WO2022009806A1 - 正極材料及び電池 - Google Patents

正極材料及び電池 Download PDF

Info

Publication number
WO2022009806A1
WO2022009806A1 PCT/JP2021/025191 JP2021025191W WO2022009806A1 WO 2022009806 A1 WO2022009806 A1 WO 2022009806A1 JP 2021025191 W JP2021025191 W JP 2021025191W WO 2022009806 A1 WO2022009806 A1 WO 2022009806A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
active material
electrode active
layer
Prior art date
Application number
PCT/JP2021/025191
Other languages
English (en)
French (fr)
Inventor
徹 杉山
真也 塩谷
健 宇佐美
晃暢 宮崎
出 佐々木
紀仁 藤ノ木
Original Assignee
トヨタ自動車株式会社
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, パナソニック株式会社 filed Critical トヨタ自動車株式会社
Priority to CN202180048077.4A priority Critical patent/CN115769397A/zh
Priority to US18/014,684 priority patent/US20230231124A1/en
Priority to JP2022535302A priority patent/JP7420949B2/ja
Priority to EP21837988.1A priority patent/EP4181230A4/en
Publication of WO2022009806A1 publication Critical patent/WO2022009806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application discloses positive electrode materials and batteries.
  • Patent Document 1 discloses a positive electrode material that covers at least a part of the surface of the positive electrode active material and contains a coating layer containing a first solid electrolyte and a second solid electrolyte. There is. As disclosed in Patent Document 1, by coating the surface of the positive electrode active material with the first solid electrolyte, the formation of a high resistance layer due to the direct contact between the positive electrode active material and the second solid electrolyte is suppressed. Can be done.
  • the positive electrode material disclosed in Patent Document 1 may increase its calorific value when exposed to a high temperature.
  • a positive electrode material containing a positive electrode active material, a first solid electrolyte, and a second solid electrolyte contains a lithium-containing oxide and contains The first solid electrolyte contains Li and X as constituent elements and does not contain S. X is at least one element selected from the group consisting of F, Cl, Br and I.
  • the second solid electrolyte contains Li and S as constituent elements, and contains Li and S as constituent elements.
  • the first solid electrolyte covers at least a part of the surface of the positive electrode active material.
  • the second solid electrolyte comes into contact with the positive electrode active material via the first solid electrolyte.
  • the average coating thickness of the first solid electrolyte is 104 nm or more. Disclose the positive electrode material.
  • the first solid electrolyte may contain M as a constituent element.
  • the M may be at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • the first solid electrolyte may have a chemical composition represented by Li ⁇ M ⁇ X ⁇ . ⁇ , ⁇ and ⁇ may be independently larger than 0.
  • the M may contain yttrium.
  • the X may be at least one of Cl and Br.
  • the second solid electrolyte may contain Li, P and S as constituent elements.
  • the positive electrode material of the present disclosure suppresses an increase in calorific value when exposed to high temperatures.
  • An example of the composition of the positive electrode material is shown schematically.
  • An example of the battery configuration is shown schematically.
  • the configurations of the batteries according to the examples and the comparative examples are shown schematically.
  • the relationship between the average thickness of the coating layer and the calorific value of the positive electrode material is shown. It is a graph which compared the resistance value of the battery which concerns on Example and the comparative example.
  • the positive electrode material 10 includes a positive electrode active material 10a, a first solid electrolyte 10b, and a second solid electrolyte 10c.
  • the positive electrode active material 10a contains a lithium-containing oxide.
  • the first solid electrolyte 10b contains Li and X as constituent elements and does not contain S.
  • X is at least one element selected from the group consisting of F, Cl, Br and I.
  • the second solid electrolyte 10c contains Li and S as constituent elements.
  • the first solid electrolyte 10b covers at least a part of the surface of the positive electrode active material 10a.
  • the second solid electrolyte 10c is in contact with the positive electrode active material 10a via the first solid electrolyte 10b.
  • the average coating thickness of the first solid electrolyte 10b is 104 nm or more.
  • the positive electrode active material 10a contains a lithium-containing oxide.
  • the lithium-containing oxide is an oxide containing lithium as a constituent element, and may contain other elements in addition to lithium and oxygen.
  • the lithium-containing oxide may be any material that can function as the positive electrode active material of the battery. Specific examples of the lithium-containing oxide include lithium cobalt oxide, lithium nickel oxide, lithium manganate, and Li (Ni, Co, Mn) O 2 ⁇ ⁇ (for example, LiNi 1/3 Co 1/3 Mn 1/3 O). 2 ⁇ ⁇ ) and the like.
  • the lithium-containing oxide may have, for example, a layered rock salt type crystal phase, a spinel type crystal phase, or a crystal phase other than these.
  • the lithium-containing oxide may be one that releases oxygen at any temperature in the range of, for example, 80 ° C. or higher and 260 ° C. or lower.
  • the positive electrode active material 10a may contain a positive electrode active material other than the lithium-containing oxide in addition to the lithium-containing oxide.
  • the surface of the positive electrode active material 10a may be composed of a protective layer containing a Li ion conductive oxide. That is, a complex provided with the above-mentioned lithium-containing oxide and a protective layer provided on the surface thereof may be used as the positive electrode active material 10a. This makes it easier to suppress the reaction between the positive electrode active material and the sulfide solid electrolyte.
  • the Li ion conductive oxide for example, Li 3 BO 3, LiBO 2 , Li 2 CO 3, LiAlO 2, Li 4 SiO 4, Li 2 SiO 3, Li 3 PO4, Li 2 SO 4, Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 .
  • the coverage (area ratio) of the protective layer may be, for example, 70% or more, 80% or more, or 90% or more.
  • the thickness of the protective layer may be, for example, 0.1 nm or more, or 1 nm or more. On the other hand, the thickness of the protective layer may be, for example, 100 nm or less, or 20 nm or less.
  • the shape of the positive electrode active material 10a is not particularly limited.
  • the positive electrode active material 10a may be, for example, in the form of particles or in the form of layers. Further, the positive electrode active material 10a may be in the form of primary particles or in the form of secondary particles in which primary particles are aggregated.
  • the positive electrode active material 10a is small (the specific surface area of the positive electrode active material 10a is large), the total area to be covered with the first solid electrolyte 10b increases, and the volume of the first solid electrolyte 10b in the positive electrode material 10 also increases. .. Considering this point, process cost, material cost, energy density, and the like, the positive electrode active material 10a may be large.
  • the positive electrode active material 10a may be small.
  • the average particle size (D 50 ) may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1 ⁇ m or more, and 100 ⁇ m or less, 50 ⁇ m or less, or 20 ⁇ m or less. There may be.
  • the positive electrode active material 10a When the positive electrode active material 10a is in the form of particles, its BET specific surface area may be, for example, 0.1 m 2 / g or more or 0.2 m 2 / g or more, 5.0 m 2 / g or less, or It may be 2.0 m 2 / g or less.
  • the average particle size (D 50 ) means a median size (50% volume average particle size) derived from a particle size distribution measured by a particle size distribution measuring device based on a laser scattering / diffraction method.
  • the content of the positive electrode active material 10a in the positive electrode material 10 is not particularly limited, and may be appropriately determined according to the desired performance.
  • the content of the positive electrode active material 10a may be 30% by mass or more, 40% by mass or more, or 50% by mass or more, 95. It may be 0% by mass or less, 90% by mass or less, or 85% by mass or less.
  • the first solid electrolyte 10b covers at least a part of the surface of the positive electrode active material 10a.
  • the positive electrode active material 10a may have a portion not covered with the first solid electrolyte 10b.
  • the first solid electrolyte 10b may cover 50% or more, 70% or more, or 90% or more of the surface of the positive electrode active material 10a. Further, as shown in FIG. 1, the first solid electrolyte 10b may cover the entire surface (100%) of the positive electrode active material 10a.
  • the first solid electrolyte 10b contains Li and X as constituent elements.
  • X is at least one element selected from the group consisting of F, Cl, Br and I.
  • the first solid electrolyte 10b may be an inorganic halide solid electrolyte.
  • the Li content and the X content in the first solid electrolyte 10b are not particularly limited, and may be appropriately determined according to the target ionic conductivity.
  • the first solid electrolyte 10b does not contain S as a constituent element. "Does not contain S" means that S is substantially not contained.
  • the first solid electrolyte 10b may contain S as an impurity. For example, when the ratio of S to all the elements constituting the first solid electrolyte 10b is 0.1 mol% or less, the first solid electrolyte 10b is considered to contain no S. The same applies to elements other than S.
  • the first solid electrolyte 10b may contain M as a constituent element.
  • M is at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • Metallic elements other than Li means all elements contained in groups 1 to 12 of the periodic table except H and Li, as well as B, Si, Ge, Al, Sb, Te, C, N and P. , O, S and Se, all elements contained in the 13th to 16th groups of the periodic table.
  • the "metalloid element” is B, Si, Ge, As, Sb and Te. These metallic elements and metalloid elements can become cations when forming halides.
  • the content of M in the first solid electrolyte 10b is not particularly limited, and may be appropriately determined according to the target ionic conductivity.
  • the first solid electrolyte 10b may have a chemical composition represented by Li ⁇ M ⁇ X ⁇ , and ⁇ , ⁇ and ⁇ may each independently have a value larger than 0.
  • the first solid electrolyte 10b having such a chemical composition has an even higher ionic conductivity.
  • Specific values of ⁇ , ⁇ and ⁇ are not particularly limited. From the viewpoint of ensuring higher ionic conductivity in the first solid electrolyte 10b, ⁇ may be 2.5 or more or 2.8 or more, and may be 3.5 or less, 3.3 or less or 3.0 or less. You may. Further, ⁇ may be 0.5 or more, 0.8 or more or 1.0 or more, and may be 1.5 or less, 1.3 or less or 1.1 or less. ⁇ may be determined according to the valences of ⁇ , ⁇ and M.
  • the M may contain yttrium, or the M may be yttrium only. As a result, the ionic conductivity of the first solid electrolyte 10b is further improved.
  • the above X may be at least one of Cl and Br. That is, the first solid electrolyte 10b may not contain F as a constituent element, may not contain I, or may not contain F and I.
  • X constituting the first solid electrolyte 10b is one or both of Cl and Br, the oxidative stability of the first solid electrolyte 10b is improved.
  • the first solid electrolyte 10b may have, for example, the chemical composition represented by Li a Me b Y c X d.
  • Me may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb.
  • the first solid electrolyte 10b having such a chemical composition also has a high ionic conductivity.
  • the first solid electrolyte 10b may, for example, may have a chemical composition represented by Li 6-3e Y e X f. Here, 0 ⁇ e ⁇ 2, and f is determined according to e.
  • the first solid electrolyte 10b having such a chemical composition also has a high ionic conductivity.
  • the first solid electrolyte 10b may have the chemical composition represented by Li 3 YX 6.
  • the first solid electrolyte 10b having such a chemical composition also has a high ionic conductivity.
  • the first solid electrolyte 10b may be crystalline or amorphous. It may be appropriately selected according to the target ionic conductivity. As the first solid electrolyte 10b, only one kind may be used alone, or two or more kinds may be used.
  • the average coating thickness of the first solid electrolyte 10b with respect to the positive electrode active material 10a is 104 nm or more. According to the findings of the present inventor, the positive electrode active material 10a releases oxygen when exposed to high temperatures. If the oxygen released from the positive electrode active material 10a reaches the second solid electrolyte 10c, the oxygen and the second solid electrolyte 10c cause an exothermic reaction.
