WO2022007435A1 - 电池及其相关装置、制备方法和制备设备 - Google Patents

电池及其相关装置、制备方法和制备设备 Download PDF

Info

Publication number
WO2022007435A1
WO2022007435A1 PCT/CN2021/082481 CN2021082481W WO2022007435A1 WO 2022007435 A1 WO2022007435 A1 WO 2022007435A1 CN 2021082481 W CN2021082481 W CN 2021082481W WO 2022007435 A1 WO2022007435 A1 WO 2022007435A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
protrusion
pressure relief
adhesive
relief mechanism
Prior art date
Application number
PCT/CN2021/082481
Other languages
English (en)
French (fr)
Inventor
顾明光
陈小波
李耀
黎贤达
岳金如
杨飘飘
胡璐
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21730788.3A priority Critical patent/EP3965212A4/en
Priority to JP2022546100A priority patent/JP2023513025A/ja
Priority to CN202180000892.3A priority patent/CN114175359B/zh
Priority to CA3167996A priority patent/CA3167996A1/en
Priority to KR1020227026951A priority patent/KR102684448B1/ko
Priority to US17/562,608 priority patent/US11749865B2/en
Publication of WO2022007435A1 publication Critical patent/WO2022007435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular, to a battery and its related device, preparation method and preparation equipment.
  • Chemical cells, electrochemical cells, electrochemical cells or electrochemical cells refer to a type of device that converts the chemical energy of positive and negative active materials into electrical energy through redox reactions. Different from ordinary redox reactions, the oxidation and reduction reactions are carried out separately, the oxidation is at the negative electrode, the reduction is at the positive electrode, and the gain and loss of electrons are carried out through an external circuit, so a current is formed. This is an essential feature of all batteries. After long-term research and development, chemical batteries have ushered in a wide variety of applications. Huge installations as large as a building can hold, as small as millimeters of type. The development of modern electronic technology has put forward high requirements for chemical batteries. Every breakthrough in chemical battery technology has brought about a revolutionary development of electronic devices. Many electrochemical scientists in the world have concentrated their research and development interests in the field of chemical batteries used as power for electric vehicles.
  • lithium-ion battery As a kind of chemical battery, lithium-ion battery has the advantages of small size, high energy density, high power density, many cycles of use and long storage time. It has been used in some electronic equipment, electric vehicles, electric toys and electric equipment. Widely used, for example, lithium-ion batteries are currently widely used in mobile phones, notebook computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes and electric tools, and so on.
  • lithium-ion batteries With the continuous development of lithium-ion battery technology, higher requirements are placed on the performance of lithium-ion batteries. It is hoped that lithium-ion batteries can consider various design factors at the same time, and the safety performance of lithium-ion batteries is particularly important.
  • the present application proposes a battery and its related device, preparation method and preparation equipment to improve the safety performance of the battery.
  • a battery comprising a battery cell, the battery cell comprising a pressure relief mechanism configured to be able to reduce the internal pressure of the battery cell or actuation to relieve the internal pressure when the temperature reaches a threshold; and an attachment member adapted to be attached to the battery cell by an adhesive; and an isolation member configured to prevent the Adhesive is applied between the attachment member and the pressure relief mechanism.
  • the spacer member By providing the spacer member, it is possible to prevent adhesive from being applied between the attachment member and the pressure relief mechanism in an effective manner during battery production. At the same time, the application efficiency and accuracy of the adhesive can also be improved, thereby improving the production efficiency of the battery.
  • the pressure relief mechanism has an actuation region, and the pressure relief mechanism is configured to be formed in the actuation region for relief when the internal pressure or temperature of the battery cell reaches a threshold value. Release the internal pressure relief channel.
  • the discharge of the battery cells can be guided to discharge outward through the formed relief channel, thereby improving the battery's performance. safety performance.
  • the spacer member is configured to surround at least the actuation region to prevent the adhesive from entering the actuation region.
  • the isolating members arranged in this way can more reliably prevent the adhesive from hindering the normal actuation of the pressure relief mechanism when the internal pressure or temperature of the battery cell reaches a threshold value, and prevent the adhesive from flowing in and blocking the leakage.
  • the discharge channel in turn blocks the discharge of the discharge from the discharge of the battery cells. Thereby, the safety performance of the battery can be further improved.
  • the isolation member has a body and a projection disposed protruding from a surface of the body, the projection being arranged to correspond to the location of the actuation region of the pressure relief mechanism, and the The protrusion is configured to surround at least the actuation area to prevent the adhesive from entering the actuation area.
  • This arrangement prevents, in a simple and effective manner, adhesive from being applied to the surface of the pressure relief mechanism during the production of the battery, thereby hindering the actuation of the pressure relief mechanism.
  • this arrangement can be flexibly designed into an isolation member according to actual needs, wherein a single isolation member can achieve the effect of isolating the adhesive with a plurality of protrusions respectively for the actuation regions of the multiple pressure relief mechanisms. This helps reduce production costs.
  • the attachment member includes a relief structure configured to provide a space to allow actuation of the pressure relief mechanism, and wherein between the relief structure and the pressure relief mechanism Create an escape cavity.
  • this avoidance structure can more reliably ensure the operation space or action space required for the effective actuation of the pressure relief mechanism, in addition, the avoidance cavity can provide a buffer space for the discharge of the battery cells, thereby reducing the discharge of the battery cells.
  • the impact pressure of the object on the external structure or components further improves the safety performance of the battery.
  • the isolation member is configured to surround at least a periphery of a side of the escape cavity facing the pressure relief mechanism, so as to prevent the adhesive from entering the escape cavity.
  • the isolation components arranged in this way can more reliably ensure that the operating space or the action space required for the effective actuation of the pressure relief mechanism provided by the avoidance cavity will not be partially occupied by the adhesive, which will affect the pressure relief mechanism.
  • the normal actuation of the battery cell also ensures that the escape cavity can play the role of providing a buffer space when the discharge is discharged from the battery cell.
  • the isolation member has a main body and a protrusion disposed protruding from a surface of the main body, the protrusion is disposed to correspond to the position of the escape cavity, and the protrusion is configured to at least The periphery of the side of the escape cavity facing the pressure relief mechanism is surrounded to prevent the adhesive from entering the escape cavity.
  • This arrangement prevents the adhesive from being applied into the escape cavity during the production of the battery in a simple and effective manner, so that the escape cavity cannot provide the operating space required for the effective actuation of the pressure relief mechanism.
  • this arrangement can be flexibly designed as an isolation component according to actual needs, wherein a single isolation component can be respectively covered with a plurality of protrusions on a plurality of avoidance cavities to achieve the effect of isolating the adhesive, which has the advantages of Helps reduce production costs.
  • the protrusion has a height greater than or equal to a predetermined application height of the adhesive, and is configured to be compressed with the battery cell attached to the attachment member to conform to the The height of the adhesive is uniform.
  • This arrangement ensures that the protrusions can effectively prevent adhesive from being applied between the attachment member and the pressure relief mechanism. At the same time, this allows the isolating member not to interfere with the reliable bond between the attachment member and the pressure relief mechanism and the actuation of the pressure relief mechanism. Also, when the battery cells and the attaching parts of the battery are glued or bonded by the adhesive applied on the bonding surface, the protrusions may be compressed to a height consistent with the adhesive, whereby the protrusions will not be Any gaps will be left between the adhesive surfaces of both the battery cell and the battery's attachment parts, thus ensuring with great reliability that the adhesive is isolated from the area where the pressure relief mechanism is actuated and forms the passage of the discharge. outside.
  • the protrusions are formed on the surface of the main body using a blister process.
  • the blister process By adopting the blister process, the required isolation parts can be easily and cost-effectively manufactured, and especially in the case of forming a plurality of protrusions on a single isolation part, the blister process can be used on the surface of the sheet or film formed by the blister process. It is particularly advantageous and economical to machine the base to form protrusions.
  • the protrusions include a first protrusion and a second protrusion
  • the first protrusion corresponds to the position of the pressure relief mechanism
  • the second protrusion surrounds the first protrusion The first protrusion and the second protrusion are used to prevent the adhesive from being applied between the attachment member and the pressure relief mechanism.
  • the protruding heights of the first protrusion and the second protrusion are beneficial to prevent the adhesive from entering into the space between the pressure relief mechanism and the attachment part, such as when applying the adhesive, so as to avoid the inflowing adhesive from obstructing the pressure relief mechanism of normal work. Since the second protrusion is arranged around the first protrusion, the cooperation of the two in structure plays a multiple blocking role for the adhesive, so the adhesive can be intercepted more effectively and reliably.
  • a groove is formed between the first protrusion and the second protrusion, and the groove is used for accommodating at least part of the adhesive, so as to prevent the adhesive from entering all the between the attachment member and the pressure relief mechanism.
  • the grooves can accommodate at least part of the adhesive, which acts as an additional barrier for the adhesive.
  • the groove can also store a certain amount of overflow from the second protrusion. adhesive, thereby preventing the adhesive from flowing further into the space between the pressure relief mechanism and the attachment member.
  • the second protrusion includes: a first side wall for connecting with the main body, and the first side wall is a wall shared by the second protrusion and the groove;
  • the second side wall is used for connecting with the main body, and the second side wall is arranged opposite to the first side wall;
  • the connecting wall is used for connecting the first side wall and the second side wall.
  • At least one of the first sidewall and the second sidewall includes a first protrusion, and the first protrusion is protruded along a first direction, wherein the first direction is the same as the The protruding directions of the second protrusions are perpendicular to each other.
  • the accommodating volume of the groove can be increased, thereby accommodating more adhesive and preventing the adhesive from entering the space between the attachment part and the pressure relief mechanism.
