WO2022007689A1 - 车辆的充电提醒方法、设备、程序、存储介质及车辆 - Google Patents

车辆的充电提醒方法、设备、程序、存储介质及车辆 Download PDF

Info

Publication number
WO2022007689A1
WO2022007689A1 PCT/CN2021/103842 CN2021103842W WO2022007689A1 WO 2022007689 A1 WO2022007689 A1 WO 2022007689A1 CN 2021103842 W CN2021103842 W CN 2021103842W WO 2022007689 A1 WO2022007689 A1 WO 2022007689A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
historical
energy consumption
charging pile
distance
Prior art date
Application number
PCT/CN2021/103842
Other languages
English (en)
French (fr)
Inventor
刘秀
李岩
李玉山
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2022007689A1 publication Critical patent/WO2022007689A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to the technical field of vehicle control, and in particular, to a charging reminder method, device, program, storage medium and vehicle for a vehicle.
  • Electric vehicles refer to vehicles powered by on-board batteries and driven by motors that meet the requirements of road traffic and safety regulations. Since electric vehicles have less impact on the environment than traditional vehicles, their prospects are widely optimistic. During the driving process of electric vehicles, due to the consumption of battery power, the vehicle may need to be charged. At present, in most cases, if charging is required during driving, the driver needs to manually query the target charging piles. Determining the target charging pile by yourself and driving the vehicle to the target charging pile for charging is inconvenient to operate, not intelligent enough, and has poor user experience.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first objective of the present disclosure is to propose a charging reminder method for a vehicle, so as to solve the technical problem in the prior art that the user manually operates to query the target charging pile, and the user experience is poor.
  • the second object of the present disclosure is to provide a charging reminder device for a vehicle.
  • a third object of the present disclosure is to propose a storage medium.
  • a fourth object of the present disclosure is to propose a vehicle.
  • an embodiment of the first aspect of the present disclosure provides a charging reminder method for a vehicle, which includes the following steps: acquiring a planned driving path of the vehicle and information on the distribution of charging piles on the planned driving path; The current remaining power of the battery;
  • the user is reminded to charge the battery at the target charging pile.
  • the method before calculating the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle, the method further includes:
  • the historical energy consumption data of the vehicle is determined according to the driving energy consumption, the braking regenerative energy and the temperature adjustment energy consumption of the vehicle.
  • the determining of the historical energy consumption data of the vehicle according to the driving energy consumption, braking regenerative energy and temperature adjustment energy consumption of the vehicle includes:
  • the driving energy consumption braking regenerative energy and temperature adjustment energy consumption of the vehicle within each historical driving distance of the N historical driving distances, calculating that the vehicle is within each historical driving distance of the N historical driving distances
  • the historical average energy consumption is obtained, and N historical average energy consumptions are obtained, where N is a positive integer, and the values of the N historical driving distances are different.
  • the N historical driving distances include a first historical driving distance S 1 and a second historical driving distance S 2 , and the vehicle within each historical driving distance of the N historical driving distances Calculate the historical average energy consumption of the vehicle within each historical driving distance of the N historical driving distances, and obtain N historical average energy consumption, including:
  • the energy consumption of the first driving history E drive1 S 1 traveling distance of the vehicle, regenerative braking energy E brake1 temperature regulation and energy consumption E temperature1, first calculating the total travel distance of the vehicle 1 S first historical average energy E average1, E average1 (E drive1 + E temperature1 -E brake1) / S 1;
  • the energy consumption E drive2 driving the second travel distance S in the history of the vehicle 2, regenerative braking energy E brake2 temperature regulation and energy consumption E temperature2, S 2 calculates the vehicle within a travel distance in the second history
  • the second historical average energy consumption E average2 , E average2 (E drive2 +E temperature2 -E brake2 )/S 2 .
  • the calculating the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle includes:
  • the cruising range corresponding to the current remaining electric energy is calculated according to the N historical average energy consumptions, and N cruising ranges are obtained.
  • the N historical average energy consumptions include a first historical average energy consumption E average1 and a second historical average energy consumption E average2 , and the current average energy consumption is calculated according to the N historical average energy consumptions
  • N cruising ranges are obtained, including:
  • the determining of the target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path includes:
  • a target charging pile is determined according to the cruising range and the distribution information of the charging piles on the planned driving path.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2
  • the determining whether the distance is greater than the smallest of the N cruising ranges includes:
  • determining a target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path including:
  • the charging pile distribution information includes distribution information of one charging pile, and determining a target charging pile according to the cruising range and the charging pile distribution information on the planned travel path includes:
  • the one charging pile is determined as the target charging pile.
  • the charging pile distribution information includes distribution information of a plurality of charging piles, and determining a target charging pile according to the cruising range and the charging pile distribution information on the planned driving path includes:
  • the distance to the current position of the vehicle which is greater than the smallest of the N cruising distances and less than the N cruising distances.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2 , and searching for the charging piles in the plurality of charging piles on the planned driving route
  • the distance between the current positions of the vehicles, which is greater than the smallest of the N cruising ranges and less than the largest of the N cruising ranges, includes:
  • the distance to the current position of the vehicle is greater than the distance between the first cruising range R 1 and the second cruising range R 2
  • the charging pile is smaller and smaller than the larger of the first cruising range R 1 and the second cruising range R 2 .
  • the embodiment of the first aspect of the present disclosure proposes a charging reminder method for a vehicle, which can automatically plan a target charging pile for the user according to the remaining electric energy of the battery, and remind the user to charge the battery of the vehicle at the target charging pile, and the user can charge the battery at the target according to the reminder.
  • the battery of the vehicle can be charged by the pile, which avoids the user's operation of manually querying the target charging pile, and the charging method is more intelligent, which improves the user experience.
  • a second aspect of the present disclosure provides a charging reminder device for a vehicle, including: a first acquisition module configured to acquire a planned driving path of the vehicle and information on the distribution of charging piles on the planned driving path;
  • a second obtaining module configured to obtain the current remaining electric energy of the battery of the vehicle
  • a calculation module configured to calculate the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle
  • a first determining module configured to determine a target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path;
  • the reminding module is used to remind the user to charge the battery at the target charging pile.
  • the apparatus further includes:
  • the second determining module is configured to determine historical energy consumption data of the vehicle according to the driving energy consumption, the braking regenerative energy and the temperature adjustment energy consumption of the vehicle.
  • the second determining module is specifically configured to:
  • the driving energy consumption braking regenerative energy and temperature adjustment energy consumption of the vehicle within each historical driving distance of the N historical driving distances, calculating that the vehicle is within each historical driving distance of the N historical driving distances
  • the historical average energy consumption is obtained, and N historical average energy consumptions are obtained, where N is a positive integer, and the values of the N historical driving distances are different.
  • the N historical driving distances include a first historical driving distance S 1 and a second historical driving distance S 2
  • the second determining module includes:
  • the second calculation sub-module is configured to calculate the driving energy E drive2 , the regenerative braking energy E brake2 and the temperature adjustment energy consumption E temperature2 of the vehicle within the second historical driving distance S 2 ,
  • the second historical average energy consumption E average2 within the historical driving distance S 2 , E average2 (E drive2 +E temperature2 -E brake2 )/S 2 .
  • the computing module is specifically configured to:
  • the cruising range corresponding to the current remaining electric energy is calculated according to the N historical average energy consumptions, and N cruising ranges are obtained.
  • the N historical average energy consumptions include a first historical average energy consumption E average1 and a second historical average energy consumption E average2
  • the calculation module includes:
  • the first determining module includes:
  • an acquisition submodule for acquiring the distance between the current position of the vehicle and the end point of the planned travel path
  • a judging sub-module for judging whether the distance is greater than the smallest of the N cruising distances
  • a determination submodule configured to determine a target charging pile according to the cruising range and the distribution information of the charging piles on the planned travel path when the distance is greater than the minimum of the N cruising ranges.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2 ;
  • the determining submodule for a distance greater than the mileage of the first R 1 and smaller in the second mileage 2 R, on the basis of the mileage and travel route planning determines the target charging piles.
  • the charging pile distribution information includes distribution information of one charging pile
  • the determining submodule includes:
  • the first determination submodule is used for determining the one charging pile as the target charging pile.
  • the charging pile distribution information includes distribution information of a plurality of charging piles
  • the determining submodule includes:
  • a search sub-module is used to search for the distance between the plurality of charging piles on the planned driving path and the current position of the vehicle, which is greater than the smallest of the N cruising ranges and less than all the distances.
  • the second determination sub-module is used for determining that the found charging pile is the target charging pile.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2 ;
  • the search sub-module is specifically configured to, among the plurality of charging piles on the planned driving path, search for a distance from the current position of the vehicle that is greater than the first cruising range R 1 and the The smaller one of the second cruising range R 2 is smaller than the charging pile of the larger one of the first cruising range R 1 and the second cruising range R 2 .
  • the embodiment of the second aspect of the present disclosure proposes a charging reminder device for a vehicle, which can automatically plan a target charging pile for a user according to the remaining power of the battery, and remind the user to charge the battery of the vehicle at the target charging pile, and the user can charge the battery at the target according to the reminder.
  • the battery of the vehicle can be charged by the pile, which avoids the user's operation of manually querying the target charging pile, and the charging method is more intelligent, which improves the user experience.
  • a third aspect of the present disclosure provides a vehicle, comprising: a memory on which a computer program is stored;
  • a processor for executing the computer program in the memory to implement the steps of the above-described method.
  • a fourth aspect of the present disclosure provides a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the vehicle charging reminder method provided by the embodiment of the first aspect of the present disclosure.
  • the fifth aspect of the present disclosure provides a computer program, including computer-readable codes, when the computer-readable codes are executed on a computing and processing device, causing the computing and processing device to execute the first step of the present disclosure.
  • the embodiment provides a charging reminder method for a vehicle.
  • the embodiment of the sixth aspect of the present disclosure provides a computer-readable storage medium, in which the computer program proposed by the embodiment of the sixth aspect of the present disclosure is stored.
  • FIG. 1 is a flowchart of a charging reminder method for a vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of another vehicle charging reminder method according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for determining historical energy consumption data according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for calculating a cruising range according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for determining a target charging pile according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a method for determining a target charging pile according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another method for determining a target charging pile according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of still another method for determining a target charging pile according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of still another method for determining a target charging pile according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a vehicle charging reminder device according to an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of another vehicle charging reminder device according to an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of a vehicle according to an embodiment of the present disclosure.
  • FIG. 13 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • FIG. 14 provides a schematic diagram of a storage unit for portable or fixed program code implementing the method according to the present disclosure according to an embodiment of the present disclosure.
  • the present disclosure can be applied to the driving process of the vehicle.
  • the vehicle may need to be charged due to the power consumption of the battery of the vehicle.
  • the driver needs to manually query the target charging piles. Determine the target charging pile by yourself and drive the vehicle to the target charging pile for charging. This charging method is not intelligent enough and the user experience is poor.
  • the present disclosure provides a charging reminder method, device, program, storage medium and vehicle for a vehicle, which can acquire the planned driving path of the vehicle and the distribution information of charging piles on the planned driving path, and simultaneously acquire the battery information of the vehicle.
