WO2022242753A1 - 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式 - Google Patents

一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式 Download PDF

Info

Publication number
WO2022242753A1
WO2022242753A1 PCT/CN2022/094161 CN2022094161W WO2022242753A1 WO 2022242753 A1 WO2022242753 A1 WO 2022242753A1 CN 2022094161 W CN2022094161 W CN 2022094161W WO 2022242753 A1 WO2022242753 A1 WO 2022242753A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
formula
ray powder
powder diffraction
salt
Prior art date
Application number
PCT/CN2022/094161
Other languages
English (en)
French (fr)
Inventor
姚佳琪
杨俊然
杜振兴
Original Assignee
江苏恒瑞医药股份有限公司
上海恒瑞医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒瑞医药股份有限公司, 上海恒瑞医药有限公司 filed Critical 江苏恒瑞医药股份有限公司
Priority to EP22804072.1A priority Critical patent/EP4342897A4/en
Priority to JP2023572135A priority patent/JP2024521129A/ja
Priority to CA3219001A priority patent/CA3219001A1/en
Priority to US18/561,111 priority patent/US20240262823A1/en
Priority to KR1020237043840A priority patent/KR20240012471A/ko
Priority to MX2023013803A priority patent/MX2023013803A/es
Priority to CN202280036496.0A priority patent/CN117355524A/zh
Priority to BR112023024037A priority patent/BR112023024037A2/pt
Publication of WO2022242753A1 publication Critical patent/WO2022242753A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/81Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/82Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/83Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • C07C55/07Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present disclosure relates to a pharmaceutically acceptable salt of a pyrazoloheteroaryl derivative and its crystal form, in particular to a pharmaceutically acceptable salt of a compound represented by formula (I) and its crystal form.
  • DNA damage occurs thousands of times a day in both normal and tumor cells. This makes DNA damage repair a crucial role in maintaining genome stability and cell survival. Compared with normal cells, tumor cells are under greater replication pressure, carry more endogenous DNA damage, and often have loss of one or more DNA damage repair pathways. This makes the survival of tumor cells more dependent on the smooth progress of DNA damage repair.
  • Homologous recombination repair is the main repair method for DNA double-strand breaks. It uses the homologous sequence of the undamaged sister chromatid as its repair template to copy the damaged DNA sequence and precisely repair the DNA. This repair mode mainly occurs in the G2 phase and S phase of cells.
  • ATR is a key enzyme in the homologous recombination repair pathway and belongs to the PIKK family. When the ATR/ATRIP complex binds to damaged DNA covered with replication protein A (RPA), ATR is activated and regulates various checkpoints of the cell cycle by phosphorylating downstream proteins Chk1 and SMARCAL, causing cell cycle arrest; Stability of damaged DNA; increase the concentration of dNTP to promote the repair of DNA damage.
  • RPA replication protein A
  • ATR pathway The repair of DNA damage in the S phase of the cell cycle is mainly completed by the ATR pathway, indicating that ATR is very important for ensuring cell proliferation.
  • the analysis results of clinical tumor samples showed that in various tumor tissues, such as gastric cancer, liver cancer, colorectal cancer, ovarian cancer, pancreatic cancer, etc., the expression level of ATR was increased. And in patients with ovarian cancer and pancreatic cancer, high levels of ATR are often associated with lower survival rates. It can be seen that ATR is an important target for tumor therapy.
  • WO2021098811A relates to a series of new ATR inhibitors, wherein the compound represented by formula (I) has good ATR inhibitory activity, and its structure is as follows:
  • crystal structure of pharmaceutical active ingredients and their intermediates often affects their chemical stability. Different crystallization conditions and storage conditions may lead to changes in the crystal structure of the compound, sometimes accompanied by the formation of other forms. crystal form.
  • amorphous products have no regular crystal structure and often have other defects, such as poor product stability, fine crystallization, difficult filtration, easy agglomeration, and poor fluidity. Therefore, it is necessary to improve the various properties of the above-mentioned products, and we need to conduct in-depth research to find new crystal forms with high purity and good chemical stability.
  • the present disclosure provides a new salt form of the compound represented by formula (I), its crystal form and its preparation method.
  • the disclosure provides a pharmaceutically acceptable salt of a compound represented by formula (I), wherein the pharmaceutically acceptable salt is selected from hydrochloride, sulfate, hydrobromide, methanesulfonate, p-toluenesulfonate, Maleate, phosphate, formate, acetate, succinate, fumarate, citrate, malate, hippurate or oxalate.
  • the pharmaceutically acceptable salt is methanesulfonate, maleate or oxalate.
  • the molar ratio of the compound represented by formula (I) to sulfuric acid in the sulfate salt is 3:1-1:3, preferably 1:0.5 or 1:1.
  • the molar ratio of the compound represented by formula (I) to maleic acid in the maleate salt is 3:1-1:3, preferably 1:0.5 or 1:1.
  • the molar ratio of the compound represented by formula (I) to p-toluenesulfonic acid in the p-toluenesulfonic acid salt is 3:1-1:3, preferably 1:1 or 1:2.
  • the molar ratio of the compound represented by formula (I) to methanesulfonic acid in the mesylate salt is 3:1-1:3, preferably 1:1 or 1:2.
  • the molar ratio of the compound represented by formula (I) to oxalic acid in the oxalate is 3:1-1:3, preferably 1:0.5 or 1:1.
  • the present disclosure also provides a crystal form of the hydrochloride salt of the compound represented by formula (I), the crystal form is:
  • Hydrochloride salt form b has characteristic peaks at 2 ⁇ angles of 6.0, 12.1, 18.2, 23.6 and 24.4 in its X-ray powder diffraction pattern.
  • the X-ray powder diffraction pattern of the hydrochloride salt form a is 6.0, 8.3, 9.1, 12.1, 14.3, 14.9, 16.7, 18.3, 19.4, 23.5, 24.3, 26.3 And there are characteristic peaks at 26.7.
  • the X-ray powder diffraction pattern of the hydrochloride salt form a is shown in FIG. 1 .
  • the X-ray powder diffraction pattern of the hydrochloride salt form b is 6.0, 8.4, 9.0, 12.1, 16.5, 18.2, 23.6, 24.4, 26.2, 29.5, 33.9 and 35.5 There are characteristic peaks.
  • the X-ray powder diffraction pattern of the hydrochloride salt form b is shown in Figure 2 .
  • the present disclosure also provides a sulfate crystal form ⁇ of the compound represented by formula (I), whose X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 5.8, 7.6, 13.7, 15.4 and 20.4.
  • the X-ray powder diffraction pattern of the sulfate crystal form ⁇ is 5.8, 7.6, 13.7, 15.4, 16.4, 16.9, 18.0, 18.5, 19.2, 20.4, 23.0, 23.9 and There is a characteristic peak at 25.9.
  • the X-ray powder diffraction pattern of the sulfate crystal form ⁇ is shown in FIG. 3 .
  • the present disclosure also provides a crystal form of hydrobromide salt of the compound represented by formula (I), said crystal form is:
  • Hydrobromide salt crystal form I its X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 6.0, 8.1, 14.7, 25.9 and 27.0;
  • the X-ray powder diffraction pattern of hydrobromide salt crystal form II has characteristic peaks at 2 ⁇ angles of 9.3, 11.6, 13.0, 16.8, 18.7 and 24.6.
  • the X-ray powder diffraction pattern of the hydrobromide salt crystal form I has characteristic peaks at 2 ⁇ angles of 6.0, 8.1, 14.7, 17.3, 18.8, 22.0, 25.9, 27.0 and 27.8.
  • the X-ray powder diffraction pattern of the hydrobromide salt crystal form I is shown in FIG. 4 .
  • the X-ray powder diffraction pattern of the hydrobromide salt crystal form II is 8.2, 9.3, 11.6, 13.0, 15.5, 16.8, 17.6, 18.7, 19.3, 19.8, 21.3, There are characteristic peaks at 22.4, 23.3, 24.6, 25.4, 26.1, 26.4, 27.9, 28.7, 31.0, 31.7, 32.2, 34.1, 34.9, 35.5, 36.3, 37.0, 37.7, 38.3, 40.1 and 42.1.
  • the X-ray powder diffraction pattern of the hydrobromide salt crystal form II is shown in FIG. 5 .
  • the present disclosure also provides a crystal form of the mesylate salt of the compound represented by formula (I), the crystal form is:
  • Mesylate salt crystal form ⁇ its X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 10.0, 16.8, 17.8, 18.4 and 20.6; or
  • Mesylate crystal form ⁇ has characteristic peaks at 2 ⁇ angles of 5.9, 8.4, 14.5, 16.8, 19.8 and 26.0 in the X-ray powder diffraction pattern.
  • the X-ray powder diffraction pattern of the mesylate salt crystal form ⁇ is 7.7, 10.0, 12.9, 13.8, 14.3, 15.1, 16.8, 17.8, 18.4, 20.3, 20.6, There are characteristic peaks at 21.9, 23.1, 24.2, 25.3, 26.1, 26.7, 28.3, 29.0, 30.7, 35.0 and 43.1.
  • the X-ray powder diffraction pattern of the mesylate salt form ⁇ is shown in FIG. 6 .
  • the X-ray powder diffraction pattern of the mesylate salt crystal form ⁇ is 5.9, 8.4, 13.6, 14.5, 16.8, 18.5, 19.8, 20.9, 21.6, 23.3, 26.0, There are characteristic peaks at 26.7 and 27.4.
  • the X-ray powder diffraction pattern of the mesylate salt form ⁇ is shown in FIG. 7 .
  • the present disclosure also provides a maleate crystal form I of the compound represented by formula (I), whose X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 10.1, 17.1, 18.0, 19.0 and 24.3.
  • the X-ray powder diffraction pattern of the maleate salt crystal form I is 7.2, 9.4, 10.1, 12.8, 13.2, 14.2, 14.8, 15.7, 17.1, 18.0, 19.0, There are characteristic peaks at 22.0, 23.4, 24.3, 25.2, 27.5 and 29.1.
  • the X-ray powder diffraction pattern of the maleate salt crystal form I is shown in FIG. 8 .
  • the disclosure also provides a p-toluenesulfonate crystal form a of the compound represented by formula (I), whose X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 6.5, 8.6, 12.0, 14.5, 21.2 and 22.2 .
  • the X-ray powder diffraction pattern of the p-toluenesulfonate salt crystal form a is 6.5, 8.6, 9.9, 12.0, 13.1, 14.5, 16.7, 18.9, 19.7, 21.2, 22.2 , 24.2, 26.3 and 27.6 have characteristic peaks.
  • the X-ray powder diffraction pattern of the p-toluenesulfonate salt form a is shown in FIG. 9 .
  • the present disclosure also provides a crystalline form of oxalate salt of a compound represented by formula (I), whose X-ray powder diffraction pattern has characteristic peaks at 2 ⁇ angles of 5.5, 9.1, 11.0, 13.0, 15.5, 16.5 and 20.2 .
  • the X-ray powder diffraction pattern of the oxalate crystal form a is 5.5, 9.1, 11.0, 13.0, 15.5, 16.5, 20.2, 22.0, 22.5, 23.1, 24.9, 26.2 , 27.8 and 30.8 have characteristic peaks.
  • the X-ray powder diffraction pattern of the oxalate crystal form a is shown in FIG. 10 .
  • the present disclosure further provides a method for preparing the hydrochloride salt form a of the compound represented by formula (I), the method comprising: Methyl tert-butyl ether (MTBE) solution containing the compound represented by formula (I) and Hydrochloric acid mixed, beating and crystallization.
  • MTBE Methyl tert-butyl ether
  • the present disclosure further provides a method for preparing hydrochloride crystal form b of the compound represented by formula (I), the method comprising: heating hydrochloride a of the compound represented by formula (I) to 90° C., and collecting crystals.
  • the present disclosure further provides a method for preparing the sulfate crystal form ⁇ of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and a solvent with sulfuric acid, beating and crystallizing, and the The solvent is selected from methyl tert-butyl ether or ethyl acetate (EA)/(n-heptane) heptane.
  • the present disclosure further provides a method for preparing the hydrobromide crystal form I of the compound represented by the formula (I), the method comprising: mixing a solution containing the compound represented by the formula (I) and a solvent with hydrobromic acid, and beating Crystallization, the solvent is selected from methyl tert-butyl ether or ethyl acetate/n-heptane.
  • the present disclosure further provides a method for preparing the hydrobromide crystal form II of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and a solvent with hydrobromic acid, and beating Crystallization, the solvent is selected from ethyl acetate/n-heptane.
  • the disclosure further provides a method for preparing the mesylate crystal form ⁇ of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and methyl tert-butyl ether with formic acid Mix sulfonic acid, beating and crystallizing.
  • the present disclosure further provides a method for preparing the mesylate crystal form ⁇ of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and a solvent with methanesulfonic acid, beating Crystallization, the solvent is selected from methyl tert-butyl ether or ethyl acetate/n-heptane.
  • the present disclosure further provides a method for preparing the maleate crystal form I of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and a solvent with maleic acid, and beating Crystallization, the solvent is selected from methyl tert-butyl ether or ethyl acetate/n-heptane.
  • the present disclosure further provides a method for preparing the p-toluenesulfonate crystal form a of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and methyl tert-butyl ether with Mix p-toluenesulfonic acid, beating and crystallizing.
  • the present disclosure further provides a method for preparing the oxalate crystal form a of the compound represented by formula (I), the method comprising: mixing a solution containing the compound represented by formula (I) and a solvent with oxalic acid, beating and crystallizing,
  • the solvent is selected from methyl tert-butyl ether or ethyl acetate/n-heptane.
  • XRPD X-ray powder diffraction pattern
  • DSC differential scanning calorimetry
  • the crystallization method of the crystal form in the present disclosure is conventional, such as volatilization crystallization, cooling crystallization or room temperature crystallization.
  • the starting material used in the preparation method of the disclosed crystal form can be any form of the compound represented by formula (I), and the specific form includes but not limited to: amorphous, any crystal form, hydrate, solvate, etc.
  • the present disclosure further provides a pharmaceutical composition, comprising a pharmaceutically acceptable salt of the compound represented by formula (I), and one or more pharmaceutically acceptable carriers or excipients.
  • the present disclosure further provides a pharmaceutical composition, comprising a crystal form of a pharmaceutically acceptable salt of the compound represented by formula (I), and one or more pharmaceutically acceptable carriers or excipients.
  • the present disclosure further provides a method for preparing a pharmaceutical composition, comprising the step of mixing a pharmaceutically acceptable salt of the compound represented by formula (I) with one or more pharmaceutically acceptable carriers or excipients.