  • At least one of the first side wall and the second side wall is disposed obliquely with respect to a direction of the attachment member toward the battery cell.
  • the accommodating volume of the groove can be increased to accommodate more adhesive, thereby effectively preventing the adhesive from entering between the pressure relief mechanism and the attachment component.
  • the second side wall By arranging the second side wall obliquely, the coating area of the adhesive on the periphery of the second protrusion can be increased, and the reliability of the bonding can be ensured.
  • the first side wall and/or the second side wall are inclined to facilitate the drafting of the isolation component during the manufacturing process.
  • the connecting wall includes a second protruding portion, and the second protruding portion is protruded along the direction of the attachment member toward the battery cell, or along the battery cell toward the attachment.
  • the direction of the connecting part is protruded.
  • the provision of the second protrusion makes the surface of the connecting wall uneven, thereby forming a space capable of accommodating the adhesive. In this way, when the height of the adhesive exceeds the height of the second protrusion and has a tendency to flow toward the first protrusion, the adhesive will first remain in the receiving space on the surface of the connecting wall, which is equivalent to adding another barrier to prevent The adhesive continues to flow in the direction of the first protrusion.
  • the second protrusion includes a cavity, and at least one of the first side wall, the second side wall and the connecting wall is provided with an opening, and the opening is connected to the The cavities are communicated, so that at least part of the adhesive enters the cavity through the openings.
  • the adhesive located around the second protrusion can enter the cavity through the opening, which not only fully utilizes the space occupied by the second protrusion, but also reduces the Adhesive around the second protrusion to prevent the adhesive from entering the space between the attachment member and the pressure relief mechanism.
  • the first protrusion includes: a third side wall for connecting with the main body, and the third side wall is a wall shared by the first protrusion and the groove, The third side wall is arranged opposite to the first side wall; wherein, the third side wall includes a third protruding part, the third protruding part is protruded along a first direction, and the first direction and the The protruding directions of the second protrusions are perpendicular to each other; and/or the third sidewalls are arranged obliquely with respect to the direction of the attachment parts toward the battery cells.
  • the accommodating volume of the groove can be increased to accommodate more adhesive, thereby effectively preventing the adhesive from entering between the pressure relief mechanism and the attachment part.
  • this arrangement is beneficial to the drafting of the isolation part during the manufacturing process.
  • the width of the second protrusion is 1mm-8mm.
  • the second protrusion is an annular structure.
  • the second protrusions can block the flow of the adhesive on the outer periphery of the second protrusions to the first protrusions.
  • the width of the groove is 1 mm-8 mm.
  • the second protrusion is a resilient member attached to the surface of the body.
  • the elastic member has a certain elastic deformation ability, and it acts as a second protrusion to block the adhesive and can adapt to a large installation error.
  • the protrusions further include third protrusions disposed around the second protrusions. The greater the number of protrusions arranged around the first protrusion, the better the blocking effect on the adhesive.
  • a wall of the protrusion facing the pressure relief mechanism is provided with a through hole configured to allow exhaust from the battery cells when the pressure relief mechanism is actuated through the isolation member.
  • the through hole provided on the top wall of the first protrusion can not only provide space for the actuation of the pressure relief mechanism, but also form a discharge channel, and the through hole can be located in the first protrusion, groove and second protrusion.
  • the blocking function fails, the adhesive is allowed to enter the through hole to prevent the adhesive from bonding with the pressure relief mechanism and affecting the smooth opening of the pressure relief mechanism.
  • the through hole is provided around the pressure relief mechanism to prevent the adhesive from entering between the pressure relief mechanism and the attachment member. In this way, the adhesive and the pressure relief mechanism are prevented from being bonded to affect the smooth opening of the pressure relief mechanism.
  • the through holes are configured to correspond to the positions of the actuation regions, and the through holes are disposed around the actuation regions to prevent the adhesive from entering the actuation regions and the attachment member. In this way, the adhesive and the pressure relief mechanism are prevented from being bonded to affect the smooth opening of the pressure relief mechanism.
  • the battery includes a plurality of battery cells, each battery cell of the plurality of battery cells includes the pressure relief mechanism; the isolation member includes at least one of the protrusions; wherein , the protrusions correspond to the pressure relief mechanisms one-to-one, or the protrusions correspond to at least two of the pressure relief mechanisms.
  • the process of assembling the spacer member to the attachment member of the battery will be simpler, while the use of a plurality of protrusions allows the application or to-be-applied adhesive to be isolated in the battery in a relatively independent manner Outside the pressure relief mechanism of the included multiple battery cells or the relief area thereof. In addition, this can also assist the operator to properly complete the application of the adhesive with a higher efficiency when applying the adhesive, so that the operator does not need to perform the operation of applying the adhesive carefully, which will help Reduce battery assembly costs and production costs.
  • the protrusions correspond to at least two pressure relief mechanisms, the assembly accuracy can also be reduced, and a larger installation error can be accommodated.
  • the isolation member is configured to be destroyed by emissions from the battery cells when the pressure relief mechanism is actuated.
  • the isolation member can be destroyed by the exhaust that flows out along with the actuation of the pressure relief mechanism, thereby forming a channel for the exhaust to flow out, which can improve the safety of the battery sex.
  • the isolation member is made of a thermoplastic material having a melting point no greater than the discharge temperature of the discharge.
  • This design can make the isolation components have relatively high structural strength in the general use state when the battery cell does not have thermal runaway, and at the same time, in the emergency situation of the thermal runaway of the battery cell, it can be released by the high temperature and high pressure discharge in a relatively short period of time. It is destroyed within a certain time, which in turn allows the emissions to be discharged from the battery cells more quickly.
  • the isolation member includes a coating for preventing the adhesive from being applied thereon. Therefore, the isolation member can also be realized by a structure without protrusions.
  • the attachment features include thermal management features for containing fluids to cool the battery cells.
  • thermal management components By arranging thermal management components, the temperature of the battery cells can be controlled more flexibly and actively, thereby reducing the risk of thermal runaway of the battery cells.
  • the escape structure is formed on the thermal management component, and the escape structure includes an escape bottom wall and an escape side wall surrounding the escape cavity.
  • the escape sidewall is configured to be broken upon actuation of the pressure relief mechanism, thereby allowing the fluid to flow out.
  • This arrangement enables the fluid to flow out when necessary in a low-cost and simple manner, thereby utilizing the fluid to rapidly reduce the temperature of the exhaust from the battery cells in the event of thermal runaway, further improving the safety performance of the battery.
  • a device comprising the battery described in the first aspect above, the battery being used to provide electrical energy to the device.
  • a method of manufacturing a battery comprising providing a plurality of battery cells, at least one battery cell of the plurality of battery cells includes a pressure relief mechanism, the relief The pressure mechanism is configured to be actuable to relieve the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value; an attachment member is provided, the attachment member is adapted to be attached to the battery cell by an adhesive the battery cell; providing an isolation member configured to prevent the adhesive from being applied between the attachment member and the pressure relief mechanism; and applying the adhesive to The battery cell is attached to the attachment member.
  • the spacer member By providing the spacer member, it is possible to prevent adhesive from being applied between the attachment member and the pressure relief mechanism in an effective manner during battery production. At the same time, the application efficiency and accuracy of the adhesive can also be improved, thereby improving the production efficiency of the battery.
  • the pressure relief mechanism has an actuation region, and the pressure relief mechanism is configured to be formed in the actuation region for relief when the internal pressure or temperature of the battery cell reaches a threshold value.
  • a relief passage for releasing the internal pressure; and the isolation member has a main body and a protrusion disposed protruding from a surface of the main body, the protrusion disposed in contact with the actuation region of the pressure relief mechanism The positions correspond and the protrusions are configured to surround at least the actuation area to prevent the adhesive from entering the actuation area.
  • the isolation member can be flexibly processed and manufactured according to actual needs, so that a single manufactured isolation member can achieve the effect of isolating the adhesive with a plurality of protrusions for the actuation regions of the multiple pressure relief mechanisms, thereby helping to reduce the Cost of production.
  • the attachment member includes a relief structure configured to provide a space to allow actuation of the pressure relief mechanism, forming a relief cavity between the relief structure and the pressure relief mechanism and, the isolation member has a main body and a protrusion disposed protruding from the surface of the main body, the protrusion is disposed to correspond to the position of the escape cavity, and the protrusion is configured to surround at least the The escape cavity faces the peripheral edge of the pressure relief mechanism side, so as to prevent the adhesive from entering the escape cavity.
  • the isolation member can be flexibly processed and manufactured according to actual needs, so that a single manufactured isolation member can use multiple protrusions to achieve the effect of isolating adhesive for multiple escape cavities, thereby helping to reduce production costs.
  • providing the isolation member includes forming the protrusions on the surface of the body using a blister process.
  • the required isolation components can be processed and manufactured relatively conveniently and at low cost.
  • an apparatus for preparing a battery including a battery cell preparation module for preparing a plurality of battery cells, at least one battery cell of the plurality of battery cells comprising: : a pressure relief mechanism configured to actuate when the internal pressure or temperature of the battery cell reaches a threshold value to relieve the internal pressure; an attachment component preparation module for preparing a device suitable for passing through an attachment member for attaching an adhesive to the battery cell; an isolation member preparation module for preparing a device configured to prevent the adhesive from being applied between the attachment member and the pressure relief mechanism an isolation member; and an assembly module for mounting and securing the isolation member relative to the battery cell or the attachment member, and applying the adhesive to attach the battery cell to the attachment connecting parts.