  • the current remaining electric energy calculate the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle; determine the target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path; remind the user to charge the vehicle at the target charging pile That is, the embodiment of the present disclosure will automatically plan the target charging pile for the user according to the remaining power of the battery, and remind the user to charge the battery of the vehicle at the target charging pile, which avoids the user's operation of manually querying the target charging pile, and the charging method is more convenient. Smart, improve user experience.
  • the vehicle charging reminder method provided by the embodiments of the present disclosure can be applied to a vehicle with a navigation system, and can also be applied to a mobile terminal (such as a mobile phone, a tablet computer, etc.) with a navigation system; when applied to a mobile terminal, the mobile terminal A communication connection can be established with the vehicle in advance, and the current remaining power of the vehicle's battery, the historical energy consumption data of the vehicle, etc. can be obtained through the established communication connection, and the target charging pile can be determined according to the obtained data, and then the mobile terminal or the vehicle's on-board machine can be used.
  • the system reminds the user to charge the battery of the vehicle at the target charging pile, and the following embodiments will be described by taking the charging reminder method applied to the vehicle as an example.
  • FIG. 1 is a flowchart of a vehicle charging reminder method according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
  • Step 101 acquiring the planned driving path of the vehicle and the distribution information of the charging piles on the planned driving path, and acquiring the current remaining electric energy of the battery of the vehicle.
  • the planned travel route can be obtained from the navigation system, and then the distribution information of the charging piles on the planned travel route can be obtained from the cloud platform (such as the Pile Enterprise Cloud Platform).
  • the acquired distribution information of the charging piles is, for example, location information of the charging piles (such as coordinate information), status information of the charging piles (such as available, unavailable), and the like.
  • the number of charging piles is sufficient, and the charging piles are reasonably arranged along roads such as expressways, provincial roads, national roads, urban areas, and suburban areas.
  • the current remaining power of the vehicle battery can be obtained from the vehicle battery management system.
  • Step 103 Calculate the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle.
  • the historical energy consumption data of the vehicle may include the energy consumption data of the preset components of the vehicle in the historical travel, such as the driving system of the vehicle, the air conditioning system of the vehicle, etc.
  • a 10-kilometer trip, etc. is to use the historical energy consumption data of the vehicle as a reference to estimate the cruising range of the current remaining electric energy.
  • Step 105 Determine a target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path.
  • a charging pile whose distance between the planned driving path and the current position of the vehicle is less than the cruising range and whose status is available can be determined as the target charging pile.
  • a charging pile whose status is available on the planned driving path within meters is determined as a target charging pile.
  • a charging pile whose status is available at a distance of 7 kilometers from the current position is determined as the target charging pile.
  • Step 107 reminding the user to charge the battery of the vehicle at the target charging pile.
  • the user can be reminded to charge, or the vehicle can be driven closer to the target charging pile (for example, the distance from the target charging pile is less than the preset distance value, such as 500 meters, 800 meters), the user is reminded to charge.
  • a charging reminder message can be generated, and the charging reminder message can be displayed or played through the vehicle system of the vehicle.
  • a charging logo can be generated, and the charging logo can be displayed at the position of the charging pile corresponding to the navigation screen to remind the user to charge.
  • the specific reminding method is not specifically limited here.
  • the charging anxiety caused by the user's fear of missing the charging pile or the battery power failure and unable to reach the destination smoothly during driving can be eliminated. It greatly improves the user experience, conforms to the concept of smart cars, conforms to the development trend of automotive intelligence, and is conducive to improving the competitiveness of products.
  • the planned driving path of the vehicle and the distribution information of the charging piles on the planned driving path are obtained, and the current remaining electric energy of the battery of the vehicle is obtained at the same time; the battery life corresponding to the current remaining electric energy of the vehicle is calculated according to the historical energy consumption data of the vehicle mileage; determine the target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path; remind the user to charge the battery at the target charging pile, that is, the embodiment of the present disclosure will automatically plan the target charging pile for the user according to the remaining electric energy of the battery, And remind the user to charge the battery of the vehicle at the target charging pile, and the user can charge the battery of the vehicle at the target charging pile according to the reminder, which avoids the user's operation of manually querying the target charging pile, the charging method is more intelligent, and the user experience is improved.
  • step 103 the following steps may also be included:
  • Step 102 Determine historical energy consumption data of the vehicle according to the driving energy consumption, the braking regenerative energy and the temperature adjustment energy consumption of the vehicle.
  • the driving power of the driving motor can be obtained in real time from the motor controller of the vehicle, and the driving power consumption of the vehicle can be obtained by accumulating the driving power of the driving motor within the historical driving distance;
  • the braking energy can be obtained from the intelligent braking system of the vehicle. Recovered power, the braking recovery energy of the vehicle is obtained by accumulating the recovery power of the braking energy within the historical driving distance;
  • the cooling or heating power can be obtained from the air conditioning controller or the electric heating controller, and the cooling or heating power can be obtained from the air conditioning controller or the electric heating controller. Or the heating power is accumulated to obtain the energy consumption for temperature regulation.
  • the driving energy consumption of the vehicle within the historical driving distance can be:
  • E drive represents the driving energy consumption
  • current_position represents the current position
  • P drice_actual represents the real-time driving power of the driving motor.
  • the braking energy recovery of the vehicle within the historical driving distance can be:
  • E brake represents the braking energy recovery
  • P brake_actual represents the real-time recovery power of braking energy
  • E temperature represents the energy consumption for temperature adjustment
  • P temperature_actual represents the real-time power of cooling or heating.
  • the energy consumed by the air conditioning controller or the electric heating controller itself needs to be considered (usually a fixed value) when determining the energy consumption of temperature adjustment; If the driver performs cooling or heating within the historical driving distance, when determining the energy consumption of temperature adjustment, in addition to the energy consumed by cooling or heating, it is also necessary to consider the energy consumed by the air conditioning controller or the electric heating controller itself. .
  • the method for determining the historical energy consumption data of the vehicle may be: according to the driving energy consumption, the braking regenerative energy and the temperature adjustment energy consumption of the vehicle within each historical driving distance of the N historical driving distances, Calculate the historical average energy consumption of the vehicle within each historical driving distance of the N historical driving distances, and obtain N historical average energy consumption, where N is a positive integer, and the values of the N historical driving distances are different.
  • step 103 calculates the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle, which may include:
  • step 105 determines the target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path, which may include:
  • the target charging pile is determined according to the cruising range and the distribution information of the charging piles on the planned driving path.
  • the charging pile distribution information includes the distribution information of one charging pile
  • the target charging pile is determined according to the cruising range and the charging pile distribution information on the planned driving path, which can be: Determined as the target charging pile.
  • the charging pile distribution information includes the distribution information of multiple charging piles, and the target is determined according to the cruising range and the charging pile distribution information on the planned driving path.
  • Charging pile which can be:
  • the charging pile whose distance to the current position of the vehicle is greater than the smallest of the N cruising ranges and less than the largest of the N cruising ranges;
  • the method for determining the historical energy consumption data of the vehicle can be as shown in FIG. 3 . , including the following steps:
  • the first travel distance S 1 may be smaller than the second travel distance S 2 , and both the first travel distance S 1 and the second travel distance S 2 may use the current position point as a reference, that is, the first travel distance S 1 is the same as the current position.
  • distance of a point of the travel distance S 1, S 2 is the second travel distance from the current position to the travel distance of the point S 2, such as a first travel distance S 1 may be 5 km travel distance from the current location (i.e. The driving distance of the past 5 kilometers), the second driving distance S 2 can be the driving distance of 10 kilometers from the current position (that is, the driving distance of the past 10 kilometers), of course, the first driving distance and the second driving distance can also be Other values are taken according to actual needs, which are not specifically limited here. Taking the current location as a reference, the obtained average energy consumption data can reflect the recent energy consumption of the vehicle. Based on such average energy consumption data, the calculated cruising range is more accurate.
  • the method for calculating the cruising range corresponding to the current remaining electric energy may include the following steps:
  • Two different historical average energy consumptions are calculated by using different historical driving distances, so as to obtain two cruising ranges for the current remaining electric energy estimation, which can further improve the accuracy of cruising range calculation.
  • the method for determining the target charging pile may include the following steps:
  • Step 1051 Obtain the distance between the current position of the vehicle and the end point of the planned travel path.
  • Step 1052 determines whether the first distance is greater than the mileage R 1 and second R 2 mileage smaller, if so, then performing step 1053, otherwise step 1057.
  • the current remaining driving distance is greater than the conservative cruising range, which can be divided into two cases: first: the current remaining driving distance is greater than the conservative cruising range R conservative and greater than the optimistic cruising range R optimistic ; second: the current remaining driving distance is greater than the conservative cruising range
  • the range, R conservative is less than the optimistic range , R optimistic , both of which indicate that the vehicle needs to be charged before reaching the end.
  • step 1053 it is determined whether there are one or more charging piles. When there is only one charging pile, step 1054 is performed, and when there are multiple charging piles, step 1055 is performed.
  • Step 1054 determining this one charging pile as the target charging pile.
  • the charging pile is determined as the target charging pile.
  • Step 1055 to find the distance between the current position of the vehicle and the travel route planning, the mileage is greater than the first R 1 and second R 2 mileage smaller, and smaller than the first R 1 and second mileage Charging point for the greater of the range R 2.
  • Step 1056 determining that the found charging pile is the target charging pile.
  • the charging pile when it is determined that the vehicle needs to be charged before reaching the end point, and there are multiple charging piles, find the charging pile whose distance from the current position is greater than the conservative cruising range R conservative , but less than the optimistic cruising range R optimistic from the multiple charging piles.
  • the found charging pile is determined as the target charging pile.
  • the determined target charging piles are all available charging piles by default.
  • Step 1057 there is no need to determine the target charging pile.
  • the vehicle does not need to be charged before reaching the end point, and there is no need to determine the target charging pile.
  • the vehicle in order to avoid power failure before the vehicle reaches the end point and improve the reliability of the determination result, when it is determined that the current remaining driving distance is less than or equal to the conservative cruising range, it can be further combined with the estimated energy consumption of the road to determine whether the target charging needs to be determined. pile.
  • the estimated energy consumption of the road (that is, the estimated energy consumption of the remaining driving distance) where E estimate represents the estimated energy consumption of the road, It represents vehicle speed at a desired vehicle output u, u vehicle speed or speed limit on the identification can be collected by a cloud platform (such as internet cloud providers FIG) to the remaining travel path worth.
  • a cloud platform such as internet cloud providers FIG
  • ⁇ T represents the power system efficiency
  • G represents the sum of the curb weight of the whole vehicle and the passenger mass
  • f represents the rolling resistance coefficient
  • f can be between 0.01 and 0.08 (according to the level of good asphalt pavement)
  • C D represents the wind resistance coefficient
  • A is the windward area
  • i is the slope
  • i can be expressed as a percentage.
  • the vehicle in order to ensure the accuracy of the estimated energy consumption calculation result, the vehicle can be adjusted to the automatic driving mode.
  • the vehicle speed u a In the automatic driving mode, the vehicle speed u a can be completely determined by the speed limit sign or speed limit value on the road, excluding In the automatic driving mode, the estimated energy consumption of the vehicle is calculated.
  • the current remaining driving distance is less than or equal to the conservative cruising range
  • the preset power For example, 2kwh, which can be customized as needed
  • N is taken as 2 in the above embodiment, that is, two different historical average energy consumptions are calculated by taking two different historical driving distances, and the current remaining energy consumption is calculated by using these two different historical average energy consumptions.
  • the cruising range corresponding to electric energy is used as an example to illustrate; but in practical applications, N can also take other values, such as N taking 1, that is, only one historical driving distance is taken to calculate a historical average energy consumption, and the historical average energy consumption is used to calculate The cruising range corresponding to the current remaining electric energy (in this case, only one cruising mileage is obtained. If it is determined that the vehicle needs to be charged before reaching the end point, the distance between the current position of the vehicle and the charging pile that is less than this cruising mileage can be determined.