  • the surface of the positive electrode active material 10a is provided with the first solid electrolyte 10b having an average coating thickness of 104 nm or more, so that the oxygen is released even if oxygen is released from the positive electrode active material 10a.
  • the average coating thickness of the first solid electrolyte 10b may be 110 nm or more, 115 nm or more, 120 nm or more, 125 nm or more, 130 nm or more, or 135 nm or more.
  • the upper limit of the average coating thickness of the first solid electrolyte 10b is not particularly limited, and may be appropriately determined in consideration of ionic conductivity and the like.
  • the average coating thickness of the first solid electrolyte 10b may be 300 nm or less, 250 nm or less, or 200 nm or less.
  • the minimum value of the coating thickness of the first solid electrolyte 10b may be less than 104 nm, or the minimum value may be 104 nm or more.
  • the coating thickness may be 104 nm or more on the entire surface thereof.
  • the "average coating thickness of the first solid electrolyte 10b" can be specified as follows. First, the positive electrode material 10 is observed with a scanning electron microscope, a transmission electron microscope, or the like to acquire a cross-sectional two-dimensional image of the positive electrode material 10. One positive electrode active material 10a and a first solid electrolyte 10b covering the positive electrode active material 10a are extracted from the two-dimensional image by element mapping or the like. In the two-dimensional image, for example, the region where oxygen is present corresponds to the positive electrode active material 10a, the region where halogen is present and sulfur is not present corresponds to the first solid electrolyte 10b, and the region where sulfur is present. Can be determined to correspond to the second solid electrolyte 10c.
  • the area A1 of the extracted positive electrode active material 10a and the area A2 of the first solid electrolyte 10b that covers the periphery of the positive electrode active material 10a are specified.
  • the radius R1 of the circle corresponding to the area A1 is specified.
  • the radius R2 of the circle corresponding to the area A1 + A2 is specified.
  • the value obtained by subtracting R1 from R2 (R2-R1) can be used as the average coating thickness of the first solid electrolyte 10b.
  • the portion of the hollow structure may become a “void surrounded by the active material component” (region in which the active material component is not extracted).
  • the positive electrode active material 10a has a hollow structure and the area A1 of the positive electrode active material 10a is specified by element mapping or the like, the above-mentioned "voids surrounded by the active material component" are also active materials. Is considered to be present, and is included in the area A1 of the positive electrode active material 10a.
  • the first solid electrolyte 10b continuously covers at least a part of the surface of the positive electrode active material 10a along the surface shape of the positive electrode active material 10a.
  • a film-like first solid electrolyte 10b may cover the surface of the positive electrode active material 10a, or particles of the first solid electrolyte 10b may be attached or deposited along the surface shape of the positive electrode active material 10a. This is the case.
  • the positive electrode material 10 of the present disclosure is different from the one in which the positive electrode active material 10a, the first solid electrolyte 10b, and the second solid electrolyte 10c are mixed and dispersed with each other.
  • the method of coating the surface of the positive electrode active material 10a with the first solid electrolyte 10b is not particularly limited.
  • a form in which the positive electrode active material 10a and the first solid electrolyte 10b are mixed and the particles of the first solid electrolyte 10b are attached to the surface of the positive electrode active material 10a can be mentioned.
  • a conductive auxiliary agent may be added. That is, a coating layer made of the first solid electrolyte 10b may be formed on the surface of the positive electrode active material 10a, or the first solid electrolyte 10b may form a coating layer together with the conductive auxiliary agent.
  • the second solid electrolyte 10c was mixed with the positive electrode active material 10a and the first solid electrolyte 10b before the surface of the positive electrode active material 10a was coated with the first solid electrolyte 10b.
  • the resistance of the positive electrode material as a whole is significantly increased.
  • Second solid electrolyte The second solid electrolyte 10c comes into contact with the positive electrode active material 10a via the first solid electrolyte 10b. That is, the first solid electrolyte 10b is interposed between the positive electrode active material 10a and the second solid electrolyte 10c.
  • an ion conduction path is formed between the positive electrode active material 10a, the first solid electrolyte 10b and the second solid electrolyte 10c. Therefore, the ionic conductivity of the positive electrode material 10 as a whole can be improved.
  • the second solid electrolyte 10c contains Li and S as constituent elements.
  • the second solid electrolyte 10c may be an inorganic sulfide solid electrolyte.
  • Examples of such a second solid electrolyte 10c include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Si 2 SP 2 S 5 , Li 2 S. -P 2 S 5 -LiI-LiBr, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5- GeS 2 and the like are exemplified.
  • the second solid electrolyte 10c may contain Li, P and S as constituent elements, or may contain Li 2 SP 2 S 5.
  • the content ratio of Li 2 S and P 2 S 5 it is not particularly limited.
  • the second solid electrolyte 10c may be crystalline or amorphous. It may be appropriately selected according to the target ionic conductivity. As the second solid electrolyte 10c, only one type may be used alone, or two or more types may be mixed and used.
  • the shape of the second solid electrolyte 10c is not particularly limited. For example, it may be in the form of particles, may be in the form of needles, may be in the form of layers, or may be indefinite. When the second solid electrolyte 10c is in the form of particles, its average particle size (D 50 ) may be 0.1 ⁇ m or more or 1 ⁇ m or more, and may be 100 ⁇ m or less or 10 ⁇ m or less. Further, the second solid electrolyte 10c may be larger or smaller than the positive electrode active material 10a.
  • the content of the second solid electrolyte 10c in the positive electrode material 10 is not particularly limited, and may be appropriately determined according to the desired performance.
  • the content of the second solid electrolyte 10c may be 5% by mass or more or 10% by mass or more, 65% by mass or less, or It may be 45% by mass or less.
  • the positive electrode material 10 may contain a conductive auxiliary agent 10d (see FIG. 2).
  • the conductive auxiliary agent 10d may form a coating layer together with the first solid electrolyte 10b on the surface of the positive electrode active material 10a, or may be arranged outside the coating layer.
  • any known conductive auxiliary agent used in the positive electrode of the battery can be adopted.
  • carbon such as acetylene black (AB), furnace black, channel black, thermal black, Ketjen black (KB), vapor phase carbon fiber (VGCF), carbon nanotube (CNT), carbon nanofiber (CNF), and graphite.
  • Material Metallic materials such as nickel, aluminum and stainless steel can be used.
  • the conductive auxiliary agent 10d only one kind may be used alone, or two or more kinds may be mixed and used.
  • shape of the conductive auxiliary agent 10d various shapes such as powder and fibrous can be adopted.
  • the content of the conductive auxiliary agent 10d in the positive electrode material 10 is not particularly limited, and may be appropriately determined according to the desired performance. For example, when the total content of the positive electrode material 10 (total solid content) is 100% by mass, the content of the conductive auxiliary agent 10d may be 0.5% by mass or more or 1% by mass or more, and 20% by mass or less. Alternatively, it may be 10% by mass or less.
  • the positive electrode material 10 may contain a binder.
  • any known binder can be used as the binder used in the positive electrode of the battery.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • ABR acrylonitrile-butadiene rubber
  • BR butadiene rubber
  • PVDF polyvinylidene fluoride
  • At least one selected from PTFE PTFE
  • the content of the binder in the positive electrode material 10 is not particularly limited, and may be appropriately determined according to the desired performance. For example, when the entire positive electrode material 10 (total solid content) is 100% by mass, the content of the binder may be 1% by mass or more or 2% by mass or more, and is 30% by mass or less or 15% by mass or less. There may be.
  • the positive electrode material 10 may contain a positive electrode active material other than the positive electrode active material 10a. At least a part of the surface of the positive electrode active material other than the positive electrode active material 10a may or may not be coated with the first solid electrolyte 10b.
  • the positive electrode material 10 may contain a solid electrolyte other than the first solid electrolyte 10b and the second solid electrolyte 10c.
  • a solid electrolyte other than the first solid electrolyte 10b and the second solid electrolyte 10c.
  • it may contain an oxide solid electrolyte such as lithium lanthanum dilconate, LiPON, Li 1 + X Al X Ge 2-X (PO 4 ) 3 , Li-SiO glass, Li-Al-SO glass and the like. ..
  • the positive electrode material 10 may be, for example, powder as a whole, or may be molded into an appropriate form depending on the application.
  • the positive electrode material 10 may contain a plurality of particulate positive electrode active materials 10a. As will be described later, the positive electrode material 10 may be the positive electrode active material layer 100.
  • the positive electrode material 10 may be made into a paste or a slurry by adding a solvent or the like.
  • the battery 1000 includes a positive electrode active material layer 100, a solid electrolyte layer 200, and a negative electrode active material layer 300.
  • the positive electrode active material layer 100 is made of the above positive electrode material 10.
  • the positive electrode active material layer 100 is made of the above-mentioned positive electrode material 10.
  • the thickness of the positive electrode active material layer 100 may be, for example, 0.1 ⁇ m or more, 1 ⁇ m or more, or 10 ⁇ m or more, or 1 mm or less, 500 ⁇ m or less, or 100 ⁇ m or less.
  • the positive electrode material 10 is put in a solvent and kneaded to obtain a positive electrode paste or slurry, which is then used on the surface of the positive electrode current collector 400 and / or on the surface of the solid electrolyte layer 200. It can be easily manufactured by subjecting it to a process such as coating it on the surface and drying it.
  • the present invention is not limited to such a wet method, and it is also possible to manufacture the positive electrode active material layer 100 by powder molding by a dry method or the like.
  • the solid electrolyte layer 200 contains a solid electrolyte and optionally a binder.
  • the solid electrolyte constituting the solid electrolyte layer 200 the same ones as those exemplified as the second solid electrolyte 10c described above are exemplified.
  • the solid electrolyte constituting the solid electrolyte layer 200 may be the same as or different from the above-mentioned second solid electrolyte 10c. Further, depending on the purpose, a plurality of types of solid electrolytes may be used in combination.
  • the binder the same binder as the above-mentioned binder can be appropriately selected and used.
  • the content of each component in the solid electrolyte layer 200 may be the same as that in the solid electrolyte layer in the conventional battery.
  • the shape of the solid electrolyte layer 200 may be the same as before.
  • the sheet-shaped solid electrolyte layer 200 is preferable.
  • the thickness of the solid electrolyte layer 200 may be, for example, 0.1 ⁇ m or more, 300 ⁇ m or less, or 100 ⁇ m or less.
  • a solid electrolyte and optionally a binder are put in a solvent and kneaded to obtain a solid electrolyte paste or slurry, which is then applied to the surface of the base material and dried, or a positive electrode active material. It can be easily manufactured by applying it to the surface of the layer 100 and / or the negative electrode active material layer 300 and drying it. Alternatively, it can be easily produced by undergoing a process such as dry powder molding of the solid electrolyte and optionally the binder.
  • the negative electrode active material layer 300 is a layer containing at least the negative electrode active material, and may further optionally contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like in addition to the negative electrode active material.
  • a known active material may be used as the negative electrode active material.
