WO2022009937A1 - 樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板 - Google Patents

樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板 Download PDF

Info

Publication number
WO2022009937A1
WO2022009937A1 PCT/JP2021/025679 JP2021025679W WO2022009937A1 WO 2022009937 A1 WO2022009937 A1 WO 2022009937A1 JP 2021025679 W JP2021025679 W JP 2021025679W WO 2022009937 A1 WO2022009937 A1 WO 2022009937A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
resin
conductor
prepreg
less
Prior art date
Application number
PCT/JP2021/025679
Other languages
English (en)
French (fr)
Inventor
朋之 青木
章裕 山内
英一郎 斉藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180043456.4A priority Critical patent/CN115697660A/zh
Priority to ATA9183/2021A priority patent/AT525487A2/de
Priority to JP2022535378A priority patent/JPWO2022009937A1/ja
Priority to US18/012,583 priority patent/US20230257540A1/en
Priority to DE112021002573.2T priority patent/DE112021002573T5/de
Publication of WO2022009937A1 publication Critical patent/WO2022009937A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Definitions

  • the present disclosure relates to a resin sheet, a prepreg, an insulating resin material and a printed wiring board, and specifically includes a resin sheet and a prepreg, the resin sheet and the prepreg that can be used for producing an insulating layer of the printed wiring board.
  • the present invention relates to an insulating resin material and a printed wiring board provided with an insulating layer made from these resin sheets and prepregs.
  • the subject of the present disclosure includes a resin sheet and a prepreg, the resin sheet and the prepreg, which can be used for producing an insulating layer in which a conductor is embedded, and the conductor can be easily embedded in the insulating layer and the moldability is less likely to deteriorate. It is an object of the present invention to provide a printed wiring board provided with an insulating resin material and an insulating layer made from these resin sheets and prepregs.
  • the resin sheet according to one aspect of the present disclosure contains an uncured or semi-cured product of the thermosetting resin composition (X1), and is measured using a high-grade flow tester under measurement conditions of 130 ° C. and 1 MPa.
  • the melt viscosity is 10 Pa ⁇ s or more and 2000 Pa ⁇ s or less
  • the melt viscosity under the measurement conditions of 130 ° C. and 4 MPa is 6 Pa ⁇ s or more and 1200 Pa ⁇ s or less.
  • the prepreg according to one aspect of the present disclosure includes a base material and an uncured or semi-cured product of the thermosetting resin composition (X2) impregnated in the base material, which is used together with the resin sheet.
  • the melt viscosity of the uncured or semi-cured product of the thermosetting resin composition (X2) at 130 ° C. and 4 MPa measured using a high-grade flow tester is 500 Pa ⁇ s or more and 6000 Pa. ⁇ It is less than or equal to s.
  • the insulating resin material according to one aspect of the present disclosure includes the resin sheet and the prepreg that overlaps the resin sheet.
  • the printed wiring board includes a core material having an insulating substrate and a conductor overlapping the insulating substrate, and an insulating layer overlapping the core material and covering the conductor.
  • the insulating layer includes a first layer, which is a cured product of the resin sheet, which is in contact with the core material, and a second layer, which is a cured product of the prepreg, which overlaps with the first layer.
  • FIG. 1 is a schematic cross-sectional view of a prepreg, a resin sheet, a core material, and a laminate composed of the prepreg, the resin sheet, and the core material in one embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a printed wiring board according to an embodiment of the present disclosure.
  • the inventor has proceeded with research and development to develop a resin sheet that can be used to produce an insulating layer in which a conductor is embedded, that makes it easy for the conductor to be embedded in the insulating layer, and that the formability does not deteriorate easily. Was completed.
  • the resin sheet 3 contains an uncured or semi-cured product of a thermosetting resin composition (X1) (hereinafter, also referred to as composition (X1)), and is measured using a high-grade flow tester.
  • the melt viscosity at 130 ° C. and 1 MPa is 10 Pa ⁇ s or more and 2000 Pa ⁇ s or less
  • the melt viscosity at 130 ° C. and 4 MPa is 6 Pa ⁇ s or more and 1200 Pa ⁇ s or less.
  • the uncured product may be the composition (X1) itself, and when the composition (X1) contains a solvent, the composition (X1) does not proceed with the curing reaction of the composition (X1). It may be a product produced by volatilizing a solvent from the above.
  • the semi-cured product is a product produced by partially curing the composition (X1), and means a so-called B stage state.
  • the insulating layer 8 in which the conductor 9 is embedded can be produced.
  • the resin sheet 3 can be used for manufacturing the insulating layer 8 in the printed wiring board 5.
  • the conductor 9 is easily embedded in the insulating layer 8 and the moldability is less likely to deteriorate.
  • the prepreg 2 according to the present embodiment is used by being laminated on the resin sheet 3, and is used by superimposing the base material 4 on the base material 4 and the thermosetting resin composition (X2) impregnated in the base material 4 (hereinafter, composition). It also includes an uncured or semi-cured product (also referred to as (X2)).
  • the melt viscosity of the uncured or semi-cured product of the composition (X2) at 130 ° C. and 4 MPa under the measurement conditions measured using a high-grade flow tester is 500 Pa ⁇ s or more and 6000 Pa ⁇ s or less.
  • the uncured product may be the composition (X2) itself, and when the composition (X2) contains a solvent, the composition (X2) does not proceed with the curing reaction of the composition (X2). It may be a product produced by volatilizing a solvent from the above.
  • the semi-cured product is a product produced by partially curing the composition (X2), and means a so-called B stage state.
  • the insulating layer 8 in which the conductor 9 is embedded can be produced.
  • the prepreg 2 and the resin sheet 3 can be used to prepare the insulating layer 8 in the printed wiring board 5.
  • the conductor 9 is particularly easily embedded in the insulating layer 8 and the moldability is not particularly deteriorated.
  • a core material 11 having a conductor 9 such as a conductor wiring is prepared.
  • the core material 11 includes, for example, an insulating substrate 10 and a conductor 9 that overlaps the insulating substrate 10.
  • the materials of the insulating substrate 10 and the conductor 9 are not particularly limited as long as they can be applied as a material for a printed wiring board.
  • the insulating substrate 10 is a resin substrate such as a glass substrate epoxy resin substrate, and the conductor 9 is a copper wiring manufactured by, for example, an additive method or a subtractive method.
  • the core material 11 is a conductor 9 having a first conductor 91 that overlaps one surface (first surface 101) of the insulating substrate 10 and a side opposite to the first surface 101 of the insulating substrate 10.
  • a second conductor 92 that overlaps the second surface 102 is provided.
  • the electronic component 13 may be mounted on the surface of the core material 11 on the side where the conductor 9 is located.
  • the electronic component 13 is, for example, an IC, an LSI, or the like, but is not limited thereto.
  • the core material 11, the resin sheet 3, and the prepreg 2 are stacked in this order so that the conductor 9 and the resin sheet 3 face each other to obtain a laminate 12.
  • the laminate 12 may further include a metal leaf 14.
  • the core material 11, the resin sheet 3, the prepreg 2, and the metal leaf 14 are stacked in this order so that the conductor 9 and the resin sheet 3 face each other, so that the laminate 12 is as shown in FIG. To get.
  • the metal foil 14 is, for example, a copper foil, but is not limited thereto.
  • the resin sheet 3, the prepreg 2, and the metal foil 14 are laminated in this order on the first conductor 91 side of the core material 11, and the resin sheet 3 and the prepreg are also laminated on the second conductor 92 side of the core material 11. 2 and the metal leaf 14 are laminated in this order. That is, the metal foil 14, the prepreg 2, the resin sheet 3, the core material 11, the resin sheet 3, the prepreg 2, and the metal foil 14 are laminated in this order.
  • the resin sheet 3 and the prepreg 2 may be laminated only on one side of the core material 11.
  • the prepreg 2 is also softened or melted to reduce its viscosity and flow, and then hardened to form the second layer 6. As a result, the printed wiring board 5 shown in FIG. 2 is manufactured.
  • the printed wiring board 5 includes an insulating substrate 10, a conductor 9, and an insulating layer 8, and these are laminated in this order.
  • the printed wiring board 5 further includes the metal foil 14 that overlaps the insulating layer 8.
  • Conductor wiring may be produced by patterning the metal foil 14 by subjecting it to an etching process or the like. In this case, a printed wiring board 5 having a conductor wiring overlapping the insulating layer 8 is obtained.
  • the electronic component 13 is mounted on the core material 11, the printed wiring board 5 also includes the electronic component 13.
  • the insulating layer 8 includes a second layer 6 which is a cured product of the prepreg 2, and a first layer 7 which is a cured product of the resin sheet 3.
  • the conductor 9 has a second layer 6 with respect to the first layer 7. It is on the opposite side of the side. In this embodiment, the conductor 9 and the electronic component 13 are embedded in the first layer 7.
  • the conductor 9 can be embedded in the insulating layer 8 by flowing the softened or melted resin sheet 3, and the conductor 9 is the base material in the prepreg 2 in the insulating layer 8. Since it is difficult to come into contact with 4, the reliability of the printed wiring board 5 when heated is likely to be improved. Further, since there is no base material 4 in the first layer 7 and the base material 4 is in the second layer 6 in the insulating layer 8, the number of base materials 4 used can be reduced and the thickness of the insulating layer 8 can be reduced. Easy to thin.
  • the conditions for hot pressing the laminate 12 are appropriately set according to the composition of each of the composition (X1) and the composition (X2).
  • the heating temperature is 150 ° C. or higher and 250 ° C. or lower, and the pressing pressure is high. Is 0.5 MPa or more and 5 MPa or less, and the processing time is 60 minutes or more and 120 minutes or less.
  • the melt viscosity ⁇ 1 of the resin sheet 3 measured using the high-grade flow tester at 130 ° C. and 1 MPa is 10 Pa ⁇ s or more and 2000 Pa ⁇ s or less, and the measurement conditions are 130 ° C. and 4 MPa.
  • the melt viscosity ⁇ 2 in the above is 6 Pa ⁇ s or more and 1200 Pa ⁇ s or less.