  • N is the target charging pile); or N can also take other integers greater than 2, that is, three, four or even more different historical driving distances can be used to calculate more different historical average energy consumption, so as to use more Calculate the cruising range corresponding to the current remaining electric energy by using the historical average energy consumption of
  • the charging pile with the smallest of the multiple cruising ranges and the charging pile less than the largest of the multiple cruising ranges is determined as the target charging pile), which is not specifically limited here.
  • the current remaining electric energy of the battery of the vehicle and the historical energy consumption data of the vehicle are dynamically changed during the driving of the vehicle, after the initial calculation and determination of the target charging pile, it is also possible to set a preset time interval (such as After 5 minutes, 10 minutes), re-determine the target charging pile according to the newly obtained current remaining power of the battery and the historical energy consumption data of the vehicle. If the newly determined target charging pile is inconsistent with the previously determined target charging pile, you can According to the newly determined target charging pile, the user is reminded to charge.
  • the conservative cruising range R conservative and the optimistic cruising range R optimistic corresponding to the current remaining power of the battery calculated according to the historical energy consumption data of the vehicle are both greater than the distance between the current position of the vehicle and the end point of the planned travel path and the estimated energy consumption from the current position of the vehicle to the end point of the planned travel route is less than the current remaining power of the battery, it can be determined that the battery power of the vehicle is sufficient, and the vehicle does not need to be charged before reaching the end point, so there is no need to determine the target charging pile, and no need to Remind users of charging.
  • the conservative and optimistic cruising range R conservative and optimistic cruising range corresponding to the current remaining power of the battery are calculated according to the historical energy consumption data of the vehicle. If the mileage R optimistic is smaller than the distance between the current position of the vehicle and the end point of the planned travel path, the charging pile can be determined as the target charging pile, and the user is reminded to charge the battery of the vehicle at the target charging pile. Specifically, the user may be reminded to charge at the current location, or the user may be reminded to charge when the vehicle is approaching the target charging pile.
  • the conservative and optimistic cruising range R conservative and optimistic cruising range corresponding to the current remaining power of the battery are calculated according to the historical energy consumption data of the vehicle. If the mileage R optimistic is smaller than the distance between the current position of the vehicle and the end point of the planned travel path, the charging pile whose distance from the current position is greater than the conservative cruising range R conservative but less than the optimistic cruising range R optimistic can be determined as the target charging pile , the charging pile 2 is determined as the target charging pile, and the user is reminded to charge the battery of the vehicle at the target charging pile. Specifically, the user may be reminded to charge at the current location, or the user may be reminded to charge when the vehicle is approaching the target charging pile.
  • the conservative cruising range R conservative corresponding to the current remaining power of the battery calculated according to the historical energy consumption data of the vehicle is smaller than that of the vehicle
  • the optimistic cruising range R optimistic is greater than the distance between the current position of the vehicle and the end point of the planned travel path, the distance from the current position can be larger than the conservative cruising range R conservative but
  • the charging pile less than the optimistic cruising range R optimistic (and within the end point) is determined as the target charging pile, that is, the charging pile 3 is determined as the target charging pile, and the user is reminded to charge the battery of the vehicle at the target charging pile. Specifically, the user may be reminded to charge at the current location, or the user may be reminded to charge when the vehicle is approaching the target charging pile.
  • the present disclosure also proposes a charging reminder device for a vehicle.
  • FIG. 10 is a structural diagram of a vehicle charging reminder device according to an embodiment of the present disclosure. As shown in FIG. 10 , the device 200 includes:
  • the first acquisition module 201 is configured to acquire the planned driving path of the vehicle and the distribution information of the charging piles on the planned driving path;
  • a second obtaining module 202 configured to obtain the current remaining electric energy of the battery of the vehicle
  • a calculation module 203 configured to calculate the cruising range corresponding to the current remaining electric energy according to the historical energy consumption data of the vehicle;
  • a first determination module 204 configured to determine a target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path;
  • the reminding module 205 is used to remind the user to charge the battery at the target charging pile.
  • the device further includes:
  • the second determination module 206 is configured to determine historical energy consumption data of the vehicle according to the driving energy consumption, the braking regenerative energy and the temperature adjustment energy consumption of the vehicle.
  • the second determining module 206 is specifically configured to:
  • the driving energy consumption braking regenerative energy and temperature adjustment energy consumption of the vehicle within each historical driving distance of the N historical driving distances, calculating that the vehicle is within each historical driving distance of the N historical driving distances
  • the historical average energy consumption is obtained, and N historical average energy consumptions are obtained, where N is a positive integer, and the values of the N historical driving distances are different.
  • the N historical driving distances include a first historical driving distance S 1 and a second historical driving distance S 2 .
  • the second determining module 206 includes:
  • the computing module 203 is specifically used to:
  • the cruising range corresponding to the current remaining electric energy is calculated according to the N historical average energy consumptions, and N cruising ranges are obtained.
  • the N historical average energy consumptions include a first historical average energy consumption E average1 and a second historical average energy consumption E average2 .
  • the calculation module 203 includes:
  • the first determining module 204 includes:
  • Obtaining sub-module 2041 for obtaining the distance between the current position of the vehicle and the end point of the planned travel path;
  • Judging sub-module 2042 for judging whether the distance is greater than the minimum of the N cruising distances
  • the determination sub-module 2043 is configured to determine a target charging pile according to the cruising range and the charging pile distribution information on the planned driving path when the distance is greater than the minimum of the N cruising ranges.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2 ;
  • the determination sub-module 2042 for determining whether the first distance is greater than the mileage of the second R 1 and R mileage lesser 2;
  • the determination sub-module 2043 is configured to, when the first distance is greater than the mileage of the second R 1 and R mileage lesser 2, based on the travel route and the mileage Planning The distribution information of the charging piles on the device determines the target charging piles.
  • the charging pile distribution information includes the distribution information of one charging pile.
  • the determining sub-module 2043 includes:
  • the first determination sub-module 20431 is used to determine the one charging pile as the target charging pile.
  • the charging pile distribution information includes the distribution information of a plurality of charging piles.
  • the determining sub-module 2043 includes:
  • a search sub-module 20432 configured to search for the distance to the current position of the vehicle among the plurality of charging piles on the planned travel path, which is greater than the smallest of the N cruising ranges and less than the charging pile of the largest of the N cruising ranges;
  • the second determination sub-module 20433 is used to determine that the found charging pile is the target charging pile.
  • the N cruising ranges include a first cruising range R 1 and a second cruising range R 2
  • the search sub-module 20432 is specifically configured to: the plurality of charging piles on the planned driving path , find the distance between the current vehicle position, the mileage is greater than the first R 1 and second R mileage 2 smaller, and smaller than the first R 1 and mileage The charging pile of the larger of the second cruising range R 2 .
  • the planned driving path of the vehicle and the distribution information of the charging piles on the planned driving path are obtained, and the current remaining electric energy of the battery of the vehicle is obtained at the same time; the battery life corresponding to the current remaining electric energy of the vehicle is calculated according to the historical energy consumption data of the vehicle mileage; determine the target charging pile according to the cruising range and the distribution information of the charging piles on the planned driving path; remind the user to charge the battery at the target charging pile, that is, the embodiment of the present disclosure will automatically plan the target charging pile for the user according to the remaining electric energy of the battery, And remind the user to charge the battery of the vehicle at the target charging pile, and the user can charge the battery of the vehicle at the target charging pile according to the reminder, which avoids the user's operation of manually querying the target charging pile, the charging method is more intelligent, and the user experience is improved.
  • the present disclosure also provides a vehicle, as shown in FIG. 12 , where the vehicle includes:
  • the telematics processor T-BOX is used for the location and status information of the charging piles obtained from the Pile Enterprise Cloud Platform forwarded by the route map business cloud platform, and sends the location and status information of the charging piles to the vehicle-engine system HUT, charging piles
  • the position and status information of the road is obtained by the pile enterprise cloud platform and the charging pile through the long-distance wireless communication technology TSP; and the speed limit and distance function of the road forwarded by the route map business cloud platform, as well as the distance and slope information of the road, the speed of the road
  • the limit and distance functions, as well as the distance and gradient information of the road are sent to the vehicle controller VCU.
  • the vehicle-machine system HUT is used to remind the user to plan the driving route and provide a human-machine interface for charging reminders. Through the built-in positioning device, locate the current vehicle's position on the map or road, and send the planned driving route to the vehicle controller. VCU.
  • the battery management system BMS is used to send the current remaining power of the battery to the vehicle controller VCU.
  • the motor controller MCU is used to drive the motor and send the drive power of the drive motor to the vehicle controller VCU.
  • the intelligent braking system i-booster is used to send the regenerative power of braking energy to the vehicle controller VCU.
  • Lidar LIDAR is used to collect road speed limit signs and detect the distance between vehicles.
  • the advanced driver assistance system ADS is used to activate the automatic driving mode and control the driving of the vehicle in the automatic driving mode.
  • the air conditioner controller AC is used to receive the user's request to turn on or off the air conditioner, to send on or off commands and power limits to the compressor control unit CMP or the electric heating controller PTC, and to send the compressor control unit CMP or the electric heating controller to the power limit.
  • the power consumption after the PTC is turned on is sent to the vehicle controller VCU.
  • the compressor control unit CMP is used to execute the power-on or power-off or power limit commands of the air-conditioning controller AC, and send the actual power consumption to the air-conditioning controller AC in real time.
  • the electric heating controller PTC is used to execute the start-up or shutdown or power limit command of the air-conditioning controller AC, and send the actual power consumption to the air-conditioning controller AC in real time.
  • the vehicle controller VCU is used to obtain the planned travel path of the vehicle and the distribution information of charging piles on the planned travel path, and obtain the current remaining electric energy of the battery of the vehicle;
  • the target charging pile is determined according to the cruising range and the distribution information of the charging piles on the planned driving path; the user is reminded to charge the battery at the target charging pile.
  • the vehicle in the embodiment of the present disclosure will automatically plan the target charging pile for the user according to the remaining power of the battery, and remind the user to charge the battery of the vehicle at the target charging pile.
  • the operation of manually querying the target charging pile by the user, the charging method is more intelligent, and the user experience is improved.
  • the present disclosure also proposes a computing processing device, including:
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device executes the aforementioned method for reminding the vehicle to charge.
  • the present disclosure also proposes a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing processing device, cause the computing processing device to execute the aforementioned vehicle charging reminder method.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 13 provides a schematic structural diagram of a computing processing device according to an embodiment of the present disclosure.
  • the computing processing device typically includes a processor 1110 and a computer program product or computer readable medium in the form of a memory 1130 .
  • the memory 1130 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1130 has storage space 1150 for program code 1151 for performing any of the method steps in the above-described methods.
  • the storage space 1150 for program codes may include various program codes 1151 for implementing various steps in the above methods, respectively. These program codes can be read from or written to one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as shown in FIG. 14 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the storage 1130 in the server of FIG. 13 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1151', i.e. code readable by a processor such as 1110, for example, which when executed by a server, causes the server to perform the various steps in the methods described above.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one of the following techniques known in the art, or a combination thereof: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆的充电提醒方法,包括:获取车辆的规划行驶路径以及规划行驶路径上的充电桩分布信息,获取车辆的电池的当前剩余电能;根据车辆的历史能量消耗数据计算当前剩余电能对应的续航里程;根据续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩;提醒用户在目标充电桩对车辆的电池充电,从而根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。还涉及车辆的充电提醒设备、程序、存储介质及车辆。

