WO2022014083A1 - モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム - Google Patents

モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム Download PDF

Info

Publication number
WO2022014083A1
WO2022014083A1 PCT/JP2021/007720 JP2021007720W WO2022014083A1 WO 2022014083 A1 WO2022014083 A1 WO 2022014083A1 JP 2021007720 W JP2021007720 W JP 2021007720W WO 2022014083 A1 WO2022014083 A1 WO 2022014083A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control device
voltage
motor control
carrier
Prior art date
Application number
PCT/JP2021/007720
Other languages
English (en)
French (fr)
Inventor
崇文 原
誠 伊藤
暁史 高橋
俊幸 安島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US18/009,894 priority Critical patent/US20230223824A1/en
Priority to DE112021002186.9T priority patent/DE112021002186T5/de
Priority to CN202180041863.1A priority patent/CN115699562A/zh
Publication of WO2022014083A1 publication Critical patent/WO2022014083A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor control device, an integrated mechanical / electrical unit, a generator system, a boost converter system, and an electric vehicle system.
  • a motor used in electric vehicles and hybrid vehicles are required to have high output and high torque response. Therefore, it is common practice to drive a permanent magnet type rotary electric machine (hereinafter referred to as a motor) using a rare earth sintered magnet that holds strong energy with an inverter.
  • the inverter converts a direct current voltage from a direct current power source into a line voltage (AC voltage) of an arbitrary voltage and frequency by PWM (pulse width modulation) control, and drives the motor at a variable speed.
  • AC voltage line voltage
  • PWM pulse width modulation
  • the motor concentrates on the relatively small load side in urban driving, and high output is required on the large load side in overtaking and merging acceleration and highway driving, and further gradients. A large torque is required at low speed on a steep climb.
  • the load of the motor changes frequently according to the traveling state, and the calorific value of the motor also changes, so that the temperature of the motor continues to change.
  • the magnet temperature of the motor is high and the motor is energized with a weakening magnetic flux current of a predetermined current or more, irreversible demagnetization occurs in which the permanent magnet does not generate the original magnetic flux.
  • the torque characteristics of the motor change, making it difficult to control the running.
  • Patent Document 1 the ripple current width of the motor current controlled according to the PWM control is detected, the reference value of the ripple current width is set, and the frequency of the carrier wave used for the PWM control is controlled based on these comparisons.
  • a motor drive system has been proposed that realizes feedback control of the carrier frequency to maintain the ripple current width at an appropriate level. As a result, while preventing an increase in power loss due to an increase in the number of switchings, it is possible to prevent demagnetization due to an increase in magnet temperature in an AC motor.
  • Patent Document 1 has a problem that the switching loss of the inverter increases when the switching frequency is changed or the like.
  • the motor control device is connected to a power converter that converts DC power to AC power, and controls the drive of an AC motor that is driven by using the AC power, and generates a carrier.
  • the carrier frequency adjusting unit includes a gate signal generating unit for generating, and the carrier frequency adjusting unit includes a vortex generated in a magnet of a rotor of the AC motor according to a d-axis current energized in the AC motor and a rotation speed of the AC motor.
  • the mechanical / electrical integrated unit according to the present invention transmits a motor control device, the power converter connected to the motor control device, the AC motor driven by the power converter, and the rotational driving force of the AC motor.
  • a gear is provided, and the AC motor, the power converter, and the gear have an integral structure.
  • the generator system according to the present invention includes a motor control device, the power converter connected to the motor control device, the AC motor driven by the power converter, and an engine system connected to the AC motor. , Equipped with.
  • the boost converter system according to the present invention includes a motor control device, the power converter connected to the motor control device, the AC motor driven by the power converter, and a boost converter that boosts the voltage of the DC power.
  • the electric vehicle system according to the present invention includes a motor control device, the power converter connected to the motor control device, and the AC motor driven by the power converter, and the rotational driving force of the AC motor. Drive using.
  • the overall block diagram of the motor drive system provided with the motor control device which concerns on one Embodiment of this invention.
  • the block diagram which shows the functional structure of the motor control apparatus which concerns on 1st Embodiment of this invention.
  • the block diagram of the carrier frequency adjustment part which concerns on 1st Embodiment of this invention.
  • the block diagram of the voltage phase error calculation part which concerns on 1st Embodiment of this invention.
  • the conceptual diagram of the reference voltage phase calculation of this invention The figure which shows the relationship of the voltage waveform when the phase difference of a modulated wave and a carrier wave is changed.
  • the figure which shows the harmonic component of the U-phase AC voltage when the phase difference between a modulated wave and a carrier wave is changed.
  • the figure which shows the relationship between the modulated wave / carrier phase difference and the d-axis current sum The flowchart which shows the calculation procedure of the d-axis current sum.
  • the figure which shows the relationship between the modulated wave / carrier phase difference, d-axis current sum, q-axis current sum, and phase current sum The block diagram which shows the functional structure of the motor control apparatus which concerns on 3rd Embodiment of this invention.
  • the block diagram of the current command generation part which concerns on 3rd Embodiment of this invention.
  • the external perspective view of the mechanical / electrical integrated unit in the 4th Embodiment of this invention The block diagram of the generator system in 5th Embodiment of this invention.
  • FIG. 1 is a configuration diagram of a motor drive system having a motor control device according to an embodiment of the present invention.
  • the motor drive system 100 includes a motor control device 1, a motor 2, an inverter 3, a high-pressure battery 5, a current detection unit 7, and a rotation position detector 8.
  • the rotation position ⁇ of the motor 2 is input to the motor control device 1 from the rotation position detector 8. Further, a magnet temperature Tmag indicating the temperature of the magnet in the rotor of the motor 2 is input from the temperature sensor 52 attached to the motor 2. Further, Iu, Iv, and Iw representing the three-phase alternating currents flowing through the motor 2 are input from the current detection unit 7, and the torque command T * is input from the upper control device (not shown).
  • the motor control device 1 generates a gate signal for controlling the drive of the motor 2 based on these input information, and outputs the gate signal to the inverter 3. This controls the operation of the inverter 3 and controls the drive of the motor 2. The details of the motor control device 1 will be described later.
  • the inverter 3 has an inverter circuit 31, a PWM signal drive circuit 32, and a smoothing capacitor 33.
  • the PWM signal drive circuit 32 generates a PWM signal for controlling each switching element of the inverter circuit 31 based on the gate signal input from the motor control device 1, and outputs the PWM signal to the inverter circuit 31.
  • the inverter circuit 31 has switching elements corresponding to the upper arm and the lower arm of the U phase, the V phase, and the W phase, respectively. By controlling each of these switching elements according to the PWM signal input from the PWM signal drive circuit 32, the DC power supplied from the high-voltage battery 5 is converted into AC power and output to the motor 2.
  • the smoothing capacitor 33 smoothes the DC power supplied from the high voltage battery 5 to the inverter circuit 31.
  • the high voltage battery 5 is a DC voltage source of the motor drive system 100, and outputs a power supply voltage Hvdc to the inverter 3.
  • the power supply voltage Hvdc of the high-voltage battery 5 is converted into a variable voltage and a variable frequency pulsed three-phase AC voltage by the inverter circuit 31 of the inverter 3 and the PWM signal drive circuit 32, and is applied to the motor 2 as a line voltage.
  • AC power is supplied from the inverter 3 to the motor 2 based on the DC power of the high-voltage battery 5.
  • the power supply voltage Hvdc of the high-voltage battery 5 varies depending on its charging state.
  • the motor 2 is a three-phase synchronous motor that is rotationally driven by AC power supplied from the inverter 3, and has a stator (stator) and a rotor (rotor).
  • a surface magnet type permanent magnet synchronous motor SPMSM: Surface Permanent Magnet Synchronous Motor
  • a permanent magnet such as a neodymium magnet or a ferrite magnet is attached to the surface of the rotor is used as the motor 2.
  • SPMSM Surface Permanent Magnet Synchronous Motor
  • the motor 2 is equipped with a rotation position sensor 51 for detecting the rotation position ⁇ of the rotor.
  • the rotation position detector 8 calculates the rotation position ⁇ from the input signal of the rotation position sensor 51.
  • the calculation result of the rotation position ⁇ by the rotation position detector 8 is input to the motor control device 1, and the phase control of the AC power performed by the motor control device 1 generating a gate signal in accordance with the phase of the induced voltage of the motor 2. Used in.
  • a resolver composed of an iron core and a winding is more suitable for the rotation position sensor 51, but a magnetoresistive element such as a GMR sensor or a sensor using a Hall element may be used without any problem.
  • the rotation position detector 8 does not use the input signal from the rotation position sensor 51, and the three-phase AC currents Iu, Iv, Iw flowing through the motor 2 and the three-phase AC voltage Vu applied to the motor 2 from the inverter 3 , Vv, Vw may be used to estimate the rotation position ⁇ .
  • the motor 2 is provided with a temperature sensor 52 that detects the magnet temperature Tmag from the viewpoint of suppressing demagnetization of the magnet attached to the rotor.
  • a magnet temperature estimation unit may be provided in the motor drive system 100, and the magnet temperature Tmag may be estimated by the magnet temperature estimation unit using the temperature dependence of the induced voltage induced by the rotation of the motor 2. However, it may be estimated using a thermal network.
  • Equations (1) and (2) show the dq-axis voltage equation of the motor.
  • the winding resistance R, the electric angular frequency ⁇ , and the dq axis inductances Ld and Lq can be regarded as substantially invariant with respect to temperature.
  • the dq-axis voltages Vd and Vq and the dq-axis currents Id and Iq are fluctuation parameters.
  • Vd R * Id- ⁇ * Lq * Iq ...
  • Vq R * Iq + ⁇ * Ld * Id + ⁇ * Ke ⁇ ⁇ ⁇ (2)
  • Vd and Vq are the dq-axis voltage
  • Id and Iq are the dq-axis current
  • Ld and Lq are the dq-axis inductance
  • is the electric angular frequency
  • Ke is the induced voltage constant
  • R is the winding resistance.
  • Equation (3) shows the temperature dependence of the induced voltage. It can be seen that when the temperature of the rotor fluctuates from the normal temperature T_nomi, the induced voltage fluctuates linearly accordingly.
  • Ke Ke_nomi + (T-T_nomi) * K ...
  • Ke_nomi is the induced voltage constant of the normal temperature
  • T is the rotor temperature
  • T_nomi is the normal temperature of the rotor
  • K is the temperature-dependent slope of the induced voltage
  • the induced voltage constant Ke can be derived from the known parameters.
  • This induced voltage constant Ke has a temperature dependence and does not necessarily match the induced voltage constant Ke_nomi of the normal temperature.
  • the induced voltage constant Ke_nomi of the normal temperature and the normal temperature T_nomi of the rotor are known, respectively. Therefore, the rotor temperature T can be estimated from the equation (3) by using the induced voltage constant Ke obtained by the equation (2). In this way, the rotor temperature T can be estimated, and the magnet temperature Tmag can be estimated using the estimation result.
  • a current detection unit 7 is arranged in the current path between the inverter 3 and the motor 2.
  • the current detection unit 7 detects three-phase alternating currents Iu, Iv, and Iw (U-phase alternating current Iu, V-phase alternating current Iv, and W-phase alternating current Iw) that energize the motor 2.
  • the current detection unit 7 is configured by using, for example, a Hall current sensor or the like.
  • the detection results of the three-phase AC currents Iu, Iv, and Iw by the current detection unit 7 are input to the motor control device 1 and used for generating the gate signal performed by the motor control device 1.
  • the current detector 7 is composed of three current detectors, the current detectors are two, and the remaining one-phase alternating current is the three-phase alternating currents Iu, Iv, and so on. It may be calculated from the fact that the sum of Iw is zero. Further, the pulsed direct current flowing from the high voltage battery 5 into the inverter 3 is detected by a shunt resistance or the like inserted between the smoothing capacitor 33 and the inverter 3, and this direct current and the inverter 3 are applied to the motor 2. The three-phase AC currents Iu, Iv, and Iw may be obtained based on the three-phase AC voltages Vu, Vv, and Vw.
  • FIG. 2 is a block diagram showing a functional configuration of the motor control device 1 according to the first embodiment of the present invention.
  • the motor control device 1 includes a current command generation unit 11, a speed calculation unit 12, a three-phase / dq conversion unit 13, a current control unit 14, a dq / three-phase voltage conversion unit 15, and a carrier frequency adjustment. It has each functional block of a unit 16, a triangular wave generation unit 17, and a gate signal generation unit 18.
  • the motor control device 1 is configured by, for example, a microcomputer, and these functional blocks can be realized by executing a predetermined program in the microcomputer. Alternatively, a part or all of these functional blocks may be realized by using a hardware circuit such as a logic IC or FPGA.
  • the current command generation unit 11 calculates the d-axis current command Id * and the q-axis current command Iq * based on the input torque command T * and the power supply voltage Hvdc.
  • the d-axis current commands Id * and q corresponding to the torque command T * are used. Obtain the shaft current command Iq *.
  • the speed calculation unit 12 calculates the motor rotation speed ⁇ r, which represents the rotation speed (rotation speed) of the motor 2, from the time change of the rotation position ⁇ .
  • the motor rotation speed ⁇ r may be a value represented by either an angular velocity (rad / s) or a rotation speed (rpm). Further, these values may be converted from each other and used.
  • the three-phase / dq conversion unit 13 performs dq conversion based on the rotation position ⁇ obtained by the rotation position detector 8 for the three-phase AC currents Iu, Iv, and Iw detected by the current detection unit 7, and the d-axis current. Calculate the value Id and the q-axis current value Iq.
  • the current control unit 14 has a d-axis current command Id * and a q-axis current command Iq * output from the current command generation unit 11, and a d-axis current value Id and a q-axis current output from the three-phase / dq conversion unit 13. Based on the deviation from the value Iq, the d-axis voltage command Vd * and the q-axis voltage command Vq * corresponding to the torque command T * are calculated so that these values match.
  • the d-axis voltage command Vd *, the q-axis current command Iq *, and the q-axis current value Iq according to the deviation between the d-axis current command Id * and the d-axis current value Id are used.
  • the q-axis voltage command Vq * according to the deviation is obtained.
  • the dq / three-phase voltage conversion unit 15 converts the d-axis voltage command Vd * and the q-axis voltage command Vq * calculated by the current control unit 14 based on the rotation position ⁇ obtained by the rotation position detector 8. Is performed, and the three-phase voltage commands Vu *, Vv *, and Vw * (U-phase voltage command value Vu *, V-phase voltage command value Vv *, and W-phase voltage command value Vw *) are calculated. As a result, the three-phase voltage commands Vu *, Vv *, and Vw * corresponding to the torque command T * are generated.
  • the carrier frequency adjusting unit 16 has a d-axis voltage command Vd * and a q-axis voltage command Vq * generated by the current command generation unit 11, a rotation position ⁇ obtained by the rotation position detector 8, and a rotation speed obtained by the speed calculation unit 12. Based on ⁇ r, the d-axis current value Id, and the magnet temperature Tmag, the carrier frequency fc representing the frequency of the carrier used to generate the gate signal is calculated. By generating a carrier wave by the triangular wave generation unit 17 according to the carrier wave frequency fc, the frequency of the carrier wave is adjusted so that the magnet eddy current loss and the AC copper loss generated by the motor 2 can be suppressed. The details of the calculation method of the carrier frequency fc by the carrier frequency adjusting unit 16 will be described later.
  • the triangle wave generation unit 17 generates a triangle wave signal (carrier signal) Tr based on the carrier wave frequency fc calculated by the carrier wave frequency adjustment unit 16.
  • the gate signal generation unit 18 uses the triangle wave signal Tr output from the triangle wave generation unit 17 to pulse the three-phase voltage commands Vu *, Vv *, and Vw * output from the dq / three-phase voltage conversion unit 15, respectively. It modulates and generates a gate signal for controlling the operation of the inverter 3. Specifically, based on the comparison result between the three-phase voltage commands Vu *, Vv *, Vw * output from the dq / three-phase voltage conversion unit 15 and the triangle wave signal Tr output from the triangle wave generation unit 17, U A pulsed voltage is generated for each of the phase, V phase, and W phase. Then, based on the generated pulsed voltage, a gate signal for the switching element of each phase of the inverter 3 is generated.
  • the gate signals Gup, Gbp, and Gwp of the upper arm of each phase are logically inverted to generate the gate signals Gun, Gvn, and Gwn of the lower arm.
  • the gate signal generated by the gate signal generation unit 18 is output from the motor control device 1 to the PWM signal drive circuit 32 of the inverter 3, and is converted into a PWM signal by the PWM signal drive circuit 32.
  • each switching element of the inverter circuit 31 is controlled on / off, and the output voltage of the inverter 3 is adjusted.
  • the carrier frequency adjusting unit 16 is based on the d-axis voltage command Vd * and the q-axis voltage command Vq *, the rotation position ⁇ , the rotation speed ⁇ r, the d-axis current value Id, and the magnet temperature Tmag. Calculate the frequency fc.
  • the frequency of the triangular wave signal Tr generated by the triangular wave generation unit 17 can be obtained.
  • the period and the phase of the triangular wave signal Tr which is a carrier wave, are adjusted so as to have a desired relationship.
  • the desired relationship here refers to, for example, a relationship in which the eddy current loss generated in the magnet attached to the rotor of the motor 2 is minimized.
  • FIG. 3 is a block diagram of the carrier frequency adjusting unit 16 according to the first embodiment of the present invention.
  • the carrier frequency adjusting unit 16 includes a synchronous PWM carrier number selection unit 161, a voltage phase calculation unit 162, a voltage phase error calculation unit 163, a synchronous carrier frequency calculation unit 164, and a carrier frequency setting unit 165.
  • the synchronous PWM carrier number selection unit 161 selects the synchronous PWM carrier number Nc representing the number of carriers for one cycle of the voltage waveform in the synchronous PWM control based on the rotation speed ⁇ r.
  • the synchronous PWM carrier wave number selection unit 161 may select the synchronous PWM carrier wave number Nc based on the torque command T * as well as the rotation speed ⁇ r. Further, the selection criteria for the number of synchronous PWM carrier waves Nc may be changed depending on whether the rotation speed ⁇ r increases or decreases, for example, by setting hysteresis.
  • the voltage phase calculation unit 162 is based on the d-axis voltage command Vd * and the q-axis voltage command Vq *, the rotation position ⁇ , the rotation speed ⁇ r, and the carrier frequency fc, according to the following equations (4) to (7).
  • Calculate the voltage phase ⁇ v. ⁇ v ⁇ + ⁇ v + ⁇ dqv + 0.5 ⁇ ⁇ ⁇ ⁇ (4)
  • ⁇ v ⁇ r ⁇ 1.5Tc ⁇ ⁇ ⁇ (5)
  • Tc 1 / fc ... (6)
  • ⁇ dqv atan (Vq / Vd) ⁇ ⁇ ⁇ (7)
  • ⁇ v represents the calculation delay compensation value of the voltage phase
  • Tc represents the carrier wave period
  • ⁇ dqv represents the voltage phase from the d-axis.
  • ⁇ v a calculation delay of 1.5 control cycles occurs between the time when the rotation position detector 8 acquires the rotation position ⁇ and the time when the motor control device 1 outputs a gate signal to the inverter 3. It is a value that compensates for what you do.
  • 0.5 ⁇ is added in the fourth term on the right side of the equation (4). This is an operation for converting the viewpoint to a sine wave because the voltage phase calculated by the first to third terms on the right side of the equation (4) is a cos wave.
  • the voltage phase error calculation unit 163 includes a synchronous PWM carrier number Nc selected by the synchronous PWM carrier number selection unit 161, a voltage phase ⁇ v calculated by the voltage phase calculation unit 162, a rotation speed ⁇ r, a magnet temperature Tmag, and the like.
  • the voltage phase error ⁇ v is calculated based on the d-axis current Id.
  • the voltage phase error ⁇ v represents the phase difference between the three-phase voltage commands Vu *, Vv *, and Vw *, which are voltage commands for the inverter 3, and the triangular wave signal Tr, which is a carrier wave used for pulse width modulation.