  • FIG. 1 shows a schematic structural diagram of some embodiments of a vehicle using the battery of the present application
  • FIG. 2 shows an exploded schematic view of a battery cell according to some embodiments of the present application
  • FIG. 3 shows a schematic perspective view of a battery cell according to some embodiments of the present application
  • FIG. 4 shows a schematic perspective view of a battery cell according to some embodiments of the present application
  • Figure 5 shows an exploded schematic view of a battery according to some embodiments of the present application.
  • Figure 6 shows an exploded schematic view of a battery according to some embodiments of the present application.
  • FIG. 7 shows a cross-sectional view of a battery according to some embodiments of the present application.
  • Figure 8 shows an enlarged view of part B of the battery shown in Figure 7;
  • Figure 9 shows a perspective view of an isolation member according to some embodiments of the present application.
  • FIG. 10 shows an exploded view of an isolation component not yet attached to a thermal management component according to some embodiments of the present application
  • Figure 11 shows an exploded view of an isolation component attached to a thermal management component in accordance with some embodiments of the present application
  • Figure 12 shows a top view of a thermal management component according to some embodiments of the present application.
  • Figure 13 shows an A-A cross-sectional view of the thermal management component of the present application shown in Figure 12;
  • Figure 14 shows a bottom view of the thermal management component of the present application shown in Figure 12;
  • Figure 15 shows a perspective view of an isolation member according to some embodiments of the present application.
  • Figure 16 shows an enlarged view of portion C of the isolation member of the present application shown in Figure 15;
  • Figure 17 shows a D-D cross-sectional view of the isolation member of the present application shown in Figure 15;
  • Figure 28 shows a perspective view of an isolation member according to some embodiments of the present application.
  • Figure 29 shows an enlarged view of portion F of the isolation member of the present application shown in Figure 28;
  • Figure 30 shows a G-G sectional view of the isolation member of the present application shown in Figure 28;
  • FIG. 31-32 illustrate enlarged views of portion H of the isolation member of some embodiments of the present application shown in FIG. 30;
  • 33-35 are schematic diagrams showing the corresponding relationship between the protrusions of the isolation member and the pressure relief mechanism according to some embodiments of the present application;
  • Figure 36 shows a schematic flow diagram of some embodiments of a method of making a battery according to the present application.
  • FIG. 37 shows a schematic structural diagram of some embodiments of an apparatus for preparing a battery according to the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • the batteries mentioned in the art can be divided into disposable batteries and rechargeable batteries according to whether they are rechargeable.
  • Primary batteries are commonly known as “disposable” batteries and primary batteries, because after their power is exhausted, they cannot be recharged and can only be discarded.
  • Rechargeable batteries are also called secondary batteries or secondary batteries and accumulators.
  • the material and process of rechargeable batteries are different from those of disposable batteries. The advantage is that they can be recycled many times after charging, and the output current load capacity of rechargeable batteries is higher than that of most disposable batteries.
  • Common types of rechargeable batteries are: lead-acid batteries, nickel-metal hydride batteries and lithium-ion batteries.
  • Lithium-ion batteries have the advantages of light weight, large capacity (1.5 times to 2 times the capacity of nickel-hydrogen batteries of the same weight), no memory effect, etc., and have a very low self-discharge rate, so even if the price is relatively high, it is still available. universal application. Lithium-ion batteries are also used in pure electric vehicles and hybrid vehicles. Lithium-ion batteries used for this purpose have relatively low capacity, but have larger output, charging current, and some have longer lifespan, but the cost is higher .
  • the batteries described in the embodiments of the present application refer to rechargeable batteries.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • the battery cell includes a positive pole piece, a negative pole piece, an electrolyte and a separator, and is the basic structural unit that constitutes a battery module and a battery pack. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft pack battery cells.
  • Lithium-ion battery cells mainly rely on the movement of lithium ions between the positive pole piece and the negative pole piece to work.
  • Lithium-ion cells use an intercalated lithium compound as an electrode material.
  • the common cathode materials used for lithium-ion batteries are: lithium cobalt oxide (LiCoO2), lithium manganate (LiMn2O4), lithium nickelate (LiNiO2) and lithium iron phosphate (LiFePO4).
  • a separator is arranged between the positive pole piece and the negative pole piece to form a thin film structure with three layers of materials.
  • the thin film structure is generally formed into an electrode assembly of a desired shape by winding or stacking.
  • a three-layer material thin film structure in a cylindrical battery cell is rolled into a cylindrical shaped electrode assembly, while a thin film structure in a prismatic battery cell is rolled or stacked into an electrode assembly having a generally rectangular parallelepiped shape.
  • Battery cells can be connected together in series and/or in parallel via electrode terminals for various applications.
  • the application of batteries includes three levels: battery cells, battery modules and battery packs.
  • the battery module is formed by electrically connecting a certain number of battery cells together and putting them into a frame in order to protect the battery cells from external shock, heat, vibration, etc.
  • the battery pack is the final state of the battery system loaded into an electric vehicle.
  • Most current battery packs are made by assembling various control and protection systems such as a battery management system (BMS), thermal management components, etc. on one or more battery modules.
  • BMS battery management system
  • thermal management components etc.
  • the layer of the battery module can be omitted, that is, the battery pack is directly formed from the battery cells. This improvement makes the weight energy density and volume energy density of the battery system increase while the number of components is significantly reduced.
  • the batteries referred to in this application include battery modules or battery packs.
  • the main safety hazard comes from the charging and discharging process.
  • the protection measures include at least switch elements, selection of appropriate isolation diaphragm materials and pressure relief mechanisms.
  • the switching element refers to an element that can stop the charging or discharging of the battery when the temperature or resistance in the battery cell reaches a certain threshold.
  • the separator is used to separate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micro-scale (or even nano-scale) micropores attached to it, so that lithium ions cannot pass through the separator. Terminates the internal reaction of the battery cell.
  • the pressure relief mechanism refers to an element or component that can be actuated to release the internal pressure and/or internal substances when the internal pressure or internal temperature of the battery cell reaches a predetermined threshold.
  • the pressure relief mechanism can specifically take the form of an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined When the threshold value is reached, the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the threshold referred to in this application may be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements. Design or determine this threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the "actuating" mentioned in this application means that the pressure relief mechanism is actuated or activated to a certain state, so that the internal pressure of the battery cell can be released.
  • Actions produced by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism being ruptured, shattered, torn or opened, and the like.
  • the emissions from the battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high temperature and high pressure gas generated by the reaction, flames, and the like.
  • the high-temperature and high-pressure discharge is discharged toward the direction of the battery cell where the pressure relief mechanism is provided, and may be discharged more specifically in the direction of the area where the pressure relief mechanism is actuated.
  • the power and destructive power of such discharge may be very large, even It may be sufficient to break one or more structures such as the cover in this direction.
  • the pressure relief mechanism is generally arranged on the cover plate of the battery cell. In some improved technical solutions, the pressure relief mechanism may also be arranged on the casing structure on other sides of the battery cell or in other directions. However, regardless of the arrangement or location of the pressure relief mechanism, it is necessary to attach or assemble the battery cells by means of an adhesive (also called adhesive or adhesive) using appropriate attachment components arranged in the battery to the attaching parts, the attaching parts may specifically include attaching parts such as thermal management parts, support parts, etc. in the battery, and the adhesive can be, for example, thermally conductive silica gel, epoxy glue, polyurethane glue, and the like.
  • the support member referred to in this application can generally be understood as a member for providing support for the battery cell or resisting the gravitational effect of the battery cell, which can usually be attached to the shell of the battery cell, for example.
  • the bottom wall or bottom of the body, and the battery cells are supported or fixed thereon.
  • the thermal management component is a component for accommodating a fluid to adjust the temperature of the battery cells, where the fluid can be liquid or gas, and adjusting the temperature refers to heating or cooling the battery cells.
  • the thermal management components used to cool the battery cells may also be referred to as cooling components, cooling systems or cooling plates, etc., which contain a cooling medium, such as cooling liquid or cooling gas, wherein the cooling medium can be It is designed to be circulated for better temperature regulation.
  • the attachment part generally refers to the part of the battery that is bonded together with the battery cell by an adhesive.
  • the attachment part may be provided by or constituted by a thermal management part or a support part, but otherwise
  • the attachment means may also be provided by any other suitable means in the battery.
  • this method of assembling the battery cells into the battery using an adhesive generally applies or coats the adhesive to the attachment member and the battery cells to attach to each other On the bonding surface of the adhesive, and then use the adhesive force and cohesive force generated after the adhesive is cured to bond the battery cell and the corresponding bonding surface on the attachment part together in a surface-bonding manner, so as to realize the bonding of the battery cell.
  • the purpose of fitting to the attached part This design and its processing method are widely used because of its advantages of easy implementation, simple process, low cost, and firm and reliable attachment.
  • the adhesive when applying the adhesive, there is a possibility that a portion of the adhesive may be partially
  • the adhesive flows into the area related to the actuation of the pressure relief mechanism.
  • the cured adhesive may cause damage to the actuation of the pressure relief mechanism.
  • Adverse effects it is even possible to block or partially block the passages or openings formed when the pressure relief mechanism is actuated for the discharge to flow out, affecting the discharge of the discharge.
  • the pressure relief mechanism in the battery cell when the pressure relief mechanism in the battery cell is activated when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the high-temperature and high-pressure substances inside the battery cell will be discharged from the actuated part as a discharge. At this time, the high-temperature and high-pressure discharge may melt and flow into and release the adhesive previously coated on the bonding surface near the place where the discharge passes due to its own destructive force and/or high temperature during the discharge process.
  • the area related to the actuation of the pressure relief mechanism such as the location where the pressure relief mechanism is actuated, or the passage or opening for the discharge to flow out formed by the actuation of the pressure relief mechanism, will adversely affect the discharge of the discharge.