  • the reliability of the printed wiring board 5 can be improved. Further, when the melt viscosity ⁇ 1 at 1 MPa is 2000 Pa ⁇ s or less and the melt viscosity ⁇ 2 at 4 MPa is 1200 Pa ⁇ s or less, the outflow of the resin is less likely to occur in the process of producing the first layer 7. .. Therefore, the thickness of the insulating layer 8 is less likely to vary, and the conductor 9 is prevented from coming into contact with the base material 4 of the prepreg 2, so that defects are less likely to occur in the long-term insulation reliability test.
  • melt viscosity ⁇ 2 at the measurement conditions of 130 ° C. and 4 MPa is particularly involved in the fluidity when the resin sheet 3 follows the conductor 9 and flows, that is, the filling property.
  • a relatively high pressure is applied to the portion around the conductor 9 in the resin sheet 3, but if the melt viscosity ⁇ 2 is within the above range, the fluidity of this portion will be good and the filling property will be improved. Be done.
  • the melt viscosity ⁇ 1 at the measurement condition of 130 ° C. and 1 MPa is particularly related to the ease of the resin flowing out from the resin sheet 3, that is, the thickness accuracy of the insulating layer 8.
  • a relatively low pressure is applied to the end portion of the resin sheet 3 during molding, but if the melt viscosity ⁇ 1 is within the above range, excessive flow in this portion is unlikely to occur, and the resin in the resin sheet 3 Is considered to be less likely to leak to the outside.
  • the melt viscosity ⁇ 1 at the measurement conditions of 130 ° C. and 1 MPa is more preferably 30 Pa ⁇ s or more, and further preferably 50 Pa ⁇ s or more. Further, the melt viscosity ⁇ 1 is more preferably 1000 Pa ⁇ s or less, and further preferably 500 Pa ⁇ s or less.
  • the melt viscosity ⁇ 2 at the measurement conditions of 130 ° C. and 4 MPa is more preferably 10 Pa ⁇ s or more, and further preferably 20 Pa ⁇ s or more. Further, the melt viscosity ⁇ 2 is more preferably 600 Pa ⁇ s or less, and further preferably 300 Pa ⁇ s or less.
  • the thixotropy index (TI) of the resin sheet 3 is preferably 1.1 or more. In this case, the outflow of the resin is particularly unlikely to occur in the process of producing the first layer 7.
  • the thixotropy index is defined by the value ( ⁇ 1 / ⁇ 2) of the ratio of the melt viscosity ⁇ 1 at the above-mentioned measurement condition 130 ° C. and 1 MPa to the melt viscosity ⁇ 2 at the above-mentioned measurement condition 130 ° C. and 4 MPa. It is also preferable that the thixotropy index is 15 or less. In this case, the filling property of the insulating layer 8 tends to be particularly good.
  • the thixotropy index is more preferably 1.2 or more and 8.0 or less, and particularly preferably 1.3 or more and 4.0 or less.
  • the resin flow amount of the resin sheet 3 measured by the Greenis method is 40% or less under the measurement conditions of 130 ° C. and 0.5 MPa.
  • the outflow of the resin in the process of producing the first layer 7 from the resin sheet 3 is further suppressed, the thickness accuracy of the insulating layer 8 is more likely to be improved, and the conductor 9 comes into contact with the base material 4 in the prepreg 2.
  • the resin flow amount is more preferably 35% or less, and further preferably 30% or less. An example of a specific method for measuring the resin flow amount will be described in the examples below.
  • the melt viscosity of the uncured or semi-cured product of the composition (X2) in prepreg 2 at 130 ° C. and 4 MPa measured using a high-grade flow tester is 500 Pa ⁇ s or more and 6000 Pa. ⁇ It is less than or equal to s. Therefore, the thickness accuracy of the insulating layer 8 is likely to be further improved, and the conductor 9 is further suppressed from coming into contact with the base material 4 in the prepreg 2. This is because the excessive flow of the prepreg 2 is suppressed when the second layer 6 is produced from the prepreg 2, and therefore the excessive flow of the resin sheet 3 accompanying the flow of the prepreg 2 is also suppressed. , Inferred. Specific examples of the method for measuring the melt viscosity will be described in Examples described later.
  • the melt viscosity is more preferably 700 Pa ⁇ s or more, and further preferably 1000 Pa ⁇ s or more. Further, the melt viscosity is more preferably 5000 Pa ⁇ s or less, and further preferably 4000 Pa ⁇ s or less.
  • melt viscosity of the prepreg 2 at 130 ° C. and 4 MPa is higher than the melt viscosity of the resin sheet 3 at 130 ° C. and 4 MPa, especially when the melt viscosity of the prepreg 2 is 2000 Pa ⁇ s or more. It is preferable to have.
  • the prepreg 2 and the resin sheet 3 will be described more specifically.
  • the resin sheet 3 is an uncured or semi-cured product of the composition (X1).
  • the composition (X1) is not particularly limited as long as it can be applied to produce the insulating layer 8 of the printed wiring board 5.
  • the composition (X1) contains a thermosetting resin.
  • the thermosetting resin may contain at least one selected from the group consisting of a monomer, an oligomer and a prepolymer having thermosetting property.
  • the thermosetting resin contains at least one selected from the group consisting of, for example, an epoxy resin, a polyimide resin, a phenol resin, a bismaleimide triazine resin, and a thermosetting polyphenylene ether resin.
  • the epoxy resin is, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene. It contains at least one component selected from the group consisting of type epoxy resins and polyfunctional epoxy resins.
  • the epoxy equivalent of the epoxy resin is preferably 120 g / eq or more and 800 g / eq or less, and more preferably 170 g / eq or more and 600 g / eq or less.
  • the components that can be contained in the thermosetting resin are not limited to the above.
  • the composition (X1) may further contain an appropriate additive selected from the group consisting of a curing agent, a curing accelerator, a flame retardant, a rubber component, an inorganic filler and the like.
  • the composition (X1) may further contain a solvent.
  • the curing agent contains at least one selected from the group consisting of, for example, a diamine-based curing agent, a bifunctional or higher-functional phenol-based curing agent, an acid anhydride-based curing agent, dicyandiamide, and a low-molecular-weight polyphenylene ether compound.
  • the bifunctional or higher functional phenolic curing agent contains, for example, a bisphenol A novolak type phenol resin.
  • the diamine-based curing agent contains, for example, at least one selected from the group consisting of primary amines, secondary amines and the like.
  • the functional group equivalent of the curing agent is preferably 20 g / eq or more and 500 g / eq or less.
  • the curing accelerator contains at least one selected from the group consisting of, for example, an imidazole compound, a tertiary amine compound, an organic phosphine compound, and a metal soap.
  • the imidazole-based compound contains, for example, 2-ethyl-4-methylimidazole (2E4MZ).
  • the flame retardant contains at least one selected from the group consisting of, for example, halogen-based flame retardants and non-halogen flame retardants.
  • the halogen-based flame retardant contains, for example, a bromine-containing compound.
  • the non-halogen flame retardant contains at least one selected from the group consisting of, for example, a phosphorus-containing compound and a nitrogen-containing compound.
  • the rubber component contains, for example, elastomer fine particles.
  • the elastomer fine particles have, for example, a core-shell structure including a core layer and a shell layer, and contain core-shell type fine particles in which the shell layer is compatible with the epoxy resin.
  • the polymer constituting the shell layer contains, for example, at least one selected from the group consisting of polymethyl methacrylate, polystyrene and the like.
  • the polymer constituting the core layer contains at least one selected from the group consisting of, for example, an acrylic polymer, a silicone polymer, a butadiene polymer, an isoprene polymer and the like.
  • the inorganic filler contains at least one selected from the group consisting of, for example, silica, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica, and molybdenum compounds.
  • the silica contains at least one selected from the group consisting of, for example, spherical silica and crushed silica.
  • the molybdenum compound contains, for example, molybdenum trioxide.
  • the content of the inorganic filler is preferably 20 parts by mass or more and 1400 parts by mass or less with respect to 100 parts by mass of the total mass of the thermosetting resin and the curing agent.
  • the solvent contains at least one selected from the group consisting of, for example, an appropriate organic solvent and water.
  • the organic solvent contains, for example, at least one selected from the group consisting of benzene, toluene, N, N-dimethylformamide (DMF), acetone, methyl ethyl ketone, methanol, ethanol, cellosolves and the like.
  • composition (X1) are not limited to the above.
  • the composition (X1) may contain a phenoxy resin.
  • the phenoxy resin can impart flexibility to the prepreg 2 produced from the composition (X1) and reduce the occurrence of powder dropping.
  • the composition (X1) is molded into a sheet shape by a coating method or the like.
  • the coating method is, for example, a dipping method, a spray method, a spin coating method, a roll coating method, a curtain coating method, a screen printing method, or the like. Subsequently, the composition (X1) is heated to dry or semi-cured to produce a resin sheet 3.
  • the types and blending amounts of the components in the composition (X1), the heating conditions of the composition (X1) when producing the resin sheet 3, and the like are appropriately set. Can be realized with. For example, by blending a low-viscosity component in the composition (X), increasing the blending amount of the low-viscosity component in the composition (X), lowering the heating temperature, shortening the heating time, etc. , The melt viscosity of the resin sheet 3 can be lowered and the amount of resin flow can be increased. Further, by adjusting the type, particle size and blending amount of the inorganic filler in the composition (X1), the melt viscosity at the measurement condition of 130 ° C. and 1 MPa and the melt viscosity at the measurement condition of 130 ° C. and 4 MPa can be obtained. Each can be adjusted.
  • the thickness of the resin sheet 3 is, for example, 50 ⁇ m or more and 200 ⁇ m or less. In the example shown in FIG. 1, one resin sheet 3 is used, but two or more resin sheets 3 may be laminated.
  • the prepreg 2 includes a base material 4 and an uncured or semi-cured product of the composition (X2) impregnated in the base material 4.
  • the base material 4 is, for example, an inorganic fiber woven fabric, an inorganic fiber non-woven fabric, an organic fiber woven fabric, or an organic fiber non-woven fabric.
  • the inorganic fiber is, for example, glass fiber or a fiber of an inorganic material other than glass.
  • the glass constituting the glass fiber is, for example, E glass, D glass, S glass, NE glass, T glass, quartz or the like.