  • the voltage phase error calculation unit 163 calculates the voltage phase error ⁇ v at each predetermined calculation cycle so that the carrier frequency adjustment unit 16 changes the phase difference between the voltage command to the inverter 3 and the carrier wave used for pulse width modulation.
  • the frequency of the triangular wave signal Tr can be adjusted.
  • the reference voltage phase ⁇ vb is a reference value of the phase of the carrier wave in the synchronous PWM control.
  • the synchronous carrier frequency calculation unit 164 has a voltage phase error ⁇ v calculated by the voltage phase error calculation unit 163 according to the following equation (8), a rotation speed ⁇ r, and a synchronous PWM selected by the synchronous PWM carrier number selection unit 161.
  • the synchronous carrier frequency calculation unit 164 can calculate the synchronous carrier frequency fcs based on the equation (8) by, for example, PLL (Phase Locked Loop) control.
  • the gain K may be a constant value or may be variable depending on the conditions.
  • the carrier frequency setting unit 165 selects either the synchronous carrier frequency fcs calculated by the synchronous carrier frequency calculation unit 164 or the asynchronous carrier frequency fcns based on the rotation speed ⁇ r, and outputs the carrier frequency fc.
  • the asynchronous carrier frequency fcss is a constant value preset in the carrier frequency setting unit 165.
  • a plurality of asynchronous carrier frequency fcns may be prepared in advance, and one of them may be selected according to the rotation speed ⁇ r.
  • the asynchronous carrier frequency fcss can be selected by the carrier frequency setting unit 165 and output as the carrier frequency fc so that the value of the asynchronous carrier frequency fcss increases as the value of the rotation speed ⁇ r increases.
  • FIG. 4 is a block diagram of the voltage phase error calculation unit 163 according to the first embodiment of the present invention.
  • the voltage phase error calculation unit 163 includes a reference voltage phase calculation unit 1631, a d-axis current sum calculation unit 1632, a fixed triangular wave phase determination unit 1633, an addition unit 1634, and a subtraction unit 1635.
  • the reference voltage phase calculation unit 1631 calculates the reference voltage phase ⁇ vb for fixing the phase of the carrier wave in the synchronous PWM control based on the number of synchronous PWM carrier waves Nc and the voltage phase ⁇ v.
  • FIG. 5 is a conceptual diagram of the reference voltage phase calculation performed by the reference voltage phase calculation unit 1631.
  • the reference voltage phase calculation unit 1631 calculates a reference voltage phase ⁇ vb that changes stepwise between 0 and 2 ⁇ in a number of stages corresponding to the number of synchronous PWM carrier waves Nc.
  • the carrier frequency adjusting unit 16 has the carrier frequency adjusting unit 16 only in the valley division section in which the triangular carrier wave rises from the minimum value (valley) to the maximum value (peak).
  • the frequency of the carrier wave can be adjusted.
  • the synchronous carrier frequency calculation unit 164 performs synchronous PWM control by sequentially calculating the synchronous carrier frequency fcs from the voltage phase error ⁇ v in the valley division section of the carrier.
  • the reference voltage phase calculation unit 1631 calculates the reference voltage phase ⁇ vb used in the calculation of the voltage phase error ⁇ v as a discrete value that changes at ⁇ / 3 intervals as shown in FIG.
  • the interval of the reference voltage phase ⁇ vb changes according to the number of synchronous PWM carrier waves Nc. As the number of synchronous PWM carrier waves Nc increases, the interval between the reference voltage phases ⁇ vb becomes smaller.
  • the reference voltage phase calculation unit 1631 calculates the reference voltage phase ⁇ vb based on the voltage phase ⁇ v and the number of synchronous PWM carrier waves Nc according to the following equations (9) to (10).
  • ⁇ vb int ( ⁇ v / ⁇ s) ⁇ ⁇ s + 0.5 ⁇ s ⁇ ⁇ ⁇ (9)
  • ⁇ s 2 ⁇ / Nc ⁇ ⁇ ⁇ (10)
  • ⁇ s represents the change width of the voltage phase ⁇ v per carrier wave
  • int represents the rounding down operation after the decimal point.
  • the formula is expressed in the reference voltage phase calculation unit 1631 so that the reference voltage phase ⁇ vb becomes 0 rad in the mountain split section, which is the section where the triangular carrier wave descends from the maximum value (peak) to the minimum value (valley).
  • the reference voltage phase ⁇ vb is calculated according to (9) to (10).
  • the period during which the reference voltage phase ⁇ vb becomes 0 rad is not limited to the mountain split section. If the reference voltage phase ⁇ vb that changes stepwise in the number of stages corresponding to the number of synchronous PWM carrier Nc between 0 and 2 ⁇ can be calculated using the voltage phase ⁇ v, the calculation method other than the equations (9) to (10) can be used.
  • the reference voltage phase calculation unit 1631 may calculate the reference voltage phase ⁇ vb.
  • the d-axis current sum calculation unit 1632 is for suppressing the eddy current loss of the magnet generated by the motor 2 based on the d-axis current value Id obtained by the three-phase / dq conversion unit 13 and the motor rotation speed ⁇ r. Calculate the d-axis current sum sum. The details of the d-axis current sum sum will be described later.
  • the fixed triangular wave phase determination unit 1633 determines the carrier phase difference ⁇ carr used for calculating the voltage phase error ⁇ v based on the d-axis current sum sum sum calculated by the d-axis current sum calculation unit 1632 and the magnet temperature Tmag.
  • a carrier wave generation method is selected according to the value of the magnet temperature Tmag, and the carrier wave phase difference ⁇ carr is determined according to the selection result. The details of the fixed triangular wave phase determining unit 1633 will be described later.
  • the addition unit 1634 adds the carrier wave phase difference ⁇ carr determined by the fixed triangular wave phase determination unit 1633 to the reference voltage phase ⁇ vb calculated by the reference voltage phase calculation unit 1631, and calculates the correction reference voltage phase ⁇ vb2.
  • the subtraction unit 1635 subtracts the correction reference voltage phase ⁇ vb2 from the voltage phase ⁇ v and calculates the voltage phase error ⁇ v.
  • FIG. 6 shows these when the phase difference between the U-phase voltage command Vu * which is a modulated wave and the triangular wave signal Tr which is a carrier wave (hereinafter referred to as “modulated wave / carrier wave phase difference”) is changed. It is a figure which showed the relationship of the voltage waveform.
  • FIG. 6A shows a carrier wave and a carrier wave waveform when the modulated wave / carrier wave phase difference is ⁇ 90 deg
  • FIG. 6 (b) shows a carrier wave when the modulated wave / carrier wave phase difference is 0 deg.
  • FIG. 6 shows a carrier wave and a carrier wave waveform when the modulated wave / carrier wave phase difference is 0 deg.
  • FIG. 6C shows the voltage waveforms of the modulated wave, and the voltage waveforms of the carrier wave and the modulated wave when the modulated wave / carrier wave phase difference is 90 deg, respectively.
  • the triangular wave which is the carrier wave becomes a valley when the modulated wave rises at zero cross
  • the triangular wave becomes a zero cross falling when the modulated wave rises at zero cross
  • the triangular wave becomes a mountain at the rise of the zero cross of the modulated wave.
  • the frequency ratio between the modulated wave and the carrier wave is set to 15 for convenience of explanation, but the present invention is not limited to this.
  • the U-phase voltage command Vu * is shown as an example of the modulated wave, but other-phase voltage commands, that is, V-phase voltage command Vv * and W-phase voltage command.
  • Vw * the phase of the harmonic component other than the fundamental wave component can be freely changed by setting the modulated wave / carrier phase difference as in FIG.
  • FIG. 7 shows a harmonic component of the U-phase AC voltage Vu output from the inverter 3 to the motor 2 when the phase difference between the U-phase voltage command Vu *, which is a modulated wave, and the triangular wave signal Tr, which is a carrier wave, is changed.
  • 7 (a) shows the modulated wave / carrier phase difference shown in FIGS. 6 (a) to 6 (c), that is, for each harmonic component of the U-phase AC voltage Vu at each phase difference of ⁇ 90 deg, 0 deg, and 90 deg.
  • FIG. 7B the phase of each harmonic component of the U-phase AC voltage Vu at each of these phase differences is shown. Note that FIGS.
  • FIG. 7 (a) and 7 (b) show the amplitude and phase of the fundamental wave component as the primary component of the U-phase AC voltage Vu, respectively. Further, in FIG. 7B, the phases of the fundamental wave components are shown for each of the 11th, 13th, 17th, 19th, 29th, and 31st harmonic components having relatively large amplitudes in FIG. 7A. The phases when -135 deg are set are shown respectively.
  • FIGS. 7 (a) and 7 (b) show the frequency analysis results of the U-phase AC voltage Vu among the three-phase AC voltages output from the inverter 3, but the AC voltage of the other phase, that is, For the V-phase AC voltage Vv and the W-phase AC voltage Vw, the same frequency analysis results as in FIGS. 7 (a) and 7 (b) can be obtained. Therefore, by changing the modulated wave / carrier phase difference, it is possible to arbitrarily change the phase of the harmonic component other than the fundamental wave component of the three-phase AC voltage output from the inverter 3.
  • B is the maximum magnetic flux density of the coil
  • f is the frequency of the current flowing through the coil.
  • n the order of the harmonic component of the d-axis current Id
  • Id_n the magnitude of the n-th harmonic component of the d-axis current Id.
  • the degree n is not limited to an integer, and any positive number can be included.
  • the value represented by the right side of the equation (12), that is, the sum of the products of the square of the d-axis harmonic current Id_n and the square of the order n is referred to as "d-axis current sum”.
  • Id_n 1 in Id_n
  • Id_n represents the fundamental wave component of the d-axis current Id, and its frequency matches the frequency of the three-phase AC voltage.
  • FIG. 8 is a diagram showing the relationship between the modulated wave / carrier phase difference and the d-axis current sum when the modulation factor is 1.15 and the frequency ratio between the carrier wave and the modulated wave is 9.
  • the value of the d-axis current sum is the minimum when the modulated wave / carrier phase difference is 135 deg. Therefore, from the proportional relationship of the equation (12), it is predicted that the magnet temperature Tmag will be minimized when the modulated wave / carrier phase difference is set to 135 deg.
  • the d-axis current sum calculation unit 1632 and the fixed triangular wave phase determination unit 1633 realize a modulated wave / carrier phase difference capable of suppressing the eddy current loss of the magnet of the motor 2.
  • the value of the carrier phase difference ⁇ carr is determined so that the error ⁇ v can be set. The specific method will be described below with reference to FIG.
  • FIG. 9 is a flowchart showing the calculation procedure of the d-axis current sum summ by the d-axis current sum calculation unit 1632.
  • the d-axis current sum calculation unit 1632 calculates the d-axis current sum sum sum according to the flowchart of FIG. 9 based on the d-axis current value Id and the motor rotation speed ⁇ r.
  • the d-axis current sum sum may be simply calculated by using any of the following equations (14), (15), and (16). By using these calculation methods, it is possible to easily calculate the d-axis current sum sum sum, which is a guideline to some extent, for the change in the eddy current loss We according to the modulated wave / carrier phase difference.
  • the d-axis current sum sum may be calculated using the motor rotation speed ⁇ r, the motor rotation frequency obtained based on the motor rotation speed ⁇ r, the motor electric angular frequency, or the like instead of the order n.
  • sum ⁇ (Id_n * n) ⁇ ⁇ ⁇ (14)
  • sum ⁇ (Id_n ⁇ 2) ⁇ ⁇ ⁇ (15)
  • sum ⁇ (Id_n) ⁇ ⁇ ⁇ (16)
  • the fixed triangular wave phase determination unit 1633 determines the value of the carrier phase difference ⁇ carr based on the d-axis current sum sum sum calculated by the d-axis current sum calculation unit 1632.
  • the value of the carrier phase difference ⁇ carr is determined so that the value of the sum of d-axis current sum is minimized.
  • the value of the carrier phase difference ⁇ carr is changed within a predetermined range to obtain the value of the d-axis current sum sum, and the value of the carrier phase difference ⁇ carr when the minimum d-axis current sum sum is obtained is finally obtained. It is determined as the value of the carrier wave phase difference ⁇ carr.
  • the relationship between the modulated wave / carrier wave phase difference and the d-axis current sum sum is stored in advance in a predetermined storage area of the fixed triangular wave phase determining unit 1633, and this relationship is stored.
  • the value of the carrier phase difference ⁇ carr that minimizes the value of the sum of d-axis current sum may be determined based on the above.
  • the motor rotation speed ⁇ r, torque command T *, etc. are used as parameters, and the optimum carrier wave phase difference ⁇ carr value for each of these parameter values is acquired in advance by analysis or the like, and the fixed triangular wave phase determination unit is used as map information. It may be stored in 1633.
  • the voltage phase error calculation unit 163 may omit the calculation of the d-axis current sum calculation unit 1632 without providing the d-axis current sum calculation unit 1632.
  • the method of determining the carrier wave phase difference ⁇ carr may be changed based on the magnet temperature Tmag. For example, if the magnet temperature Tmag is below a predetermined temperature, the carrier phase difference ⁇ carr is set to a predetermined predetermined value so that the modulated wave / carrier phase difference is not adjusted to reduce the eddy current loss of the magnet. To. On the other hand, when the magnet temperature Tmag exceeds a predetermined temperature, the carrier phase difference ⁇ carr is determined by the fixed triangular wave phase determining unit 1633 so that the value of the d-axis current sum sum becomes the minimum.
  • the magnet temperature Tmag changes across the above-mentioned predetermined temperature
  • the carrier phase difference ⁇ carr suddenly changes before and after that, causing an excessive fluctuation in the three-phase AC voltage output from the inverter 3.
  • the fixed triangular wave phase determination unit 1633 uses another method to determine the carrier wave phase difference ⁇ carr. You may decide. For example, by using the method described in Japanese Patent Application No. 2019-165772 (filed on September 11, 2019), a carrier wave is used so as to reduce torque pulsation and annulus vibration caused by the electromagnetic design of the motor 2.
  • the phase difference ⁇ carr can be determined.
  • the carrier phase difference ⁇ carr may be determined so that the suppression of the magnet temperature Tmag and the reduction of vibration and noise of the motor 2 can be achieved at the same time.
  • the carrier phase difference ⁇ carr can be determined by any method.
  • the carrier phase difference ⁇ carr is determined and the voltage phase error ⁇ v is calculated as described above.
  • the voltage phase error ⁇ v can be determined so that the sum of d-axis current sum is minimized according to the d-axis current Id and the motor rotation speed ⁇ r.
  • the carrier frequency fc can be set by changing the phase difference between the voltage command to the inverter 3 and the carrier used for pulse width modulation so as to reduce the eddy current loss generated in the rotor magnet of the motor 2. can.
  • the motor control device 1 is connected to an inverter 3 that converts DC power to AC power, and controls the drive of the motor 2 that is driven by using the AC power, and is a triangular wave that is a carrier.
  • Vv *, Vw * are pulse-width modulated, and a gate signal generation unit 18 for generating a gate signal for controlling the operation of the inverter 3 is provided.
  • the carrier frequency adjusting unit 16 reduces the eddy current loss We generated in the rotor magnet of the motor 2 according to the d-axis current Id energized in the motor 2 and the motor rotation speed ⁇ r representing the rotation speed of the motor 2.
  • the phase difference between the three-phase voltage commands Vu *, Vv *, Vw * and the triangular wave signal Tr is adjusted. Since this is done, it is possible to prevent the occurrence of irreversible demagnetization of the motor 2 while suppressing the switching loss of the inverter 3.
  • the voltage phase error calculation unit 163 of the carrier frequency adjustment unit 16 has an eddy current loss based on the d-axis current Id and the motor rotation speed ⁇ r by the d-axis current sum calculation unit 1632 and the fixed triangular wave phase determination unit 1633.
  • the carrier phase difference ⁇ carr for reducing We is determined.
  • the voltage phase error ⁇ v is calculated by the reference voltage phase calculation unit 1631, the addition unit 1634, and the subtraction unit 1635, and the phase of the triangular wave signal Tr is adjusted.
  • the phase difference between the three-phase voltage commands Vu *, Vv *, Vw * and the triangular wave signal Tr is adjusted.
  • the voltage phase error calculation unit 163 of the carrier frequency adjustment unit 16 extracts the d-axis current Id for one cycle of the electric angle based on the motor rotation speed ⁇ r by the d-axis current sum calculation unit 1632 (step S901).
  • the d-axis current sum sum is calculated using any of the equations (13) to (16). That is, the total value of the product of the square of each harmonic Id_n of the d-axis current represented by the equation (13) and the square of its order n, or each of the d-axis currents represented by the equation (14).
  • the fixed triangular wave phase determining unit 1633 has a storage area in which the carrier wave phase difference ⁇ carr for reducing the eddy current loss We is stored in advance, and is stored in this storage area.
  • the phase difference between the three-phase voltage commands Vu *, Vv *, Vw * and the triangular wave signal Tr can be adjusted.
  • the carrier phase difference ⁇ carr for reducing the eddy current loss We can be easily and surely determined, and the three-phase voltage commands Vu *, Vv *, Vw * and the triangular wave signal Tr can be adjusted. Can be done.
  • the motor control device 1 acquires the detection result of the magnet temperature Tmag from the temperature sensor 52 that detects the magnet temperature Tmag, or estimates the magnet temperature Tmag based on the temperature dependence of the induced voltage of the motor 2. Then, the magnet temperature Tmag is acquired.
  • the carrier frequency adjusting unit 16 may adjust the phase difference between the three-phase voltage commands Vu *, Vv *, Vw * and the triangular wave signal Tr when the magnet temperature Tmag exceeds a predetermined temperature. By doing so, the magnet temperature Tmag can be reliably acquired regardless of the presence or absence of the temperature sensor 52.
  • the motor control device 1 determines the carrier phase difference ⁇ carr by an arbitrary method, whereby the three-phase voltage commands Vu *, Vv *, The phase difference between Vw * and the triangular wave signal Tr may be set to a predetermined value.
  • Embedded magnet type permanent magnet synchronous motors are widely used in electric vehicles such as hybrid vehicles and electric vehicles, and electric railways.
  • a major structural feature is that the magnet attached to the rotor is embedded in the rotor core.
  • the d-axis with the magnet and the q-axis without the magnet have different inductances, and the q-axis inductance Lq is larger than the d-axis inductance Ld.
  • the vortex generated in the magnet of the rotor of the motor 2 by the motor control device 1 is the same as in the first embodiment.
  • the phase difference between the voltage command to the inverter 3 and the carrier used for pulse width modulation is changed to set the carrier frequency fc. Therefore, in the motor control device 1 of the present embodiment, the voltage phase error calculation unit 163 of the carrier frequency adjusting unit 16 has the same configuration as that of FIG. 4 described in the first embodiment.
  • the d-axis current sum calculation unit 1632 and the fixed triangular wave phase determination unit 1633 calculate the d-axis current sum sum represented by any of the above equations (13) to (16), and the d-axis current sum sum is calculated.
  • the value of the carrier phase difference ⁇ carr is determined so that the value of sum is minimized.
  • the q-axis inductance Lq is often about 2 to 3 times larger than that of the d-axis inductance Ld.
  • the voltage equations in the transition state when the harmonic voltages Vd_n and Vq_n of the dq axis are applied to the motor 2 are given by the following equations (17) and (18).
  • Vd_n Ld * (dId_n / dt) ...
  • Vq_n Lq * (dIq_n / dt) ... (18)
  • Id_n represents the n-th order d-axis harmonic current
  • Iq_n represents the n-th order q-axis harmonic current
  • the q-axis inductance Lq is about 2 to 3 times larger than the d-axis inductance Ld, so that the d-axis harmonic voltage Vd_n and the q-axis
  • the d-axis harmonic current Id_n becomes about 2 to 3 times larger than the q-axis harmonic current Iq_n.
  • FIG. 10 shows the relationship between the modulated wave / carrier phase difference and the d-axis current sum, q-axis current sum, and phase current sum when the modulation factor is 1.15 and the frequency ratio between the carrier wave and the modulated wave is 9. It is a figure shown.
  • the sum of d-axis currents is calculated by the above equation (13).
  • the sum of q-axis currents is calculated by ⁇ (Iq_n ⁇ 2 * n ⁇ 2)
  • the sum of phase currents is calculated by ⁇ (I_n ⁇ 2 * n ⁇ 2).
  • Iq_n represents a harmonic component of each order of the q-axis current Iq
  • I_n represents a harmonic component of each order of the U-phase current Iu (or V-phase current Iv or W-phase current Iw).
  • the phase of each harmonic component of the three-phase AC voltage output from the inverter 3 is changed while maintaining the torque output value of the motor 2. According to this, it is possible to adjust the eddy current loss We by changing the values of the d-axis current sum and the phase current sum, respectively. As a result, in addition to the eddy current loss of the magnet installed in the rotor of the motor 2, the AC copper loss of the coil can be further reduced without deteriorating the output torque and efficiency of the motor 2, and the temperature rise of the motor 2 is suppressed. I know I can do it.
