WO2024032558A1 - 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法 - Google Patents

一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法 Download PDF

Info

Publication number
WO2024032558A1
WO2024032558A1 PCT/CN2023/111516 CN2023111516W WO2024032558A1 WO 2024032558 A1 WO2024032558 A1 WO 2024032558A1 CN 2023111516 W CN2023111516 W CN 2023111516W WO 2024032558 A1 WO2024032558 A1 WO 2024032558A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
angles
ray powder
following
Prior art date
Application number
PCT/CN2023/111516
Other languages
English (en)
French (fr)
Inventor
张冬凯
徐洋洋
孙继奎
伍文韬
张杨
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2024032558A1 publication Critical patent/WO2024032558A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to a salt form and crystal form of a 5,6-dihydrothieno[3,4-h]quinazoline compound and a preparation method thereof, as well as the use of the salt form and crystal form in the preparation and treatment of colorectal cancer. and other solid tumor drug applications.
  • Polo-like kinases are a class of highly conserved serine/threonine protein kinases. They all have a highly homologous serine/threonine kinase domain at their N-terminus and regulatory PLKs at their C-terminus. Characteristic domain (polobox domain, PBD) for activity and subcellular dynamic localization.
  • PLKs polypeptide-like protein kinases
  • PBD Characteristic domain for activity and subcellular dynamic localization.
  • PLK1, PLK2, PLK3 and PLK4 There are many members of the PLKs family, and there are 4 subtypes in the human body, namely PLK1, PLK2, PLK3 and PLK4. They all play a vital role in the regulation of various phases of the cell cycle. Among these four family members, PLK1 is currently the most thoroughly studied. Therefore, PLK1 is a target of widespread concern in tumor diagnosis and treatment.
  • Onvansertib is a potential oral cancer treatment drug with indications including metastatic colorectal cancer (mCRC), solid tumors, acute myeloid leukemia (AML), and metastatic castration-resistant prostate cancer.
  • mCRC metastatic colorectal cancer
  • AML acute myeloid leukemia
  • PLK1 is a potent therapeutic target overexpressed in most cancers and Onvansertib is a novel, highly selective PLK1 inhibitor.
  • Onvansertib is a highly selective PLK1 inhibitor currently under clinical development. It has a strong inhibitory effect on PLK1 kinase protein. It is currently being used as a monotherapy for recurrent small cell lung cancer (SCLC) and in combination with SOC.
  • SCLC small cell lung cancer
  • Clinical Phase I or II studies on solid tumors such as KRAS mutated metastatic colorectal cancer (mCRC), metastatic pancreatic cancer (mPDAC), and metastatic castration-resistant prostate cancer (mCRPC).
  • KRAS mutated metastatic colorectal cancer mCRC
  • mPDAC metastatic pancreatic cancer
  • mCRPC metastatic castration-resistant prostate cancer
  • PLK1 inhibitors Compared with KRASG12C inhibitors, PLK1 inhibitors have higher response rates in CRC patients and are effective against all KRAS mutation subtypes.
  • CRC is the third largest malignant tumor after lung cancer and breast cancer. The global market in 2018 was approximately US$25 billion. Therefore
  • the invention provides succinate, fumarate, benzenesulfonate, sulfate, phosphate, maleate, L-tartrate, methane sulfonate, and L-malate of the compound of formula (I) , hydrochloride, citrate and L-aspartate:
  • the salts of the above compounds are selected from:
  • m, n, p, q, r, s, t, u, v, w, x and y are independently selected from 0.5 to 3.0.
  • the salt of the above compound wherein m, n, p, q, r, s, t, u, v, w, x and y are independently selected from 0.8 to 2.0.
  • the salt of the above compound wherein m, n, p, q, r, s, t, u, v, w, x and y are independently selected from 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0.
  • the salt of the above compound wherein m is 1.0, n is 1.0, p is 1.0, q is 1.0, r is 1.0, s is 1.0, t is 1.0, u is 1.0, v is 1.0, w is 1.0, x is 1.0, y is 1.0.
  • the salt of the above compound wherein m, n, p, q, r, s, t, u, v, w, x and y are each independently selected from 1.0.
  • the invention provides the A crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 12.661 ⁇ 0.200°, 19.637 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 9.681 ⁇ 0.200°, 12.661 ⁇ 0.200°, 19.637 ⁇ 0.200°, 23.281 ⁇ 0.200°, 24.892 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 9.681 ⁇ 0.200°, 12.661 ⁇ 0.200°, 14.139 ⁇ 0.200°, 19.637 ⁇ 0.200°, 23.281 ⁇ 0.200°, 24.892 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 9.681 ⁇ 0.200°, 12.661 ⁇ 0.200°, 13.479 ⁇ 0.200°, 19.637 ⁇ 0.200°, 23.281 ⁇ 0.200°, 24.892 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 9.681 ⁇ 0.200°, 12.661 ⁇ 0.200°, 13.479 ⁇ 0.200°, 14.139 ⁇ 0.200°, 16.523 ⁇ 0.200°, 18.385 ⁇ 0.200°, 19.637 ⁇ 0.200°, 21.161 ⁇ 0.200°, 23.281 ⁇ 0.200°, 24.892 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 9.681 ⁇ 0.200°, 11.138 ⁇ 0.200°, 12.661 ⁇ 0.200°, 13.479 ⁇ 0.200°, 14.139 ⁇ 0.200°, 15.175 ⁇ 0.200°, 16.523 ⁇ 0.200°, 18.385 ⁇ 0.200°, 19.637 ⁇ 0.200°, 21.161 ⁇ 0.200°, 22.159 ⁇ 0.200°, 23.2 81 ⁇ 0.200°, 24.892 ⁇ 0.200°, 26.582 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 19.637 ⁇ 0.200°, and/or 9.681 ⁇ 0.200° , and/or 11.138 ⁇ 0.200°, and/or 12.661 ⁇ 0.200°, and/or 13.479 ⁇ 0.200°, and/or 14.139 ⁇ 0.200°, and/or 15.175 ⁇ 0.200°, and/or 16.523 ⁇ 0.200°, and/or 18.385 ⁇ 0.200°, and/or 18.710 ⁇ 0.200°, and/or or 19.904 ⁇ 0.200°, and/or 20.692 ⁇ 0.200°, and/or 21.161 ⁇ 0.200°, and/or 21.915 ⁇ 0.200°, and/or 22.159 ⁇ 0.200°, and/or 23.281 ⁇ 0.200°, and/or 24.892 ⁇ 0.200°, and/or 25.491 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305 ⁇ 0.200°, 9.140 ⁇ 0.200°, 19.637 ⁇ 0.200°, and/or 9.681 ⁇ 0.200° , and/or 11.138 ⁇ 0.200°, and/or 12.661 ⁇ 0.200°, and/or 13.479 ⁇ 0.200°, and/or 14.139 ⁇ 0.200°, and/or 15.175 ⁇ 0.200°, and/or 16.523 ⁇ 0.200°, and /or 18.385 ⁇ 0.200°, and/or 18.710 ⁇ 0.200°, and/or 19.094 ⁇ 0.200°, and/or 19.904 ⁇ 0.200°, and/or 20.692 ⁇ 0.200°, and/or 21.161 ⁇ 0.200°, and/or 21.915 ⁇ 0.200°, and/or 22.159 ⁇ 0.200°, and/or 23.281 ⁇ 0.200°, and/or 23.630 ⁇ 0.200°, and
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305°, 9.140°, 9.681°, 11.138°, 12.661°, 13.479°, 14.139°, 16.523 °, 18.385°, 19.637°, 19.904°, 21.161°, 22.159°, 23.281°, 24.892°, 26.582°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 6.305°, 9.140°, 9.681°, 11.138°, 12.661°, 13.479°, 14.139°, 15.175 °, 16.523°, 18.385°, 18.710°, 19.094°, 19.637°, 19.904°, 20.692°, 21.161°, 21.915°, 22.159°, 23.281°, 23.630°, 24.892°, 25.491°, 26.582°, 32 .389°.
  • the XRPD pattern of the above-mentioned crystal form A is basically as shown in Figure 1.
  • the differential scanning calorimetry curve of the above-mentioned Form A has an initial value of the endothermic peak at 222.64 ⁇ 3.0°C.
  • the DSC pattern of the above-mentioned crystal form A is shown in Figure 2.
  • thermogravimetric analysis curve of the above-mentioned crystal form A reaches a weight loss of 1.220% at 242 ⁇ 3°C.
  • the TGA spectrum of the above-mentioned crystal form A is shown in Figure 3.