  • the organic fiber is, for example, aramid fiber, polyparaphenylene benzobisoxazole (PBO) fiber, polybenzoimidazole (PBI) fiber, polytetrafluoroethylene (PTFE) fiber, polyparaphenylene benzobisthiazole (PBZT) fiber, or total fragrance.
  • Group polyester fiber and the like are examples of the like.
  • composition (X2) is not particularly limited as long as it can be applied to produce the insulating layer 8 of the printed wiring board 5.
  • the composition (X2) contains a thermosetting resin.
  • the thermosetting resin contains at least one selected from the group consisting of, for example, an epoxy resin, a polyimide resin, a phenol resin, a bismaleimide triazine resin, and a thermosetting polyphenylene ether resin.
  • the epoxy resin is, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene. It contains at least one component selected from the group consisting of type epoxy resins and polyfunctional epoxy resins.
  • the epoxy equivalent of the epoxy resin is preferably 120 g / eq or more and 800 g / eq or less, and more preferably 170 g / eq or more and 600 g / eq or less.
  • the components that can be contained in the thermosetting resin are not limited to the above.
  • the composition (X2) may further contain an appropriate additive selected from the group consisting of a curing agent, a curing accelerator, a flame retardant, a rubber component and the like.
  • the composition (X2) may further contain a solvent.
  • the curing agent contains at least one selected from the group consisting of, for example, a diamine-based curing agent, a bifunctional or higher-functional phenol-based curing agent, an acid anhydride-based curing agent, dicyandiamide, and a low-molecular-weight polyphenylene ether compound.
  • the bifunctional or higher functional phenolic curing agent contains, for example, a bisphenol A novolak type phenol resin.
  • the diamine-based curing agent contains, for example, at least one selected from the group consisting of primary amines, secondary amines and the like.
  • the functional group equivalent of the curing agent is preferably 20 g / eq or more and 500 g / eq or less.
  • the curing accelerator contains at least one selected from the group consisting of, for example, an imidazole compound, a tertiary amine compound, an organic phosphine compound, and a metal soap.
  • the imidazole-based compound contains, for example, 2-ethyl-4-methylimidazole (2E4MZ).
  • the flame retardant contains at least one selected from the group consisting of, for example, halogen-based flame retardants and non-halogen flame retardants.
  • the halogen-based flame retardant contains, for example, a bromine-containing compound.
  • the non-halogen flame retardant contains at least one selected from the group consisting of, for example, a phosphorus-containing compound and a nitrogen-containing compound.
  • the rubber component contains, for example, elastomer fine particles.
  • the elastomer fine particles have, for example, a core-shell structure including a core layer and a shell layer, and contain core-shell type fine particles in which the shell layer is compatible with the epoxy resin.
  • the polymer constituting the shell layer contains, for example, at least one selected from the group consisting of polymethyl methacrylate, polystyrene and the like.
  • the polymer constituting the core layer contains at least one selected from the group consisting of, for example, an acrylic polymer, a silicone polymer, a butadiene polymer, an isoprene polymer and the like.
  • the solvent contains at least one selected from the group consisting of, for example, an appropriate organic solvent and water.
  • the organic solvent contains, for example, at least one selected from the group consisting of benzene, toluene, N, N-dimethylformamide (DMF), acetone, methyl ethyl ketone, methanol, ethanol, cellosolves and the like.
  • composition (X2) are not limited to the above.
  • the composition (X2) may contain a phenoxy resin.
  • the phenoxy resin can impart flexibility to the resin sheet 3 produced from the composition (X2) and reduce the occurrence of powder dropping.
  • the composition (X2) may contain an inorganic filler.
  • the content of the inorganic filler is appropriately adjusted within a range that does not impair the operation of the present embodiment.
  • the prepreg 2 is produced by impregnating the base material 4 with the composition (X2) and then drying or semi-curing the base material 4 by heating the composition (X2).
  • the conditions for heating the composition (X2) are appropriately adjusted according to the composition of the composition (X2) and the physical properties to be imparted to the prepreg 2.
  • the fact that the uncured or semi-cured product of the composition (X2) in the prepreg 2 has the above-mentioned melt viscosity means that the type and blending amount of the components in the composition (X2), and the composition for producing the prepreg 2 ( This can be achieved by appropriately setting the heating conditions of X2). For example, by blending a low-viscosity component in the composition (X2), increasing the blending amount of the low-viscosity component in the composition (X2), lowering the heating temperature, shortening the heating time, etc. , The melt viscosity of the uncured or semi-cured product of the composition (X2) can be adjusted.
  • the insulating resin material 1 having the resin sheet 3 and the prepreg 2 overlapping the resin sheet 3 can be produced.
  • the insulating layer 8 can be manufactured from the resin sheet 3 and the prepreg 2, and the printed wiring board 5 provided with the insulating layer 8 can be manufactured.
  • the thickness of the conductor 9 embedded in the insulating layer 8, that is, the conductor 9 in the core material 11, is, for example, 70 ⁇ m or more and 500 ⁇ m or less.
  • the conductor 9 can be easily embedded in the insulating layer 8 and the formability can be less likely to deteriorate.
  • the thickness of the conductor 9 is large in this way, the current value that can be passed through the conductor 9 can be increased accordingly. Therefore, the printed wiring board 5 can be applied to industrial equipment, in-vehicle board applications, etc., which require a large current.
  • the thickness of the conductor 9 is more preferably 100 ⁇ m or more and 450 ⁇ m or less, and further preferably 130 ⁇ m or more and 420 ⁇ m or less.
  • the thickness of the conductor 9 is not limited to the above.
  • the thickness of the electronic component 13 is, for example, 100 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the electronic component 13 is the maximum height of the electronic component 13 with respect to the surface of the insulating substrate 10 in the core material 11. In the present embodiment, even if the thickness of the electronic component 13 is so large, the electronic component 13 can be easily embedded in the insulating layer 8 and the moldability can be less likely to deteriorate.
  • the thickness of the electronic component 13 is more preferably 100 ⁇ m or more and 450 ⁇ m or less, and further preferably 130 ⁇ m or more and 420 ⁇ m or less.
  • the thickness of the electronic component 13 is not limited to the above.
  • Resin sheet (1) Preparation of resin sheet A composition was prepared by mixing the components shown in the columns of the composition of the resin sheet in Tables 1 and 2. The details of the components shown in Tables 1 and 2 are as follows.
  • -Brominated epoxy resin Brominated bisphenol A type epoxy resin. Made by DIC Corporation.
  • -Bisphenol A type epoxy resin manufactured by DIC Corporation.
  • -Cresol novolak type epoxy resin manufactured by DIC Corporation.
  • -DICY dicyandiamide.
  • -2E4MZ 2-Ethyl-4-methylimidazole.
  • -Phenoxy resin manufactured by Nittetsu Chemical & Materials Co., Ltd. Part number YP50EK35.
  • -Solvent A mixed solvent containing methyl ethyl ketone (MEK), propylene glycol monomethyl ether (PGME) and N, N-dimethylformamide (DMF).
  • the composition was applied onto the PET film, and the composition was heated at the heating temperature and heating time shown in the heating conditions of Tables 1 and 2. As a result, resin sheets having the thicknesses shown in Tables 1 and 2 were obtained.
  • melt viscosity ⁇ 2 of the sample was also measured when the measurement conditions were a temperature of 130 ° C. and a pressure of 4 MPa.
  • test piece was sandwiched between two release films, placed between the hot plates, and heat-pressed under the conditions of 130 ° C., 0.5 MPa, and 300 seconds.
  • Preparation of prepreg A composition was prepared by mixing the components shown in the column of prepreg composition in Tables 1 and 2. The details of the components shown in Tables 1 and 2 are as follows.
  • -Brominated epoxy resin Brominated bisphenol A type epoxy resin. Made by DIC Corporation.
  • -Cresol novolak type epoxy resin manufactured by DIC Corporation.
  • -DICY dicyandiamide.
  • -2E4MZ 2-Ethyl-4-methylimidazole.
  • -SO-25R Spherical silica. Made by Admatex.
  • Product name SO-25R. -R974 Fused silica.
  • a glass cloth (# 1080) made of E glass is prepared as a base material, the base material is impregnated with the composition, and then the composition is heated at the heating temperature and heating time shown in the heating conditions of Tables 1 and 2. did. As a result, a prepreg having the resin content and thickness shown in Tables 1 and 2 was obtained.
  • a core material having an insulating substrate and conductor wiring provided on both sides of the insulating substrate was prepared.
  • the insulating substrate is a glass cloth base material epoxy resin substrate, each conductor wiring is made of copper, and the residual copper ratio of each conductor wiring is 60%.
  • a material on which an electronic component was mounted was also used as the core material. The thickness of the conductor of the core material when the electronic component is not mounted, the thickness of the electronic component when the electronic component is mounted, and the thickness of the conductor or electronic component of the core material in Tables 1 and 2. Shown in the column.
  • One or more resin sheets, a prepreg, and a copper foil having a thickness of 35 ⁇ m were laminated on both sides of the core material in this order. That is, copper foil, prepreg, one or more resin sheets, core material, one or more resin sheets, prepreg, and copper foil were laminated in this order.
  • the number of resin sheets is as shown in Tables 1 and 2. This gave a laminate.
  • a printed wiring board was obtained by hot-pressing this laminate under the conditions of 200 ° C., 22 MPa, and 60 minutes.
  • the thickness of the printed wiring board was measured with a micrometer at five positions on this printed wiring board. If the difference between the maximum value and the minimum value among the five measured values obtained by this is 10% or less of the theoretical value of the thickness of the printed wiring board, it is "A”, and it exceeds 10% and 20%. When it was the following, it was evaluated as "B”, and when it exceeded 20%, it was evaluated as "C”.
  • Insulating resin material Prepreg 3
  • Resin sheet 4
  • Base material 5
  • Printed wiring board 6
  • First layer 8
  • Insulation layer 9
  • Conductor 10 Insulation board 11
  • Electronic components 14
  • Metal leaf 16