  • the d-axis current sum calculation unit 1632 and the fixed triangular wave phase determination unit 1633 can suppress the eddy current loss of the magnet of the motor 2 and the AC copper loss of the coil.
  • the value of the carrier phase difference ⁇ carr is determined so that the voltage phase error ⁇ v that realizes the phase difference can be set.
  • the specific method is the same as that described in the first embodiment.
  • FIG. 11 is a block diagram showing a functional configuration of the motor control device 1'according to the third embodiment of the present invention.
  • the motor control device 1'shown in FIG. 11 is different from the motor control device 1 of FIG. 2 described in the first embodiment in that it has a current command generation unit 11'instead of the current command generation unit 11. is doing. Since the other points are the same as those of the first embodiment, the description thereof will be omitted below.
  • FIG. 12 is a block diagram of the current command generation unit 11'according to the third embodiment of the present invention. As shown in FIG. 12, the current command generation unit 11'is composed of a first current command generation unit 111 for normal operation, a second current command generation unit 112 for magnet temperature reduction, and a current command selection unit 113. Ru.
  • the power supply voltage Hvdc of the high-voltage battery 5 and the torque command T * are input to the first current command generation unit 111.
  • the power supply voltage Hvdc, the torque command T *, and the modulation factor H are input to the second current command generation unit 112.
  • the magnet temperature Tmag is input to the current command selection unit 113.
  • the current command selection unit 113 selects the current command output from the first current command generation unit 111 in the normal operation in which the magnet temperature Tmag is less than the predetermined value, while the current command selection unit 113 selects the current command when the magnet temperature Tmag exceeds the predetermined value.
  • the current command output from the second current command generation unit 112 is selected.
  • the first current command generation unit 111 is a preset current command map based on the input torque T * command and the power supply voltage Hvdc, similarly to the current command generation unit 11 described in the first embodiment.
  • the d-axis current command Id * and the q-axis current command Iq * corresponding to the torque command T * are generated by using the above and the mathematical formulas.
  • the second current command generation unit 112 generates a current command as described below so that the modulation factor H is within a predetermined range.
  • the second current command generation unit 112 corresponds to the voltage absolute value
  • ( ⁇ (Vd ⁇ 2 + Vq ⁇ 2)) with respect to the torque in the target range of the modulation factor H. Adjust so that the voltage range is within the specified voltage range.
  • is performed from the above-mentioned equations (1) and (2) from, for example, the d-axis current value Id and the q-axis current value Iq output from the three-phase / dq conversion current control unit 13. It can be calculated using.
  • the second current command generation unit 112 determines the combination of the d-axis current command Id * and the q-axis current command Iq * corresponding to the torque command T * according to the following equation (20). At that time, the combination of the d-axis current command Id * and the q-axis current command Iq * is determined so that the absolute voltage value
  • corresponding to these current commands is within a predetermined range. Thereby, the current operating point used in this embodiment is derived. T p * Ke * Iq + p * (Ld-Lq) * Id * Iq ... (20)
  • Id and Iq are dq-axis currents
  • Ld and Lq are dq-axis inductances
  • p is a pole logarithm
  • Ke is an induced voltage constant.
  • the current command generation unit 11 when the magnet temperature Tmag exceeds a predetermined value, the current command generation unit 11'generates the first current command generation unit 111 for normal operation. Instead of the current command, the current command generated by the second current command generation unit 112 is selected.
  • the d-axis interference voltage ⁇ * Ld * Id increases due to the energization of the d-axis current (weakened field current) Id, and the q-axis voltage Vq decreases accordingly, so that the absolute voltage value
  • the modulation factor H calculated by the equation (19) can be adjusted within a desired range, for example, within a predetermined range centered on 1.15. That is, the motor control device 1'controls the d-axis current Id based on the modulation factor H when the magnet temperature Tmag of the rotor exceeds a predetermined temperature, so that the inverter does not change the output torque of the motor 2.
  • the AC voltage output from 3 is changed and adjusted so that the absolute voltage value
  • FIG. 13 shows the relationship between the modulated wave / carrier phase difference and the d-axis current sum, q-axis current sum, and phase current sum when the modulation factor is 0.8 and the frequency ratio between the carrier wave and the modulated wave is 9. It is a figure shown.
  • the d-axis current sum is calculated by the equation (13)
  • the q-axis current sum is ⁇ (Iq_n ⁇ 2 * n ⁇ 2)
  • the phase current sum is ⁇ (I_n ⁇ ). It is calculated by 2 * n ⁇ 2) respectively.
  • the value of the d-axis current sum is the minimum when the modulated wave / carrier phase difference is 135 deg, and the value of the phase current sum is also the minimum at this time. Therefore, it is predicted that the magnet temperature Tmag will be minimized by setting the modulated wave / carrier phase difference to 135 deg.
  • the magnet temperature Tmag and the coil temperature are the minimum, respectively.
  • the magnet temperature Tmag is 97.2 ° C., which is 33.7 ° C. higher than that at a modulation factor of 1.15 (magnet temperature Tmag is 63.5 ° C.).
  • the coil temperature is 79.0 ° C., which is 9.6 ° C. higher than that when the modulation factor is 1.15 (the coil temperature is 88.6 ° C.).
  • both the magnet temperature Tmag and the coil temperature increased significantly when the modulation factor was 0.8, as compared with the case where the modulation factor was 1.15.
  • the d-axis current which is the field weakening current
  • of the AC voltage output from the inverter 3 is changed while maintaining the torque output value of the motor 2.
  • the eddy current loss We can be adjusted by changing the modulation factor H accordingly. As a result, it can be seen that the eddy current loss of the magnet installed in the rotor of the motor 2 and the AC copper loss of the coil can be reduced and the temperature rise of the motor 2 can be suppressed without deteriorating the output torque and efficiency of the motor 2.
  • the current command generation unit 11' when the magnet temperature Tmag is equal to or higher than a predetermined value, a predetermined modulation capable of suppressing the eddy current loss of the magnet of the motor 2 and the AC copper loss of the coil.
  • the current command output from the second current command generation unit 112 is selected so that the value of the rate H is, for example, around 1.15.
  • the modulation factor which is the ratio of the AC voltage to the DC voltage
  • the modulation factor is adjusted by energizing the d-axis current (field weakening current) to keep it near 1.15.
  • the modulation factor is adjusted by energizing the d-axis current (field weakening current) to keep it near 1.15.
  • any example may be used. An example will be described below.
  • This example is suitable for a system in which the power supply voltage Hvdc of the high-voltage battery 5 is boosted to be a DC power supply, and by changing the DC voltage, the modulation factor, which is the ratio of the AC voltage to the DC voltage, is set to a desired value. Change. That is, the power supply voltage Hvdc output from the high voltage battery 5 to the inverter 3 is controlled so that the modulation factor is close to 1.15.
  • the modulation factor may be changed by stepping down the power supply voltage Hvdc of the high-voltage battery 5 instead of boosting the voltage.
  • This example is suitable for an engine generator system in which the desired power is obtained by an engine, and the rotation speed of the generator motor is freely controlled to set the modulation factor, which is the ratio between the AC voltage and the DC voltage, to a desired value.
  • Change to That is, by changing the rotation speed of the motor, the non-interference terms ( ⁇ * Ld * Id, ⁇ * Lq * Iq) and the induced voltage terms ( ⁇ * Ke) in the above equations (1) and (2) can be obtained.
  • the dq axis voltages Vd and Vq are changed by changing each.
  • the modulation factor H represented by the equation (19) is changed to a desired value.
  • the various methods for changing the modulation factor described above may be used alone or in combination of two or more.
  • an arbitrary method can be adopted to achieve a desired modulation factor.
  • the second current command generation unit 112 is adjusted so that the modulation factor is kept in the vicinity of 1.15, but the modulation factor may be adjusted to another value.
  • the modulation factor can be adjusted to be kept at any value of 1 or more and 1.27 or less.
  • the modulation factor can be adjusted to an arbitrary value if the eddy current loss of the magnet installed in the rotor of the motor 2 and the AC copper loss of the coil can be reduced, the modulation factor can be adjusted to an arbitrary value.
  • the motor control device 1' is based on the ratio of the voltage
  • It includes a current control unit 14 that calculates three-phase voltage commands Vu *, Vv *, and Vw * based on the q-axis current command Iq *, and a dq / three-phase voltage conversion unit 15.
  • the current command generation unit 11 sets the d-axis current command Id so that the modulation factor H according to the voltage amplitude ratio of the DC power and the AC power becomes a predetermined value, for example, a predetermined value of 1 or more and 1.27 or less.
  • * Is generated to control the d-axis current Id, or the voltage Hvdc of DC power or the rotation speed ⁇ r of the motor 2 is controlled.
  • the eddy current loss of the magnet installed in the rotor of the motor 2 and the AC copper loss of the coil can be significantly reduced, and the temperature rise of the motor 2 can be further suppressed. Therefore, it is possible to more effectively prevent the occurrence of irreversible demagnetization of the motor 2 while suppressing the switching loss of the inverter 3.
  • FIG. 14 is an external perspective view of the mechanical / electrical integrated unit 71 according to the fourth embodiment.
  • the mechanical / electrical integrated unit 71 includes the motor drive system 100 (motor control device 1 or 1', motor 2 and inverter 3) described in the first to third embodiments.
  • the motor 2 and the inverter 3 are connected by a coupling portion 713 via a bus bar 712.
  • the output of the motor 2 is transmitted to the differential gear (not shown) via the gear 711 and to the axle.
  • the motor control devices 1 and 1' are not shown in FIG. 14, the motor control devices 1 and 1'can be arranged at arbitrary positions.
  • the feature of this mechanical / electrical integrated unit 71 is the structure in which the motor 2, the inverter 3, and the gear 711 are integrated.
  • the mechanical / electrical integrated unit 71 due to such an integrated structure, the magnet temperature of the rotor of the motor 2 and the coil temperature of the stator of the motor 2 are deteriorated by the heat generated by the motor 2, the inverter 3, and the gear 711.
  • the motor control devices 1 and 1'described in the first to third embodiments it is possible to improve the continuous rated torque while preventing the increase in the magnet temperature of the rotor. , A compact and highly efficient integrated mechanical and electrical unit can be realized.
  • the second embodiment using the embedded magnet type permanent magnet synchronous motor as the motor 2 it is possible to prevent the coil temperature from rising in addition to the rise of the magnet temperature of the rotor. Therefore, the continuous rated torque can be improved, and a compact and highly efficient integrated mechanical and electrical unit can be realized.
  • FIG. 15 is a configuration diagram of the generator system 72 according to the fifth embodiment.
  • the generator system 72 includes a motor drive system 100, an engine system 721 connected to the motor 2, and an engine control unit 722.
  • the configuration of the motor drive system 100 is the same as that of FIG. 1 shown in the first embodiment, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the engine system 721 is instructed by the engine control unit 722, and normally, the engine system 721 is constantly rotated at the most efficient rotation speed of the engine system 721. However, if the modulation factor at the DC voltage is not 1.15, the harmonic components of the dq-axis harmonic current and phase current increase, and the magnet eddy current loss and AC copper loss increase.
  • the increase in the magnet temperature of the rotor can be prevented, and the engine speed can be prevented even when the magnet temperature is high. To change.
  • the desired output can be maintained by preventing the rise of the magnet temperature of the rotor and changing the boost voltage of the boost converter 74 even when the magnet temperature is high, which is suitable for the environment of hybrid vehicles and electric vehicles.
  • the continuous rating of motors used in cars can be improved. That is, the torque required for continuous running such as running on a slope at high speed can be improved, and the driving power of an environment-friendly vehicle such as a hybrid vehicle can be stably generated.
  • the motor control device 1 has been described as a representative, but the effect can also be obtained by using the motor control device 1'(third embodiment).
  • FIG. 16 is a configuration diagram of the boost converter system 73 according to the sixth embodiment.
  • the boost converter system 73 includes a motor drive system 100, and the boost converter 74 boosts the DC voltage of the high-voltage battery 5 or the like to a desired voltage.
  • the configuration of the motor drive system 100 is the same as that of FIG. 1 shown in the first embodiment, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the boost converter 74 connects the switching elements 743 and 744 in series, and the high voltage battery 5 is connected to the intermediate connection point of the switching elements 743 and 744 connected in series via the reactor 742. Further, the capacitor 741 is connected in parallel with the high voltage battery 5.
  • the switching elements 743 and 744 are diode-connected.
  • the boost converter 74 is given a command by the motor control device 1, and is boosted to the most efficient DC voltage of the boost converter system 73. However, if the modulation factor at the DC voltage is not 1.15, the harmonic components of the dq-axis harmonic current and phase current increase, and the magnet eddy current loss and AC copper loss increase.
  • the DC voltage is changed by the boost converter 74 to keep the modulation factor in the vicinity of 1.15, as in the example of changing the DC voltage described in the third embodiment.
  • the modulation factor can be freely controlled to be near 1.15 or 1.15 or more, and the magnet eddy current loss and the AC copper loss can be significantly reduced.
  • the effect of reducing the magnet temperature can be obtained by determining the voltage phase error ⁇ v so that the sum of d-axis current sum is minimized.
  • the embedded magnet type permanent magnet synchronous motor is used as the motor 2, the effect of reducing the coil temperature can also be obtained.
  • the desired output can be maintained by preventing the increase in the magnet temperature of the rotor and changing the boost voltage of the boost converter 74 even when the magnet temperature is high, which is suitable for the environment of hybrid vehicles and electric vehicles. You can continue to drive the car.
  • the motor control device 1 has been described as a representative, but the effect can also be obtained by using the motor control device 1'(third embodiment). Further, although it was introduced that the DC voltage is changed by using the boost converter 74, the same effect can be obtained by generating the DC voltage using a generator.
  • FIG. 17 is a configuration diagram of a hybrid vehicle system according to a seventh embodiment of the present invention.
  • the hybrid vehicle system has a power train to which the motor 2 is applied as a motor / generator, and travels by using the rotational driving force of the motor 2.
  • the system is not limited to the hybrid vehicle system, and may be an electric vehicle system.
  • the motor 2, the inverter 3, the high-voltage battery 5, and the like are the same as those of the motor drive system 100 in the first to third embodiments.
  • a front wheel axle 801 is rotatably supported on the front portion of the vehicle body 800, and front wheels 802 and 803 are provided at both ends of the front wheel axle 801.
  • a rear wheel axle 804 is rotatably supported on the rear portion of the vehicle body 800, and rear wheels 805 and 806 are provided at both ends of the rear wheel axle 804.
  • a differential gear 811 which is a power distribution mechanism is provided in the central portion of the front wheel axle 801 to distribute the rotational driving force transmitted from the engine 810 via the transmission 812 to the left and right front wheel axles 801. ing.
  • the pulley provided on the crankshaft of the engine 810 and the pulley provided on the rotating shaft of the motor 2 are mechanically connected via a belt.
  • the rotational driving force of the motor 2 can be transmitted to the engine 810, and the rotational driving force of the engine 810 can be transmitted to the motor 2.
  • the motor 2 rotates the rotor by supplying the three-phase AC power output from the inverter 3 to the coil of the stator under the control of the motor control device 1, and exerts a rotational driving force according to the three-phase AC power. appear.
  • the motor 2 is controlled by the inverter 3 under the control of the motor control device 1 to operate as an electric motor, while the rotor rotates in response to the rotational driving force of the engine 810 to generate an electromotive force in the stator coil of the stator. Is induced and operates as a generator that generates three-phase AC power.
  • the inverter 3 is a power conversion device that converts DC power supplied from a high-voltage battery 5 which is a high-voltage (42V or 300V) power supply into three-phase AC power, and is a motor 2 according to an operation command value and a magnetic pole position of a rotor. Controls the three-phase alternating current flowing through the stator coil of.
  • the three-phase AC power generated by the motor 2 is converted into DC power by the inverter 3 to charge the high-voltage battery 5.
  • the high voltage battery 5 is electrically connected to the low voltage battery 823 via a DC-DC converter 824.
  • the low-voltage battery 823 constitutes a low-voltage (14V) system power source for automobiles, and is used as a power source for a starter 825, a radio, a light, etc. that initially starts (cold start) the engine 810.
  • the inverter 3 drives the motor 2 to drive the engine 810. Restart.
  • the idle stop mode when the charge amount of the high voltage battery 5 is insufficient, or when the engine 810 is not sufficiently warmed up, the engine 810 is not stopped and is continued to be driven. Further, in the idle stop mode, it is necessary to secure a drive source for auxiliary machinery such as an air conditioner compressor that uses the engine 810 as a drive source. In this case, the motor 2 is driven to drive the accessories.
  • the motor 2 is driven to assist the driving of the engine 810.
  • the engine 810 generates electricity to charge the high-voltage battery 5. That is, regeneration is performed when the vehicle is braking or decelerating.
  • the hybrid vehicle system of FIG. 17 is realized by using the motor drive system 100 described in the first to third embodiments.
  • the effect of reducing the magnet temperature can be obtained by determining the voltage phase error ⁇ v so that the sum of d-axis current sum is minimized.
  • the effect of reducing the coil temperature can also be obtained.
  • the fourth embodiment by boosting the DC voltage so that the modulation factor is close to 1.15 or 1.15 or more, the magnet eddy current loss and alternating current are maintained while maintaining the output of the motor 2. It is also possible to further reduce copper loss.
  • the motor control device 1 has been described as a representative in this embodiment, the effect can also be obtained by using the motor control device 1'(third embodiment).
  • the configurations (FIGS. 2 to 4, etc.) in the motor control devices 1 and 1' are realized by the CPU and the program, regardless of the hardware configuration. You may do it.
  • this program can be provided by being stored in a storage medium of the motor control device in advance.
  • the program can be stored and provided in an independent storage medium, or the program can be recorded and stored in the storage medium of the motor control device by a network line. It may be supplied as a computer-readable computer program product in various forms such as a data signal (carrier wave).
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-mentioned plurality of embodiments.
  • 1,1'... motor control device 2 ... permanent magnet synchronous motor (motor), 3 ... inverter, 5 ... high voltage battery, 7 ... current detector, 8 ... rotation position detector, 11,11' ... current command generator , 12 ... Speed calculation unit, 13 ... Three-phase / dq conversion unit, 14 ... Current control unit, 15 ... dq / Three-phase voltage conversion unit, 16 ... Carrier frequency adjustment unit, 17 ... Triangular wave generation unit, 18 ... Gate signal generation Unit, 31 ... Inverter circuit, 32 ... PWM signal drive circuit, 33 ... Smoothing capacitor, 51 ... Rotation position sensor, 52 ... Temperature sensor, 71 ... Mechanical and electrical integrated unit, 72 ... Generator system, 73 ...
  • Boost converter system 74 ... Boost converter, 100 ... motor drive system, 111 ... first current command generation unit, 112 ... second current command generation unit, 113 ... current command selection unit, 161 ... synchronous PWM carrier number selection unit, 162 ... voltage phase calculation unit, 163 ... Voltage phase error calculation unit, 164 ... Synchronous carrier frequency calculation unit, 165 ... Carrier frequency setting unit, 711 ... Gear, 712 ... Bus bar, 713 ... Coupling unit, 721 ... Engine system, 722 ... Engine control unit, 741 ... Condenser , 742 ... Reactor, 743, 744 ... Switching element, 800 ... Body, 801 ... Front wheel axle, 802 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Ac Motors In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Inverter Devices (AREA)