  • the invention provides the B crystal form of the compound of formula (II), wherein m is selected from 0.8, 0.9, 1.0, 1.1 and 1.2, which is characterized in that its X-ray powder diffraction pattern has a characteristic diffraction peak at the following 2 ⁇ angle: 13.855 ⁇ 0.200 °, 17.861 ⁇ 0.200°, 19.915 ⁇ 0.200°, 24.154 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 13.855 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 24.154 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333 ⁇ 0.200°, 13.855 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 24.154 ⁇ 0.200°, 27.518 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 13.855 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 23.449 ⁇ 0.200°, 24.154 ⁇ 0.200°, 27.518 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333 ⁇ 0.200°, 11.034 ⁇ 0.200°, 13.855 ⁇ 0.200°, 14.350° ⁇ 0.200°, 16.116 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 21.157 ⁇ 0.200°, 24.154 ⁇ 0.200°, 27.518 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333 ⁇ 0.200°, 11.034 ⁇ 0.200°, 13.855 ⁇ 0.200°, 16.116 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 21.157 ⁇ 0.200°, 23.449 ⁇ 0.200°, 24.154 ⁇ 0.200°, 27.518 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333 ⁇ 0.200°, 11.034 ⁇ 0.200°, 12.635 ⁇ 0.200°, 13.855 ⁇ 0.200°, 14.350 ⁇ 0.200°, 16.116 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 21.157 ⁇ 0.200°, 24.154 ⁇ 0.200°, 24.702 ⁇ 0.200°, 26.8 84 ⁇ 0.200°, 27.518 ⁇ 0.200°, 31.071 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333 ⁇ 0.200°, 11.034 ⁇ 0.200°, 12.635 ⁇ 0.200°, 13.855 ⁇ 0.200°, 14.350 ⁇ 0.200°, 16.116 ⁇ 0.200°, 17.861 ⁇ 0.200°, 18.764 ⁇ 0.200°, 19.915 ⁇ 0.200°, 20.651 ⁇ 0.200°, 21.157 ⁇ 0.200°, 23.449 ⁇ 0.200°, 24.154 ⁇ 0.200°, 24.7 02 ⁇ 0.200°, 27.518 ⁇ 0.200°, 31.071 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 13.855 ⁇ 0.200°, 17.861 ⁇ 0.200°, and/or 7.333 ⁇ 0.200°, and/or 11.034 ⁇ 0.200°, and/or 12.635 ⁇ 0.200°, and/or 13.534 ⁇ 0.200°, and/or 14.350 ⁇ 0.200°, and/or 16.116 ⁇ 0.200°, and/or 17.483 ⁇ 0.200°, and/or 18.764 ⁇ 0.200 °, and/or 19.658 ⁇ 0.200°, and/or 19.915 ⁇ 0.200°, and/or 20.651 ⁇ 0.200°, and/or 21.157 ⁇ 0.200°, and/or 23.449 ⁇ 0.200°, and/or 23.806 ⁇ 0.200°, and/or 24.154 ⁇ 0.200°, and/or 24.702 ⁇ 0.200°, and/or 26.884 ⁇ 0.200°, and/or 27.518 ⁇
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333°, 11.034°, 13.534°, 13.855°, 14.350°, 16.116°, 17.483°, 17.861 °, 18.764°, 19.915°, 20.651°, 21.157°, 23.449°, 23.806°, 24.154°, 27.518°.
  • the X-ray powder diffraction pattern of the above-mentioned B crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.333°, 11.034°, 12.635°, 13.534°, 13.855°, 14.350°, 16.116°, 17.483 °, 17.861°, 18.764°, 19.658°, 19.915°, 20.651°, 21.157°, 23.449°, 23.806°, 24.154°, 24.702°, 26.884°, 27.518°, 31.071°.
  • the XRPD pattern of the above-mentioned crystal form B is basically as shown in Figure 5.
  • the differential scanning calorimetry curve of the above-mentioned B crystal form has an initial value of the endothermic peak at 193.63 ⁇ 3.0°C.
  • the DSC pattern of the above-mentioned B crystal form is shown in Figure 6.
  • thermogravimetric analysis curve of the above-mentioned B crystal form has a weight loss of 0.867% at 92 ⁇ 3°C.
  • the TGA spectrum of the above-mentioned B crystal form is shown in Figure 7.
  • m of the above-mentioned B crystal form is selected from 1.1.
  • the invention provides the C crystal form of the compound of formula (III), wherein n is selected from 0.8, 0.9, 1.0, 1.1 and 1.2, which is characterized in that its X-ray powder diffraction pattern has a characteristic diffraction peak at the following 2 ⁇ angle: 13.637 ⁇ 0.200 °, 14.138 ⁇ 0.200°, 17.076 ⁇ 0.200°, 24.866 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 11.412 ⁇ 0.200°, 13.637 ⁇ 0.200°, 14.138 ⁇ 0.200°, 17.076 ⁇ 0.200°, 19.310 ⁇ 0.200°, 23.654 ⁇ 0.200°, 24.214 ⁇ 0.200°, 24.866 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 11.412 ⁇ 0.200°, 13.637 ⁇ 0.200°, 14.138 ⁇ 0.200°, 15.555 ⁇ 0.200°, 17.076 ⁇ 0.200°, 18.016 ⁇ 0.200°, 18.907 ⁇ 0.200°, 19.310 ⁇ 0.200°, 20.811 ⁇ 0.200°, 23.654 ⁇ 0.200°, 24.214 ⁇ 0.200°, 24.866 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 13.637 ⁇ 0.200°, 17.076 ⁇ 0.200°, 24.866 ⁇ 0.200°, and/or 5.677 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 11.412°, 13.637, 14.138°, 15.555°, 17.076°, 18.016°, 18.907°, 19.310° , 20.811°, 23.654°, 24.214°, 24.866°.
  • the X-ray powder diffraction pattern of the above-mentioned C crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 5.677°, 7.086°, 11.412°, 11.627°, 13.200°, 13.429°, 13.637°, 14.138 °, 14.499°, 15.167°, 15.555°, 15.763°, 17.076°, 17.272°, 18.016°, 18.171°, 18.614°, 18.907°, 19.310°, 19.656°, 20.016°, 20.811°, 21.765°, 22 .748°, 23.443°, 23.654°, 23.880°, 24.214°, 24.577°, 24.866°, 25.987°, 26.493°, 27.011°, 27.537°.
  • the XRPD pattern of the above-mentioned crystal form C is basically as shown in Figure 9.
  • the differential scanning calorimetry curve of the above-mentioned C crystal form has an endothermic peak at 237.14 ⁇ 3.0°C.
  • the DSC pattern of the above-mentioned C crystal form is shown in Figure 10.
  • thermogravimetric analysis curve of the above-mentioned C crystal form has a weight loss of 0.469% at 100 ⁇ 3°C.
  • n of the above-mentioned C crystal form is selected from 1.0.
  • the present invention provides the D crystal form of the compound of formula (IV), wherein p is selected from 0.8, 0.9, 1.0, 1.1 and 1.2, which is characterized in that its X-ray powder diffraction pattern has a characteristic diffraction peak at the following 2 ⁇ angle: 6.859 ⁇ 0.200 °, 8.784 ⁇ 0.200°, 16.420 ⁇ 0.200°, 18.965 ⁇ 0.200°,
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.859 ⁇ 0.200°, 8.784 ⁇ 0.200°, 10.922 ⁇ 0.200°, 13.238 ⁇ 0.200°, 16.420 ⁇ 0.200°, 18.965 ⁇ 0.200°, 20.400 ⁇ 0.200°, 24.069 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.859 ⁇ 0.200°, 8.784 ⁇ 0.200°, 10.922 ⁇ 0.200°, 11.644 ⁇ 0.200°, 13.238 ⁇ 0.200°, 16.420 ⁇ 0.200°, 17.596 ⁇ 0.200°, 18.965 ⁇ 0.200°, 19.390 ⁇ 0.200°, 20.400 ⁇ 0.200°, 21.416 ⁇ 0.200°, 24.069 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.859 ⁇ 0.200°, 8.784 ⁇ 0.200°, and/or 10.922 ⁇ 0.200°, and/or 11.644 ⁇ 0.200°, and/or 13.238 ⁇ 0.200°, and/or 13.741 ⁇ 0.200°, and/or 16.420 ⁇ 0.200°, and/or 16.720 ⁇ 0.200°, and/or 17.596 ⁇ 0.200°, and/or 17.930 ⁇ 0.200 °, and/or 18.965 ⁇ 0.200°, and/or 19.390 ⁇ 0.200°, and/or 20.400 ⁇ 0.200°, and/or 21.416 ⁇ 0.200°, and/or 22.630 ⁇ 0.200°, and/or 23.473 ⁇ 0.200°, and/or 24.069 ⁇ 0.200°, and/or 24.832 ⁇ 0.200°, and/or 26.587 ⁇ 0.200°, and/or 27.661
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.859°, 8.784°, 10.922°, 11.644°, 13.238°, 16.420°, 17.596°, 17.930 °, 18.965°, 19.390°, 20.400°, 24.069°.