  • the present disclosure further provides a method for preparing a pharmaceutical composition, comprising a step of mixing a pharmaceutically acceptable salt crystal form of the compound represented by formula (I) with one or more pharmaceutically acceptable carriers or excipients.
  • the present disclosure further provides the use of the pharmaceutically acceptable salt of the compound represented by formula (I) or the crystal form or the pharmaceutical composition of the pharmaceutically acceptable salt in the preparation of a drug for inhibiting ATR kinase.
  • the present disclosure further provides the use of the pharmaceutically acceptable salt of the compound represented by formula (I) or the crystal form or pharmaceutical composition of the pharmaceutically acceptable salt in the preparation of a drug for treating hyperproliferative diseases.
  • the present disclosure further provides the use of the pharmaceutically acceptable salt of the compound represented by formula (I) or the crystal form or the pharmaceutical composition of the pharmaceutically acceptable salt in the preparation of a drug for treating tumor diseases.
  • the tumors described in the present disclosure are selected from the group consisting of melanoma, brain tumor, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, colorectal cancer, lung cancer, kidney cancer, breast cancer, cervical cancer, ovarian cancer, prostate cancer, skin cancer, neuro Blastoma, glioma, sarcoma, bone cancer, uterine cancer, endometrial cancer, head and neck cancer, multiple myeloma, B-cell lymphoma, polycythemia vera, leukemia, thyroid tumors, bladder cancer, and gallbladder cancer.
  • the "beating” mentioned in the present disclosure refers to a method of purifying by using the property that substances have poor solubility in solvents but impurities have good solubility in solvents.
  • the beating purification can remove color, change crystal form or remove a small amount of impurities.
  • An "X-ray powder diffraction pattern or XRPD" as used in this disclosure is a pattern obtained by using Cu-K ⁇ radiation in an X-ray powder diffractometer.
  • Differential scanning calorimetry or DSC in this disclosure refers to the measurement of the temperature difference and heat flow difference between the sample and the reference during the heating or constant temperature of the sample to characterize all the physical changes and chemical changes related to thermal effects. change to obtain the phase transition information of the sample.
  • the “2 ⁇ or 2 ⁇ angle” in this disclosure refers to the diffraction angle, ⁇ is the Bragg angle, the unit is ° or degree, and the error range of 2 ⁇ is ⁇ 0.3 or ⁇ 0.2 or ⁇ 0.1.
  • interplanar spacing or interplanar spacing (d value) in the present disclosure refers to that the spatial lattice selects 3 non-parallel unit vectors a, b, and c that connect two adjacent lattice points.
  • the matrix is divided into juxtaposed parallelepiped units called interplanar spacing.
  • the spatial lattice is divided according to the determined parallelepiped unit connection lines to obtain a set of linear grids, which are called spatial lattices or lattices.
  • Lattice and lattice reflect the periodicity of the crystal structure with geometric points and lines respectively. Different crystal planes have different interplanar spacing (that is, the distance between two adjacent parallel crystal planes); the unit is or Angstrom.
  • Optional or “optionally” means that the subsequently described event or circumstance can but need not occur, and that the description includes instances where the event or circumstance occurs or does not occur.
  • a heterocyclic group optionally substituted with an alkyl group means that an alkyl group may but need not be present, and the description includes cases where the heterocycle group is substituted with an alkyl group and cases where the heterocycle group is not substituted with an alkyl group .
  • pharmaceutical composition means a mixture containing one or more compounds described herein, or a physiologically/pharmaceutically acceptable salt or prodrug thereof, and other chemical components, as well as other components such as physiologically/pharmaceutically acceptable Carriers and Excipients.
  • the purpose of the pharmaceutical composition is to promote the administration to the organism, facilitate the absorption of the active ingredient and thus exert biological activity.
  • solvate refers to a pharmaceutically acceptable solvate of the disclosed drug with one or more solvent molecules, non-limiting examples of which include water, ethanol, methyl tert-butyl ether, Acetone, n-heptane, acetonitrile, isopropanol, DMSO, ethyl acetate.
  • carrier used in the drug of the present disclosure refers to a system that can change the way the drug enters the human body and distributes the drug in the body, controls the release rate of the drug, and delivers the drug to the target organ.
  • the drug carrier release and targeting system can reduce drug degradation and loss, reduce side effects, and improve bioavailability.
  • polymer surfactants that can be used as carriers can self-assemble and form various forms of aggregates due to their unique amphiphilic structure. Preferred examples are micelles, microemulsions, gels, liquid crystals, vesicles, etc. . These aggregates have the ability to entrap drug molecules, and at the same time have good permeability to the membrane, which can be used as excellent drug carriers.
  • Fig. 1 is the XRPD spectrum of the hydrochloride crystal form a of the compound represented by formula (I).
  • Fig. 2 is the XRPD spectrum of the hydrochloride crystal form b of the compound represented by formula (I).
  • Fig. 3 is the XRPD spectrum of the sulfate crystal form ⁇ of the compound represented by formula (I).
  • Fig. 4 is the XRPD spectrum of the hydrobromide salt crystal form I of the compound represented by formula (I).
  • Fig. 5 is the XRPD spectrum of the hydrobromide salt crystal form II of the compound represented by formula (I).
  • Fig. 6 is the XRPD spectrum of the mesylate salt crystal form ⁇ of the compound represented by formula (I).
  • Fig. 7 is the XRPD spectrum of the mesylate salt crystal form ⁇ of the compound represented by formula (I).
  • Fig. 8 is the XRPD spectrum of the maleate salt form I of the compound represented by formula (I).
  • Fig. 9 is the XRPD spectrum of p-toluenesulfonic acid crystal form a of the compound represented by formula (I).
  • Fig. 10 is the XRPD spectrum of the oxalate crystal form a of the compound represented by formula (I).
  • Figure 11 is the DSC spectrum of the hydrochloride crystal form a of the compound represented by formula (I).
  • Figure 12 is the DSC spectrum of the sulfate crystal form ⁇ of the compound represented by formula (I).
  • Figure 13 is the DSC spectrum of the hydrobromide salt form I of the compound represented by formula (I).
  • Figure 14 is the DSC spectrum of the hydrobromide salt form II of the compound represented by formula (I).
  • Figure 15 is the DSC spectrum of the mesylate salt crystal form ⁇ of the compound represented by formula (I).
  • Figure 16 is the DSC spectrum of the mesylate salt crystal form ⁇ of the compound represented by formula (I).
  • Figure 17 is the DSC spectrum of the maleate salt crystal form I of the compound represented by formula (I).
  • Figure 18 is the DSC spectrum of the p-toluenesulfonate crystal form a of the compound represented by formula (I).
  • Figure 19 is the DSC spectrum of the oxalate crystal form a of the compound represented by formula (I).
  • NMR nuclear magnetic resonance
  • MS mass spectroscopy
  • MS was determined with Agilent 1200/1290 DAD-6110/6120 Quadrupole MS liquid mass spectrometer (manufacturer: Agilent, MS model: 6110/6120 Quadrupole MS).
  • HPLC High-performance liquid chromatography
  • Chiral HPLC analysis was performed using an Agilent 1260 DAD high performance liquid chromatograph.
  • the CombiFlash rapid preparation instrument uses Combiflash Rf200 (TELEDYNE ISCO).
  • the thin-layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate.
  • the specification of the silica gel plate used in thin-layer chromatography (TLC) is 0.15mm-0.2mm, and the specification of thin-layer chromatography separation and purification products is 0.4mm. ⁇ 0.5mm.
  • Silica gel column chromatography generally uses Yantai Huanghai silica gel 200-300 mesh silica gel as the carrier.
  • the known starting materials of the present disclosure can be adopted or synthesized according to methods known in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Shaoyuan Chemical Technology (Accela ChemBio Inc), Darui chemical companies.
  • the reactions can all be carried out under an argon atmosphere or a nitrogen atmosphere.
  • the argon atmosphere or nitrogen atmosphere means that the reaction bottle is connected to an argon or nitrogen balloon with a volume of about 1 L.
  • the hydrogen atmosphere means that the reaction bottle is connected to a hydrogen balloon with a capacity of about 1L.
  • the pressurized hydrogenation reaction uses Parr 3916EKX hydrogenation instrument and Qinglan QL-500 hydrogen generator or HC2-SS hydrogenation instrument.
  • the hydrogenation reaction is usually vacuumized and filled with hydrogen, and the operation is repeated 3 times.
  • the solution refers to an aqueous solution.
  • reaction temperature is room temperature, which is 20°C to 30°C.
  • the monitoring of the reaction process in the embodiment adopts thin-layer chromatography (TLC), the developer used for reaction, the eluent system of the column chromatography that purifies compound adopts and the developer system of thin-layer chromatography comprise: A: Dichloromethane/methanol system, B: n-hexane/ethyl acetate system, C: petroleum ether/ethyl acetate system, the volume ratio of the solvent is adjusted according to the polarity of the compound, and a small amount of triethylamine and Alkaline or acidic reagents such as acetic acid for adjustment.
  • TLC thin-layer chromatography
  • THP is tetrahydropyranyl.
  • reaction solution was cooled to room temperature, added 20 mL of water, extracted with ethyl acetate (20 mL ⁇ 3), combined the organic phases, concentrated under reduced pressure, washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. Purification by chromatography with eluent system C afforded the title compound 1i (20 mg), yield: 84%.
  • Example 1 0.25 ml of MTBE solution containing about 10 mg of the compound shown in formula (I) obtained in Example 1 was mixed with 22.5 ⁇ L, 1.2 mol/L hydrochloric acid ethanol solution and beated, centrifuged to separate the solid, and vacuum dried to obtain the product.
  • the product was defined as hydrochloride crystal form a, the XRPD spectrum is shown in Figure 1, and the characteristic peak positions are shown in Table 1.
  • hydrochloride salt form a of the compound represented by formula (I) After heating the hydrochloride salt form a of the compound represented by formula (I) to 90° C., detect the crystal form transformation, and define the product as hydrochloride salt form b.
  • the XRPD spectrum is shown in Figure 2, and its characteristic peak The location is shown in Table 2.
  • Test Example 1 The inhibitory effect of the disclosed compound on ATR enzyme.
  • ATR enzyme Eurofins Pharma Discovery Services, 14-953-M
  • Microplate reader (BMG, PHERAsta)
  • ATR enzyme 1nM, P53 protein 50nM, 7.435 ⁇ M ATP and different concentrations were mixed and incubated at room temperature for 2 hours, then added stop solution (12.5mM HEPES, 250mM EDTA) Mix well, then add 0.42ng/well of labeled europium cryptate anti-phosphorylated P53 protein antibody and 25ng/well of d2-linked anti-GST antibody. After overnight incubation at room temperature, the fluorescence signals at 620nm and 665nm were detected with PHERAstar. Data were processed using GraphPad software.
  • the inhibitory activity of the disclosed compounds on ATR enzyme can be determined by the above tests, and the measured IC 50 values are shown in Table 12.
  • the disclosed compound has good inhibitory activity on ATR enzyme.
  • the following method evaluates the inhibitory effect of the disclosed compound on the proliferation of LoVo cells by detecting the ATP content in the cells and according to the IC 50 .
  • the experimental method is briefly described as follows:
  • LoVo cells were cultured in F-12K medium containing 10% FBS, passaged 2 to 3 times a week, and the passage ratio was 1:3 or 1:5.
  • cells were digested with trypsin and transferred to a centrifuge tube, centrifuged at 1200rpm for 3 minutes, the supernatant medium was discarded, and fresh medium was added to resuspend the cells.
  • the sample to be tested was diluted to 2mM with DMSO, and then diluted to 10 concentrations by 3 times, and blank and control wells were set. Take 5 ⁇ L of the test compound solution prepared in gradient concentration and add it to 95 ⁇ L of fresh medium. Then add 10 ⁇ L of the above drug-containing medium solution to the culture plate. The plates were incubated for 3 days in an incubator (37°C, 5% CO 2 ). In a 96-well cell culture plate, 50 ⁇ L of CellTiter-Glo reagent was added to each well, and placed in the dark at room temperature for 5-10 min, and the chemiluminescent signal value was read in PHERAstar, and the data was processed using GraphPad software.
  • the inhibitory activity of the disclosed compounds on the proliferation of LoVo cells can be determined by the above tests, and the measured IC 50 values are shown in Table 13.
  • the disclosed compound has good inhibitory activity on ATR enzyme.
  • Test example 3 the pharmacokinetic test of the disclosed compound
  • Rats were used as test animals, and the drug concentration in blood plasma at different times after intragastric administration of the compound of Example 1 to rats was determined by LC/MS/MS method. The pharmacokinetic behavior of the disclosed compound in rats was studied, and its pharmacokinetic characteristics were evaluated.
  • Rats were intragastrically administered the compound of Example 1, and 0.2 mL of blood was collected from the orbit before and after administration at 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 11.0, and 24.0 hours, and placed in EDTA-K2kk for anticoagulation In the test tube, centrifuge at 4°C and 11,000 rpm for 5 minutes to separate plasma, store at -20°C, and eat 2 hours after administration.
  • Determination of the content of the compound to be tested in rat plasma after intragastric administration of different concentrations of drugs Take 25 ⁇ L of rat plasma at each moment after administration, add 50 ⁇ L of internal standard solution, 175 ⁇ L of acetonitrile, vortex for 5 minutes, and centrifuge for 10 minutes (4000 revolutions/min), and 1 ⁇ L of the supernatant was taken from the plasma sample for LC/MS/MS analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本公开涉及一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式。具体而言,本公开涉及式(I)所示化合物的可药用盐及其结晶形式。本公开的新晶型具备良好的理化性质。