  • known active materials those having a potential (charge / discharge potential) for storing and discharging predetermined ions having a potential lower than that of the above-mentioned positive electrode active material 10a can be used as the negative electrode active material.
  • the negative electrode active material a Si-based active material such as Si or Si alloy; a carbon-based active material such as graphite or hard carbon; an oxide-based active material such as lithium titanate; a metallic lithium or a lithium alloy can be used. ..
  • the solid electrolyte, the binder and the conductive auxiliary agent can be appropriately selected and used from those exemplified as those used for the positive electrode material 10.
  • the content of each component in the negative electrode active material layer 300 may be the same as in the conventional case.
  • the shape of the negative electrode active material layer 300 may be the same as before. In particular, from the viewpoint that the battery 1000 can be easily configured, the sheet-shaped negative electrode active material layer 300 may be used.
  • the thickness of the negative electrode active material layer 300 may be, for example, 0.1 ⁇ m or more, 1 ⁇ m or more, or 10 ⁇ m or more, or 1 mm or less, 500 ⁇ m or less, or 100 ⁇ m or less. Further, the thickness of the negative electrode active material layer 300 may be determined so that the capacity of the negative electrode active material layer 300 is larger than the capacity of the positive electrode active material layer 100.
  • the negative electrode active material layer 300 for example, a negative electrode active material and optionally a solid electrolyte, a binder, and a conductive auxiliary agent are put into a solvent and kneaded to obtain a negative electrode paste or a slurry, which is then used in the negative electrode current collector 500. It can be easily produced by applying it to the surface and / or the surface of the solid electrolyte layer 200 and drying it.
  • the present invention is not limited to such a wet method, and it is also possible to manufacture the negative electrode active material layer 300 by powder molding by a dry method or the like.
  • the positive electrode current collector 400 may be formed of, for example, a metal foil, a metal mesh, or the like.
  • the metal constituting the positive electrode current collector 400 include Ni, Cr, Au, Pt, Al, Fe, Ti, Zn, stainless steel and the like.
  • the positive electrode current collector 400 may have some kind of coat layer on the surface.
  • the thickness of the positive electrode current collector 400 is not particularly limited. For example, it may be 0.1 ⁇ m or more or 1 ⁇ m or more, or 1 mm or less or 100 ⁇ m or less.
  • the negative electrode current collector 500 may be formed of, for example, a metal foil, a metal mesh, or the like. Examples of the metal constituting the negative electrode current collector 500 include Cu, Ni, Fe, Ti, Co, Zn, and stainless steel. The negative electrode current collector 500 may have some kind of coat layer on the surface. The thickness of the negative electrode current collector 500 is not particularly limited. For example, it may be 0.1 ⁇ m or more or 1 ⁇ m or more, or 1 mm or less or 100 ⁇ m or less.
  • the battery 1000 includes a positive electrode active material layer 100, a solid electrolyte layer 200, a negative electrode active material layer 300, a positive electrode current collector 400 and a negative electrode current collector 500, as well as necessary terminals and a battery case. You may.
  • the shape of the battery 1000 is not particularly limited, and various shapes such as a coin type, a cylindrical type, a square type, a sheet type, a button type, a flat type, and a laminated type can be adopted.
  • the battery 1000 may be an all-solid-state battery.
  • the positive electrode material of the present disclosure can be manufactured by, for example, the following manufacturing method. That is, the manufacturing method of the present disclosure is Covering at least a part of the surface of the positive electrode active material 10a with the first solid electrolyte 10b, and Mixing the positive electrode active material 10a coated with the first solid electrolyte 10b and the second solid electrolyte 10c, where the second solid electrolyte 10c is the positive electrode active material via the first solid electrolyte 10b.
  • the manufacturing method of the present disclosure is Covering at least a part of the surface of the positive electrode active material 10a with the first solid electrolyte 10b, and Mixing the positive electrode active material 10a coated with the first solid electrolyte 10b and the second solid electrolyte 10c, where the second solid electrolyte 10c is the positive electrode active material via the first solid electrolyte 10b.
  • the positive electrode active material 10a contains a lithium-containing oxide and contains The first solid electrolyte 10b contains Li and X as constituent elements and
  • the second solid electrolyte 10c contains Li and S as constituent elements, and contains Li and S as constituent elements.
  • the average coating thickness of the first solid electrolyte 10b is 104 nm or more.
  • Patent Document 1 when a coating layer made of a first solid electrolyte is provided on the surface of a positive electrode active material, it is conventional practice to reduce the thickness of the coating layer in order to reduce internal resistance. be.
  • Patent Document 1 specifies that the thickness of the coating layer made of the first solid electrolyte is 100 nm or less.
  • the positive electrode active material is used.
  • a sufficient lithium ion conduction path is formed between the first solid electrolyte and the second solid electrolyte, and even if the average coating thickness of the first solid electrolyte is increased to 104 nm or more, the resistance does not increase so much.
  • the positive electrode material of the present disclosure it is possible to suppress an increase in resistance due to the first solid electrolyte and to suppress an exothermic reaction between oxygen released from the positive electrode active material at a high temperature and the second solid electrolyte.
  • Example 1 1.1.1 Preparation of positive electrode active material with protective layer 20.8 g of ethoxylithium (manufactured by High Purity Chemical Laboratory) and 127.3 g of pentaethoxyniobium (manufactured by High Purity Chemical Laboratory) (1: 1 in molar ratio) Weighed and dissolved in 2 L of ultrapure water ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a solution containing a material forming a protective layer.
  • ethoxylithium manufactured by High Purity Chemical Laboratory
  • pentaethoxyniobium manufactured by High Purity Chemical Laboratory
  • the solution was used as a positive electrode active material, Li (Ni, Co, Mn) O 2 (Sigma-Ardrich, average particles). Diameter D50: 4.6 ⁇ m) 1 kg was sprayed to attach the solution to the surface of the positive electrode active material particles.
  • the operating conditions of the coating device were that nitrogen was used as the intake gas, the intake air temperature was 120 ° C., the intake air volume was 0.4 m 3 / min, the rotor rotation speed was 400 rpm, and the spray speed was 4.8 g / min.
  • the obtained powder was calcined in the air at 200 ° C. for 5 hours and then reground in an agate mortar to obtain a positive electrode active material having a protective layer.
  • the composition of the protective layer was LiNbO 3.
  • a negative electrode material was prepared by mixing Si (manufactured by High Purity Chemical Co., Ltd.), VGCF, and the above-mentioned second solid electrolyte in an agate mortar.
  • FIG. 3 shows the configuration of the battery for evaluation.
  • the second solid electrolyte was powder-molded in a cylinder having a diameter of 11.28 mm at a pressure of 1 ton / cm 2 to prepare a solid electrolyte layer.
  • powder molding was performed at a pressure of 4 ton / cm 2 to prepare a bonded body of the solid electrolyte layer and the negative electrode active material layer.
  • the positive electrode material was powder-molded in a cylinder of ⁇ 10.0 mm at a pressure of 1 ton / cm 2 to prepare a positive electrode active material layer (positive electrode pellet).
  • a positive electrode pellet was placed on the surface of the solid electrolyte layer on the opposite side of the negative electrode active material layer and restrained to obtain a battery for evaluation.
  • Example 2 The positive electrode material and the positive electrode material and the same as in Example 1 except that the mixing ratio and the mixing time of the positive electrode active material and the first solid electrolyte were changed to change the thickness of the first solid electrolyte covering the positive electrode active material.
  • a battery was prepared and the calorific value was evaluated.
  • the positive electrode active material after being coated with the first solid electrolyte was observed by SEM, the entire surface of the particles of the positive electrode active material was covered with the first solid electrolyte.
  • the average coating thickness of the first solid electrolyte was 140 nm.
  • Example 3 The positive electrode material and the positive electrode material and the same as in Example 1 except that the mixing ratio and the mixing time of the positive electrode active material and the first solid electrolyte were changed to change the thickness of the first solid electrolyte covering the positive electrode active material.
  • a battery was prepared and the calorific value was evaluated.
  • the positive electrode active material after being coated with the first solid electrolyte was observed by SEM, the entire surface of the particles of the positive electrode active material was covered with the first solid electrolyte.
  • the average coating thickness of the first solid electrolyte was 176 nm.
  • a positive electrode material is prepared by mixing a positive electrode active material not coated with the first solid electrolyte, VGCF (manufactured by Showa Denko KK) of 1.5 wt% of the active material, and a second solid electrolyte in a Menou dairy pot. did.
  • the compounding ratio of the active material, VGCF, and the second solid electrolyte was the same as in Example 1.
  • a battery was produced in the same manner as in Example 1 using the positive electrode material, and the calorific value was evaluated.
  • Comparative Example 2 The positive electrode material and the positive electrode material and the same as in Example 1 except that the mixing ratio and the mixing time of the positive electrode active material and the first solid electrolyte were changed to change the thickness of the first solid electrolyte covering the positive electrode active material. A battery was prepared and the calorific value was evaluated. When the positive electrode active material after being coated with the first solid electrolyte was observed by SEM, the entire surface of the particles of the positive electrode active material was covered with the first solid electrolyte. The average coating thickness of the first solid electrolyte was 67 nm.
  • Example 3 The positive electrode active material not coated with the first solid electrolyte, VGCF (manufactured by Showa Denko Co., Ltd.) of 1.5 wt% of the active material, the first solid electrolyte, and the second solid electrolyte are simultaneously mixed in a Menou dairy pot. By doing so, a positive electrode material was produced.
  • the content ratio of the active material, VGCF, the first solid electrolyte, and the second solid electrolyte was the same as the content ratio in the positive electrode material according to Example 1.
  • a battery was produced in the same manner as in Example 1 using the positive electrode material, and the DCIR battery resistance was evaluated.
  • FIG. 5 shows the resistance measurement results.
  • the resistance value of the battery according to Comparative Example 1 was set as 100 and indexed.
  • the batteries according to Examples 1 to 3 had increased resistance with respect to the batteries according to Comparative Example 1, but the increase amount could be suppressed.
  • the surface of the positive electrode active material is coated with the first solid electrolyte and the second solid electrolyte is connected to the first solid electrolyte, sufficient lithium ion conduction between the positive electrode active material, the first solid electrolyte and the second solid electrolyte.
  • the resistance does not increase so much even if the path is formed and the thickness of the coating layer is increased to 104 nm or more.
  • Comparative Example 3 when the first solid electrolyte was mixed and dispersed in the positive electrode material without coating the positive electrode active material with the first solid electrolyte, the resistance of the battery increased remarkably. ..
  • the battery of the present disclosure can be widely used, for example, from a small power source for mobile devices to a large power source for mounting on a car.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高温に晒された場合における発熱量の増加が生じ難い正極材料を開示する。本開示の正極材料は、正極活物質と、第1固体電解質と、第2固体電解質とを含み、前記正極活物質がリチウム含有酸化物を含み、前記第1固体電解質が構成元素としてLi及びXを含み、且つ、Sを含まず、前記XがF、Cl、Br及びIからなる群より選択される少なくとも1つの元素であり、前記第2固体電解質が構成元素としてLi及びSを含み、前記第1固体電解質が前記正極活物質の表面の少なくとも一部を被覆し、前記第2固体電解質が前記第1固体電解質を介して前記正極活物質に接し、前記第1固体電解質の平均被覆厚さが104nm以上である。