  • the inventors of the present application propose a battery, and the design of which will be described in detail below.
  • the batteries described in the embodiments of the present application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric vehicles, ships, spacecraft, electric toys, and electric tools, etc.
  • Spacecraft includes airplanes, rockets, space shuttles and spacecraft, etc.
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include Metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers.
  • the batteries described in the embodiments of the present application are not only applicable to the above-described devices, but also applicable to all devices using batteries. However, for the sake of brevity, the following embodiments are described by taking an electric vehicle as an example.
  • FIG. 1 it is a simple schematic diagram of a vehicle 1 according to an embodiment of the application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the battery 10 may be provided inside the vehicle 1 , for example, the battery 10 may be provided at the bottom or the front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operation power source of the vehicle 1 .
  • the vehicle 1 may further include the controller 30 and the motor 40 .
  • the controller 30 is used to control the battery 10 to supply power to the motor 40 , for example, for starting, navigating, and running the vehicle 1 for working power requirements.
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 referred to hereinafter can also be understood as a battery pack including a plurality of battery cells 20 .
  • the battery cell 20 includes a case 21 , an electrode assembly 22 and an electrolyte, wherein the electrode assembly 22 is accommodated in the case 21 of the battery cell 20 , and the electrode assembly 22 includes a positive pole piece, a negative pole piece and isolation film.
  • the material of the separator can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly 22 may be a wound structure or a laminated structure.
  • the box 21 includes a housing 211 and a cover plate 212 .
  • the housing 211 includes a receiving cavity 211a formed by a plurality of walls and an opening 211b.
  • a cover plate 212 is disposed at the opening 211b to close the accommodation cavity 211a.
  • the accommodating cavity 211a also accommodates an electrolyte.
  • the positive pole piece and the negative pole piece in the electrode assembly 22 are generally provided with tabs, and the tabs generally include positive pole tabs and negative pole tabs.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector without the positive electrode active material layer protrudes from the coated positive electrode active material layer.
  • the positive electrode current collector is not coated with the positive electrode active material layer as the positive electrode tab, the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate etc.; the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector without the negative electrode active material layer is protruded from the negative electrode that has been coated with the negative electrode active material layer.
  • the current collector, the negative electrode current collector without the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the tabs are connected to the positive electrode terminal 214 a and the negative electrode terminal 214 b outside the battery cell 20 through the connecting member 23 .
  • the positive electrode terminal 214 a and the negative electrode terminal 214 b are also collectively referred to as the electrode terminal 214 .
  • the electrode terminals 214 can generally be provided on the cover plate 212 portion.
  • the battery 10 may include a case 11 for encapsulating a plurality of battery cells 20 , and the case 11 can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 20 , wherein the plurality of battery cells 20
  • the battery 10 can provide a higher voltage after the plurality of battery cells 20 are connected in series and in parallel via the bus element 12 .
  • the box body 11 may include a cover body 111 and a box shell 112 .
  • the cover 111 and the case 112 can be combined together in a sealed manner to jointly enclose an electrical cavity 11a for accommodating a plurality of battery cells 20, and of course, the two can also be combined with each other without sealing.
  • the thermal management component 13 may form part of the case 11 for housing the plurality of battery cells 20 .
  • the thermal management member 13 may constitute or constitute a part of the side portion 112b of the casing 112 of the casing 11, or as shown in FIG.
  • the design of using the thermal management component 13 to form a part of the casing 112 helps to make the structure of the battery 10 more compact, to improve the effective utilization of space, and to improve the energy density.
  • the battery 10 may also include a guard member 115, as shown in FIGS. 6 and 7 .
  • the protective member 115 in the present application refers to a component that is arranged on a side of the thermal management component 13 away from the battery cells 20 to provide protection to the thermal management component 13 and the battery cells 20 .
  • the collection chamber 11b may be arranged between the shield member 115 and the thermal management component 13 .
  • At least one battery cell 20 in the battery 10 includes a pressure relief mechanism 213 .
  • each battery cell 20 in the battery 10 is provided with a pressure relief mechanism 213 , or, it may be a plurality of battery cells 20 due to its position in the battery 10 or other battery cells
  • a pressure relief mechanism 213 is provided on some of the battery cells 20 that may be more prone to thermal runaway due to the characteristics of the battery 20 .
  • the pressure relief mechanism 213 can be actuated to relieve the internal pressure of the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold.
  • the battery 10 also includes an attachment member adapted to be attached to the battery cells 20 by an adhesive, which may be, for example, a thermal management member 13 in the battery 10, a support member, or the like.
  • an adhesive such as thermally conductive silicone is applied between the attachment part and the pressure relief mechanism 213 to prevent or affect the pressure relief mechanism 213 to actuate and perform its designed function as described above, that is, the internal pressure of the battery cell 20 Or actuated when the temperature is high to form a channel or opening for venting the internal pressure of the battery cell 20, the battery 10 may also be provided with an isolation member 14, which can prevent the adhesive from being applied during the attachment. between the components and the pressure relief mechanism 213 .
  • the following will mainly focus on the embodiment in which the attachment part is the thermal management part 13 and the design of the isolation part 14 involved therein. The construction or configuration of the isolation member 14 .
  • the spacer member 14 is schematically depicted in FIG. 8, the spacer member 14 surrounding at least the actuation area of the pressure relief mechanism 213 to prevent adhesive from entering the actuation area. In this way, it is possible to avoid any hindrance or adverse effect on the performance of the actuation action of the pressure relief mechanism due to the flow of adhesive into the actuation area from any direction.
  • the isolation member 14 employed in the various embodiments of the present application may adopt various possible configurations so that the above-described adhesive used for assembling the battery cells 20 to the attachment member can be isolated from the attachment member The space between the pressure relief mechanism 213 and the pressure relief mechanism 213, or in other words, so that the applied adhesive can be isolated from the space that may affect the pressure relief mechanism 213 to perform its pressure relief design function once the adhesive flows in. outside.
  • the isolation member 14 may be designed to surround a partial area of the pressure relief mechanism 213 that can form the discharge battery cell 20 when the pressure relief mechanism 213 is actuated
  • the internal pressure relief passage for the exhaust to flow out may be referred to as the actuation area or the relief area), or the area corresponding to the pressure relief mechanism 213 attached to an attachment component such as the thermal management component 13, Thereby enclosing the space provided by the attachment member to allow actuation of the pressure relief mechanism 213 (eg, the escape structure 134 described below), and so on.
  • isolation member 14 may be attached to an area on an attachment member such as thermal management member 13 that corresponds to pressure relief mechanism 213 prior to applying the adhesive. It should be noted that, as long as the components in the battery are bonded together with the battery cells 20 by the adhesive, they can be regarded as the attachment components or a part of the attachment components, and the isolation components 14 can be used for these components. The spacer member 14 is attached to it prior to applying the adhesive.
  • the isolation member 14 will be able to prevent the adhesive from entering the attachment member corresponding to the pressure relief mechanism 213 and in particular to the pressure relief mechanism 213 for actuation to form a relief
  • the discharge channel for the internal pressure of the battery cell is an area for the discharge to flow out, so as to ensure that the pressure relief mechanism 213 can be actuated and normally achieve its designed function.
  • the use of the spacer member 14 can also speed up the application speed and accuracy of the adhesive, without having to worry about applying the adhesive to the area related to the actuation of the pressure relief mechanism 213, and save the cost of production time.
  • FIG. 9 shows a perspective view of the isolation member 14 according to some embodiments of the present application
  • FIG. 10 shows the isolation member 14 shown in FIG. 9 and the thermal management member 13 as an example of an attachment member not assembled in the Exploded view when together
  • Figure 11 shows a perspective view of the isolation member 14 and thermal management member 13 shown in Figure 9 when attached together.
  • the isolation member 14 may be attached to an attachment member such as the thermal management member 13 prior to application of the adhesive, and such that special structural features on the isolation member 14 correspond at least to pressure relief
  • the mechanism 213 or the attachment member is provided with an escape structure 134, wherein the escape structure 134 can provide a space to allow the pressure relief mechanism 213 to actuate.
  • the specific structure and features of the avoidance structure 134 involved will be described in detail below.
  • the isolation member 14 may include a main body 141 and a plurality of protrusions 142 .
  • the body 141 is adapted to be attached or fitted to an attachment component such as the thermal management component 13 .
  • the protrusions 142 protrude outwardly from the surface of the main body 141 and are arranged to communicate with the pressure relief mechanism 213 or a relief area of the pressure relief mechanism 213 or as described below in the event that the main body 141 is attached to the attachment member
  • the escape structures 134 or escape cavities 134a in some embodiments are aligned in the protruding direction.
  • the protrusions 142 are arranged to be aligned with the avoidance structure 134 , it is not difficult to understand with reference to FIG. are aligned with each other, so the projections 142 may also be considered to be aligned with the pressure relief mechanism 213 or with its actuation area (or relief area).
  • the protrusion 142 can also be arranged to be directly aligned with the pressure relief mechanism 213 or with its actuation area or relief area alignment.
  • the main body 141 and the protrusion 142 included in the isolation member 14 described herein are not intended to indicate that the isolation member 14 must contain independent parts, and it can be seen from the following description of some preferred embodiments. It is noted that a configuration in which both the body 141 and the protrusion 142 are integrally formed may be more advantageous in several respects.
  • the main body 141 can be understood as the part of the isolation part 14 designed to be easily attached to an attachment part such as a support part or the thermal management part 13 , while the protrusions 142 are designed to protrude from the main body 141
  • the outer circumference of the protrusion 142 is larger than or equal to the outer circumference of the pressure relief mechanism 213 or at least larger than or equal to the relief area of the pressure relief mechanism 213.