Description

一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式
本申请要求申请日为2021年5月21日的中国专利申请2021105586705的优先权。本申请引用上述中国专利申请的全文。
技术领域
本公开涉及一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式,具体地涉及式(I)所示化合物的可药用盐及其结晶形式。
背景技术
无论是正常细胞还是肿瘤细胞中,每天都会出现成千上万次DNA的损伤。这使得DNA损伤修复在维持基因组的稳定性和细胞存活方面起到至关重要的作用。相比较于正常细胞,肿瘤细胞承受了更大的复制压力,携带更多的内源性DNA损伤,并且经常出现一个或多个DNA损伤修复通路的缺失。这使得肿瘤细胞的存活更加依赖于DNA损伤修复的顺利进行。
同源重组修复是DNA双链断裂的主要修复方式,以未受损的姐妹染色单体的同源序列作为其修复的模板复制受损处的DNA序列,精确修复DNA。这种修复方式主要发生在细胞的G2期和S期。ATR是同源重组修复通路中的关键酶,属于PIKK家族。当ATR/ATRIP复合物与覆盖了复制蛋白A(RPA)的受损DNA结合后,ATR被激活并通过磷酸化下游蛋白Chk1和SMARCAL等,调节细胞周期各个检查点,引起细胞周期阻滞;保证受损DNA的稳定性;提高dNTP浓度,促使DNA损伤得以修复。细胞周期S期中出现的DNA损伤修复主要由ATR通路完成,说明ATR对于保证细胞增殖非常重要。对于临床肿瘤样品的分析结果表明在多种肿瘤组织中,例如胃癌、肝癌、结直肠癌、卵巢癌、胰腺癌等,均观察到ATR表达水平升高。并且在卵巢癌、胰腺癌病人中,高水平的ATR往往伴随着较低的存活率。由此可见ATR是一个重要的肿瘤治疗的靶标。
WO2021098811A涉及一系列新的ATR抑制剂,其中式(I)所示化合物具有良好的ATR抑制活性,其结构如下所示:
Figure PCTCN2022094161-appb-000001
药用的活性成分及其中间体的晶型结构往往影响到该他们的化学稳定性,结晶条件及储存条件的不同有可能导致化合物的晶型结构的变化,有时还会伴随着产生其他形态的晶型。一般来说,无定型的产品没有规则的晶型结构,往往具有其它缺陷,比如产物稳定性较差,析晶较细,过滤较难,易结块,流动性差等。因此,改善上述产物的各方面性质是很有必要的,我们需要深入研究找到晶型纯度较高并且具备良好化学稳定的新晶型。
发明内容
本公开提供了一种式(I)所示化合物新的盐型,其晶型及其制备方法。
Figure PCTCN2022094161-appb-000002
本公开提供了一种式(I)所示化合物的可药用盐,所述可药用盐选自盐酸盐、硫酸盐、氢溴酸盐、甲磺酸盐、对甲苯磺酸盐、马来酸盐、磷酸盐、甲酸盐、乙酸盐、琥珀酸盐、富马酸盐、柠檬酸盐、苹果酸盐、马尿酸盐或草酸盐。
在某些的实施方案中,所述可药用盐为甲磺酸盐、马来酸盐或草酸盐。
在某些的实施方案中,所述硫酸盐中式(I)所示化合物与硫酸的摩尔比为3:1-1:3,优选1:0.5或1:1。
在某些的实施方案中,所述马来酸盐中式(I)所示化合物与马来酸的摩尔比为3:1-1:3,优选1:0.5或1:1。
在某些的实施方案中,所述对甲苯磺酸盐中式(I)所示化合物与对甲苯磺酸的摩尔比为3:1-1:3,优选1:1或1:2。
在某些的实施方案中,所述甲磺酸盐中式(I)所示化合物与甲磺酸的摩尔比为3:1-1:3,优选1:1或1:2。
在某些的实施方案中,所述草酸盐中式(I)所示化合物与草酸的摩尔比为3:1-1:3,优选1:0.5或1:1。
本公开还提供了一种式(I)所示化合物的盐酸盐的晶型,所述晶型为:
盐酸盐晶型a,其X-射线粉末衍射图谱在2θ角为6.0、8.3、12.1、14.3、14.9、16.7和26.7处有特征峰;
盐酸盐晶型b,其X-射线粉末衍射图谱在2θ角为6.0、12.1、18.2、23.6和24.4处有特征峰。
在某些的实施方案中,所述盐酸盐晶型a的X-射线粉末衍射图谱在2θ角为6.0、8.3、9.1、12.1、14.3、14.9、16.7、18.3、19.4、23.5、24.3、26.3和26.7处有特征峰。
在某些的实施方案中,所述盐酸盐晶型a的X-射线粉末衍射图谱如图1所示。
在某些的实施方案中,所述盐酸盐晶型b的X-射线粉末衍射图谱在2θ角为6.0、8.4、9.0、12.1、16.5、18.2、23.6、24.4、26.2、29.5、33.9和35.5处有特征峰。
在某些的实施方案中,所述盐酸盐晶型b的X-射线粉末衍射图谱如图2所示。
本公开还提供了一种式(I)所示化合物的硫酸盐晶型α,其X-射线粉末衍射图谱在2θ角为5.8、7.6、13.7、15.4和20.4处有特征峰。
在某些的实施方案中,所述硫酸盐晶型α的X-射线粉末衍射图谱在2θ角为5.8、7.6、13.7、15.4、16.4、16.9、18.0、18.5、19.2、20.4、23.0、23.9和25.9处有特征峰。
在某些的实施方案中,所述硫酸盐晶型α的X-射线粉末衍射图谱如图3所示。
本公开还提供了一种式(I)所示化合物的氢溴酸盐的晶型,所述晶型为:
氢溴酸盐晶型I,其X-射线粉末衍射图谱在2θ角为6.0、8.1、14.7、25.9和27.0处有特征峰;
氢溴酸盐晶型II,其X-射线粉末衍射图谱在2θ角为9.3、11.6、13.0、16.8、18.7和24.6处有特征峰。
在某些的实施方案中,所述氢溴酸盐晶型I的X-射线粉末衍射图谱在2θ角为6.0、8.1、14.7、17.3、18.8、22.0、25.9、27.0和27.8处有特征峰。
在某些的实施方案中,所述氢溴酸盐晶型I的X-射线粉末衍射图谱如图4所示。
在某些的实施方案中,所述氢溴酸盐晶型II的X-射线粉末衍射图谱在2θ角为8.2、9.3、11.6、13.0、15.5、16.8、17.6、18.7、19.3、19.8、21.3、22.4、23.3、24.6、25.4、26.1、26.4、27.9、28.7、31.0、31.7、32.2、34.1、34.9、35.5、36.3、37.0、37.7、38.3、 40.1和42.1处有特征峰。
在某些的实施方案中,所述氢溴酸盐晶型II的X-射线粉末衍射图谱如图5所示。
本公开还提供了一种式(I)所示化合物的甲磺酸盐的晶型,所述晶型为:
甲磺酸盐晶型α,其X-射线粉末衍射图谱在2θ角为10.0、16.8、17.8、18.4和20.6处有特征峰;或
甲磺酸盐晶型β,其X-射线粉末衍射图谱在2θ角为5.9、8.4、14.5、16.8、19.8和26.0处有特征峰。在某些的实施方案中,所述甲磺酸盐晶型α的X-射线粉末衍射图谱在2θ角为7.7、10.0、12.9、13.8、14.3、15.1、16.8、17.8、18.4、20.3、20.6、21.9、23.1、24.2、25.3、26.1、26.7、28.3、29.0、30.7、35.0和43.1处有特征峰。
在某些的实施方案中,所述甲磺酸盐晶型α的X-射线粉末衍射图谱如图6所示。
在某些的实施方案中,所述甲磺酸盐晶型β的X-射线粉末衍射图谱在2θ角为5.9、8.4、13.6、14.5、16.8、18.5、19.8、20.9、21.6、23.3、26.0、26.7和27.4处有特征峰。
在某些的实施方案中,所述甲磺酸盐晶型β的X-射线粉末衍射图谱如图7所示。
本公开还提供了一种式(I)所示化合物的马来酸盐晶型I,其X-射线粉末衍射图谱在2θ角为10.1、17.1、18.0、19.0和24.3处有特征峰。
在某些的实施方案中,所述马来酸盐晶型I的X-射线粉末衍射图谱在2θ角为7.2、9.4、10.1、12.8、13.2、14.2、14.8、15.7、17.1、18.0、19.0、22.0、23.4、24.3、25.2、27.5和29.1处有特征峰。
在某些的实施方案中,所述马来酸盐晶型I的X-射线粉末衍射图谱如图8所示。
本公开还提供了一种式(I)所示化合物的对甲苯磺酸盐晶型a,其X-射线粉末衍射图谱在2θ角为6.5、8.6、12.0、14.5、21.2和22.2处有特征峰。
在某些的实施方案中,所述对甲苯磺酸盐晶型a的X-射线粉末衍射图谱在2θ角为6.5、8.6、9.9、12.0、13.1、14.5、16.7、18.9、19.7、21.2、22.2、24.2、26.3和27.6处有特征峰。
在某些的实施方案中,所述对甲苯磺酸盐晶型a的X-射线粉末衍射图谱如图9所示。
本公开还提供了一种式(I)所示化合物的草酸盐a晶型,其X-射线粉末衍射图谱在2θ角为5.5、9.1、11.0、13.0、15.5、16.5和20.2处有特征峰。
在某些的实施方案中,所述草酸盐晶型a的X-射线粉末衍射图谱在2θ角为5.5、9.1、11.0、13.0、15.5、16.5、20.2、22.0、22.5、23.1、24.9、26.2、27.8和30.8处有特征峰。
在某些的实施方案中,所述草酸盐晶型a的X-射线粉末衍射图谱如图10所示。
本公开进一步提供一种制备式(I)所示化合物的盐酸盐晶型a的方法,所述方法包括: 将包含式(I)所示化合物的甲基叔丁基醚(MTBE)溶液与盐酸混合,打浆析晶。
本公开进一步提供一种制备式(I)所示化合物的盐酸盐晶型b的方法,所述方法包括:将式(I)所示化合物的盐酸盐a加热到90℃,收集晶体。
本公开进一步提供一种制备式(I)所示化合物的硫酸盐晶型α的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与硫酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯(EA)/(正庚烷)heptane。
本公开进一步提供一种制备式(I)所示化合物的氢溴酸盐晶型I的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与氢溴酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
本公开进一步提供一种制备式(I)所示化合物的氢溴酸盐晶型II的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与氢溴酸混合,打浆析晶,所述溶剂选自乙酸乙酯/正庚烷。