  • the X-ray powder diffraction pattern of the above-mentioned D crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 6.859°, 8.784°, 10.922°, 11.644°, 13.238°, 13.741°, 16.420°, 16.720 °, 17.596°, 17.930°, 18.965°, 19.390°, 20.400°, 21.416°, 22.630°, 23.473°, 24.069°, 24.832°, 26.587°, 27.661°.
  • the XRPD pattern of the above-mentioned crystal form D is basically as shown in Figure 13.
  • the differential scanning calorimetry curve of the above-mentioned D crystalline form has an initial value of the endothermic peak at 240.70 ⁇ 3.0°C.
  • the DSC pattern of the above-mentioned D crystal form is shown in Figure 14.
  • thermogravimetric analysis curve of the above-mentioned D crystal form has a weight loss of 0.295% at 120 ⁇ 3°C.
  • the TGA spectrum of the above-mentioned D crystal form is shown in Figure 15.
  • p of the above-mentioned D crystal form is selected from 0.9.
  • the present invention also provides the above-mentioned salt forms, the A crystal form of the formula (I) compound, the B crystal form of the formula (II) compound, the C crystal form of the formula (III) compound and the D crystal form of the formula (IV) compound.
  • the above-mentioned drugs for treating solid tumors are drugs for treating colorectal cancer.
  • the crystal form of the invention has good stability, good hygroscopicity and good drug prospects.
  • the compound of the present invention has good inhibitory effect on PLK1, good pharmacokinetic properties, and good oral bioavailability.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents and preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • rt represents room temperature
  • THF represents tetrahydrofuran
  • NMP represents N-methylpyrrolidone
  • MeSO 3 H represents methane sulfonic acid
  • DME represents ethylene glycol dimethyl ether
  • DCM represents dichloromethane
  • Xphos represents 2-Dicyclohexylphosphine-2'4'6'-triisopropylbiphenyl
  • EtOAc represents ethyl acetate
  • MeOH represents methanol
  • acetone represents acetone
  • 2-Me-THF 2-methyltetrahydrofuran
  • IPA represents isopropyl alcohol.
  • Test method About 5 ⁇ 10mg sample is used for XRPD detection.
  • Anti-scatter slit 0mm
  • DSC Differential Scanning Calorimeter
  • Test method Weigh 1 to 3 mg of the sample into the sample pan, weigh it accurately, record the weight, and use an aluminum crucible to punch holes and test. The temperature was increased from 25°C to the final temperature at a heating rate of 10°C/min.
  • TGA Thermal Gravimetric Analyzer
  • Test method Take 2 to 5 mg of sample into the sample plate (Al 2 O 3 ), open the test, and heat it from 25°C to the specified temperature at a heating rate of 10°C/min.
  • Test conditions Take a sample (10 ⁇ 30mg) and place it in the DVS sample tray for testing.
  • ⁇ W% represents the moisture absorption weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Figure 1 is the XRPD spectrum of Cu-K ⁇ radiation of the crystal form A of the compound of formula (I);
  • Figure 2 is the DSC spectrum of the crystal form A of the compound of formula (I);
  • Figure 3 is the TGA spectrum of the crystal form A of compound (I);
  • Figure 4 is the DVS spectrum of the crystal form A of the compound of formula (I);
  • Figure 5 is the Cu-K ⁇ radiation XRPD spectrum of compound B crystal form of formula (II);
  • Figure 6 is the DSC spectrum of the crystal form B of compound of formula (II);
  • Figure 7 is the TGA spectrum of the crystal form B of compound (II).
  • Figure 8 is the DVS spectrum of the crystal form B of the compound of formula (II);
  • Figure 9 is the Cu-K ⁇ radiation XRPD spectrum of the crystal form C of the compound of formula (III);
  • Figure 10 is the DSC spectrum of the crystal form C of compound of formula (III);
  • Figure 11 is the TGA spectrum of the crystal form C of the compound of formula (III);
  • Figure 12 is the DVS spectrum of the crystal form C of the compound of formula (III);
  • Figure 13 is the Cu-K ⁇ radiation XRPD spectrum of the crystal form D of the compound of formula (IV);
  • Figure 14 is the DSC spectrum of the crystal form D of the compound of formula (IV);
  • Figure 15 is a TGA spectrum of the crystal form D of the compound of formula (IV).
  • n 1.0.
  • the XRPD spectrum is shown in Figure 9
  • the DSC spectrum is shown in Figure 10
  • the TGA spectrum is shown in Figure 11. .
  • the operation process of suspension crystallization is to weigh a certain amount of crystal form A of the compound of formula (I), add a certain amount of solvent, maintain the system in a state of suspension and stirring at a certain temperature, and filter the solid after a period of time for analysis.
  • the specific conditions are shown in Table 6.
  • the operation process of cooling crystallization is to dissolve a certain amount of crystal form A of the compound of formula (I) in a certain amount of solvent at high temperature, and stir for a while at high temperature. After a period of time, cool to a lower temperature at a certain cooling rate. If any solid precipitates after cooling to a low temperature, filter it out for solid state analysis.
  • the operation process of solvent crystallization is to dissolve a certain amount of compound A crystal form of formula (I) in a normal solvent to obtain a solution of the raw material drug. Slowly add the anti-solvent to the raw drug solution at a certain temperature. If any solid precipitates, filter it out for analysis. .
  • the specific conditions are shown in Table 8.
  • the hygroscopic weight gain of the crystal form A of compound A of formula (I) at 25°C and 80% RH is 0.1671%, and the sample has no hygroscopicity.
  • the hygroscopic weight gain of the crystal form B of the compound of formula (II) at 25° C. and 80% RH is 2.078%, and it is hygroscopic.
  • the hygroscopic weight gain of the crystal form C of the compound of formula (III) at 25°C and 80% RH is 2.919%, and it is hygroscopic.
  • Example 10 Solid stability test of crystal form A of compound of formula (I) and crystal form of compound B of formula (II)
  • Test Example 1 Pharmacokinetic study of oral administration of test compounds to male beagle dogs
  • the purpose of this experiment was to study the pharmacokinetics of the test compound in the plasma of male beagle dogs after oral administration.
  • Oral administration group Weigh an appropriate amount of the test compound (calculated in free form), dissolve it in 0.5% MC aqueous solution, vortex and sonicate for 10 minutes until the compound is in a milky white uniform suspension state, and prepare a 1.0 mg/mL uniform suspension solution for later use. A male beagle dog of about 11kg was selected and the test compound was administered orally. Sample collection times are: 0.083, 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hours.
  • Test Example 2 In vitro PLK1 kinase activity evaluation
  • the 33P isotope labeled kinase activity test (Reaction Biology Corp) was used to determine the IC 50 value to evaluate the inhibitory ability of the test compound against human PLK1 protein kinase.