Description

车辆的充电提醒方法、设备、程序、存储介质及车辆
相关申请的交叉引用
本公开要求在2020年07月08日提交中国专利局、申请号为202010652712.7、名称为“车辆的充电提醒方法、装置、存储介质及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆控制技术领域,尤其涉及一种车辆的充电提醒方法、设备、程序、存储介质及车辆。
背景技术
电动汽车是指以车载电池为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,由于电动汽车对环境影响相对传统汽车较小,其前景被广泛看好。电动汽车在行驶的过程中,由于电池电能的消耗,导致车辆可能需要充电。目前大多数情况下,行车过程中如果需要充电,则需要驾驶员手动操作查询目标充电桩,比如需要驾驶员通过手机应用程序查询充电桩分布或查询车载导航地图中道路沿线的充电桩分布,从而自行确定目标充电桩,将车辆开往目标充电桩进行充电,这种方式操作不便,不够智能,用户体验较差。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种车辆的充电提醒方法,以解决现有技术中存在的,用户手动操作查询目标充电桩,用户体验差的技术问题。
本公开的第二个目的在于提出一种车辆的充电提醒装置。
本公开的第三个目的在于提出一种存储介质。
本公开的第四个目的在于提出一种车辆。
为达上述目的,本公开第一方面实施例提出了一种车辆的充电提醒方法,包括以下步骤:获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息,获取所述车辆的电池的当前剩余电能;
根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;
根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;
提醒用户在所述目标充电桩对所述电池充电。
根据本公开的一个实施例,在根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程之前,还包括:
根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据。
根据本公开的一个实施例,所述根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据,包括:
根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,所述N个历史行驶距离的取值各不相同。
根据本公开的一个实施例,所述N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2,所述根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,包括:
根据所述第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算所述车辆在所述第一历史行驶距离S 1内的第一历史平均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
根据所述第二历史行驶距离S 2内所述车辆的驱动消耗能量E drive2、制动回收能量E brake2和温度调节消耗能量E temperature2,计算所述车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
根据本公开的一个实施例,所述根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程,包括:
根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航 里程。
根据本公开的一个实施例,所述N个历史平均能耗包括第一历史平均能耗E average1和第二历史平均能耗E average2,所述根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程,包括:
根据所述第一历史平均能耗E average1计算所述当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示所述当前剩余电能;
根据所述第二历史平均能耗E average2计算所述当前剩余电能对应的第二续航里程R 2,R 2=E/E average2
根据本公开的一个实施例,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
获取所述车辆的当前位置与所述规划行驶路径的终点之间的距离;
判断所述距离是否大于所述N个续航里程中的最小者;
在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
根据本公开的一个实施例,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2,所述判断所述距离是否大于所述N个续航里程中的最小者,包括:
判断所述距离是否大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者;
所述在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
在所述距离大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
根据本公开的一个实施例,所述充电桩分布信息包括一个充电桩的分布信息,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
将所述一个充电桩确定为所述目标充电桩。
根据本公开的一个实施例,所述充电桩分布信息包括多个充电桩的分布信息,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩;
确定查找到的充电桩为所述目标充电桩。
根据本公开的一个实施例,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2,所述在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩,包括:
在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者,且小于所述第一续航里程R 1和所述第二续航里程R 2中的较大者的充电桩。
本公开第一方面实施例提出了一种车辆的充电提醒方法,能够根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,用户根据提醒在目标充电桩对车辆的电池充电即可,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。
为达上述目的,本公开第二方面实施例提出了一种车辆的充电提醒装置,包括:第一获取模块,用于获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息;
第二获取模块,用于获取所述车辆的电池的当前剩余电能;
计算模块,用于根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;
第一确定模块,用于根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;
提醒模块,用于提醒用户在所述目标充电桩对所述电池充电。
根据本公开的一个实施例,所述装置还包括:
第二确定模块,用于根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据。
根据本公开的一个实施例,所述第二确定模块具体用于:
根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离 内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,所述N个历史行驶距离的取值各不相同。
根据本公开的一个实施例,所述N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2,所述第二确定模块包括:
第一计算子模块,用于根据第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算所述车辆在所述第一历史行驶距离S 1内的第一历史平均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
第二计算子模块,用于根据第二历史行驶距离S 2内所述车辆的驱动消耗能量E drive2、制动回收能量E brake2和温度调节消耗能量E temperature2,计算所述车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
根据本公开的一个实施例,所述计算模块具体用于,
根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程。
根据本公开的一个实施例,所述N个历史平均能耗包括第一历史平均能耗E average1和第二历史平均能耗E average2,所述计算模块包括:
第三计算子模块,用于根据所述第一历史平均能耗E average1计算所述当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示所述当前剩余电能;
第四计算子模块,用于根根据所述第二历史平均能耗E average2计算所述当前剩余电能对应的第二续航里程R 2,R 2=E/E average2
根据本公开的一个实施例,所述第一确定模块包括:
获取子模块,用于获取所述车辆的当前位置与所述规划行驶路径的终点之间的距离;
判断子模块,用于判断所述距离是否大于所述N个续航里程中的最小者;
确定子模块,用于在所述距离大于所述N个续航里程中的最小者时,根据所述续航 里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
根据本公开的一个实施例,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2
所述判断子模块具体用于,判断所述距离是否大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者;
所述确定子模块具体用于,在所述距离大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
根据本公开的一个实施例,所述充电桩分布信息包括一个充电桩的分布信息,所述确定子模块包括:
第一确定子模块,用于将所述一个充电桩确定为所述目标充电桩。
根据本公开的一个实施例,所述充电桩分布信息包括多个充电桩的分布信息,所述确定子模块包括:
查找子模块,用于在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩;
第二确定子模块,用于确定查找到的充电桩为所述目标充电桩。
根据本公开的一个实施例,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2
所述查找子模块具体用于,在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者,且小于所述第一续航里程R 1和所述第二续航里程R 2中的较大者的充电桩。
本公开第二方面实施例提出了一种车辆的充电提醒装置,能够根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,用户根据提醒在目标充电桩对车辆的电池充电即可,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。
为达上述目的,本公开第三方面实施例提出了一种车辆,包括:存储器,其上存储 有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现以上所述方法的步骤。
为达上述目的,本公开第四方面实施例提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开第一方面实施例所提出的车辆的充电提醒方法。
为达上述目的,本公开第五方面实施例提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开第一方面实施例所提出的车辆的充电提醒方法。
为达上述目的,本公开第六方面实施例提出了一种计算机可读存储介质,其中存储了本公开第六方面实施例所提出的计算机程序。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开的实施例示出的一种车辆的充电提醒方法的流程图。
图2是本公开的实施例示出的另一种车辆的充电提醒方法的流程图。
图3是本公开的实施例示出的一种确定历史能量消耗数据的方法的流程图。
图4是本公开的实施例示出的一种计算续航里程的方法的流程图。
图5是本公开的实施例示出的一种确定目标充电桩的方法的流程图。
图6是本公开的实施例示出的一种确定目标充电桩的方法的示意图。
图7是本公开的实施例示出的另一种确定目标充电桩的方法的示意图。
图8是本公开的实施例示出的又一种确定目标充电桩的方法的示意图。
图9是本公开的实施例示出的再一种确定目标充电桩的方法的示意图。
图10是本公开的实施例示出的一种车辆的充电提醒装置的结构图。
图11是本公开的实施例示出的另一种车辆的充电提醒装置的结构图。
图12是本公开的实施例示出的一种车辆的结构图。
图13为本公开实施例提供了一种计算处理设备的结构示意图。