Description

正極材料及び電池
 本願は正極材料及び電池を開示する。
 特許文献1には、正極活物質と、正極活物質の表面の少なくとも一部を被覆し、且つ、第1固体電解質を含む被覆層と、第2固体電解質と、を含む正極材料が開示されている。特許文献1に開示されているように、正極活物質の表面を第1固体電解質で被覆することで、正極活物質と第2固体電解質との直接の接触による高抵抗層の形成を抑制することができる。
国際公開第2019/146236号
 特許文献1に開示された正極材料は、高温に晒された際、発熱量が増加する場合がある。
 本願は上記課題を解決するための手段の一つとして、
 正極活物質と、第1固体電解質と、第2固体電解質とを含む正極材料であって、
 前記正極活物質がリチウム含有酸化物を含み、
 前記第1固体電解質が構成元素としてLi及びXを含み、且つ、Sを含まず、
 前記XがF、Cl、Br及びIからなる群より選択される少なくとも1つの元素であり、
 前記第2固体電解質が構成元素としてLi及びSを含み、
 前記第1固体電解質が前記正極活物質の表面の少なくとも一部を被覆し、
 前記第2固体電解質が前記第1固体電解質を介して前記正極活物質に接し、
 前記第1固体電解質の平均被覆厚さが104nm以上である、
 正極材料
を開示する。
 本開示の正極材料において、
 前記第1固体電解質が構成元素としてMを含んでいてもよく、
 前記MがLi以外の金属元素及び半金属元素からなる群より選択される少なくとも1つの元素であってもよい。
 本開示の正極材料において、
 前記第1固体電解質がLiαβγで示される化学組成を有していてもよく、
 α、β及びγが、それぞれ独立に、0より大きい値であってもよい。
 本開示の正極材料において、前記Mがイットリウムを含んでいてもよい。
 本開示の正極材料において、前記XがCl及びBrのうちの少なくとも1つであってもよい。
 本開示の正極材料において、前記第2固体電解質が構成元素としてLi、P及びSを含んでいてもよい。
 本願は上記課題を解決するための手段の一つとして、
 正極活物質層と、
 固体電解質層と、
 負極活物質層と、
 を備え、
 前記正極活物質層が、上記本開示の正極材料からなる、
 電池
を開示する。
 本開示の正極材料は、高温に晒された場合における発熱量の増加が抑制される。
正極材料の構成の一例を概略的に示している。 電池の構成の一例を概略的に示している。 実施例及び比較例に係る電池の構成を概略的に示している。 被覆層の平均厚みと正極材料の発熱量との関係を示している。 実施例及び比較例に係る電池の抵抗値を比較したグラフである。
1.正極材料
 図1に示されるように、正極材料10は、正極活物質10aと、第1固体電解質10bと、第2固体電解質10cとを含む。正極活物質10aは、リチウム含有酸化物を含む。第1固体電解質10bは、構成元素としてLi及びXを含み、且つ、Sを含まない。ここでXは、F、Cl、Br及びIからなる群より選択される少なくとも1つの元素である。第2固体電解質10cは、構成元素としてLi及びSを含む。第1固体電解質10bは、正極活物質10aの表面の少なくとも一部を被覆する。第2固体電解質10cは、第1固体電解質10bを介して正極活物質10aに接する。第1固体電解質10bの平均被覆厚さは104nm以上である。
1.1 正極活物質
 正極活物質10aはリチウム含有酸化物を含む。リチウム含有酸化物は構成元素としてリチウムを含む酸化物であり、リチウム及び酸素に加えて、他の元素を含み得る。リチウム含有酸化物は電池の正極活物質として機能し得るものであればよい。リチウム含有酸化物の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、Li(Ni,Co,Mn)O2±δ(例えば、LiNi1/3Co1/3Mn1/32±δ)等が挙げられる。リチウム含有酸化物は、例えば、層状岩塩型結晶相を有していてもよいし、スピネル型結晶相を有していてもよいし、これら以外の結晶相を有していてもよい。リチウム含有酸化物は、例えば80℃以上260℃以下の範囲内のいずれかの温度で酸素を放出するものであってもよい。正極活物質10aは、リチウム含有酸化物に加えて、リチウム含有酸化物以外の正極活物質を含んでいてもよい。
 また、正極活物質10aの表面は、Liイオン伝導性酸化物を含有する保護層によって構成されていてもよい。すなわち、上述のリチウム含有酸化物とその表面に設けられた保護層とを備える複合体を、正極活物質10aとして用いてもよい。これにより、正極物活物質と硫化物固体電解質との反応等を一層抑制し易くなる。Liイオン伝導性酸化物としては、例えば、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO4、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiWOが挙げられる。保護層の被覆率(面積率)は、例えば、70%以上であってもよく、80%以上であってもよく、90%以上であってもよい。保護層の厚さは、例えば0.1nm以上であってもよく、1nm以上であってもよい。一方、保護層の厚さは、例えば100nm以下であってもよく、20nm以下であってもよい。
 正極活物質10aの形状は特に限定されるものではない。正極活物質10aは、例えば、粒子状であってもよいし、層状であってもよい。また、正極活物質10aは、一次粒子状であっても、一次粒子が凝集した二次粒子状であってもよい。尚、正極活物質10aが小さい(正極活物質10aの比表面積が大きい)場合、第1固体電解質10bで被覆すべき総面積が大きくなり、正極材料10における第1固体電解質10bの体積も増加する。この点、プロセスコスト、材料コスト及びエネルギー密度等を考慮すると、正極活物質10aは大きくてもよい。一方、正極活物質10aが大きいと、イオン拡散が遅くなり、電池とした場合に初期の内部抵抗が大きくなる場合がある。この点、正極活物質10aは小さくてもよい。正極活物質10aが粒子状である場合、その平均粒子径(D50)は、例えば、0.1μm以上、0.5μm以上又は1μm以上であってもよく、100μm以下、50μm以下又は20μm以下であってもよい。また、正極活物質10aが粒子状である場合、そのBET比表面積は、例えば、0.1m/g以上又は0.2m/g以上であってもよく、5.0m/g以下又は2.0m/g以下であってもよい。尚、平均粒子径(D50)とは、レーザー散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出されるメジアン径(50%体積平均粒子径)をいう。
 正極材料10における正極活物質10aの含有量は、特に限定されるものではなく、目的とする性能に応じて適宜決定されればよい。例えば、正極材料10の全体(固形分全体)を100質量%とした場合、正極活物質10aの含有量は、30質量%以上、40質量%以上又は50質量%以上であってもよく、95質量%以下、90質量%以下又は85質量%以下であってもよい。
1.2 第1固体電解質
 第1固体電解質10bは、正極活物質10aの表面の少なくとも一部を被覆する。正極活物質10aは、第1固体電解質10bで被覆されていない部分があってもよい。第1固体電解質10bは、正極活物質10aの表面の50%以上、70%以上又は90%以上を被覆していてもよい。また、図1に示されるように、第1固体電解質10bは、正極活物質10aの表面の全体(100%)を被覆していてもよい。
 第1固体電解質10bは、構成元素としてLi及びXを含む。ここで、XはF、Cl、Br及びIからなる群より選択される少なくとも1つの元素である。第1固体電解質10bは無機系のハロゲン化物固体電解質であってもよい。第1固体電解質10bにおけるLiの含有量やXの含有量は特に限定されるものではなく、目的とするイオン伝導率に応じて適宜決定されればよい。一方で、第1固体電解質10bは、構成元素としてSを含まない。「Sを含まない」とは、Sを実質的に含まないことを意味する。第1固体電解質10bは、不純物としてSを含んでいてもよい。例えば、第1固体電解質10bを構成する全元素に占めるSの割合が0.1mol%以下である場合、第1固体電解質10bはSを含まないものとみなす。S以外の元素についても同様である。
 第1固体電解質10bがリチウム及びX以外の元素を含まない場合においても上記課題を解決できるものと考えられる。ただし、第1固体電解質10bのイオン伝導率をさらに向上させる観点から、第1固体電解質10bは、構成元素としてMを含んでいてもよい。ここで、MはLi以外の金属元素及び半金属元素からなる群より選択される少なくとも1つの元素である。「Li以外の金属元素」とは、H及びLiを除く、周期表1族から12族中に含まれるすべての元素、並びに、B、Si、Ge、Al、Sb、Te、C、N、P、O、S及びSeを除く、周期表13族から16族中に含まれるすべての元素である。「半金属元素」とはB、Si、Ge、As、Sb及びTeである。これら金属元素及び半金属元素は、ハロゲン化物を形成した際にカチオンとなり得る。第1固体電解質10bにおけるMの含有量は特に限定されるものではなく、目的とするイオン伝導率に応じて適宜決定されればよい。