  • Buffer conditions 20mM HEPES (pH 7.5), 10mM MgCl 2 , 1mM EGTA, 0.01% Brij35, 0.02mg/mL BSA, 0.1mM Na 3 VO 4 , 2mM DTT, 1% DMSO
  • Test steps Dissolve the test compound in DMSO at room temperature to prepare a 10mM solution for later use. Dissolve the substrate Casein in the newly prepared buffer (final concentration 20 ⁇ M), add the tested PLK1 kinase (final concentration 12 nM) to it and mix evenly. Use the sonic pipetting system Echo 550 to add the DMSO-dissolved test compound stock solution into the above-mentioned mixed reaction solution according to the set final concentration gradient (the highest final concentration is 1 ⁇ M, 3-fold dilution, 10 gradients). After incubating at room temperature for 20 minutes, 33 P-ATP (final concentration 0.01 ⁇ Ci/ ⁇ L) was added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法,以及所述盐型和晶型在制备治疗结直肠癌及其他实体瘤药物中的应用。

Description

一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法
本申请主张如下优先权
CN202210948349.2,申请日:2022年08月08日。
技术领域
本发明涉及一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法,以及所述盐型和晶型在制备治疗结直肠癌及其他实体瘤药物中的应用。
背景技术
Polo样激酶(polo-like kinases,PLKs)是一类高度保守的丝/苏氨酸蛋白激酶,其N端均具有一个高度同源的丝/苏氨酸激酶结构域,C端均具有调节PLKs活性及亚细胞动态定位的特征性结构域(polobox domain,PBD)。PLKs家族成员较多,其在人体内有4种亚型,分别是PLK1、PLK2、PLK3和PLK4,他们在细胞周期各个时相的调控中均发挥至关重要的作用。在这4个家族成员中,目前对PLK1的研究最为透彻。因此,PLK1在肿瘤诊断和治疗中是广受关注的靶点。
Cardiff Oncology(原Trovagene)在Nerviano的许可下,正在开发的onvansertib(PCM-075;NMS-P937;nms-1286937;NMS-937)作为富马酸盐,是口服类Polo激酶先导(Plk)-1抑制剂。Onvansertib作为潜在的口服治疗癌症药物,适应症包括转移性结直肠癌(mCRC)、实体瘤、急性髓系白血病(AML)、抗转移性去势前列腺癌。PLK1是一种在大多数癌症中过度表达的有效治疗靶点,Onvansertib是一种新型的,具有高度选择性的PLK1抑制剂。
Onvansertib(NMS-1286937)是目前临床在研的高选择性PLK1抑制剂,对PLK1激酶蛋白有较强的抑制作用,目前正在开展单药治疗复发性小细胞肺癌(SCLC),与SOC联用治疗KRAS突变转移性结直肠癌(mCRC)、转移性胰腺癌(mPDAC)、转移性去势抵抗性前列腺癌(mCRPC)等实体瘤临床I期或II期研究。与KRASG12C抑制剂相比,PLK1抑制剂在CRC患者中的响应率更高,并且对所有KRAS突变亚型均有疗效。CRC是继肺癌、乳腺癌后的第3大恶性肿瘤,2018年全球市场约250亿美元,因此可以寻找高活性、高选择性、代谢稳定的小分子PLK1抑制剂用于治疗肿瘤。
发明内容
本发明提供了式(I)化合物的琥珀酸盐、富马酸盐、苯磺酸盐、硫酸盐、磷酸盐、马来酸盐、L-酒石酸盐、甲烷磺酸盐、L-苹果酸盐、盐酸盐、柠檬酸盐和L-天冬氨酸盐:
在本发明的一些方案中,上述化合物的盐选自:

其中,m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自0.5~3.0。
在本发明的一些方案中,上述化合物的盐,其中m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自0.8~2.0。
在本发明的一些方案中,上述化合物的盐,其中m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9和2.0。
在本发明的一些方案中,上述化合物的盐,其中m为1.0,n为1.0,p为1.0,q为1.0,r为1.0,s为1.0,t为1.0,u为1.0,v为1.0,w为1.0,x为1.0,y为1.0。
在本发明的一些方案中,上述化合物的盐,其中m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自1.0。
本发明提供了式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,12.661±0.200°,19.637±0.200°,
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,19.637±0.200°,23.281±0.200°,24.892±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,14.139±0.200°,19.637±0.200°,23.281±0.200°,24.892±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,13.479±0.200°,19.637±0.200°,23.281±0.200°,24.892±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,13.479±0.200°,14.139±0.200°,16.523±0.200°,18.385±0.200°,19.637±0.200°,21.161±0.200°,23.281±0.200°,24.892±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,11.138±0.200°,12.661±0.200°,13.479±0.200°,14.139±0.200°,15.175±0.200°,16.523±0.200°,18.385±0.200°,19.637±0.200°,21.161±0.200°,22.159±0.200°,23.281±0.200°,24.892±0.200°,26.582±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,19.637±0.200°,和/或9.681±0.200°,和/或11.138±0.200°,和/或12.661±0.200°, 和/或13.479±0.200°,和/或14.139±0.200°,和/或15.175±0.200°,和/或16.523±0.200°,和/或18.385±0.200°,和/或18.710±0.200°,和/或19.904±0.200°,和/或20.692±0.200°,和/或21.161±0.200°,和/或21.915±0.200°,和/或22.159±0.200°,和/或23.281±0.200°,和/或24.892±0.200°,和/或25.491±0.200°,和/或26.582±0.200°,和/或32.389±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,19.637±0.200°,和/或9.681±0.200°,和/或11.138±0.200°,和/或12.661±0.200°,和/或13.479±0.200°,和/或14.139±0.200°,和/或15.175±0.200°,和/或16.523±0.200°,和/或18.385±0.200°,和/或18.710±0.200°,和/或19.094±0.200°,和/或19.904±0.200°,和/或20.692±0.200°,和/或21.161±0.200°,和/或21.915±0.200°,和/或22.159±0.200°,和/或23.281±0.200°,和/或23.630±0.200°,和/或24.892±0.200°,和/或25.491±0.200°,和/或26.582±0.200°,和/或32.389±0.200°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305°,9.140°,9.681°,11.138°,12.661°,13.479°,14.139°,16.523°,18.385°,19.637°,19.904°,21.161°,22.159°,23.281°,24.892°,26.582°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305°,9.140°,9.681°,11.138°,12.661°,13.479°,14.139°,15.175°,16.523°,18.385°,18.710°,19.094°,19.637°,19.904°,20.692°,21.161°,21.915°,22.159°,23.281°,23.630°,24.892°,25.491°,26.582°,32.389°。
在本发明的一些方案中,上述A晶型的XRPD图谱基本上如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.A晶型的XRPD图谱解析数据
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在222.64±3.0℃处具有吸热峰的起始值。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在242±3℃时失重达1.220%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明提供了式(II)化合物的B晶型,其中m选自0.8、0.9、1.0、1.1和1.2,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.855±0.200°,17.861±0.200°,19.915±0.200°,24.154±0.200°,