本公开进一步提供一种制备式(I)所示化合物的甲磺酸盐晶型α的方法,所述方法包括:将包含式(I)所示化合物及甲基叔丁基醚的溶液与甲磺酸混合,打浆析晶。
本公开进一步提供一种制备式(I)所示化合物的甲磺酸盐晶型β的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与甲磺酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
本公开进一步提供一种制备式(I)所示化合物的马来酸盐晶型I的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与马来酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
本公开进一步提供一种制备式(I)所示化合物的对甲苯磺酸盐晶型a的方法,所述方法包括:将包含式(I)所示化合物及甲基叔丁基醚的溶液与对甲苯磺酸混合,打浆析晶。
本公开进一步提供一种制备式(I)所示化合物的草酸盐晶型a的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与草酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
通过X-射线粉末衍射图谱(XRPD)、差示扫描量热分析(DSC)对本公开所得到晶型进行结构测定、晶型研究。
本公开中晶型的析晶方法是常规的,例如挥发析晶、降温析晶或室温下析晶。
本公开晶型制备方法中所用的起始原料可以是任意形式的式(I)所示化合物,具体形式包括但不限于:无定形、任意晶型、水合物、溶剂合物等。
本公开进一步提供一种药物组合物,包含式(I)所示化合物的可药用盐,以及一种或 多种药学上可接受的载体或赋形剂。
本公开进一步提供一种药物组合物,包含式(I)所示化合物的可药用盐的晶型,以及一种或多种药学上可接受的载体或赋形剂。
本公开进一步提供一种制备药物组合物的方法,包括将式(I)所示化合物的可药用盐与一种或多种药学上可接受的载体或赋形剂混合的步骤。
本公开进一步提供一种制备药物组合物的方法,包括将式(I)所示化合物的可药用盐的晶型与一种或多种药学上可接受的载体或赋形剂混合的步骤。
本公开进一步提供本公开所述的式(I)所示化合物的可药用盐或可药用盐的晶型或药物组合物在制备用于抑制ATR激酶的药物中的用途。
本公开进一步提供本公开所述的式(I)所示化合物的可药用盐或可药用盐的晶型或药物组合物在制备用于治疗过度增殖性疾病的药物中的用途。
本公开进一步提供本公开所述的式(I)所示化合物的可药用盐或可药用盐的晶型或药物组合物在制备用于治疗肿瘤疾病的药物中的用途。
本公开中所述的肿瘤选自黑色素瘤、脑瘤、食管癌、胃癌、肝癌、胰腺癌、结肠直肠癌、肺癌、肾癌、乳腺癌、宫颈癌、卵巢癌、前列腺癌、皮肤癌、神经母细胞瘤、神经胶质瘤、肉瘤、骨癌、子宫癌、子宫内膜癌、头颈肿瘤、多发性骨髓瘤、B-细胞淋巴瘤、真性红细胞增多症、白血病、甲状腺肿瘤、膀胱癌和胆囊癌。
在本申请的说明书和权利要求书中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。然而,为了更好地理解本公开,下面提供了部分相关术语的定义和解释。另外,当本申请所提供的术语的定义和解释与本领域技术人员所通常理解的含义不一致时,以本申请所提供的术语的定义和解释为准。
本公开所述的“打浆”是指利用物质在溶剂中溶解性差,但杂质在溶剂中溶解性好的特性进行纯化的方法,打浆提纯可以去色、改变晶型或去除少量杂质。
本公开所述的“X-射线粉末衍射图谱或XRPD”是指根据布拉格公式2d sinθ=nλ(式中,λ为X射线的波长,衍射的级数n为任何正整数,一般取一级衍射峰,n=1),当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到晶体或部分晶体样品的某一具有d点阵平面间距的原子面上时,就能满足布拉格方程,从而测得了这组X射线粉末衍射图。
本公开所述的“X-射线粉末衍射图谱或XRPD”是通过在X-射线粉末衍射仪中使用Cu-Kα辐射得到的图谱。
本公开所述的“差示扫描量热分析或DSC”是指在样品升温或恒温过程中,测量样品与参考物之间的温度差、热流差,以表征所有与热效应有关的物理变化和化学变化,得 到样品的相变信息。
本公开所述的“2θ或2θ角度”是指衍射角,θ为布拉格角,单位为°或度,2θ的误差范围为±0.3或±0.2或±0.1。
本公开所述的“晶面间距或晶面间距(d值)”是指空间点阵选择3个不相平行的连结相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的平行六面体单位,称为晶面间距。空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为空间格子或晶格。点阵和晶格是分别用几何的点和线反映晶体结构的周期性,不同的晶面,其面间距(即相邻的两个平行晶面之间的距离)各不相同;单位为
Figure PCTCN2022094161-appb-000003
或埃。
“任选”或“任选地”意味着随后所描述的事件或环境可以但不必发生,该说明包括该事件或环境发生或不发生地场合。例如,“任选被烷基取代的杂环基团”意味着烷基可以但不必须存在,该说明包括杂环基团被烷基取代的情形和杂环基团不被烷基取代的情形。
术语“药物组合物”表示含有一种或多种本文所述化合物或其生理学上/可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学/可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。
术语“溶剂化物”或“溶剂化合物”指本公开的药物与一种或多种溶剂分子形成可药用的溶剂化物,溶剂分子的非限制性实例包括水、乙醇、甲基叔丁基醚、丙酮、正庚烷、乙腈、异丙醇、DMSO、乙酸乙酯。
术语“载体”用于本公开的药物,是指能改变药物进入人体的方式和在体内的分布、控制药物的释放速度并将药物输送到靶向器官的体系。药物载体释放和靶向系统能够减少药物降解及损失,降低副作用,提高生物利用度。如可作为载体的高分子表面活性剂由于其独特的两亲性结构,可以进行自组装,形成各种形式的聚集体,优选的实例如胶束、微乳液、凝胶、液晶、囊泡等。这些聚集体具有包载药物分子的能力,同时又对膜有良好的渗透性,可以作为优良的药物载体。
附图说明
图1为式(I)所示化合物的盐酸盐晶型a的XRPD图谱。
图2为式(I)所示化合物的盐酸盐晶型b的XRPD图谱。
图3为式(I)所示化合物的硫酸盐晶型α的XRPD图谱。
图4为式(I)所示化合物的氢溴酸盐晶型I的XRPD图谱。
图5为式(I)所示化合物的氢溴酸盐晶型II的XRPD图谱。
图6为式(I)所示化合物的甲磺酸盐晶型α的XRPD图谱。
图7为式(I)所示化合物的甲磺酸盐晶型β的XRPD图谱。
图8为式(I)所示化合物的马来酸盐晶型I的XRPD图谱。
图9为式(I)所示化合物的对甲苯磺酸晶型a的XRPD图谱。
图10为式(I)所示化合物的草酸盐晶型a的XRPD图谱。
图11为式(I)所示化合物的盐酸盐晶型a的DSC图谱。
图12为式(I)所示化合物的硫酸盐晶型α的DSC图谱。
图13为式(I)所示化合物的氢溴酸盐晶型I的DSC图谱。
图14为式(I)所示化合物的氢溴酸盐晶型II的DSC图谱。
图15为式(I)所示化合物的甲磺酸盐晶型α的DSC图谱。
图16为式(I)所示化合物的甲磺酸盐晶型β的DSC图谱。
图17为式(I)所示化合物的马来酸盐晶型I的DSC图谱。
图18为式(I)所示化合物的对甲苯磺酸盐晶型a的DSC图谱。
图19为式(I)所示化合物的草酸盐晶型a的DSC图谱。
具体实施方式
以下将结合实施例更详细地解释本公开,本公开的实施例仅用于说明本公开的技术方案,并非限定本公开的实质和范围。
化合物的结构是通过核磁共振(NMR)或/和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-400核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。
MS的测定用Agilent 1200/1290 DAD-6110/6120 Quadrupole MS液质联用仪(生产商:Agilent,MS型号:6110/6120 Quadrupole MS)。
waters ACQuity UPLC-QD/SQD(生产商:waters,MS型号:waters ACQuity Qda Detector/waters SQ Detector)THERMO Ultimate 3000-Q Exactive(生产商:THERMO,MS型号:THERMO Q Exactive)
高效液相色谱法(HPLC)分析使用Agilent HPLC 1260DAD、Agilent HPLC 1260VWD和Waters HPLC e2695-2489高压液相色谱仪。
手性HPLC分析测定使用Agilent 1260 DAD高效液相色谱仪。
高效液相制备使用Waters 2545-2767、Waters 2767-SQ Detecor2、Shimadzu LC-20AP和Gilson GX-281制备型色谱仪。
手性制备使用Shimadzu LC-20AP制备型色谱仪。
CombiFlash快速制备仪使用Combiflash Rf200(TELEDYNE ISCO)。
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm~0.2mm,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
硅胶柱色谱法一般使用烟台黄海硅胶200~300目硅胶为载体。
激酶平均抑制率及IC50值的测定用NovoStar酶标仪(德国BMG公司)。
本公开的已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买自ABCR GmbH&Co.KG,Acros Organics,Aldrich Chemical Company,韶远化学科技(Accela ChemBio Inc)、达瑞化学品等公司。
实施例中无特殊说明,反应能够均在氩气氛或氮气氛下进行。
氩气氛或氮气氛是指反应瓶连接一个约1L容积的氩气或氮气气球。