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本開示は、導体が埋め込まれる絶縁層を作製するために使用でき、絶縁層に導体が埋め込まれやすく、かつ成形性が悪化しにくくできる樹脂シート(3)を提供する。本開示に係る樹脂シート(3)は、熱硬化性樹脂組成物(X1)の未硬化物又は半硬化物を含み、高化式フローテスターを用いて測定される測定条件130℃、1MPaでの溶融粘度は10Pa・s以上2000Pa・s以下であり、かつ測定条件130℃、4MPaでの溶融粘度は6Pa・s以上1200Pa・s以下である。

Description

樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板
 本開示は、樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板に関し、詳しくは、プリント配線板の絶縁層を作製するために用いることができる樹脂シート及びプリプレグ、前記樹脂シート及び前記プリプレグを備える絶縁性樹脂材、並びにこれら樹脂シート及びプリプレグから作製された絶縁層を備えるプリント配線板に関する。
 特許文献1には、基板のバイアホール露出面と、無機フィラーを含有させたプリプレグとの間に、熱溶融可能で熱硬化性を有する樹脂シートを配して積層物を形成することで多層プリント配線板を製造することが開示されている。
特開2003-37362号公報
 本開示の課題は、導体が埋め込まれる絶縁層を作製するために使用でき、絶縁層に導体が埋め込まれやすく、かつ成形性が悪化しにくくできる樹脂シート及びプリプレグ、前記樹脂シート及び前記プリプレグを備える絶縁性樹脂材、並びにこれら樹脂シート及びプリプレグから作製された絶縁層を備えるプリント配線板を、提供することである。
 本開示の一態様に係る樹脂シートは、熱硬化性樹脂組成物(X1)の未硬化物又は半硬化物を含み、高化式フローテスターを用いて測定される測定条件130℃、1MPaでの溶融粘度は10Pa・s以上2000Pa・s以下であり、かつ測定条件130℃、4MPaでの溶融粘度は6Pa・s以上1200Pa・s以下である。
 本開示の一態様に係るプリプレグは、前記樹脂シートと共に使用され、基材と、前記基材に含浸している熱硬化性樹脂組成物(X2)の未硬化物又は半硬化物とを備え、前記熱硬化性樹脂組成物(X2)の前記未硬化物又は前記半硬化物の、高化式フローテスターを用いて測定される測定条件130℃、4MPaでの溶融粘度は、500Pa・s以上6000Pa・s以下である。
 本開示の一態様に係る絶縁性樹脂材は、前記樹脂シートと、前記樹脂シートに重なる前記プリプレグとを備える。
 本開示の一態様に係るプリント配線板は、絶縁基板及び前記絶縁基板に重なる導体を備えるコア材と、前記コア材に重なり、かつ前記導体を覆う絶縁層とを備える。前記絶縁層は、前記コア材に接する、前記樹脂シートの硬化物である第一層と、前記第一層に重なる、前記プリプレグの硬化物である第二層とを備える。
図1は、本開示の一実施形態におけるプリプレグ、樹脂シート、コア材、及び前記プリプレグ、前記樹脂シート、及び前記コア材で構成される積層物の概略の断面図である。 図2は本開示の一実施形態におけるプリント配線板の概略の断面図である。
 発明者の調査によると、導体の上に樹脂シートとプリプレグとを重ねて積層一体化することで、導体の上に樹脂シートとプリプレグとの硬化物からなる絶縁層を作製し、かつ導体を樹脂シートの硬化物内に埋め込むことで、プリント配線板を作製する場合、導体の厚みが大きいと、樹脂シートの硬化物に導体を十分に埋め込むことが難しくなり、また埋め込むことができたとしても樹脂シート及びプリプレグから絶縁層を成形するに当たっての成形性が悪化しやすい。
 そこで、発明者は、導体が埋め込まれる絶縁層を作製するために使用でき、絶縁層に導体が埋め込まれやすく、かつ成形性が悪化しにくくできる樹脂シートを開発すべく研究開発を進め、本開示の完成に至った。
 以下、本開示の一実施形態について説明する。なお、以下に説明する実施形態は、本開示の様々な実施形態の一つに過ぎない。以下の実施形態は、本開示の目的を達成できれば設計に応じて種々の変更が可能である。
 本実施形態に係る樹脂シート3は、熱硬化性樹脂組成物(X1)(以下、組成物(X1)ともいう)の未硬化物又は半硬化物を含み、高化式フローテスターを用いて測定される測定条件130℃、1MPaでの溶融粘度は10Pa・s以上2000Pa・s以下であり、かつ測定条件130℃、4MPaでの溶融粘度は6Pa・s以上1200Pa・s以下である。なお、未硬化物とは、組成物(X1)そのものであってもよく、組成物(X1)が溶剤を含有する場合に組成物(X1)の硬化反応を進行させることなく組成物(X1)から溶剤を揮発させて生成した物であってもよい。半硬化物とは、組成物(X1)が部分的に硬化して生成した物であり、いわゆるBステージ状態を意味する。
 この樹脂シート3から、導体9が埋め込まれる絶縁層8を作製できる。これにより、例えば樹脂シート3を、プリント配線板5における絶縁層8を作製するために用いることができる。本実施形態では、導体9が埋め込まれる絶縁層8を樹脂シート3から作製する場合、絶縁層8に導体9が埋め込まれやすく、かつ成形性が悪化しにくい。
 本実施形態に係るプリプレグ2は、樹脂シート3に重ねられて使用されるものであり、基材4と、基材4に含浸している熱硬化性樹脂組成物(X2)(以下、組成物(X2)ともいう)の未硬化物又は半硬化物とを備える。組成物(X2)の未硬化物又は半硬化物の、高化式フローテスターを用いて測定される測定条件130℃、4MPaでの溶融粘度は、500Pa・s以上6000Pa・s以下である。なお、未硬化物とは、組成物(X2)そのものであってもよく、組成物(X2)が溶剤を含有する場合に組成物(X2)の硬化反応を進行させることなく組成物(X2)から溶剤を揮発させて生成した物であってもよい。半硬化物とは、組成物(X2)が部分的に硬化して生成した物であり、いわゆるBステージ状態を意味する。
 このプリプレグ2と樹脂シート3から、導体9が埋め込まれる絶縁層8を作製できる。これにより、例えばプリプレグ2及び樹脂シート3を、プリント配線板5における絶縁層8を作製するために用いることができる。本実施形態では、導体9が埋め込まれる絶縁層8をプリプレグ2と樹脂シート3から作製する場合、絶縁層8に導体9が特に埋め込まれやすく、かつ成形性が特に悪化しにくい。
 絶縁層8の作製及びプリント配線板5の製造について、図1及び図2を参照して説明する。
 プリプレグ2と樹脂シート3とから絶縁層8を作製するには、具体的には、例えば図1に示すように、導体配線等の導体9を備えるコア材11を用意する。コア材11は、例えば絶縁基板10と、絶縁基板10に重なる導体9とを備える。絶縁基板10及び導体9の材質は、プリント配線板用材料として適用可能であれば特に制限はない。絶縁基板10は例えばガラス基材エポキシ樹脂基板などの樹脂基板であり、導体9は例えばアディティブ法、サブトラクティブ法などで作製された銅製の配線である。
 図1に示す例では、コア材11は、導体9として、絶縁基板10の一つの面(第一面101)に重なる第一導体91と、絶縁基板10における第一面101とは反対側の第二面102に重なる第二導体92とを備える。
 コア材11の、導体9がある側の面には、電子部品13が実装されていてもよい。電子部品13は、例えばIC、LSIなどであるが、これらに制限されない。
 図1に示すように、コア材11と樹脂シート3とプリプレグ2とを、この順に、導体9と樹脂シート3とが対向するように重ねることで、積層物12を得る。図1に示すように、積層物12は更に金属箔14を含んでもよい。この場合は、コア材11と樹脂シート3とプリプレグ2と金属箔14とを、この順に、導体9と樹脂シート3とが対向するように重ねることで、図1に示すように、積層物12を得る。金属箔14は例えば銅箔であるが、これのみには制限されない。
 図1に示す例では、コア材11の第一導体91側に樹脂シート3とプリプレグ2と金属箔14とがこの順に積層し、コア材11の第二導体92側にも樹脂シート3とプリプレグ2と金属箔14とがこの順に積層している。すなわち、金属箔14、プリプレグ2、樹脂シート3、コア材11、樹脂シート3、プリプレグ2及び金属箔14が、この順に積層している。なお、コア材11の片面側のみに樹脂シート3とプリプレグ2とが積層していてもよい。