  • the spacer member 14 is designed to have elongated sheet-like bodies 141 with a protruding row of protrusions 142 on each body 141, but it is to be understood that,
  • the main body 141 and the protrusion 142 in the present application may have various shapes according to the shape and structure of the pressure relief mechanism 213 and other factors.
  • the main body 141 generally has a relatively thin thickness, so the main body 141 can generally be in the form of films or sheets of various shapes.
  • the wall thickness of the spacer member 14 or body 141 may be between 0.01 mm and 0.05 mm.
  • the shape of the protrusion 142 can be, for example, an oblong shape as shown in the figure, a circle, an ellipse, a square, or the like.
  • a single main body 141 can also be designed to have a single protrusion 142, multiple rows of protrusions 142, or a plurality of protrusions 142 arranged in other ways, as long as the arrangement and relative positions of the protrusions 142 on the surface of the main body 141 can be
  • the setting position of the pressure relief mechanism 213 of the battery cells 20 in the battery may be adapted to.
  • a single isolation member 14 may be designed to include a main body 141 and a plurality of protrusions 142 protruding from the surface of the main body 141, the main body 141 being integrally attached to the attaching member of the battery, and in such attachment
  • the plurality of protrusions 142 are respectively aligned with the pressure relief mechanisms 213 of the plurality of battery cells 20 included in the battery 10 (or are aligned with the relief regions of the pressure relief mechanisms 213), so that each protrusion
  • the lifts 142 can each enclose the pressure relief mechanism 213 (or at least the relief area of the pressure relief mechanism 213 ) to which they are aligned.
  • the process of assembling the isolation member 14 to the attaching member of the battery will be simpler, while utilizing the plurality of protrusions 142 to isolate the applied or to-be-applied adhesive in the battery in a relatively independent manner Outside the pressure relief mechanism 213 of the included plurality of battery cells 20 or the relief area thereof.
  • this can also assist the operator to properly complete the application of the adhesive with a higher efficiency when applying the adhesive, so that the operator does not need to perform the operation of applying the adhesive carefully, which will help The assembly cost and production cost of the battery 10 are reduced.
  • a single isolation member 14 can be designed to have a plurality of protrusions 142, this design is suitable for a typical battery 10 containing a plurality of battery cells 20 and wherein the plurality of battery cells 20 are respectively provided This is especially advantageous for the type of battery with the pressure relief mechanism 213 because the plurality of protrusions 142 will be able to isolate the pressure relief mechanism 213 of the plurality of battery cells 20 with a single isolation member 14 in place.
  • the role of the adhesive is especially advantageous for the type of battery with the pressure relief mechanism 213 because the plurality of protrusions 142 will be able to isolate the pressure relief mechanism 213 of the plurality of battery cells 20 with a single isolation member 14 in place.
  • the battery cells 20 are generally attachable to the attachment features of the battery 10 in a row.
  • the spacer member 14 including a main body 141 and a plurality of protrusions 142 protruding from the surface of the main body 141 as described above may be used, the spacer member 14 may be an integrally formed integral sheet, and the spacer When the main body 141 of the part 14 is attached to the attachment part of the battery 10 , the plurality of protrusions 142 thereon may be aligned with the pressure relief mechanisms 213 of the plurality of battery cells 20 included in the battery in a one-to-one correspondence, respectively.
  • the plurality of isolation members 14 for the plurality of battery cells 20 may also be integrally formed, wherein the positions of the plurality of isolation members 14 arranged in a row correspond to the pressure relief mechanisms 213 of the plurality of battery cells 20 respectively. s position. In this way, the assembling process of assembling the plurality of battery cells 20 to the battery 10 can be made simpler and the assembling efficiency is higher.
  • an attachment component such as thermal management component 13 may be provided with a relief structure 134 , where the relief structure 134 and the pressure relief mechanism Relief cavity 134a is formed between 213, thereby providing a space to allow actuation of pressure relief mechanism 213.
  • the arrangement of isolation member 14 and protrusions 142 therein will correspond to the arrangement of relief structure 134 or escape cavity 134a or Said to be aligned with each other.
  • the avoidance cavity 134a may be, for example, a closed cavity formed by the avoidance structure 134 and the pressure relief mechanism 213 together.
  • the inlet-side surface of the escape cavity 134a may be opened by the actuation of the pressure relief mechanism 213 to be opposite to the inlet-side surface
  • the surface of the outlet side of the outlet can be partially damaged and opened due to the high temperature and high pressure discharge, thereby forming a discharge channel for the discharge.
  • the avoidance cavity 134a may be a non-sealed cavity formed by, for example, the avoidance structure 134 and the pressure relief mechanism 213 together, and the outlet side surface of the non-sealed cavity may originally have a discharge flow out channel. As indicated by the arrows in the escape cavity 134a of FIG. 8, the discharge will be discharged outward in a generally fan-shaped direction.
  • the thermal management component 13 further includes an escape bottom wall 134b at the bottom of the escape cavity 134 and an escape side wall 134c surrounding the escape cavity 134a.
  • the avoidance bottom wall 134b referred to here refers to the wall of the avoidance cavity 134a opposite to the pressure relief mechanism 213, and the avoidance side wall 134c is adjacent to the avoidance bottom wall 134b and surrounds the wall of the avoidance cavity 134a at a certain angle, wherein the avoidance The angle formed by the side wall 134c and the avoidance bottom wall 134b may preferably be in the range of 105°-175°.
  • the thermal management part 13 may also be provided with a flow channel 133 for accommodating a fluid, and the fluid may be a cooling medium, so as to be able to cool the battery cells 20 .
  • the plurality of protrusions 142 of the isolation member 14 may be arranged as shown in FIGS. 10-11 , wherein each protrusion 142 can respectively surround its aligned avoidance cavity 134a, that is,
  • the protrusions 142 are basically covered at or outside the upper edge of the avoidance side wall 134c of the corresponding avoidance cavity 134a. That is, the protrusions 142 of the isolation member 14 are substantially covered on the upper edge of the corresponding avoidance cavity 134a, so as to isolate the applied or to-be-coated adhesive from the avoidance structure 134 or the avoidance cavity 134a.
  • the thermal management part 13 and the isolation part 14 are very beneficial to improve the assembly efficiency of the battery.
  • the process of assembling the isolation part 14 to the attaching part of the battery is relatively simple, and at the same time, the use of the plurality of protrusions 142 can isolate the applied or to-be-coated adhesive from the multiple protrusions 142 in a relatively independent manner. Outside the escape cavity 134 a corresponding to the pressure relief mechanism 213 of the battery cell 20 .
  • the applied adhesive can be prevented from affecting the pressure relief mechanism 213 of the battery cell 20 to perform its designed function, thereby ensuring the safe use of the battery.
  • this can also assist the operator to properly complete the application of the adhesive with higher efficiency when applying the adhesive.
  • the eight protrusions 142 on the body 141 will cover the respective The eight avoidance structures 134 or the avoidance cavities 134a are arranged on the 8 avoidance structures 134 or the avoidance cavities 134a, so that the adhesive cannot enter the avoidance cavities 134a.
  • a single assembly of the isolation part 14 can realize the isolation operation of the pressure relief members 213 of 8 or more battery cells 20 .
  • the present application does not limit the arrangement direction and position of the pressure relief mechanism 213 in the battery cell 20.
  • the relevant design of the isolation member 14 proposed in this application can be properly applied, and can ensure that the pressure relief mechanism 213 realizes its design function to discharge the high temperature and high pressure discharges in the battery cell when necessary, thereby ensuring the safety of the battery. Beneficial effects of safe use.
  • the thermal management component 13 may be designed to have the following specific configurations.
  • the thermal management component 13 may include a first thermal conduction plate 131 and a second thermal conduction plate 132 .
  • the second thermal conduction plate 132 is formed with a groove structure corresponding to the flow channel 133
  • the first thermal conduction plate 131 is formed with an avoidance structure 134 .
  • the first thermal conductive plate 131 and the second thermal conductive plate 132 are assembled together, for example, the first thermal conductive plate 131 and the second thermal conductive plate 132 can be assembled together by welding (such as brazing), which can be formed as described in the above embodiments the thermal management component 13.
  • welding such as brazing
  • the flow channel 133 provided in the thermal management component 13 may be arranged at least partially around the avoidance cavity 134, that is, the avoidance side wall 134c separates the flow channel 133 and the avoidance cavity 134a.
  • Weak structures damaged by high-temperature and high-pressure emissions may include, but are not limited to, portions of reduced thickness, notches (eg, cross-shaped notches 134d as shown in FIGS. 10 and 12 ), Consumables made, or consumables made of materials with a lower melting point, etc.
  • the cooling medium such as cooling liquid in the flow channel 133 flows out into the avoidance cavity 134a
  • the cooling liquid then contacts the high-temperature and high-pressure discharge from the battery cells 20 and absorbs a large amount of heat and is vaporized, so that the temperature and pressure of the high-temperature and high-pressure discharge from the battery cells 20 are significantly reduced in a short period of time.
  • Other components in the 10 such as the battery cells 20 that do not have thermal runaway play a protective role.
  • the plurality of protrusions 142 of the isolation member 14 are basically covered at or beyond the upper edge of the avoidance side wall 134c of the corresponding avoidance cavity 134a, this design can make the discharge on the side of the damage avoidance
  • the weak structure of the wall 134c and the introduction of cooling medium make the isolation member 14 and its protrusions 142 still have a certain blocking effect on the adhesive such as thermally conductive silica gel on the outside thereof, thereby improving the safety of the battery.
  • the overall structure or configuration of the isolation member 14 has been described above with reference to FIGS. 9-14 mainly from the relative positional relationship between the isolation member 14 and other components, such as the attachment member or the pressure relief mechanism 213 .