图14为本公开实施例提供了一种用于便携式或者固定实现根据本发明的方法的程序代码的存储单元的示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
首先,对本公开的应用场景进行说明,本公开可以应用在车辆行驶过程中,在车辆行驶的过程中,由于车辆电池电能的消耗,导致车辆可能需要充电。目前大多数情况下,行车过程中如果需要充电,则需要驾驶员手动操作查询目标充电桩,比如需要驾驶员通过手机应用程序查询充电桩分布或查询车载导航地图中道路沿线的充电桩分布,从而自行确定目标充电桩,将车辆开往目标充电桩进行充电,这种充电方式不够智能,用户体验较差。
为了解决上述问题,本公开提供一种车辆的充电提醒方法、设备、程序、存储介质及车辆,可以获取车辆的规划行驶路径以及该规划行驶路径上的充电桩分布信息,同时获取车辆的电池的当前剩余电能;根据车辆的历史能量消耗数据计算该当前剩余电能对应的续航里程;根据该续航里程及该规划行驶路径上的充电桩分布信息确定目标充电桩;提醒用户在该目标充电桩对车辆的电池充电,即本公开的实施例会根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。
本公开的实施例提供的车辆的充电提醒方法,可以应用于具有导航系统的车辆,也可以应用于具有导航系统的移动终端(比如手机、平板电脑等);当应用于移动终端时,移动终端可以预先与车辆建立通讯连接,通过所建立的通讯连接获取车辆的电池的当前剩余电能,车辆的历史能量消耗数据等,根据获取的数据确定目标充电桩,继而可以通过移动终端或车辆的车机系统提醒用户在目标充电桩对车辆的电池充电,后面的实施例将以充电提醒方法应用于车辆为例进行说明。
下面参考附图描述本公开实施例的车辆的充电提醒方法和装置。
请参阅图1,图1是本公开的实施例示出的一种车辆的充电提醒方法的流程图,如图1所示,该方法包括如下步骤:
步骤101,获取车辆的规划行驶路径以及该规划行驶路径上的充电桩分布信息,获取车辆的电池的当前剩余电能。
具体实现中,当用户在车辆的导航系统上规划好出行路径之后,可以从导航系统获取规划行驶路径,继而从云平台(比如桩企云平台)获取该规划行驶路径上的充电桩分布信息,所获取的充电桩分布信息比如:充电桩的位置信息(比如坐标信息),充电桩的状态信息(比如可用、不可用)等。本实施例中,充电桩数量充分,且高速、省道、国道、市区、郊区等道路沿线均合理布局充电桩。车辆电池的当前剩余电能,可以从车辆的电池管理系统获取。
步骤103,根据车辆的历史能量消耗数据计算该当前剩余电能对应的续航里程。
车辆的历史能量消耗数据可以包括车辆的预设部件在历史行程中的能量消耗数据,预设部件比如:车辆的驱动系统、车辆的空调系统等,历史行程比如车辆过去5千米的行程,过去10千米的行程等,即以车辆的历史能量消耗数据作为参考,预估当前剩余电能的可续航里程。
步骤105,根据该续航里程及该规划行驶路径上的充电桩分布信息确定目标充电桩。
示例地,可以将规划行驶路径上与车辆当前位置的距离小于该续航里程、且状态为可用的充电桩确定为目标充电桩,比如该续航里程为8千米,则可以将距离当前位置8千米以内的该规划行驶路径上的状态为可用的充电桩确定为目标充电桩,比如将距离当前位置7千米处的状态为可用的充电桩确定为目标充电桩。
步骤107,提醒用户在该目标充电桩对车辆的电池充电。
比如,可以在确定目标充电桩之后即对用户进行充电提醒,也可以在车辆行驶至距离目标充电桩较近(比如与目标充电桩距离小于预设距离值,预设距离值比如500米、800米)时,对用户进行充电提醒。具体的提醒方式,比如可以生成充电提醒消息,通过车辆的车机系统显示或播放该充电提醒消息,生成的充电提醒消息比如“请在第x个充电桩进行充电”、“请在充电桩x处充电”等;或者也可以生成充电标识,并在导航画面对应的充电桩位置处显示该充电标识,以提醒用户进行充电,具体的提醒方式此处不做具体限定。通过自动规划目标充电桩,并提醒用户在该目标充电桩对车辆的电池充电,可以消除行车过程中用户因担心错过充电桩、或者电池断电而不能顺利到达目的地而产生的充电焦虑,极大地提升了用户体验,契合了智能汽车的概念,顺应了汽车智能化的发展趋势,有利于提高产品的竞争力。
通过上述技术方案,会获取车辆的规划行驶路径以及该规划行驶路径上的充电桩分布信息,同时获取车辆的电池的当前剩余电能;根据车辆的历史能量消耗数据计算车辆的当前剩余电能对应的续航里程;根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩;提醒用户在目标充电桩对电池充电,即本公开的实施例会根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,用户根据提醒在目标充电桩对车辆的电池充电即可,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。
在一个具体的实施例中,如图2所示,在步骤103之前,还可以包括以下步骤:
步骤102,根据车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定车辆的历史能量消耗数据。
具体地,可以从车辆的电机控制器实时获取驱动电机的驱动功率,通过对历史行驶距离内驱动电机的驱动功率进行累积得到车辆的驱动消耗能量;可以从车辆的智能刹车系统获取制动能量的回收功率,通过对历史行驶距离内制动能量的回收功率进行累积得到车辆的制动回收能量;可以从空调控制器或电加热控制器获取制冷或制热功率,通过对历史行驶距离内的制冷或制热功率进行累积得到温度调节消耗能量。
比如,规划行驶路径的起点为A点,则历史行驶距离内车辆的驱动消耗能量可以为:
Figure PCTCN2021103842-appb-000001
其中,E drive表示驱动消耗能量,current_position表示当前位置,P drice_actual表示驱动电机的实时驱动功率。
则历史行驶距离内车辆的制动回收能量可以为:
Figure PCTCN2021103842-appb-000002
其中,E brake表示制动回收能量,P brake_actual表示制动能量的实时回收功率。
则温度调节消耗能量可以为:
Figure PCTCN2021103842-appb-000003
其中,E temperature表示温度调节消耗能量,P temperature_actual表示制冷或制热的实时功率。
需要说明的是,如果历史行驶距离内,驾驶员没有进行制冷或制热,则在确定温度调节消耗能量时,需要考虑空调控制器或电加热控制器本身消耗的能量(通常为定值);如果在历史行驶距离内,驾驶员进行了制冷或制热,则在确定温度调节消耗能量时,除 了考虑制冷或制热消耗的能量,还需要考虑空调控制器或电加热控制器本身消耗的能量。
在一个具体的实施例中,确定车辆的历史能量消耗数据的方法,可以为:根据N个历史行驶距离中每个历史行驶距离内车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算车辆在N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,N个历史行驶距离的取值各不相同。
对应地,步骤103根据车辆的历史能量消耗数据计算当前剩余电能对应的续航里程,可以包括:
根据N个历史平均能耗计算当前剩余电能对应的续航里程,得到N个续航里程。
对应地,步骤105根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩,可以包括:
获取车辆的当前位置与规划行驶路径的终点之间的距离;
判断该距离是否大于N个续航里程中的最小者;
在该距离大于N个续航里程中的最小者时,根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩。
对应地,当充电桩只有一个时,即充电桩分布信息包括一个充电桩的分布信息,根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩,可以为:将这一个充电桩确定为目标充电桩。
对应地,当充电桩有多个(即两个或两个以上)时,即充电桩分布信息包括多个充电桩的分布信息,根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩,可以为:
在规划行驶路径上的多个充电桩中,查找与车辆的当前位置之间的距离,大于N个续航里程中的最小者,且小于N个续航里程中的最大者的充电桩;
确定查找到的充电桩为目标充电桩。
具体实现中,当N取2时,即N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2时,确定车辆的历史能量消耗数据的方法,可以如图3所示,包括以下步骤:
步骤1021,根据第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算车辆在第一历史行驶距离S 1内的第一历史平 均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
步骤1022,根据第二历史行驶距离S 2内车辆的驱动消耗能量E drive2、制动回收能量E brake2和温度调节消耗能量E temperature2,计算车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
其中,第一行驶距离S 1可以小于第二行驶距离S 2,第一行驶距离S 1、第二行驶距离S 2均可以以当前位置点作为参考,即第一行驶距离S 1为与当前位置点的距离为S 1的行驶距离,第二行驶距离S 2为与当前位置点的距离为S 2的行驶距离,比如第一行驶距离S 1可以为距离当前位置5千米的行驶距离(即过去5千米的行驶距离),第二行驶距离S 2可以为距离当前位置10千米的行驶距离(即过去10千米的行驶距离),当然,第一行驶距离和第二行驶距离还可以根据实际需求取其他数值,此处不做具体限定。以当前位置点作为参考,得到的平均能耗数据可以反映车辆最近的能量消耗情况,以这样的平均能耗数据为依据,计算得到的续航里程准确度更高。
在一个具体的实施例中,当N取2时,计算当前剩余电能对应的续航里程的方法,可以如图4所示,可以包括以下步骤:
步骤1031,根据第一历史平均能耗E average1计算当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示当前剩余电能。
步骤1032,根据第二历史平均能耗E average2计算当前剩余电能对应的第二续航里程R 2,R 2=E/E average2
采用不同的历史行驶距离计算得到两个不同的历史平均能耗,从而为当前剩余电能估算得到两个续航里程,可以进一步提高续航里程计算的准确度。
在一个具体的实施例中,当N取2时,确定目标充电桩的方法,可以如图5所示,可以包括如下步骤:
步骤1051,获取车辆的当前位置与规划行驶路径的终点之间的距离。
即获取车辆的剩余行驶距离。
步骤1052,判断该距离是否大于第一续航里程R 1和第二续航里程R 2中的较小者,若大于,则执行步骤1053,否则,执行步骤1057。
示例地,可以将第一续航里程R 1和第二续航里程R 2中的较大者作为估算的乐观续航里程,将第一续航里程R 1和第二续航里程R 2中的较小者作为估算的保守续航里程,即R optimistic=max{R 1,R 2},R optimistic表示乐观续航里程,则R conservative=min{R 1,R 2},R conservative表示保守续航里程。
当前的剩余行驶距离大于保守续航里程,可以分为两种情况,第一:当前的剩余行驶距离大于保守续航里程R conservative,且大于乐观续航里程R optimistic;第二:当前的剩余行驶距离大于保守续航里程R conservative,但小于乐观续航里程R optimistic,这两种情况均表示车辆到达终点之前需要充电。
步骤1053,确定充电桩有一个还是多个,当充电桩只有一个时,执行步骤1054,当充电桩有多个时,执行步骤1055。
步骤1054,将这一个充电桩确定为目标充电桩。
即当确定车辆到达终点之前需要充电,且充电桩只有一个时,将该充电桩确定为目标充电桩。
步骤1055,在规划行驶路径上查找与车辆的当前位置之间的距离,大于第一续航里程R 1和第二续航里程R 2中的较小者,且小于第一续航里程R 1和第二续航里程R 2中的较大者的充电桩。
步骤1056,确定查找到的充电桩为目标充电桩。
即当确定车辆到达终点之前需要充电,且充电桩有多个时,从该多个充电桩中查找与当前位置的距离大于保守续航里程R conservative,但小于乐观续航里程R optimistic的充电桩,将找到的该充电桩确定为目标充电桩。
需要说明的是,所确定的目标充电桩均默认是状态可用的充电桩。
步骤1057,无需确定目标充电桩。
即如果当前的剩余行驶距离小于或等于保守续航里程,则可以确定车辆到达终点之前不需要充电,则无需确定目标充电桩。
可选地,为了避免车辆到达终点之前断电,提高确定结果的可靠性,在确定当前的 剩余行驶距离小于或等于保守续航里程时,还可以进一步结合道路的预计能耗确定是否需要确定目标充电桩。
假设车辆的当前位置用current_position表示,规划行驶路径的终点用B表示,则道路的预计能耗(即剩余行驶距离的预计能耗)
Figure PCTCN2021103842-appb-000004
其中E estimate表示道路的预计能耗,
Figure PCTCN2021103842-appb-000005
表示车速u a下车辆所需的输出功率,车速u a可以通过云平台(比如图商云平台)采集到的剩余行驶路径上的限速标识或限速值得到。
其中,
Figure PCTCN2021103842-appb-000006
η T表示动力系统效率,G表示整车整备质量与乘客质量之和,f表示滚动阻力系数,f可以在0.01至0.08(按照水平良好沥青路面取)之间取值,C D表示风阻系数,A表示迎风面积,i表示坡度,i可以用百分比表示。