 積層物12を熱プレスする。そうすると、樹脂シート3は、まず軟化又は溶融することで粘度が低下して、導体9の形状に追随して流動する。コア材11に電子部品13が実装されている場合には樹脂シート3は電子部品13の形状にも追随して流動する。これにより、樹脂シート3に導体9が埋め込まれる。コア材11に電子部品13が実装されている場合には樹脂シート3に電子部品13も埋め込まれる。続いて、樹脂シート3が硬化する。これにより、樹脂シート3の硬化物である第一層7が作製され、且つこの第一層7に導体9が埋め込まれる。コア材11に電子部品13が実装されている場合には第一層7に電子部品13も埋め込まれる。
 プリプレグ2も、まず軟化又は溶融することで粘度が低下して流動し、続いて硬化することで、第二層6が作製される。これにより、図2に示すプリント配線板5が製造される。
 プリント配線板5は、絶縁基板10と、導体9と、絶縁層8とを備え、これらがこの順に積層している。積層物12が金属箔14を備える場合、プリント配線板5は更に絶縁層8に重なる金属箔14を備える。金属箔14にエッチング処理を施すなどしてパターニングすることで、導体配線を作製してもよい。この場合、絶縁層8に重なる導体配線を備えるプリント配線板5が得られる。コア材11に電子部品13が実装されている場合にはプリント配線板5は電子部品13も備える。絶縁層8は、プリプレグ2の硬化物である第二層6と、樹脂シート3の硬化物である第一層7とを備え、導体9は、第一層7に対して、第二層6側とは反対側にある。本実施形態では、導体9及び電子部品13は第一層7に埋め込まれる。
 このようにプリント配線板5を製造すると、軟化又は溶融した樹脂シート3を流動させることで絶縁層8内に導体9を埋め込むことができ、かつ絶縁層8内で導体9がプリプレグ2における基材4と接触しにくいことでプリント配線板5の加熱された時の信頼性が向上しやすい。また、絶縁層8内には第一層7内には基材4はなく、第二層6内に基材4があるため、基材4の使用枚数を削減でき、かつ絶縁層8の厚みを薄くしやすい。
 積層物12を熱プレスする条件は、組成物(X1)及び組成物(X2)の各々の組成等に応じて適宜設定されるが、例えば加熱温度は150℃以上250℃以下であり、プレス圧は0.5MPa以上5MPa以下であり、処理時間は60分以上120分以下である。
 上記のとおり、樹脂シート3の、高化式フローテスターを用いて測定される測定条件130℃、1MPaでの溶融粘度η1が10Pa・s以上2000Pa・s以下であり、かつ測定条件130℃、4MPaでの溶融粘度η2が6Pa・s以上1200Pa・s以下である。これにより、1MPaでの溶融粘度η1が10Pa・s以上かつ4MPaでの溶融粘度η2が6Pa・s以上であることで、第一層7に未充填が生じたり第一層7に気泡が内包されたりすることが起こりにくくなる。このため、プリント配線板5の信頼性を高めることができる。また、1MPaでの溶融粘度η1が2000Pa・s以下であり、かつ4MPaでの溶融粘度η2が1200Pa・s以下であることで、第一層7が作製される過程で樹脂の流出が起こりにくくなる。このため、絶縁層8の厚みのばらつきを生じにくくし、また導体9がプリプレグ2の基材4に接触しないようにして長期絶縁信頼性試験において不良を起こしにくくできる。すなわち、導体9とプリプレグ2の基材4とが接近していると基材4に沿ってイオンが移動しやすくなってイオンマイグレーションが生じることがあるが、第一層7が導体9とプリプレグ2との間に介在することでイオンマイグレーションが生じにくくなる。溶融粘度の具体的な測定方法の例は、後掲の実施例において説明する。
 測定条件130℃、4MPaでの溶融粘度η2は特に樹脂シート3が導体9に追随して流動する際の流動性、すなわち充填性に関与すると推察される。成形時には樹脂シート3における導体9の周囲の部分には比較的高い圧力がかかるが、溶融粘度η2が上記の範囲内であれば、この部分の流動性が良好になり、充填性が向上すると考えられる。また、測定条件130℃、1MPaでの溶融粘度η1は特に樹脂シート3からの樹脂の流れ出し易さ、すなわち絶縁層8の厚み精度に関与するものと推察される。樹脂シート3の端部の部分などでは、成形時に比較的低い圧力がかかるが、溶融粘度η1が上記の範囲内であれば、この部分の過度な流動が起こりにくくなり、樹脂シート3中の樹脂が外部に流出しにくくなると考えられる。
 測定条件130℃、1MPaでの溶融粘度η1は30Pa・s以上であればより好ましく、50Pa・s以上であれば更に好ましい。また、この溶融粘度η1は1000Pa・s以下であればより好ましく、500Pa・s以下であれば更に好ましい。測定条件130℃、4MPaでの溶融粘度η2は10Pa・s以上であればより好ましく、20Pa・s以上であれば更に好ましい。また、この溶融粘度η2は600Pa・s以下であればより好ましく、300Pa・s以下であれば更に好ましい。
 樹脂シート3のチクソトロピーインデックス(TI)は1.1以上であることが好ましい。この場合、第一層7が作製される過程で樹脂の流出が特に起こりにくくなる。チクソトロピーインデックスは、上記の測定条件130℃、1MPaでの溶融粘度η1と、上記の測定条件130℃、4MPaでの溶融粘度η2との比の値(η1/η2)で、規定される。このチクソトロピーインデックスが15以下であることも好ましい。この場合、絶縁層8の充填性が特に良好になりやすい。チクソトロピーインデックスは1.2以上8.0以下であればより好ましく、1.3以上4.0以下であれば特に好ましい。
 樹脂シート3の、グリニス法で測定される樹脂流れ量が、測定条件130℃、0.5MPaで、40%以下であることが好ましい。この場合、樹脂シート3から第一層7が作製される過程における樹脂の流出が更に抑制され、絶縁層8の厚み精度が更に向上しやすく、かつ導体9がプリプレグ2における基材4に接触することが更に抑制される。この樹脂流れ量は、35%以下であればより好ましく、30%以下であれば更に好ましい。樹脂流れ量の具体的な測定方法の例は、後掲の実施例において説明する。
 上記のとおり、プリプレグ2における組成物(X2)の未硬化物又は半硬化物の、高化式フローテスターを用いて測定される測定条件130℃、4MPaでの溶融粘度は、500Pa・s以上6000Pa・s以下である。このため、絶縁層8の厚み精度が更に向上しやすく、かつ導体9がプリプレグ2における基材4に接触することが更に抑制される。これは、プリプレグ2から第二層6を作製する際にプリプレグ2の過度な流動が抑制されることから、このプリプレグ2の流動に伴う樹脂シート3の過度な流動も抑制されるためであると、推察される。溶融粘度の測定方法の具体例は、後掲の実施例において説明する。
 この溶融粘度は、700Pa・s以上であればより好ましく、1000Pa・s以上であれば更に好ましい。また、この溶融粘度は5000Pa・s以下であればより好ましく4000Pa・s以下であれば更に好ましい。
 樹脂シート3の測定条件130℃、4MPaでの溶融粘度よりも、プリプレグ2の測定条件130℃、4MPaでの溶融粘度の方が高いことが好ましく、特にプリプレグ2の溶融粘度が2000Pa・s以上であることが好ましい。
 プリプレグ2及び樹脂シート3について、より具体的に説明する。
 上述のとおり、樹脂シート3は、組成物(X1)の未硬化物又は半硬化物である。組成物(X1)は、プリント配線板5の絶縁層8を作製するために適用できるのであれば、特に制限はない。
 組成物(X1)は、熱硬化性樹脂を含有する。なお、本実施形態において、熱硬化性樹脂は、熱硬化性を有するモノマー、オリゴマー及びプレポリマーよりなる群から選択される少なくとも一種を含みうる。熱硬化性樹脂は、例えばエポキシ樹脂、ポリイミド樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂、熱硬化型ポリフェニレンエーテル樹脂からなる群から選択される少なくとも一種を含有する。エポキシ樹脂は、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能型エポキシ樹脂からなる群から選択される少なくとも一種の成分を含む。エポキシ樹脂のエポキシ当量は、好ましくは120g/eq以上800g/eq以下、より好ましくは170g/eq以上600g/eq以下である。なお、熱硬化性樹脂が含みうる成分は、前記には限られない。
 組成物(X1)は、硬化剤、硬化促進剤、難燃剤、ゴム成分及び無機充填材等からなる群から選択される適宜の添加剤を更に含有してもよい。組成物(X1)は、溶剤を更に含有してもよい。
 硬化剤は、例えばジアミン系硬化剤、2官能以上のフェノール系硬化剤、酸無水物系硬化剤、ジシアンジアミド、及び低分子量ポリフェニレンエーテル化合物等からなる群から選択される少なくとも一種を含有する。2官能以上のフェノール系硬化剤は、例えば、ビスフェノールAノボラック型フェノール樹脂を含有する。ジアミン系硬化剤は、例えば、第1級アミン及び第2級アミン等からなる群から選択される少なくとも一種を含有する。硬化剤の官能基当量は、好ましくは20g/eq以上500g/eq以下である。