  • the spacer member 14 can be designed in various possible configurations to achieve the function described above, ie, to isolate the adhesive from the attachment member that can be used when assembling the battery cells 20 to the attachment member.
  • the space between the pressure relief mechanism 213 and the pressure relief mechanism 213 , or the applied adhesive is isolated from the space that may affect the pressure relief mechanism 213 to perform its designed function of pressure relief once the adhesive flows in.
  • the more specific structure of the isolation member 14 will be mainly described in detail below with reference to FIGS. 15-32 .
  • FIG. 15 shows a perspective view of the isolation member 14 according to some embodiments of the present application
  • FIG. 16 shows an enlarged view of a portion C of the isolation member 14 shown in FIG. 15
  • FIG. 17 shows the The spacer member 14 is a cross-sectional view taken along the line DD
  • FIG. 18 shows an enlarged view of part E of the cross-section of the spacer member 14 shown in FIG. 17 .
  • the isolation member 14 utilizes the special design of the protrusions 142 to more effectively block the adhesive such as thermally conductive silicone, so as to isolate it between the attachment member and the pressure relief mechanism 213 . This ensures that the pressure relief mechanism 213 can be actuated and normally achieve its designed function.
  • the protrusions 142 provided on the isolation member 14 include a first protrusion 1421 and a second protrusion 1422 , wherein the first protrusion 1421 and the second protrusion 1422 It protrudes in the same direction from the surface of the main body 141 .
  • the spacer member 14 is disposed between the battery cells 20 and the attachment member.
  • the first protrusions 1421 and the second protrusions 1422 are arranged to protrude from the surface of the main body 141 toward the direction away from the attaching member, that is, Protrudes toward the battery cells 20 .
  • the first protrusion 1421 corresponds to the position of the pressure relief mechanism 213 .
  • the first protrusion 1421 may be arranged to be in contact with the pressure relief mechanism 213 or the actuation area (or relief area) of the pressure relief mechanism 213 or with the main body 141 attached to the attachment member.
  • the avoidance structures 134 or the avoidance cavities 134a in the above embodiments are aligned in the protruding direction.
  • the height of the protruding portion of the first protrusion 1421 is beneficial to prevent the adhesive from entering into the space between the pressure relief mechanism 213 and the attaching part, such as when applying adhesive, so as to prevent the inflowing adhesive from hindering the pressure relief mechanism 213 of normal work.
  • the second protrusion 1422 is spaced apart from the first protrusion 1421 .
  • the second protrusions 1422 are disposed around the first protrusions 1421 .
  • the second protrusions 1422 are annular structures and are disposed around the outer circumference of the first protrusions 1421 .
  • the protruding height of the second protrusion 1422 is also beneficial to block the adhesive from entering the space between the pressure relief mechanism 213 and the attachment member around the first protrusion 1421 .
  • the cooperation of the two in structure plays a multiple blocking effect on the adhesive, so the adhesive can be intercepted more effectively and reliably to prevent
  • the adhesive enters between the attachment member and the pressure relief mechanism 213 to prevent the normal actuation of the pressure relief mechanism 213 when the internal pressure or temperature of the battery cell 20 reaches a threshold value, and prevents the adhesive from flowing in to block the relief passage and thereby The discharge of the exhaust discharged from the battery cells 20 is blocked, thereby further improving the safety performance of the battery 10 .
  • a groove 143 is formed between the first protrusion 1421 and the second protrusion 1422 .
  • the grooves 143 may accommodate at least a portion of the adhesive to prevent application of the adhesive, or to be applied, from being applied between the attachment member and the pressure relief mechanism 213 .
  • the groove 143 can specifically accommodate part of the adhesive overflowing the second protrusion 1422, the adhesive accidentally dripping into the groove 143 during the process of attaching the battery cell 20 to the attaching part, and entering into the groove 143 for other reasons. Adhesive and the like in the groove 143 .
  • the grooves 143 between the first protrusions 1421 and the second protrusions 1422 can accommodate at least part of the adhesive, which is equivalent to an additional barrier for the adhesive.
  • the groove 143 can also store a certain amount of adhesive from the second protrusion 1421. 1422 overflows the adhesive, thereby preventing the adhesive from flowing further into the space between the pressure relief mechanism 213 and the attachment part.
  • the structures of the first protrusion 1421 , the second protrusion 1422 or the groove 143 may be designed accordingly.
  • the second protrusion 1422 includes a first side wall 1422a, a second side wall 1422b, and a connecting wall 1422c for connecting the first side wall 1422a and the second side wall 1422b.
  • the first side wall 1422a is connected to the main body 141
  • the second side wall 1422b is connected to the main body 141
  • the first side wall 1422a and the second side wall 1422b are disposed opposite to each other.
  • the first side wall 1422 a is close to the first protrusion 1421
  • the first side wall 1422 a is a wall shared by the second protrusion 1422 and the groove 143 .
  • the first sidewall 1422a and the second sidewall 1422b are parallel to the direction of the attachment member toward the battery cell 20 if the battery cell 20 is attached to the attachment member, That is, the first side wall 1422a and the second side wall 1422b are parallel to the protruding direction of the second protrusion 1422 .
  • the connecting wall 1422c is perpendicular to the protruding direction of the second protrusion 1422 .
  • the isolation member 14 of this structure not only has a good effect of blocking the adhesive, but also requires a relatively simple mold for processing, which is easy to process and has a low cost.
  • At least one of the first sidewall 1422a and the second sidewall 1422b includes a first protrusion 1401 , the first protrusion 1401 is protruded along the first direction X, wherein the first protrusion A direction X is perpendicular to the protruding direction of the second protrusions 1422 .
  • the first direction X is a direction perpendicular to the protruding direction of the second protrusions 1422 in the D-D cross section shown in FIG. 17 . Therefore, the first direction X in the embodiment of the present application should be understood as being perpendicular to the protruding direction of the second protrusions 1422 , for example, the direction shown by the arrow in FIG. 19 .
  • the actual protruding direction of the second protrusion 1422 is the direction in which the attachment member faces the battery cell 20.
  • the second protrusion 1422 is used.
  • the upward direction of the protrusions 1422 along the paper surface is the protruding direction
  • the first direction X is a direction perpendicular to the protruding direction of the second protrusions 1422, for example, along the paper surface to the right. Therefore, the first protrusion 1401 may protrude in the first direction X indicated by the arrow.
  • the first protrusion 1401 is provided on the first side wall 1422a and protrudes toward the direction close to the second side wall 1422b. While the second protrusion 1422 meets the requirement of blocking the adhesive, the first protrusion 1401 can also increase the accommodating volume of the groove 143, thereby accommodating more adhesive and preventing the adhesive from entering the attachment part and the space between the pressure relief mechanism 213.
  • first protruding portion 1401 provided on the first side wall 1422a may also protrude in the opposite direction of the arrow direction shown in FIG. 19, or the first protruding portion 1401 may also be provided on the second side wall 1422b, the The first protruding portions 1401 on the two side walls 1422b may protrude in a direction perpendicular to the protruding direction of the second protrusions 1422, for example, protrude in a direction close to or away from the first side wall 1422a, which is not limited in this embodiment of the present application .
  • the first protrusion 1401 can be provided on the first side wall 1422a and/or the second side wall 1422b according to requirements, so as to effectively block the adhesive, increase the accommodating volume of the groove 143, and reduce the second side wall 1422b.
  • the first protrusion 1401 is formed by at least part of the first side wall 1422a or the second side wall 1422b.
  • At least one of the first side wall 1422 a and the second side wall 1422 b is disposed obliquely with respect to the direction of the attachment member toward the battery cell 20 .
  • the end of the first side wall 1422a connected to the connecting wall 1422c faces toward the side where the second side wall 1422b is located.
  • the end of the second side wall 1422b connected to the connecting wall 1422c is inclined to the side where the first side wall 1422a is located.
  • the inclined arrangement of the first side wall 1422a can increase the accommodating volume of the groove 143 to accommodate more adhesive, thereby effectively preventing the adhesive from entering between the pressure relief mechanism 213 and the attachment component.
  • the second side wall 1422b is inclined and disposed, which can increase the coating area of the adhesive on the periphery of the second protrusion 1422 and ensure the reliability of the bonding.
  • the first side wall 1422a and/or the second side wall 1422b are inclined and arranged to facilitate the drafting of the isolation member 14 during the manufacturing process.
  • the oblique setting direction of the first side wall 1422a and/or the second side wall 1422b may also have other forms, for example, one end of the first side wall 1422a connected to the connecting wall 1422c protrudes toward the first side.
  • the side where the riser 1421 is located is inclined, and/or the end of the second side wall 1422b connected to the connecting wall 1422c is inclined to the side away from the first side wall 1422a, which is not limited in this embodiment of the present application.
  • first protrusions can be provided on the first sidewall 1422a and/or the second sidewall 1422b 1401, which is not limited in this embodiment of the present application.
  • the position of the first side wall 1422a or the second side wall 1422b can be determined according to the position of the first side wall 1422a or the second side wall 1422b
  • the spatial relationship between the main plane and the direction of the attachment member toward the battery cell 20 is determined.
  • the main plane of the first sidewall 1422a as an example, it may be the plane where the first sidewall 1422a is located, or the plane where most of the first sidewall 1422a is located, or the plane where the flat portion of the first sidewall 1422a is located. plane, etc.
  • the connecting wall 1422c includes a second protrusion 1402
  • the second protrusion 1402 is protruded along the direction of the attachment member toward the battery cell 20 , or along the battery cell 20 toward the attachment member direction highlight setting. Since the protruding direction of the second protrusion 1422 is the direction in which the attachment member faces the battery cell 20 , the second protrusion 1402 can also be understood as protruding along the protruding direction of the second protrusion 1422 , or along the same direction as the second protrusion 1422 .