可选地,为了保证预计能耗计算结果的准确性,可以将车辆调整至自动驾驶模式,在自动驾驶模式下,车速u a可以完全由道路上的限速标识或限速值而定,排除人为驾驶时车速不稳定的干扰,在自动驾驶模式下,再计算车辆的预计能耗。
在确定当前的剩余行驶距离小于或等于保守续航里程时,进一步判断车辆的预计能耗是否小于电池的当前剩余电能(或小于当前剩余电能减去预设电能,预设电能大于零,预设电能比如2kwh,可根据需要自定义),如果车辆的预计能耗小于电池的当前剩余电能,则确定车辆到达终点之前不需要充电,则无需确定目标充电桩。
需要说明的是,上面的实施例中虽然以N取2,即取两个不同的历史行驶距离计算得到两个不同的历史平均能耗,并采用这两个不同的历史平均能耗计算当前剩余电能对应的续航里程为例进行说明;但实际应用中,N也可以取其他值,比如N取1,即只取一个历史行驶距离计算得到一个历史平均能耗,并采用该历史平均能耗计算当前剩余电能对应的续航里程(这种情况下,只得到一个续航里程,如果确定车辆到达终点之前需要充电,则可以将与车辆的当前位置之间的距离,小于这个续航里程的充电桩,确定为目标充电桩);或者N还可以取大于2的其他整数,即还可以取三个、四个甚至更多的不同的历史行驶距离计算得到更多不同的历史平均能耗,从而采用更多的历史平均能耗计算当前剩余电能对应的续航里程(这种情况下,会得到多个续航里程,如果确定车辆 到达终点之前需要充电,则可以将与车辆的当前位置之间的距离,大于这多个续航里程中的最小者,小于这多个续航里程中的最大者的充电桩,确定为目标充电桩),此处不做具体限定。
另外,由于车辆行驶的过程中,车辆的电池的当前剩余电能、车辆的历史能量消耗数据等都是动态变化的,因此在初次计算确定出目标充电桩之后,还可以在间隔预设时长(比如5分钟、10分钟)之后,根据最新得到的电池的当前剩余电能、车辆的历史能量消耗数据再次确定目标充电桩,如果最新确定出的目标充电桩与之前确定出的目标充电桩不一致,则可以按照最新确定出的目标充电桩对用户进行充电提醒。
下面以具体的例子说明本公开的实施例提供的车辆的充电提醒方法。
如图6所示,比如根据车辆的历史能量消耗数据计算得到的电池的当前剩余电量对应的保守续航里程R conservative及乐观续航里程R optimistic,均大于车辆的当前位置与规划行驶路径的终点之间的距离,且车辆的当前位置到规划行驶路径的终点的预计能耗小于电池的当前剩余电能,则可以确定车辆的电池电量充足,车辆到达终点之前不需要充电,因而无需确定目标充电桩,无需对用户进行充电提醒。
如图7所示,比如车辆的当前位置到规划行驶路径的终点之间只有一个充电桩,且根据车辆的历史能量消耗数据计算得到的电池的当前剩余电量对应的保守续航里程R conservative及乐观续航里程R optimistic,均小于车辆的当前位置与规划行驶路径的终点之间的距离,则可以将该充电桩确定为目标充电桩,并提醒用户在该目标充电桩对车辆的电池充电。具体地,可以在当前位置就提醒用户充电,也可以在车辆行驶接近该目标充电桩时,提醒用户充电。
如图8所示,比如车辆的当前位置到规划行驶路径的终点之间有三个充电桩,且根据车辆的历史能量消耗数据计算得到的电池的当前剩余电量对应的保守续航里程R conservative及乐观续航里程R optimistic,均小于车辆的当前位置与规划行驶路径的终点之间的距离,则可以将与当前位置的距离大于保守续航里程R conservative但小于乐观续航里程R optimistic的充电桩确定为目标充电桩,即将充电桩2确定为目标充电桩,并提醒用户在该目标充电桩对车辆的电池充电。具体地,可以在当前位置就提醒用户充电,也可以在车辆行驶接近该目标充电桩时,提醒用户充电。
如图9所示,比如车辆的当前位置到规划行驶路径的终点之间有两个充电桩,且根 据车辆的历史能量消耗数据计算得到的电池的当前剩余电量对应的保守续航里程R conservative小于车辆的当前位置与规划行驶路径的终点之间的距离,乐观续航里程R optimistic大于车辆的当前位置与规划行驶路径的终点之间的距离,则可以将与当前位置的距离大于保守续航里程R conservative但小于乐观续航里程R optimistic(且位于终点内)的充电桩确定为目标充电桩,即将充电桩3确定为目标充电桩,并提醒用户在该目标充电桩对车辆的电池充电。具体地,可以在当前位置就提醒用户充电,也可以在车辆行驶接近该目标充电桩时,提醒用户充电。
为了实现上述实施例,本公开还提出了一种车辆的充电提醒装置。
图10是本公开的实施例示出的车辆的充电提醒装置的结构图,如图10所示,该装置200包括:
第一获取模块201,用于获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息;
第二获取模块202,用于获取所述车辆的电池的当前剩余电能;
计算模块203,用于根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;
第一确定模块204,用于根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;
提醒模块205,用于提醒用户在所述目标充电桩对所述电池充电。
一实施例中,如图11所示,所述装置还包括:
第二确定模块206,用于根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据。
一实施例中,所述第二确定模块206具体用于:
根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,所述N个历史行驶距离的取值各不相同。
一实施例中,所述N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2,如图11所示,所述第二确定模块206包括:
第一计算子模块2061,用于根据第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算所述车辆在所述第一行驶距离S 1内的第一历史历史平均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
第二计算子模块2062,用于根据第二历史行驶距离S 2内所述车辆的驱动消耗能量E drive2、制动回收能量E brake2和温度调节消耗能量E temperature2,计算所述车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
一实施例中,所述计算模块203具体用于,
根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程。
一实施例中,所述N个历史平均能耗包括第一历史平均能耗E average1和第二历史平均能耗E average2,如图11所示,所述计算模块203包括:
第三计算子模块2031,用于根据所述第一历史平均能耗E average1计算所述当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示所述当前剩余电能;
第四计算子模块2032,用于根根据所述第二历史平均能耗E average2计算所述当前剩余电能对应的第二续航里程R 2,R 2=E/E average2
一实施例中,如图11所示,所述第一确定模块204包括:
获取子模块2041,用于获取所述车辆的当前位置与所述规划行驶路径的终点之间的距离;
判断子模块2042,用于判断所述距离是否大于所述N个续航里程中的最小者;
确定子模块2043,用于在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
一实施例中,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2
所述判断子模块2042具体用于,判断所述距离是否大于所述第一续航里程R 1和所述 第二续航里程R 2中的较小者;
所述确定子模块2043具体用于,在所述距离大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
一实施例中,所述充电桩分布信息包括一个充电桩的分布信息,如图11所示,所述确定子模块2043包括:
第一确定子模块20431,用于将所述一个充电桩确定为所述目标充电桩。
一实施例中,所述充电桩分布信息包括多个充电桩的分布信息,如图11所示,所述确定子模块2043包括:
查找子模块20432,用于在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩;
第二确定子模块20433,用于确定查找到的充电桩为所述目标充电桩。
一实施例中,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2,所述查找子模块20432具体用于,在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者,且小于所述第一续航里程R 1和所述第二续航里程R 2中的较大者的充电桩。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述功能模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
通过上述技术方案,会获取车辆的规划行驶路径以及该规划行驶路径上的充电桩分布信息,同时获取车辆的电池的当前剩余电能;根据车辆的历史能量消耗数据计算车辆的当前剩余电能对应的续航里程;根据该续航里程及规划行驶路径上的充电桩分布信息确定目标充电桩;提醒用户在目标充电桩对电池充电,即本公开的实施例会根据电池的剩余电能自动为用户规划目标充电桩,并提醒用户在目标充电桩对车辆的电池充电,用户根据提醒在目标充电桩对车辆的电池充电即可,避免了用户手动查询目标充电桩的操 作,充电方式更加智能,提升了用户体验。
本公开还提供一种车辆,如图12所示,所处车辆包括:
远程信息处理器T-BOX,用于路由图商云平台转发的从桩企云平台获取的充电桩的位置和状态信息,并将充电桩的位置和状态信息发给车机系统HUT,充电桩的位置和状态信息由桩企云平台与充电桩通过远程无线通信技术TSP交互获取;以及路由图商云平台转发的道路的速度限制和距离函数,以及道路的距离与坡度信息,将道路的速度限制和距离函数,以及道路的距离与坡度信息发送给整车控制器VCU。
车机系统HUT,用于提醒用户规划行驶路径,提供充电提醒的人机交互界面,通过内置的定位装置,定位当前车辆的在地图或道路中的位置,将规划行驶路径发送给整车控制器VCU。
电池管理系统BMS,用于将电池的当前剩余电能发送给整车控制器VCU。
电机控制器MCU,用于驱动电机,将驱动电机的驱动功率发送给整车控制器VCU。
智能刹车系统i-booster,用于将制动能量的回收功率发送给整车控制器VCU。
仪表IP,用于显示车辆的可续行里程。
激光雷达LIDAR,用于采集道路的限速标识、探测车间距离。
高级驾驶辅助系统ADS,用于激活自动驾驶模式,并在自动驾驶模式下,控制车辆行驶。
空调控制器AC,用于接收用户开启或关闭空调的请求,给压缩机控制单元CMP或电加热控制器PTC发送开机或关机指令及功率限制么,以及将压缩机控制单元CMP或电加热控制器PTC开启后的功率消耗发送给整车控制器VCU。
压缩机控制单元CMP,用于执行空调控制器AC的开机或关机或功率限制指令,将实际功率消耗实时发给空调控制器AC。
电加热控制器PTC,用于执行空调控制器AC的开机或关机或功率限制指令,将实际功率消耗实时发给空调控制器AC。
整车控制器VCU,用于获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息,获取所述车辆的电池的当前剩余电能;根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;提醒用户在所述目标充电桩对所述电池充电。
本公开实施例的车辆,会根据电池的剩余电能自动为用户规划目标充电桩,并提醒 用户在目标充电桩对车辆的电池充电,用户根据提醒在目标充电桩对车辆的电池充电即可,避免了用户手动查询目标充电桩的操作,充电方式更加智能,提升了用户体验。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的车辆的充电提醒方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的车辆的充电提醒方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图13为本公开实施例提供了一种计算处理设备的结构示意图。该计算处理设备通常包括处理器1110和以存储器1130形式的计算机程序产品或者计算机可读介质。存储器1130可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1130具有用于执行上述方法中的任何方法步骤的程序代码1151的存储空间1150。例如,用于程序代码的存储空间1150可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1151。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图14所示的便携式或者固定存储单元。该存储单元可以具有与图13的服务器中的存储器1130类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1151’,即可以由例如诸如1110之类的处理器读取的代码,这些代码当由服务器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾 的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA), 现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (26)