 硬化促進剤は、例えばイミダゾール系化合物、第三級アミン系化合物、有機ホスフィン化合物、及び金属石鹸等からなる群から選択される少なくとも一種を含有する。イミダゾール系化合物は、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)を含有する。
 難燃剤は、例えばハロゲン系難燃剤及び非ハロゲン系難燃剤等からなる群から選択される少なくとも一種を含有する。ハロゲン系難燃剤は、例えば臭素含有化合物を含有する。非ハロゲン系難燃剤は、例えばリン含有化合物、及び窒素含有化合物などからなる群から選択される少なくとも一種を含有する。
 ゴム成分は、例えばエラストマー微粒子などを含有する。エラストマー微粒子は、例えば、コア層とシェル層とを備えるコアシェル構造を有し、シェル層がエポキシ樹脂と相溶するコアシェル型微粒子を含有する。シェル層を構成する重合体は、例えば、ポリメタクリル酸メチル、ポリスチレンなどからなる群から選択される少なくとも一種を含有する。コア層を構成する重合体は、例えば、アクリル系重合体、シリコーン系重合体、ブタジエン系重合体、イソプレン系重合体などからなる群から選択される少なくとも一種を含有する。
 無機充填材は、例えばシリカ、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、タルク、クレー、マイカ、及びモリブデン化合物等からなる群から選択される少なくとも一種を含有する。シリカは、例えば球状シリカ及び破砕状シリカなどからなる群から選択される少なくとも一種を含有する。モリブデン化合物は、例えば三酸化モリブデンなどを含有する。無機充填材の含有量は、熱硬化性樹脂及び硬化剤の総質量100質量部に対して、好ましくは20質量部以上1400質量部以下である。
 溶剤は、例えば適宜の有機溶剤及び水等からなる群から選択される少なくとも一種を含有する。有機溶剤は、例えば、ベンゼン、トルエン、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルエチルケトン、メタノール、エタノール、セロソルブ類などからなる群から選択される少なくとも一種を含有する。
 組成物(X1)が含有しうる成分は、前記のみには制限されない。
 例えば組成物(X1)はフェノキシ樹脂を含有してもよい。フェノキシ樹脂は、組成物(X1)から作製されるプリプレグ2に可撓性を付与し、粉落ちの発生を低減させることができる。
 樹脂シート3を作製する場合、例えば組成物(X1)を塗布法などによりシート状に成形する。塗布法は、例えば浸漬法、スプレー法、スピンコート法、ロールコート法、カーテンコート法、又はスクリーン印刷法等である。続いて、組成物(X1)を加熱することで乾燥させ、又は半硬化させることで、樹脂シート3が作製される。
 上記の樹脂シート3の溶融粘度及び樹脂流れ量は、組成物(X1)中の成分の種類及び配合量、樹脂シート3を作製する際の組成物(X1)の加熱条件などを適宜設定することで実現できる。例えば組成物(X)に低粘度の成分を配合すること、組成物(X)中の低粘度の成分の配合量を多くすること、加熱温度を低くすること、加熱時間を短くすることなどで、樹脂シート3の溶融粘度を低め、かつ樹脂流れ量を多くできる。また、組成物(X1)中の無機充填材の種類、粒径及び配合量を調整することで、測定条件130℃、1MPaでの溶融粘度と、測定条件130℃、4MPaでの溶融粘度との各々を調整できる。
 樹脂シート3の厚みは、例えば50μm以上200μm以下である。図1に示す例では、一枚の樹脂シート3が用いられているが、2枚以上の樹脂シート3が積層されていてもよい。
 上記のとおり、プリプレグ2は、基材4と、基材4に含浸している組成物(X2)の未硬化物又は半硬化物とを備える。
 基材4は、例えば無機繊維織布、無機繊維不織布、有機繊維織布または有機繊維不織布である。無機繊維は、例えばガラス繊維又はガラス以外の無機材料の繊維である。ガラス繊維を構成するガラスは、例えばEガラス、Dガラス、Sガラス、NEガラス、Tガラス又は石英等である。有機繊維は、例えばアラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリベンゾイミダゾール(PBI)繊維、ポリテトラフルオロエチレン(PTFE)繊維、ポリパラフェニレンベンゾビスチアゾール(PBZT)繊維、又は全芳香族ポリエステル繊維等である。
 組成物(X2)は、プリント配線板5の絶縁層8を作製するために適用できるのであれば、特に制限はない。
 組成物(X2)は、熱硬化性樹脂を含有する。熱硬化性樹脂は、例えばエポキシ樹脂、ポリイミド樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂、熱硬化型ポリフェニレンエーテル樹脂からなる群から選択される少なくとも一種を含有する。エポキシ樹脂は、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能型エポキシ樹脂からなる群から選択される少なくとも一種の成分を含む。エポキシ樹脂のエポキシ当量は、好ましくは120g/eq以上800g/eq以下、より好ましくは170g/eq以上600g/eq以下である。なお、熱硬化性樹脂が含みうる成分は、前記には限られない。
 組成物(X2)は、硬化剤、硬化促進剤、難燃剤、及びゴム成分等からなる群から選択される適宜の添加剤を更に含有してもよい。組成物(X2)は、溶剤を更に含有してもよい。
 硬化剤は、例えばジアミン系硬化剤、2官能以上のフェノール系硬化剤、酸無水物系硬化剤、ジシアンジアミド、及び低分子量ポリフェニレンエーテル化合物等からなる群から選択される少なくとも一種を含有する。2官能以上のフェノール系硬化剤は、例えば、ビスフェノールAノボラック型フェノール樹脂を含有する。ジアミン系硬化剤は、例えば、第1級アミン及び第2級アミン等からなる群から選択される少なくとも一種を含有する。硬化剤の官能基当量は、好ましくは20g/eq以上500g/eq以下である。
 硬化促進剤は、例えばイミダゾール系化合物、第三級アミン系化合物、有機ホスフィン化合物、及び金属石鹸等からなる群から選択される少なくとも一種を含有する。イミダゾール系化合物は、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)を含有する。
 難燃剤は、例えばハロゲン系難燃剤及び非ハロゲン系難燃剤等からなる群から選択される少なくとも一種を含有する。ハロゲン系難燃剤は、例えば臭素含有化合物を含有する。非ハロゲン系難燃剤は、例えばリン含有化合物、及び窒素含有化合物などからなる群から選択される少なくとも一種を含有する。
 ゴム成分は、例えばエラストマー微粒子などを含有する。エラストマー微粒子は、例えば、コア層とシェル層とを備えるコアシェル構造を有し、シェル層がエポキシ樹脂と相溶するコアシェル型微粒子を含有する。シェル層を構成する重合体は、例えば、ポリメタクリル酸メチル、ポリスチレンなどからなる群から選択される少なくとも一種を含有する。コア層を構成する重合体は、例えば、アクリル系重合体、シリコーン系重合体、ブタジエン系重合体、イソプレン系重合体などからなる群から選択される少なくとも一種を含有する。
 溶剤は、例えば適宜の有機溶剤及び水等からなる群から選択される少なくとも一種を含有する。有機溶剤は、例えば、ベンゼン、トルエン、N,N-ジメチルホルムアミド(DMF)、アセトン、メチルエチルケトン、メタノール、エタノール、及びセロソルブ類などからなる群から選択される少なくとも一種を含有する。
 組成物(X2)が含有しうる成分は、前記のみには制限されない。
 例えば組成物(X2)はフェノキシ樹脂を含有してもよい。フェノキシ樹脂は、組成物(X2)から作製される樹脂シート3に可撓性を付与し、粉落ちの発生を低減させることができる。
 組成物(X2)は、無機充填材を含有してもよい。組成物(X2)が無機充填材を含有する場合には、無機充填材の含有量は、本実施形態の作用を損なわない範囲内で、適宜調整される。
 プリプレグ2は、基材4に組成物(X2)を含浸させてから、基材4に組成物(X2)を加熱することで乾燥させ、又は半硬化させることで作製される。組成物(X2)を加熱させる条件は、組成物(X2)の組成、並びにプリプレグ2に付与すべき物性に応じて、適宜調整される。
 プリプレグ2における組成物(X2)の未硬化物又は半硬化物が上記の溶融粘度を有することは、組成物(X2)中の成分の種類及び配合量、プリプレグ2を作製する際の組成物(X2)の加熱条件などを適宜設定することで実現できる。例えば組成物(X2)に低粘度の成分を配合すること、組成物(X2)中の低粘度の成分の配合量を多くすること、加熱温度を低くすること、加熱時間を短くすることなどで、組成物(X2)の未硬化物又は半硬化物の溶融粘度を調整できる。