  • the second protrusion 1422 is protruded in a direction opposite to the protruding direction.
  • the second protrusions 1402 are protruded along the direction of the battery cells 20 toward the attachment member.
  • the provision of the second protrusion 1402 makes the surface of the connecting wall 1422c uneven, thereby forming a space capable of accommodating the adhesive.
  • the adhesive will first remain in the receiving space on the surface of the connecting wall 1422c, which is equivalent to adding another weight block to prevent the adhesive from continuing to flow in the direction of the first protrusion 1421 .
  • the width of the second protrusion 1422 is sufficient, the smaller the curvature of the surface of the connecting wall 1422c is, the more adhesive the connecting wall 1422c can store.
  • the second protruding portion 1402 is formed by at least part of the connecting wall 1422c.
  • the second protruding portion 1402 may also be protruded toward the direction of the battery cell 20 , which is not limited in this embodiment of the present application.
  • the space occupied by the second protrusion 1422 can be reduced, and the accommodating volume of the groove 143 can be increased.
  • the second protrusion 1402 may be provided on the connecting wall 1422c
  • the first protrusion 1401 may be provided on at least one of the first side wall 1422a and the second side wall 1422b, and /or at least one of the first side wall 1422a and the second side wall 1422b is disposed obliquely, which is not limited in this embodiment of the present application.
  • the second protrusion 1422 includes a cavity 1404 . At least one of the first side wall 1422a, the second side wall 1422b and the connecting wall 1422c is provided with an opening 1405. The opening 1405 communicates with the cavity 1404 so that at least a portion of the adhesive enters the cavity 1404 through the opening 1405 .
  • the adhesive located around the second protrusion 1422 can enter the cavity 1404 through the opening 1405, which not only fully utilizes the first
  • the space occupied by the two protrusions 1422 can be reduced, and the adhesive around the second protrusion 1422 can be reduced to prevent the adhesive from entering the space between the attachment part and the pressure relief mechanism 213 .
  • the shape of the second protrusion 1422 may adopt any one of the structures shown in the above-mentioned FIGS. 18-21 or the following drawings.
  • the shape of the second protrusion 1422 is not limited.
  • cavity 1404 may be a semi-enclosed structure. Referring to FIG. 22 , the cavity 1404 may be surrounded by the walls of the second protrusion 1422 , the wall of the second protrusion 1422 is located on the side of the isolation member 14 close to the battery cell 20 , and the cavity 1404 is attached near the isolation member 14 . One side of the component communicates with the outside world, forming a semi-closed chamber. In the case where the spacer member 14 is attached to the attachment member, the opening of the cavity 1404 that communicates with the outside world may be blocked by the attachment member.
  • the cavity 1404 may be a fully enclosed structure.
  • the cavity 1401 may be surrounded by the wall of the second protrusion 1422 and the main body 141 .
  • the second protrusion 1422 may be an independent component connected with the main body 141 .
  • the opening 1405 can be opened as large as possible to prevent the adhesive from entering the cavity from excessive resistance or directly blocking the opening 1405 .
  • the size of the opening 1405 can be designed according to the structure of the second protrusion 1422, the coating thickness of the adhesive, and the characteristic parameters of the adhesive such as adhesive strength, viscosity, gel time, and the like.
  • the structure of the second protrusion 1422 of the isolation member 14 has been described in detail above, and the first protrusion 1421 of the isolation member 14 will be described below with reference to the accompanying drawings. It should be understood that the structures of the first protrusions 1421 and the second protrusions 1422 may be described respectively by taking the same drawing as an example in the embodiments of the present application, but this does not limit the isolation member 14 to be composed of the first protrusions shown in the drawings. 1421 and the second protrusion 1422 are combined.
  • the first protrusion 1421 may include a third side wall 1421a and a top wall 1421b.
  • the third sidewall 1421a is connected to the main body 141 , the third sidewall 1421a is disposed opposite to the first sidewall 1422a , wherein the third sidewall 1421a is a wall shared by the first protrusion 1421 and the groove 143 .
  • the top wall 1421b is connected to one end of the third side wall 1421a close to the battery cell 20 .
  • the plane where the top wall 1421b is located is perpendicular to, or substantially perpendicular to, the protruding direction of the first protrusion 1421 .
  • the third sidewall 1421a is parallel to the direction in which the attachment member faces the battery cell 20 if the battery cell 20 is attached to the attachment member, ie the third sidewall 1421a is parallel to the first protrusion
  • the protruding direction of 1421 that is, the protruding direction of the second protrusion 1422).
  • the isolation member 14 with this structure not only has a good effect of blocking the adhesive, but also requires a relatively simple mold for processing, which is easy to process and has a low cost.
  • the third side wall 1421 a may include a third protrusion 1403 , and the third protrusion 1403 is protruded along the first direction X, wherein the first direction X and the first protrusion 1421 The protruding direction is perpendicular.
  • the protruding direction of the first protrusions 1421 is the same as the protruding direction of the second protrusions 1422 , so the first direction X here is also perpendicular to the protruding direction of the second protrusions 1422 .
  • a third protrusion 1403 is provided on the third side wall 1421a, wherein the third protrusion 1403 is protruded along the first direction X indicated by the arrow.
  • the third side wall 1421a is the wall shared by the first protrusion 1421 and the groove 143.
  • the third protrusion 1403 is provided on the third side wall 1421a and protrudes away from the first side wall 1422a, which can increase the size of the groove 143. Accommodating volume to accommodate more adhesive.
  • the third protruding portion 1403 may also be protruded toward the opposite direction of the direction indicated by the arrow in FIG. 24 , which is not limited in this embodiment of the present application.
  • the third sidewall 1421a is disposed inclined relative to the direction of the attachment member toward the battery cell 20 .
  • the end of the third side wall 1421a connected to the top wall 1421b is inclined in a direction away from the second protrusion 1422, so that the accommodating volume of the groove 143 can be increased to accommodate more adhesive, thereby effectively preventing Adhesive enters between the pressure relief mechanism 213 and the attachment components.
  • the manner in which the third side wall 1421a is disposed obliquely facilitates the drafting of the isolation member 14 during the manufacturing process.
  • the inclined setting direction of the third side wall 1421a may also have other forms, for example, the end of the third side wall 1421a connected to the top wall 1421b is inclined to the side where the second protrusion 1422 is located, This embodiment of the present application does not limit this.
  • the third side wall 1421a is obliquely arranged, the third protrusion 1403 may also be provided on the third side wall 1421a.
  • the structures of the first protrusions 1421 shown in FIGS. 23-25 and described in related texts can be combined arbitrarily with the structures of the second protrusions 1422 shown in FIGS. 18-23 and described in related texts. This is also not limited.
  • openings may also be provided on the third side wall 1421a, so that the adhesive in the grooves 143 passes through the isolation member 14 through the openings and enters between the isolation member 14 and the attachment member .
  • the groove 143 is formed by the third sidewall 1421a of the first protrusion 1421, the first sidewall 1422a of the second protrusion 1422, and the main body 141. Therefore, by rationally designing the first sidewall 1422a, the first sidewall 1422a, the The structure of the three side walls 1421a and the main body 141 can realize the groove 143 of a specific structure, so as to achieve the purpose of increasing the volume of the groove 143 for accommodating the adhesive.
  • the width of the second protrusion 1422 may be 1 mm-8 mm.
  • the width of the second protrusion 1422 mentioned here can be understood as the width range of the second protrusion 1422 .
  • the width is uniform, and the uniform width should be greater than 1 mm and less than 8 mm.
  • the maximum width and the minimum width should be in the range of 1mm-8mm.
  • the width of the second protrusions 1422 refers to the width of the second protrusions 1422 in the first direction X, and the first direction X is perpendicular to the protruding direction of the second protrusions 1422 .
  • the cross-sectional shape of the second protrusion 1422 is any one of the following shapes: a zigzag shape, a convex lens shape, a concave lens shape, a trapezoid, an arch, and the like.
  • the width of the groove 143 is 1 mm-8 mm.
  • the meaning of the width of the groove 143 is similar to the meaning of the width of the second protrusion 1422, which is not repeated here.
  • the cross-sectional shape of the groove 143 is any one of the following shapes: a drum shape, a bag shape, a bowl shape, a trapezoid shape, a rectangle shape, and the like.
  • the first protrusions 1421 and the second protrusions 1422 may be formed on the surface of the main body 141 through a blister process.
  • the spacer member 14 is made by forming the first protrusions 1421 and the second protrusions 1422 on the sheet or film based on one or one sheet or film made of thermoplastic material through a blister process. This helps to simplify the manufacturing process of the isolation member 14 and reduce the cost.
  • first protrusions 1421 and/or the second protrusions 1422 may be separate components connected to the main body 141 .
  • first protrusions 1421 and/or the second protrusions 1422 are prepared, they are attached to the main body 141 , thereby making the spacer member 14 . This helps to reduce the cost of the mold when preparing the relatively complicated first protrusions 1421 and/or the second protrusions 1422 .
  • the second protrusion 1422 may be an elastic member attached to the surface of the main body 141 .
  • the elastic member has a certain elastic deformation ability, and acts as the second protrusion 1422 to block the adhesive, which can adapt to a large installation error.
  • the elastic member can be, for example, a rubber pad, a silicone pad, a foam, and the like.
  • the loose hole inside the elastic member can be used to accommodate part of the adhesive.