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.855±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,24.154±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,13.855±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,24.154±0.200°,27.518±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.855±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,23.449±0.200°,24.154±0.200°,27.518±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,11.034±0.200°,13.855±0.200°,14.350°±0.200°,16.116±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,21.157±0.200°,24.154±0.200°,27.518±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,11.034±0.200°,13.855±0.200°,16.116±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,21.157±0.200°,23.449±0.200°,24.154±0.200°,27.518±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,11.034±0.200°,12.635±0.200°,13.855±0.200°,14.350±0.200°,16.116±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,21.157±0.200°,24.154±0.200°,24.702±0.200°,26.884±0.200°,27.518±0.200°,31.071±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,11.034±0.200°,12.635±0.200°,13.855±0.200°,14.350±0.200°,16.116±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,21.157±0.200°,23.449±0.200°,24.154±0.200°,24.702±0.200°,27.518±0.200°,31.071±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.855±0.200°,17.861±0.200°,和/或7.333±0.200°,和/或11.034±0.200°,和/或12.635±0.200°,和/或13.534±0.200°,和/或14.350±0.200°,和/或16.116±0.200°,和/或17.483±0.200°,和/或18.764±0.200°,和/或19.658±0.200°,和/或19.915±0.200°,和/或20.651±0.200°,和/或21.157±0.200°,和/或23.449±0.200°,和/或23.806±0.200°,和/或24.154±0.200°,和/或24.702±0.200°,和/或26.884±0.200°,和/或27.518±0.200°,和/或31.071±0.200°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333°,11.034°,13.534°,13.855°,14.350°,16.116°,17.483°,17.861°,18.764°,19.915°,20.651°,21.157°,23.449°,23.806°,24.154°,27.518°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333°,11.034°,12.635°,13.534°,13.855°,14.350°,16.116°,17.483°,17.861°,18.764°,19.658°,19.915°,20.651°,21.157°,23.449°,23.806°,24.154°,24.702°,26.884°,27.518°,31.071°。
在本发明的一些方案中,上述B晶型的XRPD图谱基本上如图5所示。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.B晶型的XRPD图谱解析数据
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在193.63±3.0℃处具有吸热峰的起始值。
在本发明的一些方案中,上述B晶型的DSC图谱如图6所示。
在本发明的一些方案中,上述B晶型的热重分析曲线在92±3℃时失重达0.867%。
在本发明的一些方案中,上述B晶型的TGA图谱如图7所示。
在本发明的一些方案中,上述B晶型的m选自1.1。
本发明提供了式(III)化合物的C晶型,其中n选自0.8、0.9、1.0、1.1和1.2,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.637±0.200°,14.138±0.200°,17.076±0.200°,24.866±0.200°,
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.412±0.200°,13.637±0.200°,14.138±0.200°,17.076±0.200°,19.310±0.200°,23.654±0.200°,24.214±0.200°,24.866±0.200°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.412±0.200°,13.637±0.200°,14.138±0.200°,15.555±0.200°,17.076±0.200°,18.016±0.200°,18.907±0.200°,19.310±0.200°,20.811±0.200°,23.654±0.200°,24.214±0.200°,24.866±0.200°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.637±0.200°,17.076±0.200°,24.866±0.200°,和/或5.677±0.200°,和/或7.086±0.200°,和/或11.412±0.200°,和/或11.627±0.200°,和/或13.200±0.200°,和/或13.429±0.200°,和/或14.138±0.200°,和/或14.499±0.200°,和/或15.167±0.200°,和/或15.555±0.200°,和/或15.763±0.200°,和/或17.272±0.200°,和/或18.016±0.200°,和/或18.171±0.200°,和/或18.614±0.200°,和/或18.907±0.200°,和/或19.310±0.200°,和/或19.656±0.200°,和/或20.016±0.200°,和/或20.811±0.200°,和/或21.765±0.200°,和/或22.748±0.200°,和/或23.443±0.200°,和/或23.654±0.200°,和/或23.880±0.200°,和/或24.214±0.200°,和/或24.577±0.200°,和/或25.987±0.200°,和/或26.493±0.200°,和/或27.011±0.200°,和/或27.537±0.200°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.412°,13.637,14.138°,15.555°,17.076°,18.016°,18.907°,19.310°,20.811°,23.654°,24.214°,24.866°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.677°,7.086°,11.412°,11.627°,13.200°,13.429°,13.637°,14.138°,14.499°,15.167°,15.555°,15.763°,17.076°,17.272°,18.016°,18.171°,18.614°,18.907°,19.310°,19.656°,20.016°,20.811°,21.765°,22.748°,23.443°,23.654°,23.880°,24.214°,24.577°,24.866°,25.987°,26.493°,27.011°,27.537°。
在本发明的一些方案中,上述C晶型的XRPD图谱基本上如图9所示。
在本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3.C晶型的XRPD图谱解析数据
在本发明的一些方案中,上述C晶型的差示扫描量热曲线在237.14±3.0℃处具有吸热峰。
在本发明的一些方案中,上述C晶型的DSC图谱如图10所示。
在本发明的一些方案中,上述C晶型的热重分析曲线在100±3℃时失重达0.469%。
在本发明的一些方案中,上述C晶型的TGA图谱如图11所示。
在本发明的一些方案中,上述C晶型的n选自1.0。
本发明提供了式(IV)化合物的D晶型,其中p选自0.8、0.9、1.0、1.1和1.2,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,16.420±0.200°,18.965±0.200°,
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,10.922±0.200°,13.238±0.200°,16.420±0.200°,18.965±0.200°,20.400±0.200°,24.069±0.200°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,10.922±0.200°,11.644±0.200°,13.238±0.200°,16.420±0.200°,17.596±0.200°,18.965±0.200°,19.390±0.200°,20.400±0.200°,21.416±0.200°,24.069±0.200°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,和/或10.922±0.200°,和/或11.644±0.200°,和/或13.238±0.200°,和/或13.741±0.200°,和/或16.420±0.200°,和/或16.720±0.200°,和/或17.596±0.200°,和/或17.930±0.200°,和/或18.965±0.200°,和/或19.390±0.200°,和/或20.400±0.200°,和/或21.416±0.200°,和/或22.630±0.200°,和/或23.473±0.200°,和/或24.069±0.200°,和/或24.832±0.200°,和/或26.587±0.200°,和/或27.661±0.200°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859°,8.784°,10.922°,11.644°,13.238°,16.420°,17.596°,17.930°,18.965°,19.390°,20.400°,24.069°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859°,8.784°,10.922°,11.644°,13.238°,13.741°,16.420°,16.720°,17.596°,17.930°,18.965°,19.390°,20.400°,21.416°,22.630°,23.473°,24.069°,24.832°,26.587°,27.661°。
在本发明的一些方案中,上述D晶型的XRPD图谱基本上如图13所示。
在本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示
表4.D晶型的XRPD图谱解析数据

在本发明的一些方案中,上述D晶型的差示扫描量热曲线在240.70±3.0℃处具有吸热峰的起始值。
在本发明的一些方案中,上述D晶型的DSC图谱如图14所示。
在本发明的一些方案中,上述D晶型的热重分析曲线在120±3℃时失重达0.295%。
在本发明的一些方案中,上述D晶型的TGA图谱如图15所示。
在本发明的一些方案中,上述D晶型的p选自0.9。
本发明还提供了上述的盐型,式(I)化合物的A晶型,式(II)化合物的B晶型,式(III)化合物的C晶型和式(IV)化合物的D晶型在制备治疗实体瘤药物中的应用。
在本发明的一些方案中,上述治疗实体瘤药物为用于治疗结直肠癌药物。
技术效果
