加化合物1(2g)和丙酮(10mL),在室温下机械搅拌。向10mL玻璃小瓶中先后加入富马酸固体(0.50g)和乙醇/水(95:5,v/v)(7mL), 升温至60℃振荡溶清,保温备用。将上述富马酸溶液加入到反应釜中,降至室温。向反应釜中加入富马酸盐晶型A晶种(5.0mg),晶种溶清。降温至20℃后向反应釜中加入富马酸盐晶型A晶种(5.0mg),诱导析晶,保温1.5小时。保温毕,降温至10℃,熟化1.5小时。熟化毕,降温至2℃。熟化毕,升温至20℃,保温搅拌过夜。抽滤,湿滤饼在真空下于45℃下干燥6小时,得到白色针状晶型A(0.7g)。
母液返回反应釜,加入正庚烷(20mL),室温下搅拌熟化。抽滤,湿滤饼在真空下于45℃下干燥6小时,得到白色固体粉末状晶型A(1.1g)。
分别进行 1HNMR、XRPD、DSC、TGA、FT-IR和FT-Raman表征。
1HNMR(400MHz,DMSO-d 6):10.49(s,1H),8.20(s,1H),7.34–7.48(m,4H),6.52(s,2H),4.40-4.77(m,1H),3.88–4.18(m,1H),3.69–3.80(m,2H),3.35–3.54(m,2H),3.08–3.21(m,4H),2.91(dd,J=11.6,4.4Hz,1H),2.76(dd,J=16.0,6.0Hz,1H),2.22-2.30(m,1H),1.06-1.30(m,8H),0.76-0.99(m,4H),0.08(q,J=4.8Hz,1H)。
晶型A的XRPD衍射特征峰如表4和图4所示。
表4晶型A的XRPD衍射特征峰
2θ(°) I/I 0(%) 2θ(°) I/I 0(%)
5.29 3.6 24.83 12.6
9.28 77.4 25.08 11.1
10.72 10.5 25.66 3.0
11.24 5.2 26.09 5.2
12.13 2.8 26.84 3.6
12.51 3.3 27.43 7.1
13.60 7.1 27.94 7.9
14.22 19.2 28.81 4.9
15.64 4.8 29.52 2.6
16.14 9.8 29.98 5.1
16.52 3.3 30.33 14.2
17.38 6.2 30.92 2.5
17.99 3.3 32.03 3.3
18.68 8.7 32.80 1.5
19.00 5.7 33.34 3.6
19.45 31.5 34.14 3.8
19.80 7.0 34.72 1.6
20.53 4.8 35.83 4.3
21.60 37.6 36.55 2.0
21.89 9.0 37.35 2.0
22.58 5.1 38.11 2.0
23.63 100.0 38.93 1.5
24.50 13.7    
晶型A的DSC图谱如图5所示,吸热峰的起始温度和峰值温度分别为123℃和128℃。
晶型A采用傅里叶变换衰减全反射红外光谱法(FT-IR)测得的红外光谱中具有下列吸收光带,以波长的倒数表示(cm -1):3451±2,2981±2,2953±2,2882±2,2824±2,2477±2,1698±2,1631±2,1596±2,1544±2,1490±2,1465±2,1441±2,1390±2,1362±2,1320±2,1302±2,1283±2,1254±2,1197±2,1135±2,1091±2,1058±2,1014±2,983±2,929±2,894±2,867±2,834±2,802±2,784±2,761±2,739±2,718±2,663±2,647±2,640±2,584±2,560±2和497±2。
采用傅里叶变换拉曼光谱法(FT-Raman)测得的拉曼光谱中具有下列吸收光带,以波长的倒数表示(cm -1):1699±2,1664±2,1602±2,1340±2,867±2,829±2,809±2,747±2和669±2。
TGA图谱如图6所示,显示在加热至150℃时重量损失的质量分数约为5.9%。
可见,采用方法A和方法B获得的化合物1富马酸盐的晶型相同。
实施例3通过加入晶种的方法制备晶型A
向100mL双层玻璃夹套反应釜中先后加入化合物1(5g)和丙酮(25mL),升温至45℃,机械搅拌溶清。向20mL玻璃小瓶中先后加入富马酸固体(1.26g)和乙醇/水二元溶剂(95:5,v/v)(17.5mL),升温至60℃振荡溶清,保温备用。将上述富马酸溶液加入到反应釜中,降至45℃。向反应釜中先后加入正庚烷(12.5mL)和晶型A晶种(5mg),搅拌30分钟。向反应釜中先后加入正庚烷(10.0mL)和富马酸盐晶型A晶种(5mg),诱导析晶,保温熟化1小时。向反应釜中加入正庚烷(27.5mL),自然降温至室温,搅拌过夜。抽滤,湿滤饼在真空下于45℃下干燥4小时,得到白色固体粉末状晶型A(2.8g)。
TGA图谱如图9所示,显示加热至150℃时重量损失的质量分数约为6.7%。
XRPD图谱如图10所示。
实施例4晶型A稳定性研究
利用下面的保存条件测定实施例3制备的晶型A的固体稳定性。
a.湿热条件:温度:40℃,相对湿度:75%,敞口放置20天
b.高温条件:温度:60℃,敞口放置20天
采用下述HPLC方法测定晶型A的化学纯度
色谱柱:ACE Excel 5 Super C18(4.6*150mm,5μm)
检测波长:230nm,柱温30℃,流速:1.0ml/min
流动相:称取磷酸氢二铵1.32g,加水1000ml溶解,用磷酸调pH至7.2,过滤,即得A相;B相为乙腈
梯度条件:
时间(min) A相(%) B相(%)
0 90 10
5 90 10
50 15 85
55 15 85
55.5 90 10
60 90 10
测定结果如下所示:
Figure PCTCN2021107814-appb-000014
本申请中,如上测试例1所证明的,本申请的化合物1具有AKT激酶活性抑制作用,因此本申请的化合物1的富马酸盐水合物的晶型也相应地具有AKT激酶活性抑制作用,进而本申请的的化合物1的富马酸盐水合物的晶型及包含其的晶型组合物和药物组合物能够用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态,进一步能够用于制备用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的药物。更进一步地,本申请的化合物1的富马酸盐水合物的晶型具有更高的稳定性,提高了化合物1的物理化学性质,以及更优的生物利用度,使其有利于生产和应用。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (19)