  1. 一种车辆的充电提醒方法,其特征在于,包括:
    获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息,获取所述车辆的电池的当前剩余电能;
    根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;
    根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;
    提醒用户在所述目标充电桩对所述电池充电。
  2. 根据权利要求1所述的车辆的充电提醒方法,其特征在于,在根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程之前,还包括:
    根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据。
  3. 根据权利要求2所述的车辆的充电提醒方法,其特征在于,所述根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据,包括:
    根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,所述N个历史行驶距离的取值各不相同。
  4. 根据权利要求3所述的车辆的充电提醒方法,其特征在于,所述N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2,所述根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,包括:
    根据所述第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算所述车辆在所述第一历史行驶距离S 1内的第一历史平均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
    根据所述第二历史行驶距离S 2内所述车辆的驱动消耗能量E drive2、制动回收能量 E brake2和温度调节消耗能量E temperature2,计算所述车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
  5. 根据权利要求3所述的车辆的充电提醒方法,其特征在于,所述根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程,包括:
    根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程。
  6. 根据权利要求5所述的车辆的充电提醒方法,其特征在于,所述N个历史平均能耗包括第一历史平均能耗E average1和第二历史平均能耗E average2,所述根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程,包括:
    根据所述第一历史平均能耗E average1计算所述当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示所述当前剩余电能;
    根据所述第二历史平均能耗E average2计算所述当前剩余电能对应的第二续航里程R 2,R 2=E/E average2
  7. 根据权利要求5所述的车辆的充电提醒方法,其特征在于,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
    获取所述车辆的当前位置与所述规划行驶路径的终点之间的距离;
    判断所述距离是否大于所述N个续航里程中的最小者;
    在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
  8. 根据权利要求7所述的车辆的充电提醒方法,其特征在于,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2,所述判断所述距离是否大于所述N个续航里程中的最小者,包括:
    判断所述距离是否大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者;
    所述在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
    在所述距离大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
  9. 根据权利要求7所述的车辆的充电提醒方法,其特征在于,所述充电桩分布信息包括一个充电桩的分布信息,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
    将所述一个充电桩确定为所述目标充电桩。
  10. 根据权利要求7所述的车辆的充电提醒方法,其特征在于,所述充电桩分布信息包括多个充电桩的分布信息,所述根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩,包括:
    在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩;
    确定查找到的充电桩为所述目标充电桩。
  11. 根据权利要求10所述的车辆的充电提醒方法,其特征在于,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2,所述在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩,包括:
    在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者,且小于所述第一续航里程R 1和所述第二续航里程R 2中的较大者的充电桩。
  12. 一种车辆的充电提醒装置,其特征在于,所述装置包括:
    第一获取模块,用于获取车辆的规划行驶路径以及所述规划行驶路径上的充电桩分布信息;
    第二获取模块,用于获取所述车辆的电池的当前剩余电能;
    计算模块,用于根据所述车辆的历史能量消耗数据计算所述当前剩余电能对应的续航里程;
    第一确定模块,用于根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩;
    提醒模块,用于提醒用户在所述目标充电桩对所述电池充电。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于根据所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量确定所述车辆的历史能量消耗数据。
  14. 根据权利要求13所述的装置,其特征在于,所述第二确定模块具体用于:
    根据N个历史行驶距离中每个历史行驶距离内所述车辆的驱动消耗能量、制动回收能量和温度调节消耗能量,计算所述车辆在所述N个历史行驶距离中每个历史行驶距离内的历史平均能耗,得到N个历史平均能耗,其中,N为正整数,所述N个历史行驶距离的取值各不相同。
  15. 根据权利要求14所述的装置,其特征在于,所述N个历史行驶距离包括第一历史行驶距离S 1和第二历史行驶距离S 2,所述第二确定模块包括:
    第一计算子模块,用于根据第一历史行驶距离S 1内所述车辆的驱动消耗能量E drive1、制动回收能量E brake1和温度调节消耗能量E temperature1,计算所述车辆在所述第一历史行驶距离S 1内的第一历史平均能耗E average1,E average1=(E drive1+E temperature1-E brake1)/S 1
    第二计算子模块,用于根据第二历史行驶距离S 2内所述车辆的驱动消耗能量E drive2、制动回收能量E brake2和温度调节消耗能量E temperature2,计算所述车辆在所述第二历史行驶距离S 2内的第二历史平均能耗E average2,E average2=(E drive2+E temperature2-E brake2)/S 2
  16. 根据权利要求14所述的装置,其特征在于,所述计算模块具体用于,
    根据所述N个历史平均能耗计算所述当前剩余电能对应的续航里程,得到N个续航里程。
  17. 根据权利要求16所述的装置,其特征在于,所述N个历史平均能耗包括第一历史平均能耗E average1和第二历史平均能耗E average2,所述计算模块包括:
    第三计算子模块,用于根据所述第一历史平均能耗E average1计算所述当前剩余电能对应的第一续航里程R 1,R 1=E/E average1,E表示所述当前剩余电能;
    第四计算子模块,用于根根据所述第二历史平均能耗E average2计算所述当前剩余电能 对应的第二续航里程R 2,R 2=E/E average2
  18. 根据权利要求16所述的装置,其特征在于,所述第一确定模块包括:
    获取子模块,用于获取所述车辆的当前位置与所述规划行驶路径的终点之间的距离;
    判断子模块,用于判断所述距离是否大于所述N个续航里程中的最小者;
    确定子模块,用于在所述距离大于所述N个续航里程中的最小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
  19. 根据权利要求18所述的装置,其特征在于,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2
    所述判断子模块具体用于,判断所述距离是否大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者;
    所述确定子模块具体用于,在所述距离大于所述第一续航里程R 1和所述第二续航里程R 2中的较小者时,根据所述续航里程及所述规划行驶路径上的充电桩分布信息确定目标充电桩。
  20. 根据权利要求18所述的装置,其特征在于,所述充电桩分布信息包括一个充电桩的分布信息,所述确定子模块包括:
    第一确定子模块,用于将所述一个充电桩确定为所述目标充电桩。
  21. 根据权利要求18所述的装置,其特征在于,所述充电桩分布信息包括多个充电桩的分布信息,所述确定子模块包括:
    查找子模块,用于在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述N个续航里程中的最小者,且小于所述N个续航里程中的最大者的充电桩;
    第二确定子模块,用于确定查找到的充电桩为所述目标充电桩。
  22. 根据权利要求21所述的装置,其特征在于,所述N个续航里程包括第一续航里程R 1和第二续航里程R 2
    所述查找子模块具体用于,在所述规划行驶路径上的所述多个充电桩中,查找与所述车辆的当前位置之间的距离,大于所述第一续航里程R 1和所述第二续航里程R 2中的较 小者,且小于所述第一续航里程R 1和所述第二续航里程R 2中的较大者的充电桩。
  23. 一种车辆,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1至11中任一项所述方法的步骤。
  24. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-11中任一项所述的车辆的充电提醒方法。
  25. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-11中任一项所述的车辆的充电提醒方法。
  26. 一种计算机可读存储介质,其中存储了如权利要求25所述的计算机程序。
PCT/CN2021/103842 2020-07-08 2021-06-30 车辆的充电提醒方法、设备、程序、存储介质及车辆 WO2022007689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010652712.7A CN113135100B (zh) 2020-07-08 2020-07-08 车辆的充电提醒方法、装置、存储介质及车辆
CN202010652712.7 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022007689A1 true WO2022007689A1 (zh) 2022-01-13