Abstract

モータ制御装置は、直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するものであって、搬送波を生成する搬送波生成部と、前記搬送波の周波数を調整する搬送波周波数調整部と、前記搬送波を用いてトルク指令に応じた電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するゲート信号生成部と、を備え、前記搬送波周波数調整部は、前記交流モータに通電されるd軸電流と前記交流モータの回転速度とに応じて前記交流モータの回転子の磁石に生じる渦電流損失を低減するように、前記電圧指令と前記搬送波の位相差を調整する。

Description

モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
 本発明は、モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システムに関する。
 電気自動車やハイブリッド自動車に用いられる駆動用のモータは大出力および高トルク応答が求められる。そのため、強力なエネルギーを保持する希土類の焼結磁石を用いた永久磁石式回転電機(以下、モータと称する)をインバータで駆動することが一般的に行われている。インバータは、PWM(パルス幅変調)制御によって、直流電源からの直流電圧を任意の電圧・周波数の線間電圧(交流電圧)に変換し、モータを可変速駆動している。例えば、電気自動車での使用を考えた場合、市街地走行ではモータは比較的小さい負荷側に集中し、追い越しや合流時の加速および高速道路の走行では大きい負荷側で高出力が必要となり、さらに勾配の急な登坂では低速で大トルクが必要となる。このように電気自動車用のモータでは走行状態に応じてモータの負荷は頻繁に変化し、モータの発熱量も変化するため、モータは温度変化を続ける。そして、モータの磁石温度が高温で、モータに弱め磁束電流が所定の電流以上通電すると、永久磁石が元の磁束を発生しなくなる不可逆減磁が発生してしまう。その結果、モータのトルク特性が変化し、走行の制御が困難となる。
 特許文献1では、PWM制御に従って制御されるモータ電流のリップル電流幅を検出するとともにリップル電流幅の基準値を設定し、これらの比較に基づいてPWM制御に用いる搬送波の周波数を制御することで、リップル電流幅を適正レベルに維持するための搬送波周波数のフィードバック制御を実現するモータ駆動システムが提案されている。これにより、スイッチング回数増大による電力損失の増大を防ぎつつ、交流電動機での磁石温度上昇による減磁発生を防止している。
日本国特開2009-11028号公報
 特許文献1に記載の技術では、スイッチング周波数の向上などの変更が伴う場合、インバータのスイッチング損失が増大する課題がある。
 本発明によるモータ制御装置は、直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するものであって、搬送波を生成する搬送波生成部と、前記搬送波の周波数を調整する搬送波周波数調整部と、前記搬送波を用いてトルク指令に応じた電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するゲート信号生成部と、を備え、前記搬送波周波数調整部は、前記交流モータに通電されるd軸電流と前記交流モータの回転速度とに応じて前記交流モータの回転子の磁石に生じる渦電流損失を低減するように、前記電圧指令と前記搬送波の位相差を調整する。
 本発明による機電一体ユニットは、モータ制御装置と、前記モータ制御装置に接続された前記電力変換器と、前記電力変換器により駆動される前記交流モータと、前記交流モータの回転駆動力を伝達するギアと、を備え、前記交流モータ、前記電力変換器および前記ギアが一体構造となっている。
 本発明による発電機システムは、モータ制御装置と、前記モータ制御装置に接続された前記電力変換器と、前記電力変換器により駆動される前記交流モータと、前記交流モータに接続されたエンジンシステムと、を備える。
 本発明による昇圧コンバータシステムは、モータ制御装置と、前記モータ制御装置に接続された前記電力変換器と、前記電力変換器により駆動される前記交流モータと、前記直流電力の電圧を昇圧する昇圧コンバータと、を備える。
 本発明による電動車両システムは、モータ制御装置と、前記モータ制御装置に接続された前記電力変換器と、前記電力変換器により駆動される前記交流モータと、を備え、前記交流モータの回転駆動力を用いて走行する。
 本発明によれば、インバータのスイッチング損失を抑えつつ、モータの不可逆減磁の発生を防止することができる。
本発明の一実施形態に係るモータ制御装置を備えたモータ駆動システムの全体構成図。 本発明の第1の実施形態に係るモータ制御装置の機能構成を示すブロック図。 本発明の第1の実施形態に係る搬送波周波数調整部のブロック図。 本発明の第1の実施形態に係る電圧位相誤差演算部のブロック図。 本発明の基準電圧位相演算の概念図。 変調波と搬送波の位相差を変化させた場合の電圧波形の関係を示す図。 変調波と搬送波の位相差を変化させた場合のU相交流電圧の高調波成分を示す図。 変調波/搬送波位相差とd軸電流和との関係を示す図。 d軸電流和の演算手順を示すフローチャート。 変調波/搬送波位相差とd軸電流和、q軸電流和および相電流和との関係を示す図。 本発明の第3の実施形態に係るモータ制御装置の機能構成を示すブロック図。 本発明の第3の実施形態に係る電流指令生成部のブロック図。 変調波/搬送波位相差とd軸電流和、q軸電流和および相電流和との関係を示す図。 本発明の第4の実施形態における機電一体ユニットの外観斜視図。 本発明の第5の実施形態における発電機システムの構成図。 本発明の第6の実施形態における昇圧コンバータシステムの構成図。 本発明の第7の実施形態におけるハイブリッド車両システムの構成図。
[第1の実施形態]
 以下、本発明の第1の実施形態について図面を用いて説明する。
 図1は、本発明の一実施形態に係るモータ制御装置を有するモータ駆動システムの構成図である。モータ駆動システム100は、モータ制御装置1、モータ2、インバータ3、高圧バッテリ5、電流検出部7、回転位置検出器8を有している。
 モータ制御装置1には、回転位置検出器8からモータ2の回転位置θが入力される。また、モータ2に取り付けられた温度センサ52から、モータ2の回転子における磁石の温度を表す磁石温度Tmagが入力される。さらに、電流検出部7から、モータ2に流れる三相の交流電流をそれぞれ表すIu、Iv、Iwが入力され、図示省略した上位制御装置よりトルク指令T*が入力される。モータ制御装置1は、これらの入力情報を基に、モータ2の駆動を制御するためのゲート信号を生成し、インバータ3に出力する。これにより、インバータ3の動作を制御し、モータ2の駆動を制御する。なお、モータ制御装置1の詳細については後で説明する。
 インバータ3は、インバータ回路31、PWM信号駆動回路32および平滑キャパシタ33を有する。PWM信号駆動回路32は、モータ制御装置1から入力されるゲート信号に基づいて、インバータ回路31が有する各スイッチング素子を制御するためのPWM信号を生成し、インバータ回路31に出力する。インバータ回路31は、U相、V相、W相の上アームおよび下アームにそれぞれ対応するスイッチング素子を有している。PWM信号駆動回路32から入力されたPWM信号に従ってこれらのスイッチング素子がそれぞれ制御されることで、高圧バッテリ5から供給される直流電力が交流電力に変換され、モータ2に出力される。平滑キャパシタ33は、高圧バッテリ5からインバータ回路31に供給される直流電力を平滑化する。
 高圧バッテリ5は、モータ駆動システム100の直流電圧源であり、インバータ3へ電源電圧Hvdcを出力する。高圧バッテリ5の電源電圧Hvdcは、インバータ3のインバータ回路31とPWM信号駆動回路32によって可変電圧、可変周波数のパルス状の三相交流電圧に変換され、線間電圧としてモータ2に印加される。これにより、高圧バッテリ5の直流電力を基に、インバータ3からモータ2へ交流電力が供給される。なお、高圧バッテリ5の電源電圧Hvdcは、その充電状態に応じて変動する。
 モータ2は、インバータ3から供給される交流電力により回転駆動される三相同期電動機であり、固定子(ステータ)および回転子(ロータ)を有する。本実施形態では、回転子の表面にネオジム磁石やフェライト磁石等の永久磁石が取り付けられた表面磁石型の永久磁石同期モータ(SPMSM:Surface Permanent Magnet Synchronous Motor)をモータ2として用いている。インバータ3から入力された交流電力が固定子に設けられた三相のコイルLu、Lv、Lwに印加されると、モータ2において三相交流電流Iu、Iv、Iwが導通し、各コイルに磁束が発生する。この各コイルの磁束と、回転子に配置された永久磁石の磁石磁束との間で吸引力・反発力が発生することで、回転子にトルクが発生し、モータ2が回転駆動される。
 モータ2には、回転子の回転位置θを検出するための回転位置センサ51が取り付けられている。回転位置検出器8は、回転位置センサ51の入力信号から回転位置θを演算する。回転位置検出器8による回転位置θの演算結果はモータ制御装置1に入力され、モータ制御装置1がモータ2の誘起電圧の位相に合わせてゲート信号を生成することで行われる交流電力の位相制御において利用される。
 ここで、回転位置センサ51には、鉄心と巻線とから構成されるレゾルバがより好適であるが、GMRセンサなどの磁気抵抗素子や、ホール素子を用いたセンサであっても問題ない。また、回転位置検出器8は、回転位置センサ51からの入力信号を用いず、モータ2に流れる三相交流電流Iu、Iv、Iwや、インバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwを用いて回転位置θを推定してもよい。
 モータ2には、回転子に取り付けられている磁石の減磁を抑制する観点から、磁石温度Tmagを検出する温度センサ52が設けられる。なお、モータ駆動システム100内に磁石温度推定部を設け、この磁石温度推定部により、モータ2が回転することで誘起される誘起電圧の温度依存性を用いて磁石温度Tmagを推定しても良いし、熱回路網を用いて推定しても良い。
 以下、式(1)~(3)を用いて磁石温度Tmagの推定手法の一例を説明する。式(1)式(2)はモータのdq軸電圧方程式を示している。式(1)式(2)において、巻線抵抗R、電気角周波数ω、dq軸インダクタンスLdおよびLq、は温度に対してほぼ不変と見なせる。一方、dq軸電圧VdおよびVq、dq軸電流IdおよびIqは変動パラメータである。dq軸電流Vd,Vqはモータ2の三相交流電流Iu、Iv、Iwから回転位置θを用いて、dq軸電圧Id,Iqは後述のdq軸電圧指令Vd*,Vq*よりそれぞれ演算することで導出できる。
 Vd=R*Id-ω*Lq*Iq         ・・・(1)
 Vq=R*Iq+ω*Ld*Id+ω*Ke    ・・・(2)
 ここで、Vd、Vqはdq軸電圧、Id、Iqはdq軸電流、Ld、Lqはdq軸インダクタンス、ωは電気角周波数、Keは誘起電圧定数、Rは巻線抵抗である。
 式(3)は誘起電圧の温度依存性を示している。通常温度T_nomiから回転子の温度が変動すると、それに伴って誘起電圧が線形に変動することが分かる。
 Ke=Ke_nomi+(T-T_nomi)*K  ・・・(3)
 ここで、Ke_nomiは通常温度の誘起電圧定数、Tはロータ温度、T_nomiはロータの通常温度、Kは誘起電圧の温度依存傾きである。
 式(2)のq軸電圧Vqの方程式において、既知パラメータから誘起電圧定数Keを導出することができる。この誘起電圧定数Keは温度依存性を有しており、通常温度の誘起電圧定数Ke_nomiとは必ずしも一致しない。一方、式(3)では通常温度の誘起電圧定数Ke_nomi、ロータの通常温度T_nomiがそれぞれ既知である。そのため、式(2)で求められる誘起電圧定数Keを用いて、式(3)からロータ温度Tを推定できる。こうしてロータ温度Tを推定し、その推定結果を用いて磁石温度Tmagを推定することが可能である。
 インバータ3とモータ2の間の電流経路には、電流検出部7が配置されている。電流検出部7は、モータ2を通電する三相交流電流Iu、Iv、Iw(U相交流電流Iu、V相交流電流IvおよびW相交流電流Iw)を検出する。電流検出部7は、例えばホール電流センサ等を用いて構成される。電流検出部7による三相交流電流Iu、Iv、Iwの検出結果はモータ制御装置1に入力され、モータ制御装置1が行うゲート信号の生成に利用される。なお、図1では電流検出部7が3つの電流検出器により構成される例を示しているが、電流検出器を2つとし、残る1相の交流電流は、三相交流電流Iu、Iv、Iwの和が零であることから算出してもよい。また、高圧バッテリ5からインバータ3に流入するパルス状の直流電流を、平滑キャパシタ33とインバータ3の間に挿入されたシャント抵抗等により検出し、この直流電流とインバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwに基づいて三相交流電流Iu、Iv、Iwを求めてもよい。
 次に、モータ制御装置1の詳細について説明する。図2は、本発明の第1の実施形態に係るモータ制御装置1の機能構成を示すブロック図である。
 図2に示されるように、モータ制御装置1は、電流指令生成部11、速度算出部12、三相/dq変換部13、電流制御部14、dq/三相電圧変換部15、搬送波周波数調整部16、三角波生成部17、ゲート信号生成部18の各機能ブロックを有する。モータ制御装置1は、例えばマイクロコンピュータにより構成され、マイクロコンピュータにおいて所定のプログラムを実行することにより、これらの機能ブロックを実現することができる。あるいは、これらの機能ブロックの一部または全部をロジックICやFPGA等のハードウェア回路を用いて実現してもよい。
 電流指令生成部11は、入力されたトルク指令T*と電源電圧Hvdcに基づき、d軸電流指令Id*およびq軸電流指令Iq*を演算する。ここでは、例えば予め設定された電流指令マップや、d軸電流Id,q軸電流Iqとモータトルクの関係を表す数式等を用いて、トルク指令T*に応じたd軸電流指令Id*、q軸電流指令Iq*を求める。
 速度算出部12は、回転位置θの時間変化から、モータ2の回転速度(回転数)を表すモータ回転速度ωrを演算する。なお、モータ回転速度ωrは、角速度(rad/s)または回転数(rpm)のいずれで表される値であってもよい。また、これらの値を相互に変換して用いてもよい。
 三相/dq変換部13は、電流検出部7が検出した三相交流電流Iu、Iv、Iwに対して、回転位置検出器8が求めた回転位置θに基づくdq変換を行い、d軸電流値Idおよびq軸電流値Iqを演算する。
 電流制御部14は、電流指令生成部11から出力されるd軸電流指令Id*およびq軸電流指令Iq*と、三相/dq変換部13から出力されるd軸電流値Idおよびq軸電流値Iqとの偏差に基づき、これらの値がそれぞれ一致するように、トルク指令T*に応じたd軸電圧指令Vd*およびq軸電圧指令Vq*を演算する。ここでは、例えばPI制御等の制御方式により、d軸電流指令Id*とd軸電流値Idの偏差に応じたd軸電圧指令Vd*と、q軸電流指令Iq*とq軸電流値Iqの偏差に応じたq軸電圧指令Vq*とを求める。
 dq/三相電圧変換部15は、電流制御部14が演算したd軸電圧指令Vd*およびq軸電圧指令Vq*に対して、回転位置検出器8が求めた回転位置θに基づく三相変換を行い、三相電圧指令Vu*、Vv*、Vw*(U相電圧指令値Vu*、V相電圧指令値Vv*およびW相電圧指令値Vw*)を演算する。これにより、トルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*を生成する。
 搬送波周波数調整部16は、電流指令生成部11が生成したd軸電圧指令Vd*およびq軸電圧指令Vq*、回転位置検出器8が求めた回転位置θ、速度算出部12が求めた回転速度ωr、d軸電流値Id、磁石温度Tmagに基づき、ゲート信号の生成に用いられる搬送波の周波数を表す搬送波周波数fcを演算する。この搬送波周波数fcに従って三角波生成部17が搬送波を生成することで、モータ2で発生する磁石渦電流損失や交流銅損を抑制できるように、搬送波の周波数が調整される。なお、搬送波周波数調整部16による搬送波周波数fcの演算方法の詳細については後述する。
 三角波生成部17は、搬送波周波数調整部16が演算した搬送波周波数fcに基づき、三角波信号(搬送波信号)Trを生成する。
 ゲート信号生成部18は、三角波生成部17から出力される三角波信号Trを用いて、dq/三相電圧変換部15から出力される三相電圧指令Vu*、Vv*、Vw*をそれぞれパルス幅変調し、インバータ3の動作を制御するためのゲート信号を生成する。具体的には、dq/三相電圧変換部15から出力される三相電圧指令Vu*、Vv*、Vw*と、三角波生成部17から出力される三角波信号Trとの比較結果に基づき、U相、V相、W相の各相に対してパルス状の電圧を生成する。そして、生成したパルス状の電圧に基づき、インバータ3の各相のスイッチング素子に対するゲート信号を生成する。このとき、各相の上アームのゲート信号Gup、Gvp、Gwpをそれぞれ論理反転させ、下アームのゲート信号Gun、Gvn、Gwnを生成する。ゲート信号生成部18が生成したゲート信号は、モータ制御装置1からインバータ3のPWM信号駆動回路32に出力され、PWM信号駆動回路32によってPWM信号に変換される。これにより、インバータ回路31の各スイッチング素子がオン/オフ制御され、インバータ3の出力電圧が調整される。
 次に、モータ制御装置1における搬送波周波数調整部16の動作について説明する。搬送波周波数調整部16は前述のように、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、回転速度ωrと、d軸電流値Idと、磁石温度Tmagに基づき、搬送波周波数fcを演算する。この搬送波周波数fcに従って三角波生成部17が生成する三角波信号Trの周波数を逐次的に制御することで、トルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*の電圧波形に対して、搬送波である三角波信号Trの周期と位相がそれぞれ所望の関係となるように調整する。なお、ここでの所望の関係とは、例えば、モータ2の回転子に取り付けられた磁石に生じる渦電流損失が最小となるような関係のことを指す。