  1. 具有如下结构的富马酸盐水合物的晶型,其为晶型A,
    Figure PCTCN2021107814-appb-100001
    其中,X为2.0~3.0,
    使用Cu-Ka辐射,以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°和3.63°±0.2°处具有特征峰。
  2. 根据权利要求1所述的晶型,以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、19.45°±0.2°、21.60°±0.2°和23.63°±0.2°处具有特征峰。
  3. 根据权利要求1所述的晶型,以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、14.22°±0.2°、19.45°±0.2°、21.60°±0.2°和23.63°±0.2°处具有特征峰。
  4. 根据权利要求1所述的晶型,以2θ角度表示的X射线粉末衍射图在2θ值为9.28°±0.2°、10.72°±0.2°、14.22°±0.2°、19.45°±0.2°、21.60°±0.2°、23.63°±0.2°、24.50°±0.2°、24.83°±0.2°、25.08°±0.2°和30.33°±0.2°处具有特征峰。
  5. 根据权利要求1所述的晶型,以2θ角度表示的X射线粉末衍射图在2θ值为5.29°±0.2°、9.28°±0.2°、10.72°±0.2°、11.24°±0.2°、12.13°±0.2°、12.51°±0.2°、13.60°±0.2°、14.22°±0.2°、15.64±0.2°、16.14°±0.2°、16.52°±0.2°、17.38°±0.2°、17.99°±0.2°、18.68°±0.2°、19.00°±0.2°、19.45°±0.2°、19.80°±0.2°、20.53°±0.2°、21.60°±0.2°、21.89°±0.2°、22.58°±0.2°、23.63°±0.2°、24.50°±0.2°、24.83°±0.2°、25.08°±0.2°、25.66°±0.2°、26.09°±0.2°、26.84°±0.2°、27.43°±0.2°、27.94°±0.2°、28.81°±0.2°、29.52°±0.2°、29.98°±0.2°、30.33°±0.2°、30.92°±0.2°、32.03°±0.2°、32.80°±0.2°、33.34°±0.2°、34.14°±0.2°、34.72°±0.2°、35.83°±0.2°、36.55°±0.2°、37.35°±0.2°、38.11°±0.2°和38.93°±0.2°处具有特征峰。
  6. 根据权利要求1所述的晶型,以2θ角度表示的X射线粉末衍射具有如图4所示的图谱,或如图8所示的图谱,或如图10所示的图谱。
  7. 根据权利要求1所述的晶型,所述晶型A在差示扫描量热法测得的热分析图中,在起始温度为118℃~128℃处有吸热峰;优选地,在起始温度为120℃~125℃处有吸热峰;更优选地,在起始温度为123℃处有吸热峰;更优选地,具有如图5所示的DSC图谱。
  8. 根据权利要求1所述的晶型,所述晶型A在傅里叶变换衰减全反射红外光谱法测得的光谱中具有下列吸收光带,以波长的倒数表示(cm -1):3451±2,2981±2,2953±2,2882±2,2824±2,2477±2,1698±2,1631±2,1596±2,1544±2,1490±2,1465±2,1441±2,1390±2,1362±2,1320±2,1302±2,1283±2,1254±2,1197±2,1135±2,1091±2,1058±2,1014±2,983±2,929±2,894±2,867±2,834±2,802±2,784±2,761±2,739±2,718±2,663±2,647±2,640±2,584±2,560±2,497±2。