Family

ID=76809321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103842 WO2022007689A1 (zh) 2020-07-08 2021-06-30 车辆的充电提醒方法、设备、程序、存储介质及车辆

Country Status (2)

Country Link
CN (1) CN113135100B (zh)
WO (1) WO2022007689A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440918A (zh) * 2022-04-07 2022-05-06 北京百度网讯科技有限公司 一种充电桩导航方法、装置、电子设备及自动驾驶车辆
CN114819413A (zh) * 2022-06-24 2022-07-29 中运科技股份有限公司 一种网约车定制客运路线的推荐系统及方法
CN115123019A (zh) * 2022-07-26 2022-09-30 安徽华菱汽车有限公司 一种电量计量方法、装置、设备及计算机可读存储介质
CN115320517A (zh) * 2022-09-15 2022-11-11 中国第一汽车股份有限公司 车辆充电提示方法、装置及车辆
CN115431831A (zh) * 2022-08-04 2022-12-06 广东易积网络股份有限公司 一种电池调配方法、系统、设备及存储介质
CN115503534A (zh) * 2022-09-26 2022-12-23 广东顺峰智慧能源研究院有限公司 充电桩推荐方法、装置、设备和计算机可读存储介质
CN115526519A (zh) * 2022-10-11 2022-12-27 威海广泰空港设备股份有限公司 一种基于服务航班的机场电动车辆充电调度方法
CN115610349A (zh) * 2022-10-21 2023-01-17 阿维塔科技(重庆)有限公司 一种基于多模融合的智能交互方法及装置
CN116039576A (zh) * 2023-03-22 2023-05-02 杭州禾美汽车科技有限公司 新能源汽车电池智能更换系统
CN116109025A (zh) * 2023-04-04 2023-05-12 深圳天溯计量检测股份有限公司 基于大数据的电池续航测试方法
CN116101089A (zh) * 2023-04-04 2023-05-12 国网浙江省电力有限公司宁波供电公司 一种交互式电动汽车充电设施选择方法以及共享系统
CN116691413A (zh) * 2023-07-31 2023-09-05 国网浙江省电力有限公司 超前车车载动态负荷预配置方法及有序充电系统
CN116945969A (zh) * 2023-07-19 2023-10-27 隆瑞三优新能源汽车科技有限公司 一种新能源公交车充电监测方法、装置、设备及存储介质
CN117521938A (zh) * 2024-01-08 2024-02-06 广东车卫士信息科技有限公司 电动车辆运营管理方法、系统及存储介质
CN117556589A (zh) * 2024-01-04 2024-02-13 江阴飞阳电子科技有限公司 一种仪表电量智能校准方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484765B (zh) * 2021-08-03 2024-04-09 广州极飞科技股份有限公司 无人机的续航时间确定方法、装置、处理设备及介质
CN113503890A (zh) * 2021-08-06 2021-10-15 车主邦(北京)科技有限公司 一种充电导航方法、装置及电子设备
CN113910981A (zh) * 2021-11-10 2022-01-11 集度科技有限公司 电动车辆续航的方法、装置、电动车辆、设备和存储介质
CN114179678B (zh) * 2021-11-24 2023-07-14 华人运通(江苏)技术有限公司 车辆续航辅助控制方法、系统、存储介质及车辆
CN114537168A (zh) * 2022-02-10 2022-05-27 北京三快在线科技有限公司 充换电提醒方法、装置、可读存储介质及电子设备
CN114683907A (zh) * 2022-03-08 2022-07-01 潍柴动力股份有限公司 电动牵引车及其充电管理方法及充电管理装置
CN115660301A (zh) * 2022-06-02 2023-01-31 小米汽车科技有限公司 车辆调度方法、装置、存储介质及芯片
CN115534706B (zh) * 2022-10-17 2024-05-14 重庆赛力斯新能源汽车设计院有限公司 新能源汽车充电方法、装置、计算机设备和存储介质
CN117332163A (zh) * 2023-10-10 2024-01-02 广东健电新能源科技有限公司 一种充电桩充电信息的推送方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103400A1 (ja) * 2012-12-27 2014-07-03 日産自動車株式会社 車両用情報提供装置
CN104859660A (zh) * 2014-02-21 2015-08-26 福特全球技术公司 利用过去能量消耗中的变量预测电动车辆能量消耗
CN106965695A (zh) * 2017-04-12 2017-07-21 深圳市赛亿科技开发有限公司 一种无人驾驶车辆的自动充电系统及充电方法
WO2018044058A2 (ko) * 2016-08-31 2018-03-08 이지세이버 주식회사 전기차용 충전 장치 및 이를 포함하는 충전 시스템
CN108215803A (zh) * 2016-12-14 2018-06-29 丰田自动车株式会社 联网车辆
US20190316924A1 (en) * 2018-04-16 2019-10-17 Morgan Brown Consultancy Ltd. Vehicle routing
CN110549877A (zh) * 2019-08-26 2019-12-10 深圳市航通北斗信息技术有限公司 电动汽车及其充电方法和计算机可读存储介质
CN110641397A (zh) * 2019-10-18 2020-01-03 福州大学 基于行驶数据与地图预测相结合的电动汽车驾驶反馈系统
CN111098753A (zh) * 2018-10-26 2020-05-05 比亚迪股份有限公司 电动车辆的续航里程估算方法和装置、电动车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2451368T3 (es) * 2011-03-10 2014-03-26 Accenture Global Services Limited Mejora de red eléctrica de distribución para vehículos eléctricos enchufables
JP5656736B2 (ja) * 2011-05-16 2015-01-21 トヨタ自動車株式会社 車両および車両の制御方法
US9511678B2 (en) * 2011-12-16 2016-12-06 Pioneer Corporation Facility information presentation device and facility information presentation method
US9020671B2 (en) * 2012-02-20 2015-04-28 GM Global Technology Operations LLC Vehicle control using an estimated outside air temperature
CN105539184A (zh) * 2015-12-23 2016-05-04 广东合即得能源科技有限公司 一种电动汽车城域充电管理系统
CN105730271A (zh) * 2016-02-03 2016-07-06 武汉天梯极客网络科技有限公司 一种电动车辆更换电池的方法和云管理服务器
CN111220168A (zh) * 2019-11-29 2020-06-02 安徽江淮汽车集团股份有限公司 一种电动汽车充电路径规划方法、装置和存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103400A1 (ja) * 2012-12-27 2014-07-03 日産自動車株式会社 車両用情報提供装置
CN104859660A (zh) * 2014-02-21 2015-08-26 福特全球技术公司 利用过去能量消耗中的变量预测电动车辆能量消耗
WO2018044058A2 (ko) * 2016-08-31 2018-03-08 이지세이버 주식회사 전기차용 충전 장치 및 이를 포함하는 충전 시스템
CN108215803A (zh) * 2016-12-14 2018-06-29 丰田自动车株式会社 联网车辆
CN106965695A (zh) * 2017-04-12 2017-07-21 深圳市赛亿科技开发有限公司 一种无人驾驶车辆的自动充电系统及充电方法
US20190316924A1 (en) * 2018-04-16 2019-10-17 Morgan Brown Consultancy Ltd. Vehicle routing
CN111098753A (zh) * 2018-10-26 2020-05-05 比亚迪股份有限公司 电动车辆的续航里程估算方法和装置、电动车辆
CN110549877A (zh) * 2019-08-26 2019-12-10 深圳市航通北斗信息技术有限公司 电动汽车及其充电方法和计算机可读存储介质
CN110641397A (zh) * 2019-10-18 2020-01-03 福州大学 基于行驶数据与地图预测相结合的电动汽车驾驶反馈系统

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440918A (zh) * 2022-04-07 2022-05-06 北京百度网讯科技有限公司 一种充电桩导航方法、装置、电子设备及自动驾驶车辆
CN114440918B (zh) * 2022-04-07 2022-08-12 北京百度网讯科技有限公司 一种充电桩导航方法、装置、电子设备及自动驾驶车辆
CN114819413A (zh) * 2022-06-24 2022-07-29 中运科技股份有限公司 一种网约车定制客运路线的推荐系统及方法
CN114819413B (zh) * 2022-06-24 2022-09-23 中运科技股份有限公司 一种网约车定制客运路线的推荐系统及方法
CN115123019A (zh) * 2022-07-26 2022-09-30 安徽华菱汽车有限公司 一种电量计量方法、装置、设备及计算机可读存储介质
CN115123019B (zh) * 2022-07-26 2024-04-26 安徽华菱汽车有限公司 一种电量计量方法、装置、设备及计算机可读存储介质
CN115431831A (zh) * 2022-08-04 2022-12-06 广东易积网络股份有限公司 一种电池调配方法、系统、设备及存储介质
CN115431831B (zh) * 2022-08-04 2023-07-21 广东易积网络股份有限公司 一种电池调配方法、系统、设备及存储介质
CN115320517A (zh) * 2022-09-15 2022-11-11 中国第一汽车股份有限公司 车辆充电提示方法、装置及车辆
CN115503534A (zh) * 2022-09-26 2022-12-23 广东顺峰智慧能源研究院有限公司 充电桩推荐方法、装置、设备和计算机可读存储介质
CN115503534B (zh) * 2022-09-26 2023-09-01 广东顺峰智慧能源研究院有限公司 充电桩推荐方法、装置、设备和计算机可读存储介质
CN115526519A (zh) * 2022-10-11 2022-12-27 威海广泰空港设备股份有限公司 一种基于服务航班的机场电动车辆充电调度方法
CN115610349A (zh) * 2022-10-21 2023-01-17 阿维塔科技(重庆)有限公司 一种基于多模融合的智能交互方法及装置
CN115610349B (zh) * 2022-10-21 2024-05-17 阿维塔科技(重庆)有限公司 一种基于多模融合的智能交互方法及装置
CN116039576A (zh) * 2023-03-22 2023-05-02 杭州禾美汽车科技有限公司 新能源汽车电池智能更换系统
CN116039576B (zh) * 2023-03-22 2023-08-08 宁波禾旭汽车科技有限公司 新能源汽车电池智能更换系统
CN116101089A (zh) * 2023-04-04 2023-05-12 国网浙江省电力有限公司宁波供电公司 一种交互式电动汽车充电设施选择方法以及共享系统
CN116101089B (zh) * 2023-04-04 2023-08-01 国网浙江省电力有限公司宁波供电公司 一种交互式电动汽车充电设施选择方法以及共享系统
CN116109025A (zh) * 2023-04-04 2023-05-12 深圳天溯计量检测股份有限公司 基于大数据的电池续航测试方法
CN116945969A (zh) * 2023-07-19 2023-10-27 隆瑞三优新能源汽车科技有限公司 一种新能源公交车充电监测方法、装置、设备及存储介质
CN116945969B (zh) * 2023-07-19 2024-02-09 隆瑞三优新能源汽车科技有限公司 一种新能源公交车充电监测方法、装置、设备及存储介质
CN116691413A (zh) * 2023-07-31 2023-09-05 国网浙江省电力有限公司 超前车车载动态负荷预配置方法及有序充电系统
CN116691413B (zh) * 2023-07-31 2023-10-20 国网浙江省电力有限公司 超前车车载动态负荷预配置方法及有序充电系统
CN117556589A (zh) * 2024-01-04 2024-02-13 江阴飞阳电子科技有限公司 一种仪表电量智能校准方法及系统
CN117521938A (zh) * 2024-01-08 2024-02-06 广东车卫士信息科技有限公司 电动车辆运营管理方法、系统及存储介质
CN117521938B (zh) * 2024-01-08 2024-05-14 广东车卫士信息科技有限公司 电动车辆运营管理方法、系统及存储介质

Also Published As

Publication number Publication date
CN113135100A (zh) 2021-07-20
CN113135100B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2022007689A1 (zh) 车辆的充电提醒方法、设备、程序、存储介质及车辆
US20240094734A1 (en) Power management, dynamic routing and memory management for autonomous driving vehicles
US20240085203A1 (en) Trip planning with energy constraint
US20180202825A1 (en) Apparatus and method for providing charging equipment information to vehicle
CN107782327B (zh) 能量最优的车辆路线选择
US10415986B2 (en) Route-based distance to empty calculation for a vehicle
CN111169480B (zh) 一种动力系统能量管理方法、装置、设备和介质
US9114727B2 (en) System and method of assisting driver in driving electric vehicle in more environmentally efficient manner
CN102589562B (zh) 使用用于路线模拟的车辆状态信息的导航系统和方法
US9170118B2 (en) Navigation system for electric vehicle
US20100094496A1 (en) System and Method for Operating an Electric Vehicle
CN111086413A (zh) 电动车辆的充电控制系统和充电控制方法
CN107010041B (zh) 具有预测目的地以减少发动机启动的增强的电驱动模式
EP1975562A2 (en) Stop-off facility guidance system and stop-off facility guidance method
EP2323866A2 (en) System and method for operating an electric vehicle
JP2009137340A (ja) 電力マネージメントシステム及び電力マネージメント方法
US20120253568A1 (en) System and Method for Precise State of Charge Management
JP2008249503A (ja) 電動車両駆動制御システム及び電動車両駆動制御方法
CN104377760B (zh) 基于最短哈密尔顿回路的电动汽车动态充电方法及系统
CN106696954A (zh) 插电式混合动力汽车的控制方法及系统
WO2024103702A1 (zh) 一种预见性能量管理方法、装置、电子设备及存储介质
WO2014120849A2 (en) System and method for inhibiting a driver of an electric vehicle from being stranded
CN111923784A (zh) 车辆冷却系统的温度控制方法、装置、设备及存储介质
US11353330B2 (en) Vehicle terminal and control method thereof
EP4282695A9 (en) Method and apparatus for providing a charging time window for an electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837812

Country of ref document: EP

Kind code of ref document: A1