 図3は、本発明の第1の実施形態に係る搬送波周波数調整部16のブロック図である。搬送波周波数調整部16は、同期PWM搬送波数選択部161、電圧位相演算部162、電圧位相誤差演算部163、同期搬送波周波数演算部164、搬送波周波数設定部165を有する。
 同期PWM搬送波数選択部161は、回転速度ωrに基づき、同期PWM制御における電圧波形の1周期に対する搬送波の数を表す同期PWM搬送波数Ncを選択する。同期PWM搬送波数選択部161は、例えば3の倍数のうちNc=3×(2×n―1)の条件式を満たす数を、同期PWM搬送波数Ncとして選択する。この条件式において、nは任意の自然数を表しており、例えばn=1(Nc=3)、n=2(Nc=9)、n=3(Nc=15)などが選ばれることが多い。また、特殊な搬送波を用いることで、例えばNc=6やNc=12など、3の倍数であっても上記の条件式を満たさない数を同期PWM搬送波数Ncとして選定することも可能である。なお、同期PWM搬送波数選択部161は、回転速度ωrだけでなく、トルク指令T*に基づいて、同期PWM搬送波数Ncの選択を行ってもよい。また、例えばヒステリシスを設定するなど、回転速度ωrが上昇するときと下降するときとで、同期PWM搬送波数Ncの選択基準を変化させてもよい。
 電圧位相演算部162は、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、回転速度ωrと、搬送波周波数fcに基づいて、以下の式(4)~(7)により電圧位相θvを演算する。
 θv=θ+φv+φdqv+0.5π ・・・(4)
 φv=ωr・1.5Tc ・・・(5)
 Tc=1/fc ・・・(6)
 φdqv=atan(Vq/Vd) ・・・(7)
 ここで、φvは電圧位相の演算遅れ補償値を、Tcは搬送波周期を、φdqvはd軸からの電圧位相をそれぞれ表すものとする。演算遅れ補償値φvは、回転位置検出器8が回転位置θを取得してからモータ制御装置1がインバータ3にゲート信号を出力するまでの間に、1.5制御周期分の演算遅れが発生することを補償する値である。なお、本実施形態では、式(4)右辺の第4項で0.5πを加算している。これは、式(4)右辺の第1項~第3項で演算される電圧位相がcos波であるため、これをsin波に視点変換するための演算である。
 電圧位相誤差演算部163は、同期PWM搬送波数選択部161により選択された同期PWM搬送波数Ncと、電圧位相演算部162により演算された電圧位相θvと、回転速度ωrと、磁石温度Tmagと、d軸電流Idとに基づき、電圧位相誤差Δθvを演算する。電圧位相誤差Δθvは、インバータ3に対する電圧指令である三相電圧指令Vu*、Vv*、Vw*と、パルス幅変調に用いる搬送波である三角波信号Trとの位相差を表している。電圧位相誤差演算部163が所定の演算周期ごとに電圧位相誤差Δθvを演算することで、搬送波周波数調整部16において、インバータ3に対する電圧指令とパルス幅変調に用いる搬送波との位相差を変化させるように、三角波信号Trの周波数調整を行うことができる。なお、前述のように基準電圧位相θvbは、同期PWM制御における搬送波の位相の基準値である。
 同期搬送波周波数演算部164は、以下の式(8)に従い、電圧位相誤差演算部163により演算された電圧位相誤差Δθvと、回転速度ωrと、同期PWM搬送波数選択部161により選択された同期PWM搬送波数Ncに基づき、同期搬送波周波数fcsを演算する。
 fcs=ωr・Nc・(1+Δθv・K)/(2π)・・・(8)
 同期搬送波周波数演算部164は、例えばPLL(Phase Locked Loop)制御により、式(8)に基づく同期搬送波周波数fcsを演算することができる。なお、式(8)においてゲインKは一定値としてもよいし、条件により可変としてもよい。
 搬送波周波数設定部165は、回転速度ωrに基づいて、同期搬送波周波数演算部164により演算された同期搬送波周波数fcsと、非同期搬送波周波数fcnsとのいずれかを選択し、搬送波周波数fcとして出力する。非同期搬送波周波数fcnsは、搬送波周波数設定部165において予め設定された一定値である。なお、予め非同期搬送波周波数fcnsを複数用意しておき、その中でいずれかを回転速度ωrに応じて選択してもよい。例えば、回転速度ωrの値が大きいほど非同期搬送波周波数fcnsの値が大きくなるように、搬送波周波数設定部165において非同期搬送波周波数fcnsを選択し、搬送波周波数fcとして出力することができる。
 次に、搬送波周波数調整部16のうち、電圧位相誤差演算部163における電圧位相誤差Δθvの演算方法の詳細について説明する。
 図4は、本発明の第1の実施形態に係る電圧位相誤差演算部163のブロック図である。電圧位相誤差演算部163は、基準電圧位相演算部1631、d軸電流和演算部1632、固定三角波位相決定部1633、加算部1634、減算部1635を有する。
 基準電圧位相演算部1631は、同期PWM搬送波数Ncと電圧位相θvに基づき、同期PWM制御における搬送波の位相を固定するための基準電圧位相θvbを演算する。
 図5は、基準電圧位相演算部1631が実施する基準電圧位相演算の概念図である。基準電圧位相演算部1631は、例えば図5に示すように、0から2πの間で同期PWM搬送波数Ncに応じた段数で階段状に変化する基準電圧位相θvbを演算する。なお、図5では説明を分かりやすくするため、同期PWM搬送波数Ncが3であるときの例を示しているが、実際には同期PWM搬送波数Ncは、前述のようにNc=3、9または15とすることが好ましい。あるいは、Nc=6または12としてもよい。
 本実施形態では処理負荷低減のため、例えば図5に示すように、三角搬送波が最小値(谷)から最大値(山)まで上昇する区間である谷割り区間でのみ、搬送波周波数調整部16が搬送波の周波数を調整可能とする。この場合、同期搬送波周波数演算部164では後述するように、搬送波の谷割り区間において、電圧位相誤差Δθvから同期搬送波周波数fcsを逐次的に演算することで、同期PWM制御を実施する。基準電圧位相演算部1631は、この電圧位相誤差Δθvの演算に用いられる基準電圧位相θvbを、図5に示すようにπ/3間隔で変化する離散値として算出する。なお、この基準電圧位相θvbの間隔は、同期PWM搬送波数Ncに応じて変化する。同期PWM搬送波数Ncが大きくなるほど、基準電圧位相θvbの間隔が小さくなる。
 具体的には、基準電圧位相演算部1631は、以下の式(9)~(10)に従い、電圧位相θv、同期PWM搬送波数Ncに基づいて基準電圧位相θvbを演算する。
 θvb=int(θv/θs)・θs+0.5θs ・・・(9)
 θs=2π/Nc ・・・(10)
 ここで、θsは搬送波1つあたりの電圧位相θvの変化幅を表し、intは小数点以下の切り捨て演算を表すものとする。
 なお、本実施形態では、三角搬送波が最大値(山)から最小値(谷)まで下降する区間である山割り区間で基準電圧位相θvbが0radとなるように、基準電圧位相演算部1631において式(9)~(10)に従い基準電圧位相θvbを演算している。しかしながら、基準電圧位相θvbが0radとなる期間は山割り区間に限らない。電圧位相θvを用いて、0から2πの間で同期PWM搬送波数Ncに応じた段数で階段状に変化する基準電圧位相θvbを演算できれば、式(9)~(10)以外の演算方法により、基準電圧位相演算部1631が基準電圧位相θvbの演算を行ってもよい。
 d軸電流和演算部1632は、三相/dq変換部13により求められたd軸電流値Idと、モータ回転速度ωrとに基づき、モータ2で発生する磁石の渦電流損失を抑制するためのd軸電流和sumを演算する。なお、d軸電流和sumの詳細については後述する。
 固定三角波位相決定部1633は、d軸電流和演算部1632により演算されたd軸電流和sumと、磁石温度Tmagとに基づき、電圧位相誤差Δθvの演算に用いる搬送波位相差Δθcarrを決定する。ここでは、磁石温度Tmagの値に応じて搬送波の生成方法を選択し、その選択結果に従って搬送波位相差Δθcarrを決定する。なお、固定三角波位相決定部1633の詳細については後述する。
 加算部1634は、基準電圧位相演算部1631にて演算した基準電圧位相θvbに、固定三角波位相決定部1633にて決定した搬送波位相差Δθcarrを加算し、補正基準電圧位相θvb2を演算する。
 減算部1635は、電圧位相θvから補正基準電圧位相θvb2を減算し、電圧位相誤差Δθvを演算する。
 次に、本実施形態の特徴であるd軸電流和演算部1632および固定三角波位相決定部1633の詳細について、以下に説明する。
 まず、本実施形態の搬送波位相差Δθcarrの決定方法の基本的な考え方について、図6、図7を参照して以下に説明する。図6は、変調波であるU相電圧指令Vu*と搬送波である三角波信号Trとの間の位相差(以下、「変調波/搬送波位相差」と称する)を変化させた場合の、これらの電圧波形の関係を示した図である。図6(a)は、変調波/搬送波位相差を-90degとした場合の搬送波と変調波の電圧波形を、図6(b)は、変調波/搬送波位相差を0degとした場合の搬送波と変調波の電圧波形を、図6(c)は、変調波/搬送波位相差を90degとした場合の搬送波と変調波の電圧波形をそれぞれ示している。図6(a)の場合、変調波のゼロクロス立ち上がり時に搬送波である三角波は谷となり、図6(b)の場合、変調波のゼロクロス立ち上がり時に三角波はゼロクロス立ち下がりとなり、図6(c)の場合、変調波のゼロクロス立ち上がり時に三角波は山となっている。このように、変調波/搬送波位相差を変化させることで、以下で説明するように、PWM制御によって得られるU相交流電圧Vuの振幅を一定としたままで、基本波成分以外の高調波成分の位相を自在に変化させることができる。
 なお、図6(a)~図6(c)では、説明の都合上、変調波と搬送波の周波数比を15としているが、本発明はこれに限定されない。また、図6(a)~図6(c)では、変調波の例としてU相電圧指令Vu*を示しているが、他相の電圧指令、すなわちV相電圧指令Vv*やW相電圧指令Vw*についても、図6と同様に変調波/搬送波位相差を設定することで、基本波成分以外の高調波成分の位相を自在に変化させることが可能である。
 図7は、変調波であるU相電圧指令Vu*と搬送波である三角波信号Trとの位相差を変化させた場合に、インバータ3からモータ2へ出力されるU相交流電圧Vuの高調波成分を示す図である。図7(a)では、図6(a)~図6(c)に示した変調波/搬送波位相差、すなわち-90deg、0deg、90degの各位相差でのU相交流電圧Vuの高調波成分ごとの振幅を示し、図7(b)では、これらの各位相差でのU相交流電圧Vuの高調波成分ごとの位相を示している。なお、図7(a)、図7(b)では、U相交流電圧Vuの1次成分として、基本波成分の振幅と位相をそれぞれ示している。また、図7(b)では、図7(a)において振幅が比較的大きい11次、13次、17次、19次、29次、31次の各高調波成分について、基本波成分の位相を-135degとしたときの位相をそれぞれ示している。
 図7(a)より、変調波/搬送波位相差を変更しても、インバータ3から出力されるU相交流電圧Vuにおいて、1次(基本波)を含む各次数成分の振幅は変化しないことが確認される。つまり、変調波/搬送波位相差を変化させても、モータ2のトルク出力値は変わらないことが分かる。一方、図7(b)より、U相交流電圧Vuの1次(基本波)成分以外の各高調波成分の位相は、変調波/搬送波位相差に応じて変化することが分かる。つまり、変調波/搬送波位相差を変化させることは、U相交流電圧Vuの基本波成分以外の高調波成分の位相を変化させることと等価と言える。
 なお、図7(a)、図7(b)では、インバータ3から出力される三相交流電圧のうち、U相交流電圧Vuの周波数解析結果を示しているが、他相の交流電圧、すなわちV相交流電圧VvやW相交流電圧Vwについても、図7(a)、図7(b)と同様の周波数解析結果が得られる。したがって、変調波/搬送波位相差を変化させることにより、インバータ3から出力される三相交流電圧の基本波成分以外の高調波成分の位相を任意に変化させることが可能となる。
 上記で示したように、変調波/搬送波位相差が変化すると、インバータ3から出力される三相交流電圧の基本波成分以外の高調波成分の位相が変化する。これにより、三相交流電圧をdq軸変換したd軸電圧Vdおよびq軸電圧Vqが変化し、これに応じてd軸電流Id、q軸電流Iqも変化する。ここで、モータ2のロータに設置された磁石の渦電流損失とは、インバータ3からモータ2の各コイルへ三相交流電圧が印加されることで生じる磁化力の変動によって磁石の内部に誘導起電力が生じ、それにより磁石に渦電流が流れることで生じるジュール熱である。この渦電流損失Weは、以下の式(11)に示す比例関係で表される。
 We∝B^2*f^2         ・・・(11)
 ここで、Bはコイルの最大磁束密度、fはコイルに流れる電流の周波数である。
 式(11)より、渦電流損失Weは、コイルの磁束密度の変化量の2乗と、コイル電流の周波数の2乗とが支配的であることが分かる。磁束密度の変化量は、磁石から見るとd軸電流Idの変化量と比例し、コイル電流の周波数は、インバータ3からモータ2へ出力される三相交流電圧の周波数と比例する。また、d軸電流Idを周波数分析すると、d軸電流Idには、三相交流電圧の周波数に応じて定まる基本波の周波数に対して、各次数の高調波成分が含まれている。そのため、式(11)は、以下の式(12)に示す比例関係に置き換えて表すことができる。
 We∝Σ(Id_n^2*n^2)    ・・・(12)
 ここで、nはd軸電流Idの高調波成分の次数を、Id_nはd軸電流Idのn次高調波成分の大きさをそれぞれ表す。ただし、次数nは整数に限らず、任意の正の数を含めることができる。以下では、式(12)の右辺が表す値、すなわちd軸高調波電流Id_nの2乗と次数nの2乗との積の和を、「d軸電流和」と称する。なお、Id_nにおいてn=1とした場合、Id_nはd軸電流Idの基本波成分を表しており、その周波数は三相交流電圧の周波数と合致する。
 図8は、変調率を1.15とし、搬送波と変調波の周波数比を9としたときの、変調波/搬送波位相差とd軸電流和との関係を示した図である。図8では、変調波/搬送波位相差が135degのときにd軸電流和の値が最小となっている。したがって、式(12)の比例関係から、変調波/搬送波位相差を135degに設定すると磁石温度Tmagが最小になると予測される。
 実際に、変調率1.15近傍でモータ2を駆動させたときの磁石温度Tmagの基準温度からの温度上昇を測定したところ、変調波/搬送波位相差が135degの場合には、温度上昇が63.5℃であった。一方、変調波/搬送波位相差が90degの場合には、温度上昇が67℃であり、135degの場合と比べて3.5℃高いことが確認された。
 以上説明したように、変調波/搬送波位相差を変更することで、モータ2のトルク出力値を維持しつつ、インバータ3から出力される三相交流電圧の各高調波成分の位相を変化させ、これに応じてd軸電流和の値を変化させることができる。したがって、式(12)の比例関係に基づいて渦電流損失Weを調整することが可能となる。その結果、モータ2の出力トルクや効率を悪化させることなく、モータ2のロータに設置された磁石の渦電流損失を低減できることが分かる。
 本実施形態では、上記の考え方に基づき、d軸電流和演算部1632および固定三角波位相決定部1633において、モータ2の磁石の渦電流損失を抑制可能な変調波/搬送波位相差を実現する電圧位相誤差Δθvを設定できるように、搬送波位相差Δθcarrの値を決定する。その具体的な手法を、以下に図9を参照して説明する。
 図9は、d軸電流和演算部1632によるd軸電流和sumの演算手順を示したフローチャートである。d軸電流和演算部1632は、d軸電流値Idとモータ回転速度ωrに基づき、図9のフローチャートに従ってd軸電流和sumを算出する。
 まず、ステップS901において、d軸電流和演算部1632は、モータ回転速度ωrに基づいて、入力されたd軸電流Idのうち電気角1周期分を抽出する。続いて、ステップS902において、ステップS901で抽出した電気角1周期のd軸電流Idを周波数解析し、n次のd軸高調波電流Id_nを次数ごとに抽出する。最後に、ステップS903において、ステップS902で抽出した次数ごとのd軸高調波電流Id_nおよび次数nに基づいて、下記の式(13)によりd軸電流和sumを計算する。
 sum=Σ(Id_n^2*n^2)   ・・・(13)
 なお、式(13)の代わりに、以下の式(14)、式(15)、式(16)のいずれかを用いてd軸電流和sumを簡易的に計算してもよい。これらの計算方法を用いることで、変調波/搬送波位相差に応じた渦電流損失Weの変化に対して、ある程度の目安となるd軸電流和sumを容易に計算することが可能となる。あるいは、次数nの代わりにモータ回転速度ωrや、モータ回転速度ωrに基づいて求めたモータ回転周波数またはモータ電気角周波数などを用いて、d軸電流和sumを計算するようにしてもよい。これ以外にも、渦電流損失Weの変化を反映したものであれば、任意の方法で計算される数値をd軸電流和sumとして用いることが可能である。
 sum=Σ(Id_n*n)   ・・・(14)
 sum=Σ(Id_n^2)   ・・・(15)
 sum=Σ(Id_n)     ・・・(16)
 固定三角波位相決定部1633は、d軸電流和演算部1632により計算されたd軸電流和sumに基づいて、搬送波位相差Δθcarrの値を決定する。ここでは、d軸電流和sumの値が最小となるように、搬送波位相差Δθcarrの値を決定する。例えば、搬送波位相差Δθcarrの値を所定の範囲内で変化させてd軸電流和sumの値を取得し、最小のd軸電流和sumが得られたときの搬送波位相差Δθcarrの値を、最終的な搬送波位相差Δθcarrの値として決定する。