 第1固体電解質10bは、Liαβγで示される化学組成を有していてもよく、α、β及びγが、それぞれ独立に、0より大きい値であってもよい。このような化学組成を有する第1固体電解質10bは、さらに高いイオン伝導率を有する。α、β及びγの具体的な値は特に限定されるものではない。第1固体電解質10bにおいて一層高いイオン導電率を確保する観点から、αは2.5以上又は2.8以上であってもよく、3.5以下、3.3以下又は3.0以下であってもよい。また、βは0.5以上、0.8以上又は1.0以上であってもよく、1.5以下、1.3以下又は1.1以下であってもよい。γは、αとβとMの価数とに応じて決定されればよい。
 第1固体電解質10bがMを有する場合、当該Mはイットリウムを含むものであってもよく、或いは、当該Mはイットリウムのみであってもよい。これにより、第1固体電解質10bのイオン伝導率がさらに向上する。
 第1固体電解質10bにおいて、上記XはCl及びBrのうちの少なくとも1つであってもよい。すなわち、第1固体電解質10bは、構成元素としてFを含まなくてもよいし、Iを含まなくてもよいし、F及びIを含まなくてもよい。第1固体電解質10bを構成するXがCl及びBrのうちの一方又は両方である場合、第1固体電解質10bの酸化安定性が向上する。
 第1固体電解質10bは、例えば、LiMeで示される化学組成を有していてもよい。ここで、Meは、Li及びYを除く金属元素及び半金属元素からなる群より選択される少なくとも1つの元素であり、a>0、b≧0、c>0であり、mはMeの価数であり、dはaとbとcとmとに応じて決定される。a、b、c及びmは、a+mb+3c=6を満たしてもよい。Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta及びNbからなる群より選択される少なくとも1つの元素であってもよい。このような化学組成を有する第1固体電解質10bも高いイオン伝導率を有する。
 第1固体電解質10bは、例えば、Li6-3eで示される化学組成を有していてもよい。ここで、0<e<2であり、fはeに応じて決定される。このような化学組成を有する第1固体電解質10bも高いイオン伝導率を有する。
 第1固体電解質10bは、LiYXで示される化学組成を有していてもよい。このような化学組成を有する第1固体電解質10bも高いイオン伝導率を有する。
 第1固体電解質10bは結晶性であってもよいし、非晶質であってもよい。目的とするイオン伝導率に応じて、適宜選択すればよい。第1固体電解質10bは、1種のみを単独で用いてもよいし、2種以上を用いてもよい。
 正極活物質10aに対する第1固体電解質10bの平均被覆厚さは104nm以上である。本発明者の知見によると、上記の正極活物質10aは、高温に晒された場合に酸素を放出する。仮に、正極活物質10aから放出された酸素が第2固体電解質10cに到達した場合、酸素と第2固体電解質10cとが発熱反応を起こす。本開示の正極材料10においては、正極活物質10aの表面に104nm以上の平均被覆厚さを有する第1固体電解質10bが設けられることで、正極活物質10aから酸素が放出されたとしても当該酸素が第2固体電解質10cへと到達し難く、上記の発熱反応を抑制することができる。すなわち、本開示の正極材料10は、高温に晒された場合における発熱量の増大を抑制することができる。第1固体電解質10bの平均被覆厚さは、110nm以上、115nm以上、120nm以上、125nm以上、130nm以上又は135nm以上であってもよい。第1固体電解質10bの平均被覆厚さの上限は特に限定されるものではなく、イオン伝導率等を考慮して適宜決定すればよい。例えば、第1固体電解質10bの平均被覆厚さは300nm以下、250nm以下又は200nm以下であってもよい。また、第1固体電解質10bの被覆厚さの最低値が104nmを下回っていてもよいし、当該最低値が104nm以上であってもよい。第1固体電解質10bが正極活物質10aの表面全体を被覆する場合において、その全面について、被覆厚さが104nm以上であってもよい。
 「第1固体電解質10bの平均被覆厚さ」は、以下の通りにして特定することができる。まず、正極材料10を走査型電子顕微鏡や透過型電子顕微鏡等で観察して、正極材料10の断面二次元画像を取得する。元素マッピング等によって当該二次元画像から一つの正極活物質10aと当該正極活物質10aを被覆する第1固体電解質10bとを抽出する。尚、二次元画像において、例えば、酸素が存在する領域が正極活物質10aに相当し、ハロゲンが存在し、且つ、硫黄が存在しない領域が第1固体電解質10bに相当し、硫黄が存在する領域が第2固体電解質10cに相当するものと判断することができる。抽出された当該正極活物質10aの面積A1と、当該正極活物質10aの周囲を被覆する第1固体電解質10bの面積A2とを特定する。面積A1に相当する円の半径R1を特定する。面積A1+A2に相当する円の半径R2を特定する。R2からR1を引いた値(R2-R1)を第1固体電解質10bの平均被覆厚さとすることができる。尚、正極活物質10aが中空構造を有する場合、元素マッピング等によって抽出及び特定される正極活物質10aの面積A1が小さくカウントされる場合がある。例えば、中空構造を有する正極活物質10aに対して元素マッピング等を行った場合、当該中空構造の部分が「活物質成分に囲われた空隙」(活物質成分が抽出されない領域)となる場合がある。このように、正極活物質10aが中空構造を有する場合において元素マッピング等によって正極活物質10aの面積A1を特定する場合は、上記の「活物質成分に囲われた空隙」の部分についても活物質が存在する部分とみなして、正極活物質10aの面積A1に含ませるものとする。
 第1固体電解質10bは、正極活物質10aの表面の少なくとも一部を、当該正極活物質10aの表面形状に沿って連続的に被覆する。例えば、膜状の第1固体電解質10bが正極活物質10aの表面を被覆している形態や、第1固体電解質10bの粒子が正極活物質10aの表面形状に沿って付着又は堆積した形態等がこれに該当する。本開示の正極材料10は、正極活物質10aと第1固体電解質10bと第2固体電解質10cとが互いに混合及び分散されたものとは異なる。
 正極活物質10aの表面を第1固体電解質10bで被覆する方法については特に限定されるものではない。例えば、正極活物質10aと第1固体電解質10bとを混合して、正極活物質10aの表面に第1固体電解質10bの粒子を付着させる形態が挙げられる。正極活物質10aと第1固体電解質10bとを混合する際、導電助剤を添加してもよい。すなわち、正極活物質10aの表面に第1固体電解質10bからなる被覆層を形成してもよいし、第1固体電解質10bが導電助剤とともに被覆層を形成していてもよい。尚、本発明者の新たな知見によれば、正極活物質10aの表面を第1固体電解質10bで被覆する前に、正極活物質10aと第1固体電解質10bとともに第2固体電解質10cを混合した場合、正極活物質10aの表面を第1固体電解質10bで被覆することが困難となるだけでなく、正極材料全体としての抵抗が著しく増大してしまう。
1.3 第2固体電解質
 第2固体電解質10cは、第1固体電解質10bを介して正極活物質10aに接する。すなわち、正極活物質10aと第2固体電解質10cとの間に第1固体電解質10bが介在している。第2固体電解質10cが、第1固体電解質10bを介して正極活物質10aに接続されることで、正極活物質10a、第1固体電解質10b及び第2固体電解質10cの間にイオン伝導パスが形成され、正極材料10の全体としてのイオン伝導率を向上させることができる。
 第2固体電解質10cは構成元素としてLi及びSを含む。第2固体電解質10cは無機系の硫化物固体電解質であってもよい。このような第2固体電解質10cとしては、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等が例示される。高いイオン伝導率等を確保する観点からは、第2固体電解質10cは構成元素としてLi、P及びSを含んでいてもよく、LiS-Pを含んでいてもよい。LiS-Pを含む第2固体電解質10cにおいて、LiSとPとの含有比は特に限定されるものではない。
 第2固体電解質10cは結晶性であってもよいし、非晶質であってもよい。目的とするイオン伝導率に応じて、適宜選択すればよい。第2固体電解質10cは、1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。
 第2固体電解質10cの形状は特に限定されるものではない。例えば、粒子状であってもよいし、針状であってもよいし、層状であってもよいし、不定形であってもよい。第2固体電解質10cが粒子状である場合、その平均粒子径(D50)は0.1μm以上又は1μm以上であってもよく、100μm以下又は10μm以下であってもよい。また、第2固体電解質10cは、正極活物質10aよりも大きくてもよいし、小さくてもよい。
 正極材料10における第2固体電解質10cの含有量は特に限定されるものではなく、目的とする性能に応じて適宜決定されればよい。例えば、正極材料10の全体(固形分全体)を100質量%とした場合、第2固体電解質10cの含有量は、5質量%以上又は10質量%以上であってもよく、65質量%以下又は45質量%以下であってもよい。