氢气氛是指反应瓶连接一个约1L容积的氢气气球。
加压氢化反应使用Parr 3916EKX型氢化仪和清蓝QL-500型氢气发生器或HC2-SS型氢化仪。
氢化反应通常抽真空,充入氢气,反复操作3次。
微波反应使用CEM Discover-S 908860型微波反应器。
实施例中无特殊说明,溶液是指水溶液。
实施例中无特殊说明,反应的温度为室温,为20℃~30℃。
实施例中的反应进程的监测采用薄层色谱法(TLC),反应所使用的展开剂,纯化化合物采用的柱层析的洗脱剂的体系和薄层色谱法的展开剂体系包括:A:二氯甲烷/甲醇体系,B:正己烷/乙酸乙酯体系,C:石油醚/乙酸乙酯体系,溶剂的体积比根据化合物的极性不同而进行调节,也可以加入少量的三乙胺和醋酸等碱性或酸性试剂进行调节。
THP为四氢吡喃基。
试验所用仪器的测试条件:
差示扫描量热仪(Differential Scanning Calorimeter,DSC)
仪器型号:Mettler Toledo DSC 3+
吹扫气:氮气
升温速率:10.0℃/min
温度范围:25-300℃
2、X-射线衍射谱(X-ray Powder Diffraction,XRPD)
仪器型号:BRUKER D8DiscoverX-射线粉末衍射仪
射线:单色Cu-Kα射线
Figure PCTCN2022094161-appb-000004
扫描方式:θ/2θ,扫描范围(2θ范围):3~50°
电压:40kV,电流:40mA
3、离子色谱
仪器型号:美国DIONEX INTEGRION HPIC离子色谱仪
检测方式:电导;分离柱:DionexIonPacTM-AS11-HC
淋洗液:EGC-500-KOH
流速:1.4ml/min
实施例1
(R)-2-甲基-2-(1-甲基-5-(3-甲基吗啡啉)-3-(1H-吡唑-3-基)-1H-吡唑并[4,3-b]吡啶-7-基)丙腈I
Figure PCTCN2022094161-appb-000005
Figure PCTCN2022094161-appb-000006
第一步
(R,E)-1-甲基-4-((1-(3-甲基吗啡啉)乙亚基)氨基)-1H-吡唑-5-羧酸甲酯1c
将化合物(R)-1-(3-甲基吗啉)乙-1-酮1b(2.5g,17.7mmol,采用专利申请”WO2016020320A1中说明书第86页的实施例中间体-1”公开的方法制备而得)溶于1,2-二氯乙烷中,氩气保护,放入冰水中冷却,缓慢滴加三氯氧磷(7.4g,48.3mmol),滴完后室温搅拌30分钟,加入化合物4-氨基-1-甲基-1H-吡唑-5-甲酸甲酯1a(2.5g,16.1mmol,江苏艾康生物),加热至80℃搅拌反应2小时。冷却至室温,减压浓缩,所得残余物中加入二氯甲烷(200mL)稀释,放入冰水中冷却,滴加饱和碳酸氢钠溶液中和至pH=8~9,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液硅胶拌样,用硅胶柱色谱法以洗脱剂体系C纯化得到标题化合物1c(4.8g),产率:94%。
MS m/z(ESI):281.2[M+1]
第二步
(R)-1-甲基-5-(3-甲基吗啡啉)-1H-吡唑并[4,3-b]吡啶-7-酚1d
将化合物1c(2.6g,9.3mmol)溶于四氢呋喃(20mL),放入冰水中冷却,缓慢加入双三甲基硅基胺基锂(27.8mL,1M四氢呋喃溶液,27.8mmol),0℃反应1小时。加入甲 醇(10mL)淬灭反应,硅胶拌样,用硅胶柱色谱法以洗脱剂体系A纯化得到标题化合物1d(400mg),产率:55.8%。
MS m/z(ESI):249.0[M+1]
第三步
(R)-4-(7-氯-1-甲基-1H-吡唑并[4,3-b]吡啶-5-基)-3-甲基吗啡啉1e
将化合物1d(400mg,1.6mmol)溶于3.0mL三氯氧磷中,加热至90℃搅拌2.0小时。反应液冷却至室温,减压浓缩,所得残余物中加入二氯甲烷(50mL)稀释,放入冰水中冷却,加入饱和碳酸氢钠溶液中和至pH=8~9,搅拌反应0.5小时,静置分液,收集有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液硅胶拌样,用硅胶柱色谱法以洗脱剂体系C纯化得到标题化合物1e(240mg),产率:56%。
MS m/z(ESI):267.0[M+1]
第四步
(R)-2-甲基-2-(1-甲基-5-(3-甲基吗啡啉)-1H-吡唑并[4,3-b]吡啶-7-基)丙腈1g
将化合物1e(240mg,0.91mmol)和化合物异丁腈1f(620mg,8.9mmol,上海毕得)溶于30mL四氢呋喃中,氩气保护,干冰丙酮浴冷却,滴加双三甲基硅基胺基锂(8.9mL,1M四氢呋喃溶液,8.9mmol),低温搅拌0.5小时,自然升至室温搅拌1小时,加水淬灭反应,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,用硅胶柱色谱法以洗脱剂体系C纯化得到标题化合物1g(200mg),产率:74%。
MS m/z(ESI):300.1[M+1]
第五步
(R)-2-(3-溴-1-甲基-5-(3-甲基吗啡啉)-1H-吡唑并[4,3-b]吡啶-7-基)-2-甲基丙腈1h
将1g(200mg,0.67mmol)溶于5mL的1,4-二氧六环中,加入氢氧化钠溶液(0.66mL,2M溶液,1.32mmol),冰水冷却,加入液溴(427mg,2.67mmol),低温搅拌10分钟,自然升至室温搅拌反应1小时。加入乙酸乙酯稀释,有机相用饱和硫代硫酸钠溶液洗涤,饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,用硅胶柱色谱法以洗脱剂体系C纯化得到标题化合物1h(140mg),产率:55%。
MS m/z(ESI):377.9[M+1]
第六步
2-甲基-2-(1-甲基-5-((R)-3-甲基吗啡啉)-3-(1-(四氢-2H-吡喃-2-基)-1H-吡唑-3-基)-1H-吡唑并[4,3-b]吡啶-7-基)丙腈1i
将1h(20mg,0.05mmol),四三苯基膦钯(18mg,0.015mmol),碳酸钠(11mg,0.10 mmol)和1-(四氢-2H-吡喃-2-基)-3-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊-2-基)-1H-吡唑(29mg,0.10mmol,上海毕得)溶于4mL乙二醇二甲醚中,加入1mL水,氩气保护,微波加热至120℃反应1小时。反应液冷却至室温,加水20mL,乙酸乙酯萃取(20mL×3),合并有机相,减压浓缩,饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,用硅胶柱色谱法以洗脱剂体系C纯化得到标题化合物1i(20mg),产率:84%。
MS m/z(ESI):450.1[M+1]
第七步
(R)-2-甲基-2-(1-甲基-5-(3-甲基吗啡啉)-3-(1H-吡唑-3-基)-1H-吡唑并[4,3-b]吡啶-7-基)丙腈I
将化合物1i(20mg,0.04mmol)溶于5mL二氯甲烷中,滴加5mL三氟乙酸,加毕,搅拌反应4小时。反应液减压浓缩,滴加7M氨甲醇溶液调节pH=8~9,减压浓缩,用硅胶柱色谱法以洗脱剂体系A纯化得到标题化合物I(7.0mg),产率:43%。
MS m/z(ESI):366.0[M+1]
1H NMR(400MHz,CD3OD):δ7.58(s,1H),7.03(s,1H),6.86(s,1H),4.39(s,4H),4.04-3.82(m,2H),3.74(s,2H),3.58(td,1H),3.26(dd,1H),1.88(d,6H),1.19(d,3H).
实施例2
将含有约10mg实施例1所得的式(I)所示化合物的MTBE溶液0.25ml与22.5μL、1.2mol/L盐酸乙醇溶液混合并打浆,离心分离固体,真空干燥后得到产物。经X-射线粉末衍射检测,将该产物定义为盐酸盐晶型a,XRPD谱图如图1所示,其特征峰位置如表1所示。
表1
Figure PCTCN2022094161-appb-000007
Figure PCTCN2022094161-appb-000008
实施例3
将式(I)所示化合物的盐酸盐晶型a加热到90℃后,检测晶型转变,将该产物定义为盐酸盐晶型b,XRPD谱图如图2所示,其特征峰位置如表2所示。
表2
Figure PCTCN2022094161-appb-000009
实施例4
将含有约10mg式(I)所示化合物的MTBE溶液0.25ml与14.7μL、1.8mol/L硫酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为硫酸盐晶型α,离子色谱检测其硫酸根离子含量为17.9%,XRPD谱图如图3所示,其特征峰位置如表3所示。
表3
Figure PCTCN2022094161-appb-000010
Figure PCTCN2022094161-appb-000011
实施例5
将含有约10mg式(I)所示化合物的MTBE溶液0.25ml与36μL、0.75mol/L氢溴酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为氢溴酸盐晶型I,XRPD谱图如图4所示,其特征峰位置如表4所示。
表4
Figure PCTCN2022094161-appb-000012
实施例6
将含有约10mg式(I)所示化合物的EA/heptane(1:1)溶液0.25ml与72μL、0.75mol/L氢溴酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为氢溴酸盐晶型II,XRPD谱图如图5所示,其特征峰位置如表5所示。
表5
Figure PCTCN2022094161-appb-000013
Figure PCTCN2022094161-appb-000014
实施例7
将含有约10mg式(I)所示化合物的MTBE溶液0.25ml与17.7μL、1.5mol/L甲磺酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为甲磺酸盐晶型α,离子色谱检测其甲磺酸根离子含量为20.0%,XRPD谱图如图6所示,其特征峰位置如表6所示。