 あるいは、前述の図8で示したように、変調波/搬送波位相差とd軸電流和sumとの関係を、固定三角波位相決定部1633が有する所定の記憶領域に予め記憶しておき、この関係に基づいて、d軸電流和sumの値が最小となる搬送波位相差Δθcarrの値を決定してもよい。この場合、モータ回転速度ωrやトルク指令T*などをパラメータとし、これらのパラメータの値ごとに最適な搬送波位相差Δθcarrの値を予め解析等により取得しておき、マップ情報として固定三角波位相決定部1633に記憶させてもよい。このようにすれば、モータ2の動作状態に応じて搬送波位相差Δθcarrの値を変化させることができるため、固定三角波位相決定部1633において、最適な搬送波位相差Δθcarrの値を得ることが可能となる。なお、このようにする場合は、電圧位相誤差演算部163においてd軸電流和演算部1632を設けずに、d軸電流和sumの計算を省略しても構わない。
 さらに、固定三角波位相決定部1633において、磁石温度Tmagに基づいて搬送波位相差Δθcarrの決定方法を変化させてもよい。例えば、磁石温度Tmagが所定温度以下であれば、搬送波位相差Δθcarrを予め定めた所定の値に設定し、磁石の渦電流損失を低減するための変調波/搬送波位相差の調整を行わないようにする。一方、磁石温度Tmagが所定温度を超えたときには、d軸電流和sumの値が最小となるように、固定三角波位相決定部1633において搬送波位相差Δθcarrを決定する。このようにすれば、磁石温度Tmagに応じて、磁石の渦電流損失の抑制が必要であるか否かを適切に判断し、その判断結果に応じて搬送波位相差Δθcarrの値を効果的に切り替えることが可能となる。この場合、磁石温度Tmagが上記の所定温度を挟んで変化するときに、その前後で搬送波位相差Δθcarrが急激に変化してインバータ3から出力される三相交流電圧に過大な変動が生じるのを避けるため、搬送波位相差Δθcarrをランプ状に変化させることが好ましい。
 なお、上記のように磁石温度Tmagに基づいて搬送波位相差Δθcarrの決定方法を変化させる場合、磁石温度Tmagが所定温度以下のときには、固定三角波位相決定部1633において他の方法で搬送波位相差Δθcarrを決定してもよい。例えば、特願2019-165772(2019年9月11日出願)に記載されている方法を用いることで、モータ2の電磁気設計に起因して生じるトルク脈動や円環振動を低減するように、搬送波位相差Δθcarrを決定することができる。また、磁石温度Tmagの抑制とモータ2の低振動化・低騒音化を両立できるように、搬送波位相差Δθcarrを決定してもよい。これ以外にも、任意の方法で搬送波位相差Δθcarrを決定することが可能である。
 電圧位相誤差演算部163では、以上説明したようにして、搬送波位相差Δθcarrが決定され、電圧位相誤差Δθvが演算される。これにより、d軸電流Idとモータ回転速度ωrに応じて、d軸電流和sumが最小となるように、電圧位相誤差Δθvを決定することができる。その結果、モータ2の回転子の磁石に生じる渦電流損失を低減させるように、インバータ3に対する電圧指令とパルス幅変調に用いる搬送波との位相差を変化させて、搬送波周波数fcを設定することができる。その結果、磁石温度Tmagの上昇を抑制し、不可逆減磁の発生を防止することができる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)モータ制御装置1は、直流電力から交流電力への電力変換を行うインバータ3と接続され、その交流電力を用いて駆動するモータ2の駆動を制御するものであって、搬送波である三角波信号Trを生成する三角波生成部17と、三角波信号Trの周波数を表す搬送波周波数fcを調整する搬送波周波数調整部16と、三角波信号Trを用いてトルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*をパルス幅変調し、インバータ3の動作を制御するためのゲート信号を生成するゲート信号生成部18とを備える。搬送波周波数調整部16は、モータ2に通電されるd軸電流Idとモータ2の回転速度を表すモータ回転速度ωrとに応じてモータ2の回転子の磁石に生じる渦電流損失Weを低減するように、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差を調整する。このようにしたので、インバータ3のスイッチング損失を抑えつつ、モータ2の不可逆減磁の発生を防止することができる。
(2)搬送波周波数調整部16の電圧位相誤差演算部163は、d軸電流和演算部1632および固定三角波位相決定部1633により、d軸電流Idとモータ回転速度ωrとに基づいて、渦電流損失Weを低減するための搬送波位相差Δθcarrを決定する。そして、決定した搬送波位相差Δθcarrを用いて、基準電圧位相演算部1631、加算部1634および減算部1635により、電圧位相誤差Δθvを演算し、三角波信号Trの位相を調整する。これにより、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差を調整する。このようにしたので、モータ2の回転子の磁石に生じる渦電流損失Weを低減するように、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差を確実に調整することが可能となる。
(3)搬送波周波数調整部16の電圧位相誤差演算部163は、d軸電流和演算部1632により、モータ回転速度ωrに基づいて電気角1周期分のd軸電流Idを抽出し(ステップS901)、抽出した電気角1周期分のd軸電流Idについて、式(13)~式(16)のいずれかを用いてd軸電流和sumを計算する。すなわち、式(13)で表されるd軸電流の各高調波Id_nの2乗とその次数nの2乗との積の合計値、または、式(14)で表されるd軸電流の各高調波Id_nとその次数nとの積の合計値、または、式(15)で表されるd軸電流の各高調波Id_nの2乗の合計値、または、式(16)で表されるd軸電流の各高調波Id_nの合計値のいずれかを、d軸電流和sumとして計算する(ステップS903)。そして、固定三角波位相決定部1633により、当該合計値に基づいて搬送波位相差Δθcarrを決定する。このようにしたので、モータ2の回転子の磁石に生じる渦電流損失Weを低減するための搬送波位相差Δθcarrを、確実に決定することができる。
(4)搬送波周波数調整部16において、固定三角波位相決定部1633は、渦電流損失Weを低減するための搬送波位相差Δθcarrが予め記憶された記憶領域を有しており、この記憶領域に記憶された搬送波位相差Δθcarrを用いて三角波信号Trの位相を調整することで、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差を調整することができる。このようにすれば、渦電流損失Weを低減するための搬送波位相差Δθcarrを容易かつ確実に決定して、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの調整を行うことができる。
(5)モータ制御装置1は、磁石温度Tmagを検出する温度センサ52から磁石温度Tmagの検出結果を取得するか、またはモータ2の誘起電圧の温度依存性に基づいて磁石温度Tmagを推定することで、磁石温度Tmagを取得する。搬送波周波数調整部16は、磁石温度Tmagが所定温度を超えたときに、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差の調整を行うようにしてもよい。このようにすれば、温度センサ52の有無に関わらず、磁石温度Tmagを確実に取得することができる。また、磁石温度Tmagに応じて、磁石の渦電流損失の抑制が必要であるか否かを適切に判断し、その判断結果に従って、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差の調整を適切なタイミングで行うことができる。
(6)モータ制御装置1は、搬送波周波数調整部16において、磁石温度Tmagが所定温度より低い場合、任意の方法で搬送波位相差Δθcarrを決定することで、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trとの位相差を予め定めた所定の値に設定してもよい。このようにすれば、磁石の渦電流損失の抑制が必要でない場合は、不要な処理を削減し、処理負荷の軽減を図ることができる。
[第2の実施形態]
 次に、本発明の第2の実施形態について図面を用いて説明する。本実施形態では、モータ2が埋め込み磁石型の永久磁石同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)である場合の例を説明する。なお、本実施形態におけるモータ制御装置やモータ駆動システムの構成は、第1の実施形態とそれぞれ同一である。したがって、以下では第1の実施形態で説明したモータ制御装置1およびモータ駆動システム100の構成を用いて、本実施形態の説明を行う。
 埋め込み磁石型の永久磁石同期モータは、ハイブリッド自動車や電気自動車などの電動車や電気鉄道において数多く用いられている。その構造上の大きな特徴は、回転子に取り付けられている磁石がロータコア内へ埋め込まれている点である。これにより、磁石があるd軸と磁石がないq軸でインダクタンスが異なり、d軸インダクタンスLdと比較してq軸インダクタンスLqが大きくなる逆突極性を備えている。
 本実施形態では、埋め込み磁石型の永久磁石同期モータをモータ2に採用したモータ駆動システム100において、モータ制御装置1により、第1の実施形態と同様に、モータ2の回転子の磁石に生じる渦電流損失を低減させるように、インバータ3に対する電圧指令とパルス幅変調に用いる搬送波との位相差を変化させて、搬送波周波数fcを設定するようにしている。そのため、本実施形態のモータ制御装置1において、搬送波周波数調整部16の電圧位相誤差演算部163は、第1の実施形態で説明した図4と同様の構成を有している。そして、d軸電流和演算部1632および固定三角波位相決定部1633により、前述の式(13)~式(16)のいずれかで表されるd軸電流和sumを計算し、このd軸電流和sumの値が最小となるように、搬送波位相差Δθcarrの値を決定するようにしている。
 埋め込み磁石型の永久磁石同期モータの場合、d軸インダクタンスLdと比較して、q軸インダクタンスLqが2~3倍程度大きいことが多い。そのような場合に、dq軸の高調波電圧Vd_n,Vq_nをモータ2に印加した場合の過渡状態の電圧方程式は、以下の式(17)と式(18)で与えられる。
 Vd_n=Ld*(dId_n/dt)   ・・・(17)
 Vq_n=Lq*(dIq_n/dt)   ・・・(18)
 ここで、Id_nはn次のd軸高調波電流を、Iq_nはn次のq軸高調波電流をそれぞれ表す。
 上記のように、埋め込み磁石型の永久磁石同期モータであるモータ2では、d軸インダクタンスLdと比較してq軸インダクタンスLqが2~3倍程度大きいことから、d軸高調波電圧Vd_nとq軸高調波電圧Vq_nを同じ大きさで印可した場合、d軸高調波電流Id_nがq軸高調波電流Iq_nと比較して2~3倍程度大きくなる。そのため、d軸高調波電流Id_nの電流リプルを最小にすれば、モータ2に流れる三相交流電流Iu、Iv、Iwの高調波電流リプルも最小となり、結果として、三相交流電流の高調波電流リプルに起因して角線などで多く発生する交流銅損も最小にできる。
 図10は、変調率を1.15とし、搬送波と変調波の周波数比を9としたときの、変調波/搬送波位相差とd軸電流和、q軸電流和および相電流和との関係を示した図である。なお、図10ではd軸電流和を、前述の式(13)により計算している。また、q軸電流和をΣ(Iq_n^2*n^2)、相電流和をΣ(I_n^2*n^2)でそれぞれ計算している。ここで、Iq_nはq軸電流Iqの各次数の高調波成分を表し、I_nはU相電流Iu(またはV相電流Iv、あるいはW相電流Iw)の各次数の高調波成分を表している。
 図10では、変調波/搬送波位相差が135degのときにd軸電流和の値が最小となり、このときに相電流和の値も最小となっている。したがって、変調波/搬送波位相差を135degに設定すると磁石温度Tmagとコイル温度がそれぞれ最小になると予測される。
 実際に、変調率1.15近傍でモータ2を駆動させたときの磁石温度Tmagおよびコイル温度の基準温度からの温度上昇をそれぞれ測定したところ、変調波/搬送波位相差が135degの場合には、磁石温度Tmagが63.5℃、コイル温度が79.0℃それぞれ上昇した。一方、変調波/搬送波位相差が90degの場合には、磁石温度Tmagが67℃、コイル温度が80.4℃それぞれ上昇し、135degの場合と比べて、磁石温度Tmagは3.5℃、コイル温度は1.4℃高いことが確認された。
 以上説明したように、変調波/搬送波位相差を変更することで、モータ2のトルク出力値を維持しつつ、インバータ3から出力される三相交流電圧の各高調波成分の位相を変化させ、これに応じてd軸電流和と相電流和の値をそれぞれ変化させて渦電流損失Weを調整することが可能となる。その結果、モータ2の出力トルクや効率を悪化させることなく、モータ2のロータに設置された磁石の渦電流損失に加えて、さらにコイルの交流銅損も低減でき、モータ2の温度上昇を抑制できることが分かる。
 本実施形態では、上記の考え方に基づき、d軸電流和演算部1632および固定三角波位相決定部1633において、モータ2の磁石の渦電流損失とコイルの交流銅損を抑制可能な変調波/搬送波位相差を実現する電圧位相誤差Δθvを設定できるように、搬送波位相差Δθcarrの値を決定する。なお、その具体的な手法は、第1の実施形態で説明したものと同様である。
 以上説明した本発明の第2の実施形態によれば、埋め込み磁石型の永久磁石同期モータを用いた場合に、第1の実施形態で説明したのと同様の作用効果を奏することができる。
[第3の実施形態]
 次に、本発明の第3の実施形態について図面を用いて説明する。本実施形態では、電池温度Tmagの値に応じて、d軸電流指令Id*およびq軸電流指令Iq*の値を変化させる場合の例を説明する。なお、本実施形態におけるモータ駆動システムの構成は、モータ制御装置1以外は第1の実施形態と同一である。したがって、以下では第1の実施形態で説明したモータ駆動システム100の構成を用いて、本実施形態の説明を行う。
 図11は、本発明の第3の実施形態に係るモータ制御装置1’の機能構成を示すブロック図である。図11に示すモータ制御装置1’は、第1の実施形態で説明した図2のモータ制御装置1と比較して、電流指令生成部11の代わりに電流指令生成部11’を有する点が相違している。なお、これ以外の点は第1の実施形態と同じであるため、以下ではその説明を省略する。
 図12は、本発明の第3の実施形態に係る電流指令生成部11’のブロック図である。図12に示すように、電流指令生成部11’は、通常動作用の第1電流指令生成部111と、磁石温度低減用の第2電流指令生成部112と、電流指令選択部113によって構成される。
 第1電流指令生成部111には、高圧バッテリ5の電源電圧Hvdcとトルク指令T*が入力される。第2電流指令生成部112には、電源電圧Hvdcと、トルク指令T*と、変調率Hとが入力される。なお、変調率Hは、高圧バッテリ5からインバータ3に供給される直流電力と、インバータ3からモータ2に出力される交流電力との電圧振幅比を表しており、モータ制御装置1’において以下の式(19)に基づいて算出される。
 H=√(Vd^2+Vq^2)/(Hvdc/2) ・・・(19)
 電流指令選択部113には、磁石温度Tmagが入力される。電流指令選択部113は、磁石温度Tmagが所定値未満である通常動作では第1電流指令生成部111から出力された電流指令を選択し、一方、磁石温度Tmagが所定の値を超過した場合は第2電流指令生成部112から出力された電流指令を選択する。ここで、第1電流指令生成部111は、第1の実施形態で説明した電流指令生成部11と同様に、入力されたトルクT*指令と電源電圧Hvdcに基づき、予め設定された電流指令マップや数式等を用いて、トルク指令T*に応じたd軸電流指令Id*、q軸電流指令Iq*を生成する。一方、第2電流指令生成部112は、以下で説明するように電流指令を生成することで、変調率Hが所定の範囲内となるようにしている。
 本実施形態の電流指令生成部11’において、第2電流指令生成部112は、トルクに対する電圧絶対値|V|(=√(Vd^2+Vq^2))を、変調率Hの目標範囲に対応する所定の電圧範囲となるように調整する。なお、電圧絶対値|V|の計算は、例えば三相/dq変換電流制御部13から出力されるd軸電流値Idおよびq軸電流値Iqから、前述の式(1)、式(2)を用いて計算すればよい。
 具体的には、第2電流指令生成部112は、トルク指令T*に対応するd軸電流指令Id*とq軸電流指令Iq*の組み合わせを、下記の式(20)に従って決定する。その際に、これらの電流指令に応じた電圧絶対値|V|が所定の範囲内となるように、d軸電流指令Id*とq軸電流指令Iq*の組み合わせを決定する。これにより、本実施形態で使用する電流動作点を導出する。
 T=p*Ke*Iq+p*(Ld-Lq)*Id*Iq   ・・・(20)
 ここで、Id、Iqはdq軸電流、Ld、Lqはdq軸インダクタンス、pは極対数、Keは誘起電圧定数である。
 以上説明したように、本実施形態のモータ制御装置1’は、磁石温度Tmagが所定の値を超過すると、電流指令生成部11’において、第1電流指令生成部111が生成する通常動作用の電流指令に替えて、第2電流指令生成部112が生成する電流指令を選択する。これにより、d軸電流(弱め界磁電流)Idの通電に起因してd軸干渉電圧ω*Ld*Idが増加し、これに応じてq軸電圧Vqが低減することで、電圧絶対値|V|が所定の範囲内となるようにする。その結果、式(19)で算出される変調率Hを所望の範囲内、例えば1.15を中心とする所定範囲内に調整することができる。すなわち、モータ制御装置1’は、回転子の磁石温度Tmagが所定温度を超えた場合、変調率Hに基づいてd軸電流Idを制御することによって、モータ2の出力トルクを変化させずにインバータ3から出力される交流電圧を変化させ、電圧絶対値|V|が所定範囲内となるように調整し、その結果、変調率Hを変化させる。これにより、変調率Hが所定の範囲内となるようにする。
 図13は、変調率を0.8とし、搬送波と変調波の周波数比を9としたときの、変調波/搬送波位相差とd軸電流和、q軸電流和および相電流和との関係を示した図である。なお、図13でも前述の図10と同様に、d軸電流和を式(13)により計算し、q軸電流和をΣ(Iq_n^2*n^2)、相電流和をΣ(I_n^2*n^2)でそれぞれ計算している。