本发明晶型具有良好的稳定性,引湿性良好,成药前景佳。本发明化合物对PLK1具有较好的抑制作用,药代动力学性质佳,具有良好的口服生物利用度。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:r.t.代表室温;THF代表四氢呋喃;NMP代表N-甲基吡咯烷酮;MeSO3H代表甲烷磺酸;DME代表乙二醇二甲醚;DCM代表二氯甲烷;Xphos代表2-双环己基膦-2’4’6’-三异丙基联苯;EtOAc代表乙酸乙酯;MeOH代表甲醇;acetone代表丙酮;2-Me-THF代表2-甲基四氢呋喃;IPA代表异丙醇。
化合物经手工或者软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D2 PHASER X-射线衍射仪
测试方法:大约5~10mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
光管电压:30kV,光管电流:10mA
发散狭缝:0.60mm
探测器狭缝:0.075mm
防散射狭缝:0mm
扫描范围:3-40deg
步长:0.02deg
每步停留时间:0.2秒
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA仪器DSC 250型差示扫描量热仪
测试方法:称取1~3mg样品至样品盘中,精密称定,记录重量,使用铝坩埚扎孔后测试。以10℃/min的升温速率从25℃升温至最终温度。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA仪器TGA 550型热重分析仪
测试方法:取2~5mg样品至样品盘(Al2O3)中,敞口测试,以10℃/min的升温速率从25℃升温至指定温度。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Intrinsic动态蒸汽吸附仪
测试条件:取样品(10~30mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.002%/min(最短:10min,最长:180min)
RH(%)测试梯级:10%(90%RH-0%RH-90%RH),5%(95%RH-90%RH和90%RH-95%RH)
RH(%)测试梯级范围:0%RH-95%RH-0%RH
引湿性评价分类如表5所示:
表5.引湿性评价分类
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(I)化合物A晶型的DSC谱图;
图3为式(I)化合物A晶型的TGA谱图;
图4为式(I)化合物A晶型的DVS谱图;
图5为式(II)化合物B晶型的Cu-Kα辐射XRPD谱图;
图6为式(II)化合物B晶型的DSC谱图;
图7为式(II)化合物B晶型的TGA谱图;
图8为式(II)化合物B晶型的DVS谱图;
图9为式(III)化合物C晶型的Cu-Kα辐射XRPD谱图;
图10为式(III)化合物C晶型的DSC谱图;
图11为式(III)化合物C晶型的TGA谱图;
图12为式(III)化合物C晶型的DVS谱图;
图13为式(IV)化合物D晶型的Cu-Kα辐射XRPD谱图;
图14为式(IV)化合物D晶型的DSC谱图;
图15为式(IV)化合物D晶型的TGA谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:式(I)化合物的制备
步骤1:化合物1-2的合成
将化合物1-1(60g)溶于四氢呋喃(600mL),20℃下加入叔丁氧基双(二甲胺基)甲烷(77.35g),加毕后升温至80℃反应12小时。降温至20℃,向反应液中加入水(200mL),然后减压浓缩,再向反应液中加水(400mL)搅拌3小时,过滤,收集固体,风干,得到粗品。向粗品中加入2-甲基四氢呋喃(160mL)和甲基叔丁基醚(480mL),20℃搅拌3小时,过滤,收集固体,将固体减压干燥得到化合物1-2。LCMS:m/z(ESI)=326.3[M+H]+1H NMR(400MHz,CDCl3)δ:7.59(s,1H),4.35-4.29(m,2H),3.19-3.16(t,2H,J=6.8Hz),3.12(s,6H),2.89-2.86(t,2H,J=6.8Hz),2.58(s,3H),1.39-1.35(t,3H,J=7.0Hz)。
步骤2:化合物1-4的合成
将化合物1-3(78g)溶于二甲基亚砜(640mL),再加入化合物1-2(80g),升温至110℃反应48小时。降温至30℃,加入水(3L)稀释,搅拌0.5小时后过滤,用水(200mL)淋洗,收集滤饼,向滤饼中加入乙腈(750mL)后在50℃下搅拌2小时,过滤,用乙腈(200mL)淋洗滤饼,再向滤饼中加入乙腈(400mL)后在25℃下搅拌16小时。过滤,用乙腈(80mL)淋洗滤饼,收集滤饼,减压干燥后得到化合物1-4。LCMS:m/z(ESI)=580.2[M+H]+1H NMR(400MHz,DMSO-d6)δ:8.55(s,1H),8.34(s,1H),7.49-7.46(m,1H),7.19-7.17(m,1H),6.73-6.71(m,1H),4.31-4.25(m,2H),3.32-3.15(m,6H),2.79-2.76(m 2H),2.57-2.44(m 7H),2.22(s,3H),1.32-1.28(m,3H)。
步骤3:化合物1-5的合成
将化合物1-4(86.8g)溶于无水四氢呋喃(520mL),再向体系中加入一水合氢氧化锂(18.9g)的水(780mL)溶液,然后加入甲醇(87mL),升温至36.5℃反应16小时。将反应液减压浓缩,除有机溶剂得到粗品,向粗品中加入水(780mL)和2-甲基四氢呋喃(78mL),搅拌下用浓盐酸调pH至7后,再用1N稀盐酸调pH至6.5,过滤,收集滤饼,滤饼中加入丙酮(800mL),搅拌下回流2小时后,降温至25℃过滤,丙酮(300mL)淋洗,收集滤饼减压干燥后得到化合物1-5。LCMS:m/z(ESI)=552.0[M+H]+1H NMR(400MHz,DMSO-d6)δ:8.49(s,1H),8.32(s,1H),7.49-7.48(m,1H),6.74-6.72(m,1H),6.72-6.70(m,1H),3.32-3.17(m,6H),2.77-2.75(m,2H),2.55-2.50(m,7H),2.27(s,3H)。
步骤4:式(I)化合物的合成
向化合物1-5(10g)中加入二甲基亚砜(100mL),然后依次加入2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(13.79g),二异丙基乙胺(7.03g),碳酸氢铵(4.3g),30℃搅拌16小时。将反应液缓慢倒入水(0.5L)中,25℃搅拌16小时后过滤,收集滤饼,得到粗品,向粗品中加入水(100mL),25℃搅拌16小时后过滤,收集滤饼用氮气流吹干残余溶剂得到式(I)化合物。LCMS:m/z(ESI)=551.2[M+H]+1H NMR(400MHz,DMSO-d6)δ:8.45(s,1H),8.32(s,1H),7.52-7.51(m,1H),7.34(s,2H),7.18-7.15(m,1H),6.72-6.68(m,1H),3.17-3.10(m,6H),2.75-2.71(m,2H),2.54-2.46(m,7H),2.23(s,3H)。
实施例2:式(I)化合物A晶型的制备
称取200mg式(I)化合物加入到装有3mL乙醇的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型,XRPD谱图如图1所示,DSC谱图如图2所示,TGA谱图如图3所示。
称取200mg式(I)化合物加入到装有3mL丙酮的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型。
称取200mg式(I)化合物加入到装有3mL甲醇的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型。
称取200mg式(I)化合物加入到装有1.5mL乙醇和1.5mL水的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型。
称取200mg式(I)化合物加入到装有1.5mL丙酮和1.5mL水的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型。
称取200mg式(I)化合物加入到装有3mL乙酸乙酯的玻璃小瓶中,使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(I)化合物的A晶型。1H NMR(400MHz,D2O)δ:7.90(s,1H),7.30(d,J=8.8Hz,1H),7.14(d,J=3.2Hz,1H),7.00(dd,J=8.8,3.2Hz,1H),3.74-3.77(m,2H),3.47-3.50(m,2H),2.99-3.15(m,4H),2.74-2.83(m,5H),2.51-2.59(m,2H),2.07(s,3H)。
实施例3:式(II)化合物B晶型的制备
称取约50mg的式(I)化合物A晶型至1.0mL乙醇中,在50℃下搅拌。将称量好的11.38mg琥珀酸的1mL的乙醇溶剂稀释,将稀释后的琥珀酸溶液缓慢滴加入上述溶剂中,在50℃下搅拌20h,后降温至25℃搅拌4天,过滤后在50℃下干燥约18h得到式(II)化合物B晶型,XRPD谱图如图5所示,DSC谱图如图6所示,TGA谱图如图7所示。
称取45mg琥珀酸加入到装有3mL乙醇的玻璃小瓶中,使其溶解。称取200mg式(I)化合物加入上述溶液中,将反应液置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(II)化合物B晶型。
称取45mg琥珀酸加入到装有3mL甲醇的玻璃小瓶中,使其溶解。称取200mg式(I)化合物加入上述溶液中,将反应液置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(II)化合物B晶型。
称取45mg琥珀酸加入到装有1.5mL甲醇和1.5mL水的玻璃小瓶中,使其溶解。称取200mg式(I)化合物加入上述溶液中,将反应液置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(II)化合物B晶型。
称取45mg琥珀酸加入到装有1.5mL乙醇和1.5mL水的玻璃小瓶中,使其溶解。称取200mg式(I)化合物加入上述溶液中,将反应液置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(II)化合物B晶型。
称取45mg琥珀酸加入到装有3mL丙酮的玻璃小瓶中,使其溶解。称取200mg式(I)化合物加入上述溶液中,将反应液置于磁力加热搅拌器上,60℃下搅拌过夜后将温度降低至室温,过滤,固体样品用真空泵减压浓缩,得式(II)化合物B晶型。根据核磁谱图解析m为1.1。1H NMR(400MHz,D2O)δ:7.95(s,1H),7.35(d,J=9.2Hz,1H),7.18(d,J=2.4Hz,1H),7.04(dd,J=9.2,2.4Hz,1H),3.80(m,2H),3.53(m,2H),3.01-3.20(m,4H),2.81-2.90(m,5H),2.58-2.67(m,2H),2.53(s,4.4H),2.18(s,3H)。
实施例4:式(III)化合物C晶型的制备
称取实施例1步骤4中粗品155mg,加入水(1.5mL),加浓盐酸(1.5mL)将粗品溶清后,加入氢氧化钠固体将pH调至大于14,过滤,收集滤饼,向其中加入水(1mL),在25℃下搅拌6小时,过滤,收集滤饼,烘箱50℃烘16小时后得150mg,与33.2mg富马酸加入到4.0mL玻璃小瓶中,加入2mL的乙酸 乙酯使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(50℃)进行试验,50℃下搅拌过夜后降温,搅拌下降温至25℃后过滤,收集滤饼得到式(III)化合物C晶型。