  9. 根据权利要求1所述的晶型,所述晶型A在傅里叶变换拉曼光谱法测得的光谱中具有下列吸收光带,以波长的倒数表示(cm -1):1699±2,1664±2,1602±2,1340±2,867±2,829±2,809±2,747±2,669±2。
  10. 根据权利要求1所述的晶型,具有如图6所示的TGA图谱或如图7所示的TGA图谱或如图9所示的TGA图谱。
  11. 权利要求1-10中任一项所述的晶型的制备方法,其包括在化合物1与富马酸成盐反应时加入晶型A的晶种获得;或将化合物1富马酸盐无定型溶于水后,抽滤、真空干燥获得;其中化合物1具有如下的结构:
    Figure PCTCN2021107814-appb-100002
  12. 一种晶型组合物,其包含权利要求1-10中任一项所述的晶型,所述晶型的重量占晶型组合物重量的50%以上。
  13. 一种药物组合物,其包含权利要求1-10中任一项所述的晶型或权利要求12所述的 晶型组合物。
  14. 用作药物的权利要求1-10中任一项所述的晶型,或权利要求12所述的晶型组合物,或权利要求13所述的药物组合物。
  15. 根据权利要求1-10中任一项所述的晶型,或权利要求12所述的晶型组合物,或权利要求13所述的药物组合物用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的用途。
  16. 权利要求1-10中任一项所述的晶型,或权利要求12所述的晶型组合物,或权利要求13所述的药物组合物在制备用于预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的药物中的用途。
  17. 根据权利要求15或16所述的用途,其中所述AKT蛋白激酶介导的疾病或疾病状态为癌症,优选乳腺癌、前列腺癌或卵巢癌,更优选前列腺癌。
  18. 一种预防和/或治疗AKT蛋白激酶介导的疾病或疾病状态的方法,其包括向有需要的个体给予权利要求1-10中任一项所述的晶型,或权利要求12所述的晶型组合物,或权利要求13所述的药物组合物。
  19. 根据权利要求18所述的方法,其中,所述AKT蛋白激酶介导的疾病或疾病状态为癌症,优选乳腺癌、前列腺癌或卵巢癌,更优选前列腺癌。
PCT/CN2021/107814 2020-07-22 2021-07-22 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型 WO2022017448A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023504141A JP7472391B2 (ja) 2020-07-22 2021-07-22 ジヒドロピリド[2,3-d]ピリミジノン誘導体の塩及び結晶形
CN202180049179.8A CN115843298B (zh) 2020-07-22 2021-07-22 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型
CA3186562A CA3186562A1 (en) 2020-07-22 2021-07-22 Salt and crystal form of dihydropyrido[2,3-d]pyrimidine derivate
US18/017,421 US20230271958A1 (en) 2020-07-22 2021-07-22 SALT AND CRYSTAL FORM OF DIHYDROPYRIDO[2,3-d]PYRIMIDINE DERIVATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010709837 2020-07-22
CN202010709837.9 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022017448A1 true WO2022017448A1 (zh) 2022-01-27