 図13でも図10と同様に、変調波/搬送波位相差が135degのときにd軸電流和の値が最小となり、このときに相電流和の値も最小となっている。したがって、変調波/搬送波位相差を135degに設定することで、磁石温度Tmagが最小になると予測される。
 実際に、変調率0.8近傍でモータ2を駆動させたときの磁石温度Tmagおよびコイル温度の基準温度からの温度上昇をそれぞれ測定したところ、変調波/搬送波位相差が135degの場合には、磁石温度Tmagが97.2℃、コイル温度が88.6℃それぞれ上昇した。一方、変調波/搬送波位相差が90degの場合には、磁石温度Tmagが99.3℃、コイル温度が90.0℃それぞれ上昇し、135degの場合と比べて、磁石温度Tmagは2.1℃、コイル温度は1.4℃高いことが確認された。
 また、図13の場合(変調率0.8)と図10の場合(変調率1.15)を比較すると、変調波/搬送波位相差が135degの場合に、磁石温度Tmagとコイル温度がそれぞれ最小となるが、変調率0.8では磁石温度Tmagが97.2℃であり、変調率1.15の場合(磁石温度Tmagが63.5℃)と比べて33.7℃も高い。また、変調率0.8ではコイル温度が79.0℃であり、変調率1.15の場合(コイル温度が88.6℃)と比べて9.6℃も高い。このように、変調率が1.15の場合と比べて、変調率が0.8のときには磁石温度Tmag、コイル温度がともに大きく増加することが確認された。
 以上説明したように、弱め界磁電流となるd軸電流を変更することで、モータ2のトルク出力値を維持しつつ、インバータ3から出力される交流電圧の電圧絶対値|V|を変化させ、これに応じて変調率Hを変化させて渦電流損失Weを調整することが可能となる。その結果、モータ2の出力トルクや効率を悪化させることなく、モータ2のロータに設置された磁石の渦電流損失とコイルの交流銅損を低減し、モータ2の温度上昇を抑制できることが分かる。
 本実施形態では、上記の考え方に基づき、電流指令生成部11’において、磁石温度Tmagが所定値以上のときには、モータ2の磁石の渦電流損失とコイルの交流銅損を抑制可能な所定の変調率Hの値、例えば1.15付近となるように、第2電流指令生成部112から出力される電流指令を選択する。こうした制御を、第1、第2の各実施形態で説明した変調波/搬送波位相差の調整に加えてさらに行うことにより、モータ2の出力トルクや効率を悪化させることなく、モータ2のロータに設置された磁石の渦電流損失とコイルの交流銅損を大幅に低減し、モータ2の温度上昇をさらに抑制している。
 なお、本実施形態では、d軸電流(弱め界磁電流)の通電によって、交流電圧と直流電圧との比である変調率を調整し、1.15近傍に保つようにした。しかしながら、変調率を変化させる例はいくつかあり、どの例を用いても良い。以下ではその例を説明する。
 まず、直流電圧を変更して対応する例に関して述べる。本例は、高圧バッテリ5の電源電圧Hvdcを昇圧して直流電源とするシステムに適しており、直流電圧を変化させることで、交流電圧と直流電圧との比である変調率を所望の値に変化させる。すなわち、変調率が1.15近傍となるように、高圧バッテリ5からインバータ3へ出力される電源電圧Hvdcを制御する。なお、高圧バッテリ5の電源電圧Hvdcを昇圧するのではなく、降圧することで変調率を変化させてもよい。
 続いて、モータ回転数を変更して対応する例に関して述べる。本例は、エンジンによって所望の電力を得るエンジン発電機システムに適しており、発電機用モータの回転数を自在に制御して、交流電圧と直流電圧との比である変調率を所望の値に変化させる。すなわち、モータの回転数を変更することで、前述の式(1)、式(2)における非干渉項(ω*Ld*Id、ω*Lq*Iq)と誘起電圧項(ω*Ke)をそれぞれ変化させて、dq軸電圧Vd,Vqを変化させる。これにより、式(19)で表される変調率Hを所望の値に変化させる。
 なお、上記で説明した変調率を変化させるための各種手法は、単独で用いてもよいし、複数を組み合わせて用いてもよい。本実施形態では、任意の手法を採用して所望の変調率を達成することができる。
 また、本実施形態では、第2電流指令生成部112において、変調率を1.15近傍に保つように調整することとしたが、変調率を他の値に調整してもよい。例えば、変調率を1以上1.27以下のいずれかの値に保つように調整することができる。これ以外でも、モータ2のロータに設置された磁石の渦電流損失とコイルの交流銅損を低減することができれば、変調率を任意の値に調整することが可能である。
 以上説明した本発明の第3の実施形態によれば、モータ制御装置1’は、磁石温度Tmagが所定温度より高い場合、直流電力の電圧Hvdcに対する交流電力の電圧|V|の比に基づいて、インバータ3から出力される交流電力の電圧を変化させる。具体的には、モータ制御装置1’は、トルク指令T*に応じたd軸電流指令Id*およびq軸電流指令Iq*を生成する電流指令生成部11’と、d軸電流指令Id*およびq軸電流指令Iq*に基づいて三相電圧指令Vu*、Vv*、Vw*を演算する電流制御部14およびdq/三相電圧変換部15とを備える。電流指令生成部11’は、直流電力と交流電力との電圧振幅比に応じた変調率Hが所定の値、例えば1以上1.27以下の所定の値となるように、d軸電流指令Id*を生成してd軸電流Idを制御するか、あるいは、直流電力の電圧Hvdcまたはモータ2の回転速度ωrを制御する。このようにしたので、モータ2のロータに設置された磁石の渦電流損失とコイルの交流銅損を大幅に低減し、モータ2の温度上昇をさらに抑制することができる。したがって、インバータ3のスイッチング損失を抑えつつ、モータ2の不可逆減磁の発生をより一層効果的に防止することができる。
[第4の実施形態]
 次に、本発明の第4の実施形態について図面を用いて説明する。
 図14は、第4の実施形態における機電一体ユニット71の外観斜視図である。
 機電一体ユニット71は、第1~第3の実施形態で説明したモータ駆動システム100(モータ制御装置1または1’、モータ2およびインバータ3)を含んで構成される。モータ2とインバータ3はバスバー712を介して結合部713で接続される。モータ2の出力がギア711を介し、図示省略したディファレンシャルギアへと伝達され、車軸へと伝達される。なお、図14ではモータ制御装置1,1’の図示を省略しているが、モータ制御装置1,1’は任意の位置に配置することができる。
 この機電一体ユニット71の特徴は、モータ2とインバータ3とギア711とが一体となった構造である。機電一体ユニット71では、このような一体構造により、モータ2、インバータ3、ギア711で発生した熱によって、モータ2のロータの磁石温度や、モータ2の固定子のコイル温度が悪化する。しかしながら、第1~第3の実施形態で説明したモータ制御装置1,1’を用いてモータ2の駆動を制御することで、ロータの磁石温度の上昇を防ぎつつ、連続定格トルクを向上できるため、小型で高効率な機電一体ユニットを実現できる。さらに、モータ2として埋め込み磁石型の永久磁石同期モータを用いた第2の実施形態を採用すると、ロータの磁石温度の上昇に加えて、コイル温度の上昇を防ぐことができる。そのため、連続定格トルクを向上でき、さらに小型で高効率な機電一体ユニットを実現できる。
[第5の実施形態]
 次に、本発明の第5の実施形態について図面を用いて説明する。
 図15は、第5の実施形態における発電機システム72の構成図である。
 図15に示すように、発電機システム72は、モータ駆動システム100と、モータ2に接続されたエンジンシステム721と、エンジン制御部722とで構成される。モータ駆動システム100の構成は第1の実施形態で示した図1と同様であり、同一箇所には同一の符号を付してその説明を省略する。
 エンジンシステム721はエンジン制御部722によって指令が与えられ、通常時はエンジンシステム721の最も効率が良い回転数で一定回転される。しかしながら、その直流電圧での変調率が1.15ではない場合、dq軸の高調波電流や相電流の高調波成分が増大し、磁石渦電流損失および交流銅損が増大する。
 そこで、本実施の形態では、第1の実施形態から第3の実施形態で述べたモータ制御装置1を用いることで、ロータの磁石温度の上昇を防ぎ、磁石温度が高温の場合でもエンジン回転数を変更する。
 本実施形態によれば、ロータの磁石温度の上昇を防ぎ、磁石温度が高温の場合でも昇圧コンバータ74の昇圧電圧を変更することで所望の出力を維持でき、ハイブリッド自動車や電気自動車などの環境対応車で使用されるモータの連続定格を向上できる。つまり、高速での坂道走行などの連続走行で必要なトルクを向上でき、ハイブリッド自動車などの環境対応車の駆動電力を安定して発生させることができる。本実施形態では、モータ制御装置1を代表として説明したが、モータ制御装置1’(第3の実施形態)を用いても効果を得られる。
[第6の実施形態]
 次に、本発明の第6の実施形態について図面を用いて説明する。
 図16は、第6の実施形態における昇圧コンバータシステム73の構成図である。
 図16に示すように、昇圧コンバータシステム73はモータ駆動システム100を含み、昇圧コンバータ74によって高圧バッテリ5などの直流電圧を所望の電圧に昇圧する。モータ駆動システム100の構成は第1の実施形態で示した図1と同様であり、同一箇所には同一の符号を付してその説明を省略する。
 昇圧コンバータ74は、スイッチング素子743、744を直列に接続し、直列に接続されたスイッチング素子743、744の中間接続点にリアクトル742を介して高圧バッテリ5が接続される。また、高圧バッテリ5と並列にコンデンサ741が接続される。各スイッチング素子743、744はダイオード接続されている。
 昇圧コンバータ74はモータ制御装置1によって指令が与えられ、昇圧コンバータシステム73の最も効率が良い直流電圧まで昇圧される。しかしながら、その直流電圧での変調率が1.15ではない場合、dq軸の高調波電流や相電流の高調波成分が増大し、磁石渦電流損失および交流銅損が増大する。
 そこで、本実施の形態では、第3の実施形態で説明した直流電圧を変更して対応する例と同様に、昇圧コンバータ74により直流電圧を変化させて、変調率を1.15近傍に保つようにする。このようにすることで、磁石渦電流損失と交流銅損が小さい領域で、変調率を1.15近傍もしくは1.15以上として自在に制御して、磁石渦電流損失および交流銅損を大幅に低減する。さらにこのとき、第1の実施形態で説明したように、d軸電流和sumが最小となるように電圧位相誤差Δθvを決定することで、磁石温度の低減効果も得られる。また、第2の実施形態で説明したように、埋め込み磁石型の永久磁石同期モータをモータ2として用いた場合には、コイル温度の低減効果も得られる。
 本実施形態によれば、ロータの磁石温度の上昇を防ぎ、磁石温度が高温の場合でも昇圧コンバータ74の昇圧電圧を変更することで所望の出力を維持でき、ハイブリッド自動車や電気自動車などの環境対応車の駆動を継続できる。本実施形態では、モータ制御装置1を代表として説明したが、モータ制御装置1’(第3の実施形態)を用いても効果を得られる。また、昇圧コンバータ74を用いて直流電圧を変化させることを紹介したが、発電機を使用した直流電圧生成によっても同じような効果を得ることが可能である。
[第7の実施形態]
 次に、図17を用いて、モータ駆動システム100を車両に適用した実施形態を説明する。
 図17は、本発明の第7の実施形態におけるハイブリッド車両システムの構成図である。ハイブリッド車両システムは、図17に示すように、モータ2をモータ/ジェネレータとして適用したパワートレインを有し、モータ2の回転駆動力を用いて走行する。なお、ハイブリッド車両システムに限らず、電動車両システムであってもよい。モータ2、インバータ3、高圧バッテリ5などは、第1の実施形態~第3の実施形態におけるモータ駆動システム100と同様のものである。
 図17に示すハイブリッド車両システムにおいて、車体800のフロント部には、前輪車軸801が回転可能に軸支されており、前輪車軸801の両端には、前輪802、803が設けられている。車体800のリア部には、後輪車軸804が回転可能に軸支されており、後輪車軸804の両端には後輪805、806が設けられている。
 前輪車軸801の中央部には、動力分配機構であるディファレンシャルギア811が設けられており、エンジン810から変速機812を介して伝達された回転駆動力を左右の前輪車軸801に分配するようになっている。
 エンジン810のクランクシャフトに設けられたプーリーとモータ2の回転軸に設けられたプーリーとがベルトを介して機械的に連結されている。これにより、モータ2の回転駆動力がエンジン810に、エンジン810の回転駆動力がモータ2にそれぞれ伝達できるようになっている。モータ2は、モータ制御装置1の制御に応じてインバータ3から出力された三相交流電力がステータのコイルに供給されることによって、ロータが回転し、三相交流電力に応じた回転駆動力を発生する。
 すなわち、モータ2は、モータ制御装置1の制御に応じてインバータ3によって制御されて電動機として動作する一方、エンジン810の回転駆動力を受けてロータが回転することによって、ステータのステータコイルに起電力が誘起され、三相交流電力を発生する発電機として動作する。
 インバータ3は、高電圧(42Vあるいは300V)系電源である高圧バッテリ5から供給された直流電力を三相交流電力に変換する電力変換装置であり、運転指令値とロータの磁極位置に従って、モータ2のステータコイルに流れる三相交流電流を制御する。
 モータ2によって発電された三相交流電力は、インバータ3によって直流電力に変換されて高圧バッテリ5を充電する。高圧バッテリ5にはDC-DCコンバータ824を介して低圧バッテリ823に電気的に接続されている。低圧バッテリ823は、自動車の低電圧(14V)系電源を構成するものであり、エンジン810を初期始動(コールド始動)させるスタータ825、ラジオ、ライトなどの電源に用いられている。
 車両が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン810を停止させ、再発車時にエンジン810を再始動(ホット始動)させる時には、インバータ3でモータ2を駆動し、エンジン810を再始動させる。尚、アイドルストップモードにおいて、高圧バッテリ5の充電量が不足している場合や、エンジン810が十分に温まっていない場合などにおいては、エンジン810を停止せず駆動を継続する。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン810を駆動源としている補機類の駆動源を確保する必要がある。この場合、モータ2を駆動させて補機類を駆動する。
 加速モード時や高負荷運転モードにある時にも、モータ2を駆動させてエンジン810の駆動をアシストする。逆に、高圧バッテリ5の充電が必要な充電モードにある時には、エンジン810によってモータ2を発電させて高圧バッテリ5を充電する。すなわち、車両の制動時や減速時などに回生を行う。
 本実施形態によれば、第1~第3の実施形態で説明したモータ駆動システム100を用いて、図17のハイブリッド車両システムが実現される。このハイブリッド車両システムでは、第1の実施形態で説明したように、d軸電流和sumが最小となるように電圧位相誤差Δθvを決定することで、磁石温度の低減効果が得られる。また、第2の実施形態で説明したように、埋め込み磁石型の永久磁石同期モータをモータ2として用いた場合には、コイル温度の低減効果も得られる。さらに、第4の実施形態で説明したように、直流電圧を昇圧して変調率1.15近傍もしくは1.15以上とすることで、モータ2の出力を維持しながら、磁石渦電流損失と交流銅損をさらに低減することも可能である。その結果、ロータ磁石の渦電流損失を低減でき、電気自動車やハイブリッド自動車などの環境対応車で使用されるモータの連続定格を向上できる。つまり、高速での坂道走行などの連続走行で必要なトルクを向上できる。本実施形態ではモータ制御装置1を代表として説明したが、モータ制御装置1’(第3の実施形態)を用いても効果を得られる。
 なお、上記の各実施形態において、モータ制御装置1,1’内の各構成(図2~図4など)は、ハードウェアによる構成によらず、CPUとプログラムによって各構成の機能を実現するようにしてもよい。モータ制御装置1,1’内の各構成をCPUとプログラムによって実現する場合、ハードウェアの個数が減るため低コスト化できるという利点がある。また、このプログラムは、予めモータ制御装置の記憶媒体に格納して提供することができる。あるいは、独立した記憶媒体にプログラムを格納して提供したり、ネットワーク回線によりプログラムをモータ制御装置の記憶媒体に記録して格納することもできる。データ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給してもよい。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の複数の実施形態を組み合わせた構成としてもよい。
 1,1’…モータ制御装置、2…永久磁石同期モータ(モータ)、3…インバータ、5…高圧バッテリ、7…電流検出部、8…回転位置検出器、11,11’…電流指令生成部、12…速度算出部、13…三相/dq変換部、14…電流制御部、15…dq/三相電圧変換部、16…搬送波周波数調整部、17…三角波生成部、18…ゲート信号生成部、31…インバータ回路、32…PWM信号駆動回路、33…平滑キャパシタ、51…回転位置センサ、52…温度センサ、71…機電一体ユニット、72…発電機システム、73…昇圧コンバータシステム、74…昇圧コンバータ、100…モータ駆動システム、111…第1電流指令生成部、112…第2電流指令生成部、113…電流指令選択部、161…同期PWM搬送波数選択部、162…電圧位相演算部、163…電圧位相誤差演算部、164…同期搬送波周波数演算部、165…搬送波周波数設定部、711…ギア、712…バスバー、713…結合部、721…エンジンシステム、722…エンジン制御部、741…コンデンサ、742…リアクトル、743、744…スイッチング素子、800…車体、801…前輪車軸、802…前輪、803…前輪、804…後輪車軸、805…後輪、806…後輪、810…エンジン、811…ディファレンシャルギア、812…変速機、823…低圧バッテリ、824…DC-DCコンバータ、825…スタータ、1631…基準電圧位相演算部、1632…d軸電流和演算部、1633…固定三角波位相決定部、1634…加算部、1635…減算部