 樹脂シート3とプリプレグ2を重ね、熱プレスすることで、樹脂シート3と、樹脂シート3に重なるプリプレグ2とを備える絶縁性樹脂材1を作製することができる。
 上述のとおり、樹脂シート3とプリプレグ2とから、絶縁層8を作製でき、また絶縁層8を備えるプリント配線板5を製造できる。
 プリント配線板5を製造するに当たって、絶縁層8に埋め込まれる導体9、すなわちコア材11における導体9の厚みは、例えば70μm以上500μm以下である。本実施形態では、導体9の厚みがこのように大きくても、絶縁層8に導体9が埋め込まれやすくし、かつ成形性が悪化しにくくできる。また、このように導体9の厚みが大きければ、それに応じて導体9に流せる電流値も大きくできる。そのため、プリント配線板5を、大電流化が要求される産業機器、車載基板用途などに適用することもできる。導体9の厚みは100μm以上450μm以下であればより好ましく、130μm以上420μm以下であれば更に好ましい。なお、導体9の厚みは、前記のみには制限されない。
 コア材11に電子部品13が実装されている場合には、電子部品13の厚みは、例えば100μm以上500μm以下である。電子部品13の厚みとは、コア材11における絶縁基板10の表面を基準とした電子部品13の最大高さである。本実施形態では、電子部品13の厚みがこのように大きくても、絶縁層8に電子部品13が埋め込まれやすくし、かつ成形性が悪化しにくくできる。電子部品13の厚みは100μm以上450μm以下であればより好ましく、130μm以上420μm以下であれば更に好ましい。なお、電子部品13の厚みは、前記のみには制限されない。
 以下、本実施形態の、より具体的な実施例を提示する。なお、本実施形態は、以下の実施例のみには制限されない。
 1.樹脂シート
 (1)樹脂シートの作製
 表1及び表2の、樹脂シートの組成の欄に示す成分を混合することで、組成物を調製した。表1及び表2に示す成分の詳細は下記のとおりである。
-ブロム化エポキシ樹脂:ブロム化ビスフェノールA型エポキシ樹脂。DIC株式会社製。品名EPICLON 1121N-80M。
-ビスフェノールA型エポキシ樹脂:DIC株式会社製。品名1051-75M。
-クレゾールノボラック型エポキシ樹脂:DIC株式会社製。品名EPICLON N-690-75M。
-DICY:ジシアンジアミド。
-2E4MZ:2-エチル-4-メチルイミダゾール。
-フェノキシ樹脂:日鉄ケミカル&マテリアル株式会社製。品番YP50EK35。
-溶剤:メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテル(PGME)及びN,N-ジメチルホルムアミド(DMF)を含む混合溶媒。
 PETフィルムの上に組成物を塗布し、表1及び表2の加熱条件に示す加熱温度及び加熱時間で、組成物を加熱した。これにより、表1及び表2に示す厚みを有する樹脂シートを得た。
 (2)樹脂シートの特性試験
 樹脂シートについて下記の特性試験を行った。その結果は表1及び表2に示す。
 (2-1)フィルム性
 樹脂シートに対し、屈曲試験機を用いて、円筒形マンドレル法により、屈曲試験を行った。その結果、マンドレルの直径が10mmでクラックが認められない場合を「A」、マンドレルの直径が10mmではクラックが認められたが20mmでは認められなかった場合を「B」、マンドレルの直径が20mmでクラックが認められた場合を「C」と、評価した。
 (2-2)溶融粘度及びTI
 PETフィルムから樹脂シートを剥離することにより試料を得た。この試料の溶融粘度η1を、高化式フローテスター(島津製作所製、型番FT-500D/100D)で、温度130℃、圧力1MPaの測定条件で測定した。
 同様に、測定条件を温度130℃、圧力4MPaとした場合の試料の溶融粘度η2も測定した。
 また、この溶融粘度の測定結果から、チクソトロピーインデックス(η1/η2)を算出した。
 (2-3)樹脂流れ量
 PETフィルムから樹脂シートを剥離し、樹脂シートを切断して100mm×100mmの寸法の試験片を作製した。
 試験片を二つの離型フィルムで挟み、これらを熱盤の間に配置して、130℃、0.5MPa、300秒の条件で熱プレスした。
 熱プレス前の試験片の重量(W1)を測定した。また、熱プレス後の試験片を打ち抜き、直径80mmの試料を得た。この試料の重量(W2)を測定した。この結果から、樹脂流れ量=(W1-2×W2)/W1×100(%)の式により、樹脂流れ量を算出した。
 2.プリプレグ
 (1)プリプレグの作製
 表1及び表2の、プリプレグの組成の欄に示す成分を混合することで、組成物を調製した。表1及び表2に示す成分の詳細は下記のとおりである。
-ブロム化エポキシ樹脂:ブロム化ビスフェノールA型エポキシ樹脂。DIC株式会社製。品名EPICLON 1121N-80M。
-クレゾールノボラック型エポキシ樹脂:DIC株式会社製。品名EPICLON N-690-75M。
-DICY:ジシアンジアミド。
-2E4MZ:2-エチル-4-メチルイミダゾール。
-SO-25R:球状シリカ。アドマテックス社製。品名SO-25R。
-R974:フュームドシリカ。日本アエロジル社製。品名R974。
-シランカップリング剤:3-グリシドキシプロピルトリメトキシシラン。信越化学工業株式会社製。品番KBM-403。
-フェノキシ樹脂:日鉄ケミカル&マテリアル株式会社製。品番YP50EK35。
-アクリル酸エステル系ポリマー:ナガセケムテック社製。品名テイサンレジンSG-P3。
-溶剤:メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテル(PGME)及びN,N-ジメチルホルムアミド(DMF)を含む混合溶媒。
 基材としてEガラスからなるガラスクロス(#1080)を用意し、この基材に組成物を含浸させてから、表1及び表2の加熱条件に示す加熱温度及び加熱時間で、組成物を加熱した。これにより、表1及び表2に示す樹脂含有率及び厚みを有するプリプレグを得た。
 (2)溶融粘度
 プリプレグから、基材を除去することにより試料を得た。この試料の溶融粘度を、高化式フローテスター(島津製作所製、型番FT-500D/100D)で、温度130℃、圧力4MPaの測定条件で測定した。その結果を表1及び表2に示す。
 3.評価試験
 (1)充填性
 絶縁基板と、絶縁基板の両面の各々設けられた導体配線とを備えるコア材を用意した。絶縁基板はガラス布基材エポキシ樹脂基板であり、各導体配線は銅製であり、各導体配線の残銅率は60%である。また、コア材としては、電子部品を実装したものも用いた。電子部品を実装していない場合はコア材の導体の厚みを、電子部品を実装している場合は電子部品の厚みを、表1及び表2の「コア材の導体又は電子部品の厚み」の欄に示す。
 コア材の両面上の各々に、1又は複数枚の樹脂シート、プリプレグ、及び厚み35μmの銅箔を、この順に重ねた。すなわち、銅箔、プリプレグ、1又は複数枚の樹脂シート、コア材、1又は複数枚の樹脂シート、プリプレグ及び銅箔をこの順に積層した。樹脂シートの枚数は表1及び表2に示すとおりである。これにより積層物を得た。この積層物を200℃、22MPa、60分間の条件で熱プレスすることで、プリント配線板を得た。
 このプリント配線板を切断し、それにより生じた断面を研磨してから、断面を観察し、絶縁層と導体配線及び電子部品との間における空隙の有無を確認した。
 導体配線の残銅率を80%とした場合についても、同様に評価を行った。
 その結果、残銅率が60%、80%のいずれの場合にも空隙が認められない場合を「A」、残銅率60%では空隙が認められたが、残銅率80%では空隙が認められない場合を「B」、残銅率が60%、80%のいずれの場合にも空隙が認められた場合を「C」と、評価した。
 (2)板厚精度
 上記の「(1)充填性」の場合と同じ条件(ただし各導体配線の残銅率は60%のみ)で、プリント配線板を得た。
 このプリント配線板における五か所の位置で、プリント配線板の厚みをマイクロメータで測定した。これにより得られた5つの測定値のうちの最大値と最小値との差の値が、プリント配線板の厚みの理論値の10%以下である場合は「A」、10%を超え20%以下である場合は「B」、20%を超える場合は「C」と、評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 1  絶縁性樹脂材
 2  プリプレグ
 3  樹脂シート
 4  基材
 5  プリント配線板
 6  第二層
 7  第一層
 8  絶縁層
 9  導体
 10 絶縁基板
 11 コア材
 13 電子部品
 14 金属箔