称取实施例1步骤4中粗品520mg,加入水(5.2mL),加浓盐酸(5.2mL)将粗品溶清后,加入氢氧化钠固体将pH调至大于14,过滤,收集滤饼,向其中加入水(3.7mL),在25℃下搅拌6小时,过滤,收集滤饼,烘箱50℃烘16小时后得500mg,将其加入到40.0mL玻璃小瓶中,加入5mL二氯甲烷和甲醇的混合溶液(二氯甲烷:甲醇=2:1),加入磁子50℃搅拌使其溶清后,将110.7mg富马酸溶于10mL二氯甲烷和甲醇的混合溶液(二氯甲烷:甲醇=2:1)后,将其滴加进玻璃小瓶中,将上述反应液样品置于磁力加热搅拌器上(50℃)进行试验,50℃下搅拌3小时后降温,搅拌下冷却至20℃后过滤,收集滤饼得式(III)化合物C晶型,根据核磁谱图解析n为1.0,XRPD谱图如图9所示,DSC谱图如图10所示,TGA谱图如图11所示。1H NMR(400MHz,DMSO-d6)δ:8.48(s,1H),8.32(s,1H),7.55-7.50(m,1H),7.44(s,2H),7.22-7.15(m,1H),6.76-6.69(m,1H),6.60(s,2H),3.23-3.16(m,4H),3.15-3.08(m,2H),2.79-2.70(m,2H),2.60-2.55(m,4H),2.54(s,3H),2.30(s,3H)。
实施例5:式(IV)化合物D晶型的制备
称取约50mg的式(I)化合物A晶型至1.0mL乙醇中,在50℃下搅拌。将称量好的15.28mg苯磺酸的1mL的乙醇溶剂稀释,将稀释后的苯磺酸酸溶液缓慢滴加入上述溶剂中,在50℃下搅拌20h,后降温至25℃搅拌4天,过滤后在50℃下干燥约18h得到式(IV)化合物D晶型,根据核磁谱图解析p为0.9,XRPD谱图如图13所示,DSC谱图如图14所示,TGA谱图如图15所示,1H NMR(400MHz,DMSO-d6)δ:9.37-9.69(m,0.9H),8.59(s,1H),8.33(s,1H),7.56-7.65(m,1.8H),7.54(d,J=3.2Hz,1H),7.44-7.56(m,2H),7.27-7.36(m,2.7H),7.24(d,J=8.4Hz,1H),6.80(dd,J=8.4,3.2Hz,1H),3.40-3.96(m,4H),2.92-3.26(m,6H),2.86(s,3H),2.74(m,2H),2.54(s,3H)。
实施例6:晶型筛选实验
6.1悬浮转晶
悬浮转晶的操作过程为称取一定量的式(I)化合物A晶型,加入一定量的溶剂,在一定温度下使体系维持悬浮搅拌的状态,一段时间后将固体滤出进行分析。具体条件如表6所示。
表6.悬浮转晶
6.2冷却结晶
冷却结晶的操作过程为将一定量的式(I)化合物A晶型高温下溶解于一定量溶剂中,高温下搅拌一 段时间后,以一定降温速率冷却至较低的温度,降至低温后若有固体析出,则将其滤出进行固态分析。具体条件如表7所示。
表7.冷却结晶
6.3溶析结晶
溶剂结晶的操作过程为将一定量式(I)化合物A晶型溶解于正溶剂中获得原料药的溶液,在一定温度下将原料药溶液缓慢加入反溶剂,若有固体析出则滤出进行分析。具体条件如表8所示。
表8.溶析结晶
实验结论:式(I)化合物A晶型在不同的溶剂与温度下具有一定的稳定性。
实施例7:式(I)化合物A晶型吸湿性研究
实验材料:
SMS DVS Intrinsic动态蒸汽吸附仪
实验方法:
取式(I)化合物A晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物A晶型的DVS谱图如图4所示,当湿度升至80%时,△W=0.1671%。
实验结论:
式(I)化合物A晶型在25℃和80%RH下的吸湿增重为0.1671%,样品无引湿性。
实施例8:式(II)化合物B晶型吸湿性研究
实验材料:
SMS DVS Intrinsic动态蒸汽吸附仪
实验方法:
取式(II)化合物B晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(II)化合物B晶型的DVS谱图如图8所示,当湿度升至80%时,△W=2.078%。
实验结论:
式(II)化合物B晶型在25℃和80%RH下的吸湿增重为2.078%,有吸湿性。
实施例9:式(III)化合物C晶型吸湿性研究
实验材料:
SMS DVS Intrinsic动态蒸汽吸附仪
实验方法:
取式(III)化合物C晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(III)化合物C晶型的DVS谱图如图12所示,当湿度升至80%时,△W=2.919%。
实验结论:
式(III)化合物C晶型在25℃和80%RH下的吸湿增重为2.919%,有吸湿性。
实施例10:式(I)化合物A晶型和式(II)化合物B晶型的固体稳定性试验
实验目的:
依据《原料药与制剂稳定性试验指导原则》(中国药典2020版四部通则9001),考察式(I)化合物A晶型和式(II)化合物B晶型在高温高湿(40℃/75%RH,敞口)(60℃/75%RH,敞口)条件下的稳定性。实验操作:
称取式(I)A晶型和式(II)化合物B晶型10~30mg,置于玻璃样品瓶的底部,摊成薄薄一层。样品敞口放置,保证样品能与环境空气充分接触。不同条件下放置的样品于第10天,30天,60天取样检测(XRPD),检测结果与0天的初始检测结果进行比较,试验结果如表9所示:
表9.式(I)化合物A晶型和式(II)化合物B晶型的固体稳定性试验结果
实验结论:式(I)化合物A晶型和式(II)化合物B晶型在高温、高湿条件下具有良好的稳定性。
测试例1:雄性比格犬口服受试化合物的药代动力学研究
实验目的:
本实验旨在研究受试化合物口服给药后在雄性比格犬血浆中的药代动力学情况。
实验操作:
口服给药组:称取受试化合物适量(以游离态计算),使用0.5%MC的水溶液溶解,涡旋超声10min至化合物呈乳白色均一混悬状态,制备得1.0mg/mL均一混悬溶液备用。选取11kg左右的雄性比格犬,口服给予受试化合物。样品采集时间为:0.083、0.25、0.5、1、2、4、6、8、24小时。
每个时间点通过前肢静脉采集大约1mL全血用于制备血浆供高效液相色谱-串联质谱(LC-MS/MS)进行浓度测定。采用WinNonlin 8.2.0(Pharsight,Mountain View,CA)药动学软件的非房室模型处理血浆浓度,使用线性对数梯形法方法计算药动学参数,实验结果如表10所示:
表10.A晶型、B晶型和C晶型的药代动力学研究结果
实验结论:式(I)化合物A晶型、式(II)化合物B晶型和式(III)化合物C晶型在雄性比格犬口服给药中均有较好的吸收。
测试例2:体外PLK1激酶活性评价
采用33P同位素标记激酶活性测试(Reaction Biology Corp)测定IC50值来评价受试化合物对人源PLK1蛋白激酶的抑制能力。
缓冲液条件:20mM HEPES(pH 7.5),10mM MgCl2,1mM EGTA,0.01%Brij35,0.02mg/mL BSA,0.1mM Na3VO4,2mM DTT,1%DMSO
试验步骤:室温下,将受试化合物溶解在DMSO中配制成10mM溶液待用。将底物Casein溶解在新配制的缓冲液中(终浓度20μM),向其中加入受测PLK1激酶(终浓度12nM)并混合均匀。利用声波移液系统Echo 550将DMSO溶解的受试化合物母液按设定的终浓度梯度(最高终浓度为1μM,3倍稀释,10个梯度)加入上述混匀的反应液中。在室温下孵育20分钟后,加入33P-ATP(终浓度0.01μCi/μL),在室温下孵育120分钟后,将反应液点在P81离子交换滤纸(Whatman#3698-915)上。用0.75%磷酸溶液反复清洗滤纸后,测定滤纸上残留的放射性磷酸化底物水平。%激酶活性=激酶活性受试化合物/激酶活性空白组(DMSO)×100%,通过Prism4软件(GraphPad)进行曲线拟合得到IC50值,实验结果如表11所示。
表11.本发明化合物体外PLK1激酶活性筛选试验结果
实验结论:式(I)化合物A晶型对PLK1展现出较好的抑制活性。

Claims (41)

  1. 式(I)化合物的琥珀酸盐、富马酸盐、苯磺酸盐、硫酸盐、磷酸盐、马来酸盐、L-酒石酸盐、甲烷磺酸盐、L-苹果酸盐、盐酸盐、柠檬酸盐和L-天冬氨酸盐:
  2. 根据权利要求1所述的化合物的盐,其选自:

    其中,m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9和2.0。
  3. 根据权利要求2所述的盐,其中m、n、p、q、r、s、t、u、v、w、x和y分别独立地选自1.0。
  4. 式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,12.661±0.200°,19.637±0.200°,
  5. 根据权利要求4所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,13.479±0.200°,19.637±0.200°,23.281±0.200°,24.892±0.200°。
  6. 根据权利要求5所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305±0.200°,9.140±0.200°,9.681±0.200°,12.661±0.200°,13.479±0.200°,14.139±0.200°,16.523±0.200°,18.385±0.200°,19.637±0.200°,21.161±0.200°,23.281±0.200°,24.892±0.200°。
  7. 根据权利要求6所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.305°,9.140°,9.681°,11.138°,12.661°,13.479°,14.139°,15.175°,16.523°,18.385°,18.710°,19.094°,19.637°,19.904°,20.692°,21.161°,21.915°,22.159°,23.281°,23.630°,24.892°,25.491°,26.582°,32.389°。
  8. 根据权利要求4~7任意一项所述的A晶型,其XRPD图谱基本上如图1所示。
  9. 根据权利要求4~7任意一项所述的A晶型,其差示扫描量热曲线在222.64±3.0℃处具有吸热峰的起始值。
  10. 根据权利要求9所述的A晶型,其DSC图谱如图2所示。
  11. 根据权利要求4~7任意一项所述的A晶型,其热重分析曲线在242±3℃时失重达1.220%。
  12. 根据权利要求11所述的A晶型,其TGA图谱如图3所示。
  13. 式(II)化合物的B晶型,其中m选自0.8、0.9、1.0、1.1和1.2,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.855±0.200°,17.861±0.200°,19.915±0.200°,24.154±0.200°,
  14. 根据权利要求13所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,13.855±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,24.154±0.200°,27.518±0.200°。
  15. 根据权利要求14所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333±0.200°,11.034±0.200°,13.855±0.200°,14.350°±0.200°,16.116±0.200°,17.861±0.200°,18.764±0.200°,19.915±0.200°,20.651±0.200°,21.157±0.200°,24.154±0.200°,27.518±0.200°。
  16. 根据权利要求15所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.333°,11.034°,12.635°,13.534°,13.855°,14.350°,16.116°,17.483°,17.861°,18.764°,19.658°,19.915°,20.651°,21.157°,23.449°,23.806°,24.154°,24.702°,26.884°,27.518°,31.071°。
  17. 根据权利要求13~16任意一项所述的B晶型,其XRPD图谱基本上如图5所示。
  18. 根据权利要求13~16任意一项所述的B晶型,其差示扫描量热曲线在193.63±3.0℃处具有吸热峰的起始值。
  19. 根据权利要求18所述的B晶型,其DSC图谱如图6所示。
  20. 根据权利要求13~16任意一项所述的B晶型,其热重分析曲线在92±3℃时失重达0.867%。
  21. 根据权利要求20所述的B晶型,其TGA图谱如图7所示。