表6
Figure PCTCN2022094161-appb-000015
Figure PCTCN2022094161-appb-000016
实施例8
将含有约10mg式(I)所示化合物的MTBE溶液0.25ml与35.4μL、1.5mol/L甲磺酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为甲磺酸盐晶型β,XRPD谱图如图7所示,其特征峰位置如表7所示。
表7
Figure PCTCN2022094161-appb-000017
实施例9
将含有约10mg式(I)所示化合物的MTBE溶液0.4ml与30μL、1mol/L马来酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为马来酸盐晶型I,离子色谱检测其马来酸根离子含量为23.7%,XRPD谱图如图8所示,其特征峰位置如表8所示。
表8
Figure PCTCN2022094161-appb-000018
Figure PCTCN2022094161-appb-000019
实施例10
将含有约10mg式(I)所示化合物的MTBE溶液0.4ml与30μL、1mol/L对甲苯磺酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为对甲苯磺酸盐晶型a,离子色谱检测其对甲苯磺酸根离子含量为34.6%,XRPD谱图如图9所示,其特征峰位置如表9所示。
表9
Figure PCTCN2022094161-appb-000020
实施例11
将含有约10mg式(I)所示化合物的MTBE溶液0.4ml与30μL、1mol/L草酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,将该产物定义为草酸盐晶型a,离子色谱检测其草酸根离子含量为10.9%,XRPD谱图如图10所示,其特征峰位置如表10所示。
表10
Figure PCTCN2022094161-appb-000021
实施例12
将甲磺酸盐晶型α、硫酸盐晶型α、马来酸盐晶型I、对甲苯磺酸盐晶型a和草酸盐晶型a用铝箔袋密封,分别放置-20℃、4℃、25℃/60%RH和40℃/75%RH条件考察稳定性,结果如下。
表11
Figure PCTCN2022094161-appb-000022
Figure PCTCN2022094161-appb-000023
长期/加速稳定实验显示:所有盐型的物理稳定性良好,化学稳定性方面草酸盐晶型a较稳定,甲磺酸盐晶型α和马来酸盐晶型I在40℃、75%RH条件下有轻微降解,硫酸盐晶型α和对甲苯磺酸盐晶型a稳定性略差。
实施例13
将含有约10mg式(I)所示化合物的乙醇/水(V/V,9:1)溶液0.2ml与18.5μL、1.5mol/L磷酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为磷酸盐无定形。
实施例14
将含有约10mg式(I)所示化合物的MTBE溶液0.25ml与10.2μL、2.7mol/L甲酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为甲酸盐无定形。
实施例15
将含有约10mg式(I)所示化合物的乙酸乙酯/正庚烷(V/V,9:1)0.25ml溶液与15.4μL、1.8mol/L乙酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为乙酸盐无定形。
实施例16
将含有约10mg式(I)所示化合物的乙酸乙酯/正庚烷(V/V,9:1)0.25ml溶液与33μL、0.9mol/L琥珀酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为琥珀酸盐无定形。
实施例17
将含有约10mg式(I)所示化合物的乙醇/水(V/V,9:1)溶液0.4ml与60μL、0.5mol/L富马酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为富马酸盐无定形。
实施例18
将含有约10mg式(I)所示化合物的MTBE0.4ml溶液与30μL、1mol/L柠檬酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为柠檬酸盐无定形。
实施例19
将含有约10mg式(I)所示化合物的乙酸乙酯/正庚烷(V/V,9:1)溶液0.25ml与30μL、1mol/L苹果酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为苹果酸盐无定形。
实施例20
将含有约10mg式(I)所示化合物的乙酸乙酯/正庚烷(V/V,9:1)0.25ml溶液与60μL、0.5mol/L马尿酸乙醇溶液混合并打浆,离心分离固体,真空干燥得到产物。经X-射线粉末衍射检测,该产物为马尿酸盐无定形。
测试例:
生物学评价
测试例1、本公开化合物对ATR酶的抑制效应。
以下方法用来测定本公开化合物对ATR酶的抑制效应。实验方法简述如下:
一、实验材料及仪器
1.ATR酶(Eurofins Pharma Discovery Services,14-953-M)
2.GST标签P53蛋白(Eurofins Pharma Discovery Services,14-952-M)
3.384孔板(Thermo Scientific,267462)
4.U型底96孔板(Corning,3795)
5.标记铕穴状化合物抗磷酸化P53蛋白抗体(cisbio,61P08KAE)
6.链接d2的抗GST抗体(cisbio,61GSTDLF)
7.ATP溶液(Promega,V916B)
8.EDTA(Thermo Scientific,AM9260G)
9.HEPES(Gibco,15630-080)
10.酶标仪(BMG,PHERAsta)
二、实验步骤
ATR酶1nM,P53蛋白50nM,7.435μM的ATP以及不同浓度(首浓度1μM,3倍梯度稀释11个浓度)的小分子化合物混合室温孵育2小时,然后加入终止液(12.5mM HEPES,250mM EDTA)混匀,再加入0.42ng/孔的标记铕穴状化合物抗磷酸化P53蛋白抗体和25ng/孔的链接d2的抗GST抗体。室温孵育过夜后用PHERAstar检测620nm和665nm荧光信号。数据使用GraphPad软件处理。
三、实验数据
本公开化合物对ATR酶的抑制活性可通过以上的试验进行测定,测得的IC 50值见表12。
表12本公开化合物对ATR酶抑制的IC 50
实施例编号 IC 50/nM Max Inhibition(%)
1 3 100
结论:本公开化合物对ATR酶的抑制活性好。
测试例2、细胞增殖实验
以下方法通过检测细胞内ATP含量,根据IC 50大小评价本公开化合物对LoVo细胞增殖的抑制效果。实验方法简述如下:
一、实验材料及仪器
1.LoVo,人结肠癌肿瘤细胞(南京科佰,CBP60032)
2.胎牛血清(GIBCO,10091-148)
3.F-12K培养基(Gibco,21127030)
4.CellTite-Glo试剂(Promega,G7573)
5.96孔细胞培养板(corning,3903)
6.胰酶(invitrogen,25200-072)
7.酶标仪(BMG,PHERAsta)
8.细胞计数仪(上海睿钰生物科技有限公司,IC1000)
二、实验步骤
LoVo细胞培养在含10%FBS的F-12K培养基中,一周传代2~3次,传代比列1:3或1:5。传代时,用胰酶消化细胞后转至离心管中,1200rpm离心3分钟,弃去上清培养基残液,加入新鲜培养基重悬细胞。在96孔细胞培养板中加入90μL的细胞悬液,密度为3.88×10 4细胞/ml,96孔板外围只加入100μL的完全培养基。将培养板在培养箱培养24小时(37℃,5%CO 2)。
将待测样品用DMSO稀释成2mM,并以3倍依次稀释成10个浓度,并设置空白和对照孔。取配制成梯度浓度的待测化合物溶液5μL加入到95μL新鲜培养基中。再向培养板中加入10μL上述含药物的培养基溶液。将培养板在培养箱孵育3天(37℃,5%CO 2)。在96孔细胞培养板中,每孔加入50μL CellTiter-Glo试剂,室温避光放置5-10min,在PHERAstar中读取化学发光信号值,数据使用GraphPad软件处理。
三、实验数据
本公开化合物对LoVo细胞增殖的抑制活性可通过以上的试验进行测定,测得的IC 50值见表13。
表13本公开化合物对LoVo细胞增殖抑制的IC 50
实施例编号 IC 50/nM Max Inhibition(%)
1 43 93
结论:本公开化合物对ATR酶的抑制活性好。
药代动力学评价
测试例3、本公开化合物的药代动力学测试
1、摘要
以大鼠为受试动物,应用LC/MS/MS法测定了大鼠灌胃给予实施例1化合物后不同时刻血浆中的药物浓度。研究本公开化合物在大鼠体内的药代动力学行为,评价其药动学特征。
2、试验方案
2.1试验药品
实施例1化合物。
2.2试验动物
健康成年SD大鼠12只,雌雄各半,平均分成3组,每组4只,购自维通利华实验动物有限公司。
2.3药物配制
称取一定量药物,加入5%DMSO、5%吐温80和90%生理盐水配置成无色澄明溶液。
2.4给药
SD大鼠禁食过夜后灌胃给药,给药剂量均为2mg/kg,给药体积均为10.0mL/kg。
3.操作
大鼠灌胃给药实施例1化合物,于给药前及给药后0.25,0.5,1.0,2.0,4.0,6.0,8.0,11.0,24.0小时由眼眶采血0.2mL,置于EDTA-K2kk抗凝试管中,4℃、11000转/分钟离心5分钟分离血浆,于-20℃保存,给药后2小时进食。
测定不同浓度的药物灌胃给药后大鼠血浆中的待测化合物含量:取给药后各时刻的大鼠血浆25μL,加入内标溶液50μL,乙腈175μL,涡旋混合5分钟,离心10分钟(4000转/分钟),血浆样品取上清液1μL进行LC/MS/MS分析。
4、药代动力学参数结果
表14本公开化合物的药代动力学参数如下:
Figure PCTCN2022094161-appb-000024
结论:本公开化合物的药代吸收良好,具有明显的药代动力学优势。