 

Claims (8)

  1. 熱硬化性樹脂組成物(X1)の未硬化物又は半硬化物を含み、
    高化式フローテスターを用いて測定される測定条件130℃、1MPaでの溶融粘度は10Pa・s以上2000Pa・s以下であり、かつ測定条件130℃、4MPaでの溶融粘度は6Pa・s以上1200Pa・s以下である、
    樹脂シート。
  2. グリニス法で測定される、測定条件130℃、0.5MPaでの樹脂流れ量は、40%以下である、
    請求項1に記載の樹脂シート。
  3. 請求項1又は2に記載の樹脂シートと共に使用され、
    基材と、前記基材に含浸している熱硬化性樹脂組成物(X2)の未硬化物又は半硬化物とを備え、
    前記熱硬化性樹脂組成物(X2)の前記未硬化物又は前記半硬化物の、高化式フローテスターを用いて測定される測定条件130℃、4MPaでの溶融粘度は、500Pa・s以上6000Pa・s以下である、
    プリプレグ。
  4. 請求項1又は2に記載の樹脂シートと、前記樹脂シートに重なる請求項3に記載のプリプレグとを備える、
    絶縁性樹脂材。
  5. 絶縁基板及び前記絶縁基板に重なる導体を備えるコア材と、
    前記コア材に重なり、かつ前記導体を覆う絶縁層とを備え、
    前記絶縁層は、前記コア材に接する、請求項1又は2に記載の樹脂シートの硬化物である第一層と、前記第一層に重なる、請求項3に記載のプリプレグの硬化物である第二層とを備える、
    プリント配線板。
  6. 前記導体の厚みは70μm以上500μm以下である、
    請求項5に記載のプリント配線板。
  7. 前記コア材に実装されている電子部品を更に備え、
    前記電子部品は前記絶縁層に埋め込まれている、
    請求項5又は6に記載のプリント配線板。
  8. 前記電子部品の厚みは70μm以上500μm以下である、
    請求項7に記載のプリント配線板。

     
PCT/JP2021/025679 2020-07-08 2021-07-07 樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板 WO2022009937A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180043456.4A CN115697660A (zh) 2020-07-08 2021-07-07 树脂片、预浸料、绝缘性树脂构件和印刷线路板
ATA9183/2021A AT525487A2 (de) 2020-07-08 2021-07-07 Harzlage, Prepreg, isolierendes Harzelement und Leiterplatte
JP2022535378A JPWO2022009937A1 (ja) 2020-07-08 2021-07-07
US18/012,583 US20230257540A1 (en) 2020-07-08 2021-07-07 Resin sheet, prepreg, insulating resin member, and printed wiring board
DE112021002573.2T DE112021002573T5 (de) 2020-07-08 2021-07-07 Harzlage, prepreg, isolierendes harzelement und leiterplatte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118010 2020-07-08
JP2020118010 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009937A1 true WO2022009937A1 (ja) 2022-01-13

Family

ID=79553241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025679 WO2022009937A1 (ja) 2020-07-08 2021-07-07 樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板

Country Status (6)

Country Link
US (1) US20230257540A1 (ja)
JP (1) JPWO2022009937A1 (ja)
CN (1) CN115697660A (ja)
AT (1) AT525487A2 (ja)
DE (1) DE112021002573T5 (ja)
WO (1) WO2022009937A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186457A (ja) * 1995-12-28 1997-07-15 Matsushita Electric Works Ltd 内層回路入り積層板の製造方法
JPH11279493A (ja) * 1998-03-31 1999-10-12 Hitachi Chem Co Ltd 接着剤シート、接着剤付き金属はく、金属はく張多層積層板、金属はく張積層板及びプリント配線板
JP2000095844A (ja) * 1998-09-25 2000-04-04 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2003253125A (ja) * 2001-01-31 2003-09-10 Sumitomo Bakelite Co Ltd 絶縁樹脂組成物及び絶縁樹脂シート並びにプリント配線板
JP2004059896A (ja) * 2002-06-03 2004-02-26 Matsushita Electric Works Ltd プリプレグ及びこのプリプレグを用いたプリント配線板の製造方法
JP2006066738A (ja) * 2004-08-27 2006-03-09 Matsushita Electric Works Ltd 多層プリント配線板用銅張り積層板、多層プリント配線板及び多層プリント配線板の製造方法
WO2014132654A1 (ja) * 2013-02-28 2014-09-04 パナソニック株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板
JP2020098838A (ja) * 2018-12-17 2020-06-25 パナソニックIpマネジメント株式会社 熱硬化性樹脂フィルム、絶縁材料、プリント配線板、及びプリント配線板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037362A (ja) 2001-07-24 2003-02-07 Matsushita Electric Works Ltd 多層プリント配線板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186457A (ja) * 1995-12-28 1997-07-15 Matsushita Electric Works Ltd 内層回路入り積層板の製造方法
JPH11279493A (ja) * 1998-03-31 1999-10-12 Hitachi Chem Co Ltd 接着剤シート、接着剤付き金属はく、金属はく張多層積層板、金属はく張積層板及びプリント配線板
JP2000095844A (ja) * 1998-09-25 2000-04-04 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ及び積層板
JP2003253125A (ja) * 2001-01-31 2003-09-10 Sumitomo Bakelite Co Ltd 絶縁樹脂組成物及び絶縁樹脂シート並びにプリント配線板
JP2004059896A (ja) * 2002-06-03 2004-02-26 Matsushita Electric Works Ltd プリプレグ及びこのプリプレグを用いたプリント配線板の製造方法
JP2006066738A (ja) * 2004-08-27 2006-03-09 Matsushita Electric Works Ltd 多層プリント配線板用銅張り積層板、多層プリント配線板及び多層プリント配線板の製造方法
WO2014132654A1 (ja) * 2013-02-28 2014-09-04 パナソニック株式会社 プリント配線板用樹脂組成物、プリプレグ、金属張積層板
JP2020098838A (ja) * 2018-12-17 2020-06-25 パナソニックIpマネジメント株式会社 熱硬化性樹脂フィルム、絶縁材料、プリント配線板、及びプリント配線板の製造方法

Also Published As

Publication number Publication date
CN115697660A (zh) 2023-02-03
JPWO2022009937A1 (ja) 2022-01-13
DE112021002573T5 (de) 2023-03-09
US20230257540A1 (en) 2023-08-17
AT525487A2 (de) 2023-02-15

Similar Documents

Publication Publication Date Title
JP6190092B2 (ja) エポキシ樹脂組成物
CN106987093A (zh) 树脂组合物
KR20110040704A (ko) 에폭시 수지 조성물, 프리프레그, 금속 부착 적층판, 프린트 배선판 및 반도체 장치
US4029845A (en) Printed circuit base board and method for manufacturing same
KR101560121B1 (ko) 금속박 부착 접착 시트, 금속박 적층판, 금속박 부착 다층 기판, 회로 기판의 제조 방법
CN108570213A (zh) 树脂组合物层
CN104349599B (zh) 部件安装基板的制造方法
WO2018088477A1 (ja) Frp前駆体の製造方法、積層体の製造方法、プリント配線板の製造方法及び半導体パッケージの製造方法
WO2022009937A1 (ja) 樹脂シート、プリプレグ、絶縁性樹脂材及びプリント配線板
KR101907713B1 (ko) 빌드업용 프리프레그
WO2020121734A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板
WO2018155137A1 (ja) プリント配線板及びプリント配線板の製造方法
JP2016190928A (ja) 熱硬化性樹脂組成物、金属張積層板、絶縁シート、プリント配線板、プリント配線板の製造方法及びパッケージ基板
WO2021201252A1 (ja) 熱硬化性樹脂シート及びプリント配線板
JP2005051029A (ja) 多層配線板の製造方法
JP6816566B2 (ja) 樹脂組成物、接着フィルム、プリプレグ、多層プリント配線板及び半導体装置
JP5033153B2 (ja) 片面板の製造方法及びプリント配線板の製造方法
KR20000028796A (ko) 빌드업 방법용 열경화성 수지 조성물
JPH09254308A (ja) 樹脂付き金属箔
JP2015086293A (ja) プリプレグ及び多層プリント配線板
JP3356010B2 (ja) 金属箔張り積層板の製造方法
JP2004115634A (ja) プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、多層プリント配線板
WO2021206041A1 (ja) 樹脂組成物、樹脂フィルム材、プリント配線板及びプリント配線板の製造方法
JP4784082B2 (ja) プリント配線板およびその製造方法
JP7493178B2 (ja) 樹脂シートの製造方法、及び金属張積層板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535378

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21838408

Country of ref document: EP

Kind code of ref document: A1