  22. 式(III)化合物的C晶型,其中n选自0.8、0.9、1.0、1.1和1.2,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.637±0.200°,14.138±0.200°,17.076±0.200°,24.866±0.200°,
  23. 根据权利要求22所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.412±0.200°,13.637±0.200°,14.138±0.200°,17.076±0.200°,19.310±0.200°,23.654±0.200°,24.214±0.200°,24.866±0.200°。
  24. 根据权利要求23所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.412±0.200°,13.637±0.200°,14.138±0.200°,15.555±0.200°,17.076±0.200°,18.016±0.200°,18.907±0.200°,19.310±0.200°,20.811±0.200°,23.654±0.200°,24.214±0.200°,24.866±0.200°。
  25. 根据权利要求24所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.677°,7.086°,11.412°,11.627°,13.200°,13.429°,13.637°,14.138°,14.499°,15.167°,15.555°,15.763°,17.076°,17.272°,18.016°,18.171°,18.614°,18.907°,19.310°,19.656°,20.016°,20.811°,21.765°,22.748°,23.443°,23.654°,23.880°,24.214°,24.577°,24.866°,25.987°,26.493°,27.011°,27.537°。
  26. 根据权利要求22~25任意一项所述的C晶型,其XRPD图谱基本上如图9所示。
  27. 根据权利要求22~25任意一项所述的C晶型,其差示扫描量热曲线在237.14±3.0℃处具有吸热峰的起始值。
  28. 根据权利要求27所述的C晶型,其DSC图谱如图10所示。
  29. 根据权利要求22~25任意一项所述的C晶型,其热重分析曲线在100±3℃时失重达0.469%。
  30. 根据权利要求29所述的C晶型,其TGA图谱如图11所示。
  31. 式(IV)化合物的D晶型,其中p选自0.8、0.9、1.0、1.1和1.2,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,16.420±0.200°,18.965±0.200°,
  32. 根据权利要求31所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,10.922±0.200°,13.238±0.200°,16.420±0.200°,18.965±0.200°,20.400±0.200°,24.069±0.200°。
  33. 根据权利要求32所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859±0.200°,8.784±0.200°,10.922±0.200°,11.644±0.200°,13.238±0.200°,16.420±0.200°,17.596±0.200°,18.965±0.200°,19.390±0.200°,20.400±0.200°,21.416±0.200°,24.069±0.200°。
  34. 根据权利要求33所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.859°,8.784°,10.922°,11.644°,13.238°,13.741°,16.420°,16.720°,17.596°,17.930°,18.965°,19.390°,20.400°,21.416°,22.630°,23.473°,24.069°,24.832°,26.587°,27.661°。
  35. 根据权利要求31~34任意一项所述的D晶型,其XRPD图谱基本上如图13所示。
  36. 根据权利要求31~34任意一项所述的D晶型,其差示扫描量热曲线在240.70±3.0℃处具有吸热峰的起始值。
  37. 根据权利要求36所述的D晶型,其DSC图谱如图14所示。
  38. 根据权利要求31~34任意一项所述的D晶型,其热重分析曲线在120±3℃时失重达0.295%。
  39. 根据权利要求38所述的D晶型,其TGA图谱如图15所示。
  40. 根据权利要求1~3任意一项所述的盐型,权利要求4~12任意一项所述的A晶型,权利要求13~21任意一项所述的B晶型,权利要求22~30任意一项所述的C晶型或权利要求31~39任意一项所述的D晶型在制备治疗实体瘤药物中的应用。
  41. 根据权利要求40所述的应用,其特征在于,所述治疗实体瘤药物为治疗结直肠癌药物。
PCT/CN2023/111516 2022-08-08 2023-08-07 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法 WO2024032558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210948349.2 2022-08-08
CN202210948349 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032558A1 true WO2024032558A1 (zh) 2024-02-15

Family

ID=89850853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111516 WO2024032558A1 (zh) 2022-08-08 2023-08-07 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2024032558A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484457A (zh) * 2006-04-12 2009-07-15 弗特克斯药品有限公司 作为用于治疗增殖病症的蛋白激酶PLK1抑制剂的4,5-二氢-[1,2,4]三唑并[4,3-f]蝶啶
CN101563351A (zh) * 2006-12-21 2009-10-21 内尔维阿诺医学科学有限公司 取代的吡唑并-喹唑啉衍生物、它们的制备方法和它们作为激酶抑制剂的用途
CN101824043A (zh) * 2003-10-14 2010-09-08 沃泰克斯药物股份有限公司 可用作蛋白激酶抑制剂的组合物
WO2012013557A1 (en) * 2010-07-30 2012-02-02 Nerviano Medical Sciences S.R.L. Isoxazolo-quinazolines as modulators of protein kinase activity
WO2022166725A1 (zh) * 2021-02-08 2022-08-11 南京明德新药研发有限公司 5,6-二氢噻吩并[3,4-h]喹唑啉类化合物
WO2023104178A1 (zh) * 2021-12-10 2023-06-15 山东绿叶制药有限公司 蛋白激酶抑制剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824043A (zh) * 2003-10-14 2010-09-08 沃泰克斯药物股份有限公司 可用作蛋白激酶抑制剂的组合物
CN101484457A (zh) * 2006-04-12 2009-07-15 弗特克斯药品有限公司 作为用于治疗增殖病症的蛋白激酶PLK1抑制剂的4,5-二氢-[1,2,4]三唑并[4,3-f]蝶啶
CN101563351A (zh) * 2006-12-21 2009-10-21 内尔维阿诺医学科学有限公司 取代的吡唑并-喹唑啉衍生物、它们的制备方法和它们作为激酶抑制剂的用途
WO2012013557A1 (en) * 2010-07-30 2012-02-02 Nerviano Medical Sciences S.R.L. Isoxazolo-quinazolines as modulators of protein kinase activity
WO2022166725A1 (zh) * 2021-02-08 2022-08-11 南京明德新药研发有限公司 5,6-二氢噻吩并[3,4-h]喹唑啉类化合物
WO2023104178A1 (zh) * 2021-12-10 2023-06-15 山东绿叶制药有限公司 蛋白激酶抑制剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2016091221A1 (zh) 吡咯并[2,3-d]嘧啶化合物的盐及盐的新晶型
TW201609717A (zh) Plk-4抑制劑之鹽和結晶形式
JP2021523120A (ja) セルデュラチニブ(cerdulatinib)の固体形態
WO2024032558A1 (zh) 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法
WO2020244348A1 (zh) 呋喃并咪唑并吡啶类化合物的合成方法、呋喃并咪唑并吡啶类化合物的晶型及其盐的晶型
JP6193762B2 (ja) 1−{(2S)−2−アミノ−4−[2,4−ビス(トリフルオロメチル)−5,8−ジヒドロピリド[3,4−d]ピリミジン−7(6H)−イ
EP3896063A1 (en) Salt of syk inhibitor and crystalline form thereof
WO2022242753A1 (zh) 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式
CN110156793A (zh) 瑞博西尼单琥珀酸盐新晶型及制备方法
CN116283940A (zh) 一种作为fgfr和vegfr抑制剂化合物的盐型、晶型及其制备方法
WO2022022687A1 (zh) 含嘧啶基团的三并环类化合物的盐型、晶型及其制备方法
CN111094272B (zh) 一种otr抑制剂的可药用盐、晶型及制备方法
US10544129B2 (en) Crystalline forms of AP26113, and preparation method thereof
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型
WO2022068739A1 (zh) 吡啶并吡唑类化合物的晶型及其制备方法
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
WO2022017448A1 (zh) 一种二氢吡啶并[2,3-d]嘧啶酮衍生物的盐及晶型
TW201945359A (zh) 一種c-MET抑制劑的晶型及其鹽型和製備方法
WO2023041061A1 (zh) 一种稠合二环类衍生物的可药用盐、晶型及其制备方法
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
US20170029443A1 (en) Polymorphic forms and co-crystals of a c-met inhibitor
WO2024040668A1 (zh) 一种哌柏西利糖精盐晶型及其制备方法
WO2022237808A1 (zh) 吡咯并嘧啶类化合物的晶型及其制备方法
WO2023011428A1 (zh) Ripk1抑制剂的晶型及其酸式盐和其酸式盐的晶型
WO2021219065A1 (zh) 三氟甲基和氯双取代的磺酰胺类选择性bcl-2抑制剂的晶体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851779

Country of ref document: EP

Kind code of ref document: A1