Claims (18)

  1. 一种式(I)所示化合物的可药用盐,所述可药用盐选自盐酸盐、硫酸盐、氢溴酸盐、甲磺酸盐、对甲苯磺酸盐、马来酸盐、磷酸盐、甲酸盐、乙酸盐、琥珀酸盐、富马酸盐、柠檬酸盐、苹果酸盐、马尿酸盐或草酸盐,优选甲磺酸盐、马来酸盐或草酸盐,
    Figure PCTCN2022094161-appb-100001
  2. 一种式(I)所示化合物的盐酸盐的晶型,所述晶型为:
    盐酸盐晶型a,其X-射线粉末衍射图谱在2θ角为6.0、8.3、12.1、14.3、14.9、16.7和26.7处有特征峰;优选所述盐酸盐晶型a的X-射线粉末衍射图谱如图1所示;
    盐酸盐晶型b,其X-射线粉末衍射图谱在2θ角为6.0、12.1、18.2、23.6和24.4处有特征峰;优选所述盐酸盐晶型b的X-射线粉末衍射图谱如图2所示。
  3. 一种式(I)所示化合物的硫酸盐晶型α,其X-射线粉末衍射图谱在2θ角为5.8、7.6、13.7、15.4和20.4处有特征峰,优选所述硫酸盐晶型α的X-射线粉末衍射图谱如图3所示。
  4. 一种式(I)所示化合物的氢溴酸盐的晶型,所述晶型为:
    氢溴酸盐晶型I,其X-射线粉末衍射图谱在2θ角为6.0、8.1、14.7、25.9和27.0处有特征峰;优选所述氢溴酸盐晶型I的X-射线粉末衍射图谱如图4所示;
    氢溴酸盐晶型II,其X-射线粉末衍射图谱在2θ角为9.3、11.6、13.0、16.8、18.7和24.6处有特征峰;优选所述氢溴酸盐晶型II的X-射线粉末衍射图谱如图5所示。
  5. 一种式(I)所示化合物的甲磺酸盐的晶型,所述晶型为:
    甲磺酸盐晶型α,其X-射线粉末衍射图谱在2θ角为10.0、16.8、17.8、18.4和20.6处有特征峰;或
    甲磺酸盐晶型β,其X-射线粉末衍射图谱在2θ角为5.9、8.4、14.5、16.8、19.8和 26.0处有特征峰。
  6. 根据权利要求5所述的晶型,其为甲磺酸盐晶型α,所述甲磺酸盐晶型α的X-射线粉末衍射图谱在2θ角为7.7、10.0、12.9、13.8、14.3、15.1、16.8、17.8、18.4、20.3、20.6、21.9、23.1、24.2、25.3、26.1、26.7、28.3、29.0、30.7、35.0和43.1处有特征峰,优选所述甲磺酸盐晶型α的X-射线粉末衍射图谱如图6所示。
  7. 一种式(I)所示化合物的马来酸盐晶型I,其X-射线粉末衍射图谱在2θ角为10.1、17.1、18.0、19.0和24.3处有特征峰,优选所述马来酸盐晶型I的X-射线粉末衍射图谱在2θ角为7.2、9.4、10.1、12.8、13.2、14.2、14.8、15.7、17.1、18.0、19.0、22.0、23.4、24.3、25.2、27.5和29.1处有特征峰,更优选所述马来酸盐晶型I的X-射线粉末衍射图谱如图8所示。
  8. 一种式(I)所示化合物的对甲苯磺酸盐晶型a,其X-射线粉末衍射图谱在2θ角为6.5、8.6、12.0、14.5、21.2和22.2处有特征峰,优选所述对甲苯磺酸盐晶型a的X-射线粉末衍射图谱如图9所示。
  9. 一种式(I)所示化合物的草酸盐a晶型,其X-射线粉末衍射图谱在2θ角为5.5、9.1、11.0、13.0、16.5和20.2处有特征峰,优选所述草酸盐晶型a的X-射线粉末衍射图谱在2θ角为5.5、9.1、11.0、13.0、15.5、16.5、20.2、22.0、22.5、23.1、24.9、26.2、27.8和30.8处有特征峰,更优选所述草酸盐晶型a的X-射线粉末衍射图谱如图10所示。
  10. 根据权利要求2-9任意一项所述式(I)所示化合物的盐的晶型,其中所述2θ角的误差范围为±0.2。
  11. 一种制备如权利要求5-6或10所述的式(I)所示化合物的甲磺酸盐晶型α的方法,所述方法包括:将包含式(I)所示化合物及甲基叔丁基醚的溶液与甲磺酸混合,打浆析晶。
  12. 一种制备如权利要求7或10所述的式(I)所示化合物的马来酸盐晶型I的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与马来酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
  13. 一种制备如权利要求9或10所述的式(I)所示化合物的草酸盐晶型a的方法,所述方法包括:将包含式(I)所示化合物及溶剂的溶液与草酸混合,打浆析晶,所述溶剂选自甲基叔丁基醚或乙酸乙酯/正庚烷。
  14. 一种药物组合物,包含权利要求1所述的式(I)所示化合物的可药用盐或权利要求2-10任意一项所述的式(I)所示化合物的可药用盐的晶型以及一种或多种药学上可接受的载体或赋形剂。
  15. 一种制备药物组合物的方法,包括将权利要求1所述的式(I)所示化合物的可药用盐或权利要求2-10任意一项所述的式(I)所示化合物的可药用盐的晶型与一种或多种药学上可接受的载体或赋形剂混合的步骤。
  16. 权利要求1所述的式(I)所示化合物的盐或权利要求2-10任意一项所述式(I)所示化合物的可药用盐的晶型或权利要求14所述的药物组合物在制备用于抑制ATR激酶的药物中的用途。
  17. 权利要求1所述的式(I)所示化合物的盐或权利要求2-10任意一项所述式(I)所示化合物的可药用盐的晶型或权利要求14所述的药物组合物在制备用于治疗过度增殖性疾病的药物中的用途。
  18. 权利要求1所述的式(I)所示化合物的盐或权利要求2-10任意一项所述式(I)所示化合物的可药用盐的晶型或权利要求14所述的药物组合物在制备用于治疗肿瘤疾病的药物中的用途。
PCT/CN2022/094161 2021-05-21 2022-05-20 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式 WO2022242753A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22804072.1A EP4342897A4 (en) 2021-05-21 2022-05-20 PHARMACEUTICALLY ACCEPTABLE SALT OF PYRAZOLOHETEROARYL DERIVATIVE AND CRYSTALLINE FORM THEREOF
JP2023572135A JP2024521129A (ja) 2021-05-21 2022-05-20 ピラゾロヘテロアリール誘導体の薬学的に許容される塩及びその結晶形
CA3219001A CA3219001A1 (en) 2021-05-21 2022-05-20 Pharmaceutically acceptable salt of pyrazoloheteroaryl derivative and crystal form thereof
US18/561,111 US20240262823A1 (en) 2021-05-21 2022-05-20 Pharmaceutically acceptable salt of pyrazoloheteroaryl derivative and crystal form thereof
KR1020237043840A KR20240012471A (ko) 2021-05-21 2022-05-20 피라졸로헤테로아릴계 유도체의 약학적으로 허용 가능한 염 및 이의 결정형
MX2023013803A MX2023013803A (es) 2021-05-21 2022-05-20 Sal farmaceuticamente aceptable del derivado de pirazoloheteroarilo y forma cristalina del mismo.
CN202280036496.0A CN117355524A (zh) 2021-05-21 2022-05-20 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式
BR112023024037A BR112023024037A2 (pt) 2021-05-21 2022-05-20 Sal farmaceuticamente aceitável de derivado de pirazoloheteroarila, formas cristalinas, composição farmacêutica, usos dos mesmos e métodos para preparar as referidas formas cristalinas e composição farmacêutica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110558670.5 2021-05-21
CN202110558670 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022242753A1 true WO2022242753A1 (zh) 2022-11-24