Claims (17)

  1.  直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するモータ制御装置であって、
     搬送波を生成する搬送波生成部と、
     前記搬送波の周波数を調整する搬送波周波数調整部と、
     前記搬送波を用いてトルク指令に応じた電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するゲート信号生成部と、を備え、
     前記搬送波周波数調整部は、前記交流モータに通電されるd軸電流と前記交流モータの回転速度とに応じて前記交流モータの回転子の磁石に生じる渦電流損失を低減するように、前記電圧指令と前記搬送波の位相差を調整するモータ制御装置。
  2.  請求項1に記載のモータ制御装置において、
     前記搬送波周波数調整部は、前記d軸電流と前記交流モータの回転速度とに基づいて、前記渦電流損失を低減するための搬送波位相差を決定し、決定した前記搬送波位相差を用いて前記搬送波の位相を調整することで、前記位相差を調整するモータ制御装置。
  3.  請求項2に記載のモータ制御装置において、
     前記搬送波周波数調整部は、前記交流モータの回転速度に基づいて電気角1周期分の前記d軸電流を抽出し、抽出した電気角1周期分の前記d軸電流について、前記d軸電流の各高調波の2乗とその次数の2乗との積の合計値、または前記d軸電流の各高調波とその次数との積の合計値、または前記d軸電流の各高調波の2乗の合計値、または前記d軸電流の各高調波の合計値のいずれかを計算して、当該合計値に基づいて前記搬送波位相差を決定するモータ制御装置。
  4.  請求項1に記載のモータ制御装置において、
     前記搬送波周波数調整部は、前記渦電流損失を低減するための搬送波位相差が予め記憶された記憶領域を有しており、前記記憶領域に記憶された前記搬送波位相差を用いて前記搬送波の位相を調整することで、前記位相差を調整するモータ制御装置。
  5.  請求項1に記載のモータ制御装置において、
     前記磁石の温度を検出する温度センサから前記磁石の温度の検出結果を取得するか、または前記交流モータの誘起電圧の温度依存性に基づいて前記磁石の温度を推定することで、前記磁石の温度を取得し、
     前記搬送波周波数調整部は、前記磁石の温度が所定温度を超えたときに、前記位相差の調整を行うモータ制御装置。
  6.  請求項5に記載のモータ制御装置において、
     前記磁石の温度が前記所定温度より低い場合、前記位相差を予め定めた所定の値に設定するモータ制御装置。
  7.  請求項5に記載のモータ制御装置において、
     前記磁石の温度が前記所定温度より高い場合、前記直流電力の電圧に対する前記交流電力の電圧の比に基づいて、前記交流電力の電圧を変化させるモータ制御装置。
  8.  請求項7に記載のモータ制御装置において、
     前記トルク指令に応じたd軸電流指令およびq軸電流指令を生成する電流指令生成部と、
     前記d軸電流指令および前記q軸電流指令に基づいて前記電圧指令を演算する電流制御部と、を備え、
     前記電流指令生成部は、前記直流電力と前記交流電力との電圧振幅比に応じた変調率が所定の値となるように、前記d軸電流指令を生成して前記d軸電流を制御するモータ制御装置。
  9.  請求項8に記載のモータ制御装置において、
     前記変調率の前記所定の値は、1以上1.27以下であるモータ制御装置。
  10.  請求項7に記載のモータ制御装置において、
     前記直流電力と前記交流電力との電圧振幅比に応じた変調率が所定の値となるように、前記直流電力の電圧または前記交流モータの回転速度を制御するモータ制御装置。
  11.  請求項1に記載のモータ制御装置において、
     前記搬送波周波数調整部は、前記搬送波の周波数が前記電圧指令の周波数の整数倍となるように、前記搬送波の周波数を調整するモータ制御装置。
  12.  請求項11に記載のモータ制御装置において、
     前記整数倍は3の倍数であるモータ制御装置。
  13.  請求項1に記載のモータ制御装置において、
     前記交流モータは、前記回転子の表面に前記磁石が取り付けられた表面磁石型の永久磁石同期モータ、または前記回転子に前記磁石が埋め込まれた埋め込み磁石型の永久磁石同期モータであるモータ制御装置。
  14.  請求項1乃至13のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置に接続された前記電力変換器と、
     前記電力変換器により駆動される前記交流モータと、
     前記交流モータの回転駆動力を伝達するギアと、を備え、
     前記交流モータ、前記電力変換器および前記ギアが一体構造となった機電一体ユニット。
  15.  請求項1乃至13のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置に接続された前記電力変換器と、
     前記電力変換器により駆動される前記交流モータと、
     前記交流モータに接続されたエンジンシステムと、を備える発電機システム。
  16.  請求項1乃至13のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置に接続された前記電力変換器と、
     前記電力変換器により駆動される前記交流モータと、
     前記直流電力の電圧を昇圧する昇圧コンバータと、を備える昇圧コンバータシステム。
  17.  請求項1乃至13のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置に接続された前記電力変換器と、
     前記電力変換器により駆動される前記交流モータと、を備え、
     前記交流モータの回転駆動力を用いて走行する電動車両システム。
PCT/JP2021/007720 2020-07-15 2021-03-01 モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム WO2022014083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/009,894 US20230223824A1 (en) 2020-07-15 2021-03-01 Motor control device, mechatronic unit, power generation system, boost converter system, and electric vehicle system
DE112021002186.9T DE112021002186T5 (de) 2020-07-15 2021-03-01 Motorsteuerungseinrichtung, mechatronikeinheit, leistungserzeugungssystem,hochsetzstellersystem und elektroverkehrsmittelsystem
CN202180041863.1A CN115699562A (zh) 2020-07-15 2021-03-01 电动机控制装置、机电一体组件、发电机系统、升压转换系统以及电动车辆系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020121077A JP7413171B2 (ja) 2020-07-15 2020-07-15 モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
JP2020-121077 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014083A1 true WO2022014083A1 (ja) 2022-01-20

Family

ID=79554624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007720 WO2022014083A1 (ja) 2020-07-15 2021-03-01 モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム

Country Status (5)

Country Link
US (1) US20230223824A1 (ja)
JP (1) JP7413171B2 (ja)
CN (1) CN115699562A (ja)
DE (1) DE112021002186T5 (ja)
WO (1) WO2022014083A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344945B2 (ja) * 2021-09-27 2023-09-14 本田技研工業株式会社 制御装置、及びモータ駆動システム
EP4180261A1 (en) * 2021-11-15 2023-05-17 Volvo Car Corporation Method for controlling a drivetrain of an electric vehicle, data processing device, drivetrain and electric vehicle
JP2023170202A (ja) * 2022-05-18 2023-12-01 日立Astemo株式会社 モータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178166A (ja) * 2007-01-16 2008-07-31 Toyota Motor Corp モータ駆動装置
JP2010213485A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 回転電機制御システム
JP2013034315A (ja) * 2011-08-02 2013-02-14 Fuji Electric Co Ltd インバータの制御装置
JP2020099114A (ja) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 端子台支持構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE551770T1 (de) * 2007-04-20 2012-04-15 Mitsubishi Electric Corp Umrichter-steuerung
JP4798075B2 (ja) 2007-06-26 2011-10-19 トヨタ自動車株式会社 モータ駆動システム
JP6635059B2 (ja) * 2017-01-24 2020-01-22 株式会社デンソー 交流電動機の制御装置
JP6804810B2 (ja) 2018-03-21 2020-12-23 株式会社大一商会 遊技機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178166A (ja) * 2007-01-16 2008-07-31 Toyota Motor Corp モータ駆動装置
JP2010213485A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 回転電機制御システム
JP2013034315A (ja) * 2011-08-02 2013-02-14 Fuji Electric Co Ltd インバータの制御装置
JP2020099114A (ja) * 2018-12-17 2020-06-25 トヨタ自動車株式会社 端子台支持構造

Also Published As

Publication number Publication date
DE112021002186T5 (de) 2023-04-13
US20230223824A1 (en) 2023-07-13
CN115699562A (zh) 2023-02-03
JP7413171B2 (ja) 2024-01-15
JP2022018168A (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2022014083A1 (ja) モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
US9849806B1 (en) Current based six step control
CN110291709B (zh) 逆变器装置以及电动车辆
WO2010026699A1 (ja) 電力変換装置
US20090115362A1 (en) Electric motor control device, electric vehicle, and hybrid electric vehicle
US12074542B2 (en) Motor control device, electromechanical integrated unit, and electric vehicle system
WO2015004994A1 (ja) インバータ装置および電動車両
CN110168905B (zh) 变换器驱动装置及使用该装置的电动车辆系统
KR101966501B1 (ko) 권선형 동기 전동기를 이용한 충전 시스템
US12074551B2 (en) Motor control device, electromechanical unit, electric vehicle system, and motor control method
US11984821B2 (en) Inverter control device
CN111713012B (zh) 马达控制装置以及使用它的电动车辆系统
WO2021131658A1 (ja) インバータ制御装置、電動車両システム
US20210384859A1 (en) Motor control device and electric vehicle system
US20230155533A1 (en) Motor control device, electric vehicle, and motor control method
JP7579131B2 (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、電動車両システム、およびモータ制御方法
WO2022130731A1 (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、電動車両システム、およびモータ制御方法
WO2023053490A1 (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
WO2023223773A1 (ja) モータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム
WO2021020115A1 (ja) 制御装置、電動車両
JP2022067929A (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、ハイブリッドシステム、電動車両システム、および電気鉄道車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841189

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21841189

Country of ref document: EP

Kind code of ref document: A1