1.4 その他の成分
 正極材料10は導電助剤10d(図2参照)を含んでいてもよい。導電助剤10dは、上記したように正極活物質10aの表面において第1固体電解質10bとともに被覆層を形成してよいし、当該被覆層の外に配置されてもよい。導電助剤10dは、電池の正極において採用される導電助剤として公知のものをいずれも採用できる。例えば、アセチレンブラック(AB)、ファーネスブラック、チャンネルブラック、サーマルブラックやケッチェンブラック(KB)や気相法炭素繊維(VGCF)やカーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)や黒鉛等の炭素材料;ニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。導電助剤10dは1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。導電助剤10dの形状は、粉末状、繊維状等、種々の形状を採用できる。正極材料10における導電助剤10dの含有量は特に限定されるものではなく、目的とする性能に応じて適宜決定されればよい。例えば、正極材料10の全体(固形分全体)を100質量%とした場合、導電助剤10dの含有量は、0.5質量%以上又は1質量%以上であってもよく、20質量%以下又は10質量%以下であってもよい。
 正極材料10はバインダーを含んでいてもよい。バインダーは、電池の正極において採用されるバインダーとして公知のものをいずれも採用できる。例えば、スチレンブタジエンゴム(SBR)系バインダー、カルボキシメチルセルロース(CMC)系バインダー、アクリロニトリルブタジエンゴム(ABR)系バインダー、ブタジエンゴム(BR)系バインダー、ポリフッ化ビニリデン(PVDF)系バインダー、ポリテトラフルオロエチレン(PTFE)系バインダー等の中から選ばれる少なくとも1種を用いることができる。正極材料10におけるバインダーの含有量は特に限定されるものではなく、目的とする性能に応じて適宜決定されればよい。例えば、正極材料10の全体(固形分全体)を100質量%とした場合、バインダーの含有量は1質量%以上又は2質量%以上であってもよく、30質量%以下又は15質量%以下であってもよい。
 正極材料10は、正極活物質10a以外の正極活物質を含んでいてもよい。正極活物質10a以外の正極活物質は、その表面の少なくとも一部が第1固体電解質10bで被覆されていてもよいし、被覆されていなくてもよい。
 正極材料10は、第1固体電解質10b及び第2固体電解質10c以外の固体電解質を含んでいてもよい。例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質を含んでいてもよい。
1.5 全体としての形態
 正極材料10は、例えば、全体として粉体であってもよいし、用途に応じて適切な形態に成形されてもよい。正極材料10は、粒子状の正極活物質10aを複数含んでいてもよい。正極材料10は、後述するように、正極活物質層100とされてもよい。正極材料10は、溶媒等が添加されてペーストやスラリー状とされてもよい。
2.電池
 図2に示されるように、電池1000は、正極活物質層100と、固体電解質層200と、負極活物質層300と、を備える。正極活物質層100は、上記の正極材料10からなる。
2.1 正極活物質層
 正極活物質層100は、上記の正極材料10からなる。正極活物質層100の厚みは、例えば、0.1μm以上、1μm以上又は10μm以上であってもよく、1mm以下、500μm以下又は100μm以下であってもよい。
 正極活物質層100は、例えば、上記の正極材料10を溶媒に入れて混練することにより正極ペースト又はスラリーを得た後、これを正極集電体400の表面及び/又は固体電解質層200の表面に塗布して乾燥する等の過程を経ることにより容易に製造することができる。ただし、このような湿式法に限定されるものではなく、乾式にて圧粉成形すること等によって正極活物質層100を製造することも可能である。
2.2 固体電解質層
 固体電解質層200は、固体電解質と任意にバインダーとを含む。固体電解質層200を構成する固体電解質としては、上記の第2固体電解質10cとして例示したものと同様のものが例示される。固体電解質層200を構成する固体電解質は、上記の第2固体電解質10cと同じものであっても異なるものであってもよい。また、目的に応じて、複数種類の固体電解質が組み合わされて用いられてもよい。バインダーは上記したバインダーと同様のものを適宜選択して用いることができる。固体電解質層200における各成分の含有量は従来の電池における固体電解質層と同様とすればよい。固体電解質層200の形状も従来と同様とすればよい。特にシート状の固体電解質層200が好ましい。この場合、固体電解質層200の厚みは、例えば0.1μm以上であってもよく、300μm以下又は100μm以下であってもよい。
 固体電解質層200は、例えば、固体電解質と任意にバインダーとを溶媒に入れて混練することにより固体電解質ペースト又はスラリー得た後、これを基材の表面に塗布し乾燥する、或いは、正極活物質層100及び/又は負極活物質層300の表面に塗布し乾燥する等の過程を経ることにより容易に製造することができる。或いは、固体電解質と任意にバインダーとを乾式で圧粉成形する等の過程を経ることにより容易に製造することもできる。
2.3 負極活物質層
 負極活物質層300は、少なくとも負極活物質を含む層であり、負極活物質に加えて、さらに任意に固体電解質、バインダー及び導電助剤等を含んでいてもよい。負極活物質は公知の活物質を用いればよい。公知の活物質のうち、所定のイオンを吸蔵放出する電位(充放電電位) が、上述の正極活物質10aよりも卑な電位であるものを負極活物質として用いることができる。例えば、負極活物質としてSiやSi合金等のSi系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。固体電解質、バインダー及び導電助剤は正極材料10に用いられるものとして例示したものの中から適宜選択して用いることができる。負極活物質層300における各成分の含有量は従来と同様とすればよい。負極活物質層300の形状も従来と同様とすればよい。特に、電池1000を容易に構成できる観点から、シート状の負極活物質層300であってもよい。この場合、負極活物質層300の厚みは、例えば0.1μm以上、1μm以上又は10μm以上であってもよく、1mm以下、500μm以下又は100μm以下であってもよい。また、負極活物質層300の容量が正極活物質層100の容量よりも大きくなるように、負極活物質層300の厚みを決定してもよい。
 負極活物質層300は、例えば、負極活物質と任意に固体電解質、バインダー及び導電助剤とを溶媒に入れて混練することにより負極ペースト又はスラリーを得た後、これを負極集電体500の表面及び/又は固体電解質層200の表面に塗布して乾燥する等の過程を経ることにより容易に製造することができる。ただし、このような湿式法に限定されるものではなく、乾式にて圧粉成形すること等によって負極活物質層300を製造することも可能である。
2.4 正極集電体
 正極集電体400は、例えば、金属箔や金属メッシュ等により構成すればよい。正極集電体400を構成する金属としては、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn、ステンレス鋼等が挙げられる。正極集電体400は表面に何らかのコート層を有していてもよい。正極集電体400の厚みは特に限定されるものではない。例えば0.1μm以上又は1μm以上であってもよく、1mm以下又は100μm以下であってもよい。
2.5 負極集電体
 負極集電体500は、例えば、金属箔や金属メッシュ等により構成すればよい。負極集電体500を構成する金属としては、Cu、Ni、Fe、Ti、Co、Zn、ステンレス鋼等が挙げられる。負極集電体500は表面に何らかのコート層を有していてもよい。負極集電体500の厚みは特に限定されるものではない。例えば0.1μm以上又は1μm以上であってもよく、1mm以下又は100μm以下であってもよい。
2.6 その他
 電池1000は、正極活物質層100、固体電解質層200、負極活物質層300、正極集電体400及び負極集電体500の他に、必要な端子や電池ケース等を備えていてもよい。電池1000の形状は特に限定されず、コイン型、円筒型、角型、シート型、ボタン型、偏平型、積層型等、種々の形状を採り得る。電池1000は全固体電池であってもよい。
3.正極材料の製造方法
 本開示の正極材料は、例えば、以下のような製造方法によって製造することができる。すなわち、本開示の製造方法は、
 正極活物質10aの表面の少なくとも一部を第1固体電解質10bで被覆すること、及び、
 前記第1固体電解質10bで被覆された前記正極活物質10aと、第2固体電解質10cとを混合すること、ここで前記第2固体電解質10cは前記第1固体電解質10bを介して前記正極活物質10aに接する、
 を含み、
 前記正極活物質10aがリチウム含有酸化物を含み、
 前記第1固体電解質10bが構成元素としてLi及びXを含み、且つ、Sを含まず、