Family

ID=84140858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094161 WO2022242753A1 (zh) 2021-05-21 2022-05-20 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式

Country Status (10)

Country Link
US (1) US20240262823A1 (zh)
EP (1) EP4342897A4 (zh)
JP (1) JP2024521129A (zh)
KR (1) KR20240012471A (zh)
CN (1) CN117355524A (zh)
BR (1) BR112023024037A2 (zh)
CA (1) CA3219001A1 (zh)
MX (1) MX2023013803A (zh)
TW (1) TW202313604A (zh)
WO (1) WO2022242753A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109727A1 (zh) * 2022-11-21 2024-05-30 江苏恒瑞医药股份有限公司 一种吡唑并杂芳基类衍生物的可药用盐的结晶形式

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020320A1 (en) 2014-08-04 2016-02-11 Bayer Pharma Aktiengesellschaft 2-(morpholin-4-yl)-l,7-naphthyridines
CN108699057A (zh) * 2016-01-14 2018-10-23 拜耳医药股份公司 5-取代的2-(吗啉-4-基)-1,7-萘啶
CN112654396A (zh) * 2018-09-07 2021-04-13 默克专利股份公司 5-吗啉-4-基-吡唑并[4,3-b]吡啶衍生物
WO2021098811A1 (zh) 2019-11-21 2021-05-27 江苏恒瑞医药股份有限公司 吡唑并杂芳基类衍生物、其制备方法及其在医药上的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020320A1 (en) 2014-08-04 2016-02-11 Bayer Pharma Aktiengesellschaft 2-(morpholin-4-yl)-l,7-naphthyridines
CN106795156A (zh) * 2014-08-04 2017-05-31 拜耳制药股份公司 2‑(吗啉‑4‑基)‑1,7‑萘啶
CN108699057A (zh) * 2016-01-14 2018-10-23 拜耳医药股份公司 5-取代的2-(吗啉-4-基)-1,7-萘啶
CN112654396A (zh) * 2018-09-07 2021-04-13 默克专利股份公司 5-吗啉-4-基-吡唑并[4,3-b]吡啶衍生物
WO2021098811A1 (zh) 2019-11-21 2021-05-27 江苏恒瑞医药股份有限公司 吡唑并杂芳基类衍生物、其制备方法及其在医药上的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4342897A4

Also Published As

Publication number Publication date
JP2024521129A (ja) 2024-05-28
EP4342897A1 (en) 2024-03-27
CN117355524A (zh) 2024-01-05
BR112023024037A2 (pt) 2024-02-06
EP4342897A4 (en) 2024-10-09
KR20240012471A (ko) 2024-01-29
TW202313604A (zh) 2023-04-01
MX2023013803A (es) 2024-01-08
CA3219001A1 (en) 2022-11-24
US20240262823A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
US11760756B2 (en) Crystalline form of a PD-1/PD-L1 inhibitor
WO2021143701A1 (zh) 嘧啶-4(3h)-酮类杂环化合物、其制备方法及其在医药学上的应用
EP3021847B1 (en) Spiroquinoxaline derivatives as inhibitors of non-apoptotic regulated cell-death
EP3502103B1 (en) Crystal form, salt type of substituted 2-hydro-pyrazole derivative and preparation method therefor
TW202311259A (zh) 化合物i的新形式及其應用
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
WO2022242753A1 (zh) 一种吡唑并杂芳基类衍生物的可药用盐及其结晶形式
KR20050021453A (ko) 결정성 2,5-디온-3-(1-메틸-1h-인돌-3-일)-4-[1-[1-(피리딘-2-일메틸)피페리딘-4-일]-1h-인돌-3-일]-1h-피롤 모노-하이드로클로라이드
US20160046615A1 (en) Novel Crystal Form of Dabrafenib Mesylate and Preparation Method Thereof
WO2020147838A1 (zh) 一种egfr抑制剂的盐、晶型及其制备方法
CN115368355A (zh) 一种吡唑并杂芳基类衍生物的结晶形式
CN115724844B (zh) 一种具有抗肿瘤活性的杂环化合物及其用途
WO2023036252A1 (zh) 吡咯并嘧啶类或吡咯并吡啶类衍生物及其医药用途
EP4359400A1 (en) Salt and crystal forms of an epidermal growth factor receptor inhibitor
WO2024109727A1 (zh) 一种吡唑并杂芳基类衍生物的可药用盐的结晶形式
KR20220052955A (ko) 액티빈 수용체 유사 키나아제 저해제의 염 및 결정 형태
BR112021013099A2 (pt) Composto de benzotiofeno substituído contendo flúor, e composição farmacêutica e aplicação dos mesmos
WO2023041061A1 (zh) 一种稠合二环类衍生物的可药用盐、晶型及其制备方法
CN110407839A (zh) 含杂芳基酰胺结构的三唑并杂环类化合物的制备及应用
WO2023083292A1 (zh) 吡咯烷类化合物的盐、晶型及其制备方法
WO2022022570A1 (zh) 含氮杂环化合物的盐及其盐的固体形式、药物组合物和用途
WO2021143875A1 (zh) 一种氮杂吲哚衍生物的晶型及其应用
WO2023083373A1 (zh) 作为Src抑制剂的化合物
WO2024153249A1 (zh) 作为pkmyt1抑制剂的化合物
EP4293018A1 (en) Compound serving as nlrp3 inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3219001

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18561111

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/013803

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202280036496.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023572135

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024037

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237043840

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043840

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022804072

Country of ref document: EP

Ref document number: 2023132915

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804072

Country of ref document: EP

Effective date: 20231221

ENP Entry into the national phase

Ref document number: 112023024037

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231116