Family

ID=79728510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107814 WO2022017448A1 (zh) 2020-07-22 2021-07-22 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型

Country Status (5)

Country Link
US (1) US20230271958A1 (zh)
JP (1) JP7472391B2 (zh)
CN (1) CN115843298B (zh)
CA (1) CA3186562A1 (zh)
WO (1) WO2022017448A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882347A (zh) * 2003-11-21 2006-12-20 阿雷生物药品公司 Akt蛋白激酶抑制剂
WO2007149730A2 (en) * 2006-06-20 2007-12-27 Eli Lilly And Company Inhibitors of akt (protein kinase b)
CN102574852A (zh) * 2009-10-23 2012-07-11 伊莱利利公司 Akt抑制剂
WO2013173784A1 (en) * 2012-05-17 2013-11-21 Genentech, Inc. Process of making hydroxylated cyclopentapyrimidine compounds and salts thereof
WO2016179415A1 (en) * 2015-05-06 2016-11-10 Plexxikon Inc. Solid forms of a compound modulating kinases
CN111433213A (zh) * 2017-12-13 2020-07-17 哈尔滨珍宝制药有限公司 作为Akt抑制剂的盐型及其晶型
WO2020156437A1 (zh) * 2019-01-29 2020-08-06 南京正大天晴制药有限公司 Akt抑制剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580443B2 (en) 2012-11-16 2017-02-28 Merck Patent Gmbh Heterocyclic derivatives as modulators of kinase activity
AR099789A1 (es) 2014-03-24 2016-08-17 Actelion Pharmaceuticals Ltd Derivados de 8-(piperazin-1-il)-1,2,3,4-tetrahidro-isoquinolina

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882347A (zh) * 2003-11-21 2006-12-20 阿雷生物药品公司 Akt蛋白激酶抑制剂
WO2007149730A2 (en) * 2006-06-20 2007-12-27 Eli Lilly And Company Inhibitors of akt (protein kinase b)
CN102574852A (zh) * 2009-10-23 2012-07-11 伊莱利利公司 Akt抑制剂
WO2013173784A1 (en) * 2012-05-17 2013-11-21 Genentech, Inc. Process of making hydroxylated cyclopentapyrimidine compounds and salts thereof
WO2016179415A1 (en) * 2015-05-06 2016-11-10 Plexxikon Inc. Solid forms of a compound modulating kinases
CN111433213A (zh) * 2017-12-13 2020-07-17 哈尔滨珍宝制药有限公司 作为Akt抑制剂的盐型及其晶型
WO2020156437A1 (zh) * 2019-01-29 2020-08-06 南京正大天晴制药有限公司 Akt抑制剂

Also Published As

Publication number Publication date
JP2023534552A (ja) 2023-08-09
US20230271958A1 (en) 2023-08-31
JP7472391B2 (ja) 2024-04-22
CA3186562A1 (en) 2022-01-27
CN115843298A (zh) 2023-03-24
CN115843298B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
EP2782912A1 (en) Solid state forms of vilazodone and vilazodone hydrochloride
JP6934945B2 (ja) P2x3アンタゴニストの結晶塩および多形
TW202241902A (zh) 一種嘧啶并五元氮雜環類衍生物的晶型及其製備方法
CN117295742A (zh) 化合物ⅰ的新形式及它们的应用
BR112020026052A2 (pt) forma de cristal do composto para a inibição da atividade de cdk4/6 e seu uso
JP6193762B2 (ja) 1−{(2S)−2−アミノ−4−[2,4−ビス(トリフルオロメチル)−5,8−ジヒドロピリド[3,4−d]ピリミジン−7(6H)−イ
WO2022017448A1 (zh) 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型
WO2022199591A1 (zh) 一种氟取代的吡啶并吡唑类化合物的晶型及其制备方法
WO2022017449A1 (zh) 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐、其制备方法及用途
WO2022017446A1 (zh) Akt抑制剂的单位剂量组合物
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
WO2024032558A1 (zh) 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法
WO2022033551A1 (zh) Jak抑制剂的盐型、晶型及其制备方法和应用
WO2024109871A1 (zh) 一种含氮杂环类化合物的可药用盐、晶型及制备方法
CN114075135B (zh) 含邻氨基吡啶炔基的化合物的盐及其制备方法和应用
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型
WO2022268063A1 (zh) 嘧啶类衍生物的晶型及其制备方法
WO2023093859A1 (zh) Axl激酶抑制剂的盐、其制备方法和用途
WO2022048551A1 (zh) 布鲁顿酪氨酸激酶抑制剂的多晶型物及其制备方法和应用
TW202408483A (zh) 一種硼酸酯衍生物的可藥用鹽、其結晶形式及用途
TW202411226A (zh) 一種芳基取代五員芳雜環化合物的結晶及其製備方法
TW202411227A (zh) 一種芳基取代五員芳雜環化合物的可藥用鹽及晶型形式
EA043251B1 (ru) Кристаллическая форма соединения для ингибирования активности cdk4/6 и ее применение
CN115232124A (zh) 一种atx抑制剂的结晶形式及其制备方法
CN117940410A (zh) 一种稠合二环类衍生物的可药用盐、晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3186562

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023504141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845438

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21845438

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/08/2023)