 前記XがF、Cl、Br及びIからなる群より選択される少なくとも1つの元素であり、
 前記第2固体電解質10cが構成元素としてLi及びSを含み、
 前記第1固体電解質10bの平均被覆厚さが104nm以上である。
 このように、正極活物質10aを予め第1固体電解質10bで被覆した後で、第2固体電解質10cと混合することで、抵抗の増加を抑えつつ、高温時の発熱量の増加が抑制された正極材料10を容易に製造することができる。
4.補足
 特許文献1に開示されているように、正極活物質の表面に第1固体電解質からなる被覆層を設ける場合、内部抵抗を小さくするために当該被覆層の厚みを薄くするのが従来常識である。例えば、特許文献1には第1固体電解質からなる被覆層の厚みを100nm以下とすることが明記されている。しかしながら、本発明者の新たな知見によると、正極活物質の表面を第1固体電解質で被覆し、当該第1固体電解質を介して正極活物質に第2固体電解質を接続した場合、正極活物質、第1固体電解質及び第2固体電解質の間に十分なリチウムイオン伝導パスが形成され、第1固体電解質の平均被覆厚さを104nm以上に厚くしたとしても、抵抗はそれほど増加しない。この点、本開示の正極材料によれば、第1固体電解質による抵抗の上昇を抑えつつ、高温時に正極活物質から放出された酸素と第2固体電解質との発熱反応を抑制することができる。
1.発熱量の評価
1.1.実施例1
1.1.1 保護層を有する正極活物質の作製
 エトキシリチウム(高純度化学研究所製)20.8gとペンタエトキシニオブ(高純度化学研究所製)127.3g(モル比で1:1)とを秤量し、超純水エタノール(和光純薬社製)2Lに溶解させ、保護層を形成する材料を含む溶液を作製した。次に、転動流動造粒コーティング装置(パウレック社製、MP-01)を用いて、その溶液を正極活物質であるLi(Ni,Co,Mn)O(Sigma-Ardrich社製、平均粒子径D50:4.6μm )1kgに噴霧し、正極活物質粒子表面に溶液を付着させた。コーティング装置の運転条件は、吸気ガスとして窒素を用い、吸気温度を120℃、吸気風量を0.4m/min、ロータ回転数を400rpm、噴霧速度を4.8g/minとした。得られた粉末を大気中にて200℃で5時間焼成を行い、その後メノウ乳鉢にて再粉砕することによって、保護層を有する正極活物質を得た。保護層の組成はLiNbOであった。
1.1.2 第1固体電解質の作製
 YCl(Sigma-Ardrich社製)、LiCl(高純度化学社製)及びLiBr(高純度化学社製)を所定の組成となるように秤量し、45mlのZrOポットにφ5mmのZrOボールとともに投入した。これを500rpmで40時間ミリングすることで、第1固体電解質であるLiYClBrの粉末を得た。
1.1.3 正極活物質の被覆
 上記の正極活物質と、上記の第1固体電解質と、導電助剤として活物質の0.5wt%のカーボンブラック(東海カーボン社製)とをメノウ乳鉢で混合することで、正極活物質の表面を第1固体電解質で被覆した。第1固体電解質で被覆した後の正極活物質をSEMで観察したところ、正極活物質の粒子の表面全体が第1固体電解質で被覆されていた。正極活物質の表面において第1固体電解質の平均被覆厚さは104nmであった。
1.1.4 第2固体電解質の作製
 LiS(三津和化学工業社製)と、P(Sigma-Ardrich社製)とを、モル比でLiS:P=75:25となるように秤量し、45mlのZrOポットにφ8mmのZrOボールとともに投入した。これを500rpmで20時間ミリングすることで前駆体粉末を得た。得られた前駆体粉末をペレット化し、石英管に入れて真空封入し、3時間焼成した。焼成後のペレットを乳鉢で粉砕することで、第2固体電解質である0.75LiS-0.25Pの粉末を得た。
1.1.5 正極材料の作製
 第1固体電解質で被覆した正極活物質と、活物質の1.5wt%のVGCF(昭和電工社製)と、第2固体電解質とを、メノウ乳鉢で混合することで、正極材料を作製した。
1.1.6 負極材料の作製
 Si(高純度化学社製)と、VGCFと、上記の第2固体電解質とをメノウ乳鉢で混合することで、負極材料を作製した。
1.1.7 電池の作製
 図3に評価用の電池の構成を概略的に示す。まず、第2固体電解質をφ11.28mmのシリンダ内で1ton/cmの圧力で圧粉成形し、固体電解質層を作製した。その後、固体電解質層の上に負極材料を堆積させたうえで4ton/cmの圧力で圧粉成形し、固体電解質層と負極活物質層との接合体を作製した。一方、正極材料をφ10.0mmのシリンダ内で1ton/cmの圧力で圧粉成形し、正極活物質層(正極ペレット)を作製した。負極活物質層とは反対側の固体電解質層の表面に正極ペレットを置き、拘束することで、評価用の電池とした。
1.1.8 発熱量の測定
 評価用の電池に対して、0.1Cで定電流-定電圧充電を実施し、4.35Vまで充電した。充電完了後、電池の拘束を解き、正極ペレットを取り出した。取り出した正極ペレットをメノウ乳鉢で粉砕してサンプルとし、示差走査熱量分析(DSC)を用いて、Ar雰囲気下における室温から260℃までの発熱量を確認した。80℃から260℃までの範囲における発熱量の積算値を求め、これを正極材料の「高温時の発熱量(J/g)」とした。
1.2.実施例2
 正極活物質と第1固体電解質との配合比及び混合時間を変化させて、正極活物質を被覆する第1固体電解質の厚みを変化させたこと以外は、実施例1と同様にして正極材料及び電池を作製し、発熱量を評価した。第1固体電解質で被覆した後の正極活物質についてSEMで観察したところ、正極活物質の粒子の表面全体が第1固体電解質で被覆されていた。第1固体電解質の平均被覆厚さは140nmであった。
1.3.実施例3
 正極活物質と第1固体電解質との配合比及び混合時間を変化させて、正極活物質を被覆する第1固体電解質の厚みを変化させたこと以外は、実施例1と同様にして正極材料及び電池を作製し、発熱量を評価した。第1固体電解質で被覆した後の正極活物質についてSEMで観察したところ、正極活物質の粒子の表面全体が第1固体電解質で被覆されていた。第1固体電解質の平均被覆厚さは176nmであった。
1.4.比較例1
 第1固体電解質で被覆されていない正極活物質と、活物質の1.5wt%のVGCF(昭和電工社製)と、第2固体電解質とを、メノウ乳鉢で混合することで、正極材料を作製した。活物質とVGCFと第2固体電解質との配合比は実施例1と同様とした。当該正極材料を用いて実施例1と同様にして電池を作製し、発熱量を評価した。
1.5.比較例2
 正極活物質と第1固体電解質との配合比及び混合時間を変化させて、正極活物質を被覆する第1固体電解質の厚みを変化させたこと以外は、実施例1と同様にして正極材料及び電池を作製し、発熱量を評価した。第1固体電解質で被覆した後の正極活物質についてSEMで観察したところ、正極活物質の粒子の表面全体が第1固体電解質で被覆されていた。第1固体電解質の平均被覆厚さは67nmであった。
1.6.評価結果
 下記表1及び図4に発熱量の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図4に示される結果から明らかなように、正極活物質の表面における第1固体電解質の平均被覆厚さを104nm以上とした場合、高温時の正極材料の発熱量が顕著に低下することが分かる。一定以上の厚さを有する第1固体電解質の存在によって、正極活物質から放出された酸素が第2固体電解質へと到達し難くなり、発熱反応が生じ難くなったものと考えられる。
2.抵抗の評価
2.1 比較例1、2及び実施例1~3
 上記と同様にして電池を作製しDCIR電池抵抗(SOC:73%、7C、10秒抵抗)を測定した。
2.2 比較例3
 第1固体電解質で被覆されていない正極活物質と、活物質の1.5wt%のVGCF(昭和電工社製)と、第1固体電解質と、第2固体電解質とを、同時に、メノウ乳鉢で混合することで、正極材料を作製した。活物質とVGCFと第1固体電解質と第2固体電解質との含有比は、実施例1に係る正極材料における含有比と同様とした。当該正極材料を用いて実施例1と同様にして電池を作製し、DCIR電池抵抗を評価した。
2.3 評価結果
 図5に抵抗の測定結果を示す。尚、図5においては、比較例1に係る電池の抵抗値を100として指標化した。
 図5に示される結果から明らかなように、実施例1~3に係る電池は、比較例1に係る電池に対して、抵抗が増加したものの、その増加量を抑えることができた。正極活物質の表面を第1固体電解質で被覆し、当該第1固体電解質に第2固体電解質を接続した場合、正極活物質、第1固体電解質及び第2固体電解質の間に十分なリチウムイオン伝導パスが形成され、被覆層の厚みを104nm以上に厚くしたとしても、抵抗はそれほど増加しないことが分かる。一方、比較例3の結果から明らかなように、正極活物質を第1固体電解質で被覆せずに、正極材料中に第1固体電解質を混合・分散させた場合、電池の抵抗が著しく増加した。
 本開示の電池は、例えば、携帯機器用等の小型電源から車搭載用等の大型電源まで広く利用することができる。 
10 正極材料
 10a 正極活物質
 10b 第1固体電解質
 10c 第2固体電解質
100 正極活物質層
200 固体電解質層
300 負極活物質層
400 正極集電体
500 負極集電体
1000 電池

Claims (7)

  1.  正極活物質と、第1固体電解質と、第2固体電解質とを含む正極材料であって、
     前記正極活物質がリチウム含有酸化物を含み、
     前記第1固体電解質が構成元素としてLi及びXを含み、且つ、Sを含まず、
     前記XがF、Cl、Br及びIからなる群より選択される少なくとも1つの元素であり、
     前記第2固体電解質が構成元素としてLi及びSを含み、
     前記第1固体電解質が前記正極活物質の表面の少なくとも一部を被覆し、
     前記第2固体電解質が前記第1固体電解質を介して前記正極活物質に接し、
     前記第1固体電解質の平均被覆厚さが104nm以上である、
     正極材料。
  2.  前記第1固体電解質が構成元素としてMを含み、
     前記MがLi以外の金属元素及び半金属元素からなる群より選択される少なくとも1つの元素である、
     請求項1に記載の正極材料。
  3.  前記第1固体電解質がLiαβγで示される化学組成を有し、
     α、β及びγが、それぞれ独立に、0より大きい値である、
     請求項2に記載の正極材料。
  4.  前記Mがイットリウムを含む、
     請求項2又は3に記載の正極材料。
  5.  前記XがCl及びBrのうちの少なくとも1つである、
     請求項1~4のいずれか1項に記載の正極材料。
  6.  前記第2固体電解質が構成元素としてLi、P及びSを含む、
     請求項1~5のいずれか1項に記載の正極材料。
  7.  正極活物質層と、
     固体電解質層と、
     負極活物質層と、
     を備え、
     前記正極活物質層が、請求項1~6のいずれか1項に記載の正極材料からなる、
     電池。
PCT/JP2021/025191 2020-07-08 2021-07-02 正極材料及び電池 WO2022009806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180048077.4A CN115769397A (zh) 2020-07-08 2021-07-02 正极材料和电池
US18/014,684 US20230231124A1 (en) 2020-07-08 2021-07-02 Positive electrode material and battery
JP2022535302A JP7420949B2 (ja) 2020-07-08 2021-07-02 正極材料及び電池
EP21837988.1A EP4181230A4 (en) 2020-07-08 2021-07-02 POSITIVE ELECTRODE MATERIAL AND BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020117896 2020-07-08
JP2020-117896 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009806A1 true WO2022009806A1 (ja) 2022-01-13

Family

ID=79552572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025191 WO2022009806A1 (ja) 2020-07-08 2021-07-02 正極材料及び電池

Country Status (5)

Country Link
US (1) US20230231124A1 (ja)
EP (1) EP4181230A4 (ja)
JP (1) JP7420949B2 (ja)
CN (1) CN115769397A (ja)
WO (1) WO2022009806A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139897A1 (ja) * 2022-01-21 2023-07-27 トヨタ自動車株式会社 電池
WO2024029216A1 (ja) * 2022-08-02 2024-02-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、および電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207567A (ja) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 活物質複合粒子、電極活物質層および全固体リチウム電池
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2018032621A (ja) * 2016-08-23 2018-03-01 パナソニックIpマネジメント株式会社 電極材料、および、電池
WO2019146236A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2019146216A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516755B2 (ja) * 2010-12-10 2014-06-11 トヨタ自動車株式会社 電極体および全固体電池
JPWO2021199618A1 (ja) * 2020-03-30 2021-10-07

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207567A (ja) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 活物質複合粒子、電極活物質層および全固体リチウム電池
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2018032621A (ja) * 2016-08-23 2018-03-01 パナソニックIpマネジメント株式会社 電極材料、および、電池
WO2019146236A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2019146216A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181230A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139897A1 (ja) * 2022-01-21 2023-07-27 トヨタ自動車株式会社 電池
WO2024029216A1 (ja) * 2022-08-02 2024-02-08 パナソニックIpマネジメント株式会社 被覆活物質、正極材料、および電池

Also Published As

Publication number Publication date
JPWO2022009806A1 (ja) 2022-01-13
US20230231124A1 (en) 2023-07-20
JP7420949B2 (ja) 2024-01-23
EP4181230A4 (en) 2024-08-21
CN115769397A (zh) 2023-03-07
EP4181230A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP6724571B2 (ja) 固体電池
JP6376068B2 (ja) 負極合材および全固体電池
JP7331443B2 (ja) 全固体電池
JP6252524B2 (ja) 固体電池用正極活物質の製造方法
JP6738121B2 (ja) リチウムイオン(lithiumion)二次電池
JP6102859B2 (ja) リチウム電池用正極活物質、リチウム電池およびリチウム電池用正極活物質の製造方法
JP5928252B2 (ja) 全固体電池用負極体および全固体電池
JP7096197B2 (ja) 被覆正極活物質及び全固体電池
WO2022009806A1 (ja) 正極材料及び電池
JP2019207793A (ja) 正極、全固体電池及びこれらの製造方法
JPWO2020174868A1 (ja) 正極材料、および、電池
WO2022254985A1 (ja) 被覆活物質、正極材料、正極および電池
KR20220008056A (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법
JP7167488B2 (ja) 正極、全固体電池及びこれらの製造方法
WO2021220927A1 (ja) 正極材料、および、電池
JP6576033B2 (ja) リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法
JP7507385B2 (ja) 正極材料、および、電池
WO2021177382A1 (ja) 正極材料および電池
JP7159665B2 (ja) 全固体電池
JP2020161286A (ja) 全固体電池
WO2023002757A1 (ja) 負極活物質および電池
US20240222631A1 (en) Cathode, lithium secondary battery including the same, and method of preparing cathode
WO2023002759A1 (ja) 負極活物質および電池
WO2024195636A1 (ja) 全固体二次電池用正極および全固体二次電池
WO2023002756A1 (ja) 負極活物質および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535302

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317001201

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837988

Country of ref document: EP

Effective date: 20230208