  • a channel may be provided on the elastic member, and a part of the adhesive may be accommodated by the channel. It can be understood that even if the second protrusion 1422 is made of an inelastic member, a channel for accommodating the adhesive may also be provided in the second protrusion 1422, which is not limited in this embodiment of the present application.
  • the height of the first protrusions 1421 is greater than or equal to the predetermined application height of the adhesive, and the first protrusions 1421 are configured to be compressed to when the battery cell 20 is attached to the attachment member Consistent with the height of the adhesive; and/or the height of the second protrusion 1422 is greater than or equal to the predetermined application height of the adhesive, and the second protrusion 1422 is configured to be used when the battery cell 20 is attached to the attachment member Compressed to the height of the adhesive.
  • first protrusion 1421 and the second protrusion 1422 can effectively prevent the adhesive from being applied between the attachment member and the pressure relief mechanism 213 . At the same time, this allows the isolation member 14 to not interfere with the reliable bond between the attachment member and the pressure relief mechanism 213 and the actuation of the pressure relief mechanism 213 . Also, the first protrusions 1421 and the second protrusions 1422 may be compressed to be bonded to the attaching parts of the battery cell 20 and the battery 10 by gluing or bonding the attaching parts of the battery cell 20 and the battery 10 through the adhesive applied on the bonding surface.
  • the first protrusions 1421 and the second protrusions 1422 will not leave any gaps between the bonding surfaces of the battery cells 20 and the attaching parts of the battery 10, and thus can be extremely reliable This ensures that the adhesive is isolated from the areas where the pressure relief mechanism 213 is actuated and forms the passage of the discharge.
  • the height of the second protrusion 1422 is equal to the height of the first protrusion 1421 . In this way, the second protrusions 1422 and the first protrusions 1421 will not leave any gaps between the adhesive surfaces of the battery cells 20 and the attaching parts of the battery 10, so that the adhesive can be extremely reliably ensured Isolated from the area where the pressure relief mechanism 213 is actuated and forms a passage for the discharge.
  • the protrusion 142 further includes a plurality of annular protrusions disposed around the second protrusion 1422 , and the plurality of annular protrusions are sequentially surrounded and spaced from each other.
  • the protrusion 142 further includes a third protrusion 1423, and the third protrusion 1423 is arranged around the second protrusion 1422.
  • the structure design of the third protrusion 1423 is similar to that of the second protrusion 1422 .
  • a groove 144 is formed between the second protrusion 1422 and the third protrusion 1423 .
  • the groove 144 is formed by one side wall of the second protrusion 1422 (ie, the second side wall 1422 b ), one side wall of the third protrusion 1423 and the main body 141 .
  • Grooves 144 function similarly to grooves 143 for receiving at least part of the adhesive. It should be understood that more protrusions may be provided on the outer circumference of the third protrusion 1423, and the more protrusions there are, the better the blocking effect on the adhesive. In addition, more grooves may be arranged between the protrusions, and the more grooves there are, the better the blocking effect on the adhesive.
  • the embodiment of the present application further provides another isolation component 14 .
  • FIG. 28 shows a perspective view of the isolation member 14 according to some embodiments of the present application
  • FIG. 29 shows an enlarged view of the portion F of the isolation member 14 shown in FIG. 28
  • FIG. 30 shows the The spacer member 14 is a cross-sectional view taken along the GG line
  • FIG. 31 is an enlarged view of a portion H of the cross-section of the spacer member 14 shown in FIG. 30 .
  • the isolation member 14 uses the special design of the protrusions 142 to prevent the adhesive from adhering to the pressure relief mechanism 213 , thereby ensuring that the pressure relief mechanism 213 can be actuated smoothly.
  • the wall of the protrusion 142 facing the pressure relief mechanism 213 is provided with a through hole 1406 , and the through hole 1406 is configured to allow the discharge from the battery when the pressure relief mechanism 213 is actuated. Emissions from the cells 20 pass through the isolation member 14 .
  • the protrusions 142 may be the protrusions 142 described in FIGS. 9 to 14 , or may be the protrusions 142 described in FIGS. 15 to 27 .
  • the first protrusion 1421 includes a third side wall 1421 a and a top wall 1421 b, wherein the top wall 1421 b is a wall facing the pressure relief mechanism 213 .
  • the first protrusion 1421 faces the wall of the pressure relief mechanism 213 , that is, the top wall 1421 b is provided with a through hole 1406 .
  • the through holes 1406 are configured to pass the exhaust from the battery cells 20 through the isolation member 14 when the pressure relief structure 213 is actuated.
  • the through hole 1406 provided on the top wall 1421b of the first protrusion 1421 can not only provide a space for the actuation of the pressure relief mechanism 213, but also form a channel for the discharge, and the through hole 1406 can be in the first
  • the adhesive is allowed to enter the through hole 1406 to prevent the adhesive from bonding with the pressure relief mechanism 213 and affecting the smooth opening of the pressure relief mechanism 213 .
  • the first protrusion 1421 may only include a third side wall 1421 a, wherein the third side wall 1421 a forms an edge of the through hole 1406 at one end close to the battery cell 20 .
  • the through hole 1406 is disposed around the pressure relief mechanism 213 to prevent adhesive from entering between the pressure relief mechanism 213 and the attachment components, so as to prevent the pressure relief mechanism 213 from being bonded and unable to act normally.
  • the through hole 1406 is configured to correspond to the position of the escape cavity 134a, and the through hole 1406 surrounds the periphery of the escape cavity 134a facing the pressure relief mechanism 213, It is avoided that the pressure relief mechanism 213 is stuck and cannot be normally actuated.
  • the through holes 1406 are configured to correspond to the location of the actuation area of the pressure relief mechanism 213, and the through holes 1406 are positioned around the actuation area to prevent adhesive from entering the actuation area and the attachment component. During this time, the pressure relief mechanism 213 is prevented from being bonded and cannot be normally actuated.
  • a single isolation member 14 may be designed to include a main body 141 and one or more protrusions 142 protruding from the surface of the main body 141 .
  • the battery 10 may include a plurality of battery cells 20 , each of which includes a pressure relief mechanism 213 .
  • the approximate position of the pressure relief mechanism 213 is schematically shown with a dotted frame, which should not be construed as a limitation of the present application.
  • the protrusions 142 and the pressure relief mechanisms 213 may correspond one-to-one.
  • the protrusions 142 here can be any of the protrusions 142 described in FIGS. 9 to 32 .
  • the protrusions 142 may correspond to at least two pressure relief mechanisms 213 .
  • the protrusions 142 here can be any of the protrusions 142 described in FIGS. 9 to 32 .
  • the protrusions 142 when the protrusions 142 are the protrusions 142 described in FIGS. 15 to 32 , the protrusions 142 include a first protrusion 1421 and a second protrusion 1422 .
  • the first protrusions 1421 and the second protrusions 1422 may be in a one-to-one correspondence as shown in FIGS. 15-32 .
  • the second protrusions 1422 may correspond to at least two first protrusions 1421 as shown in FIG. 35 .
  • the above-mentioned protrusions 142 correspond to the pressure relief mechanisms 213 one-to-one, or the protrusions 142 correspond to at least two pressure relief mechanisms 213, both of which are understood as the one-to-one correspondence between the first protrusions 1421 and the pressure relief mechanisms 213, or The first protrusions 1421 correspond to at least two pressure relief mechanisms 213 .
  • the second protrusions 1422 correspond to the first protrusions 1421 one-to-one, and the second protrusions 1422 correspond to The pressure relief mechanisms 213 are in one-to-one correspondence.
  • the second protrusions 1422 correspond to the first protrusions 1421 one-to-one, and the second protrusions 1422 correspond to the at least two pressure relief mechanisms 213 .
  • the second protrusions 1422 correspond to at least two first protrusions 1421
  • the second protrusions 1422 correspond to at least two pressure relief mechanisms 213 .
  • the second protrusions 1422 correspond to the plurality of first protrusions 1421 (or the plurality of pressure relief mechanisms 213 )
  • the second protrusions 1422 are used to block the adhesive for the plurality of first protrusions 1421 .
  • the gluing machine can be guided to perform gluing operation according to a predetermined path, and on the other hand, it can be ensured that the adhesive will not be applied to the area within the range of the second protrusion 1422. This prevents the adhesive from being applied to the position where the pressure relief mechanism 213 is located, so as to ensure that the adhesive is applied to the proper position efficiently and accurately.
  • the adhesive applied to the range of the second protrusions 1422 during the gluing process is reduced, which can reduce the adhesive that may be applied to the first protrusions 1421, thereby preventing the adhesive from entering the pressure relief mechanism 213 and attaching between parts.
  • the isolation member 14 and the protrusions 142 therein may adopt one or more of the following specific designs, materials or manufacturing processes, and the isolation member 14 according to the following preferred examples may be suitable for use in principle In any of the above-mentioned embodiments of the present application.
  • the height of the protrusions 142 in the isolation member 14 may be greater than or equal to the predetermined application height of the adhesive, which will ensure that the adhesive will not enter or a small amount of the adhesive will enter the leak when the adhesive is applied.
  • the area between the pressing mechanism 213 and the attachment part is very advantageous especially if the escape structure 134 is provided in the attachment part.
  • the protrusions 142 are also configured to be compressed so as to conform to the height of the adhesive when the battery cell 20 is attached to the attachment member, thereby ensuring the connection between the attachment member and the battery cell 20 .
  • the protrusions 142 may have a height slightly greater than the predetermined application height of the adhesive prior to attaching the battery cells 20 to the attaching components of the battery, after being glued or pressed by the adhesive applied to the bonding surface.
  • the protrusions 142 can be compressed to the adhesive surface by simply pressing the adhesive surfaces on the battery cells 20 and the battery attachment parts that are substantially parallel to each other. Consistent height, where the protrusions 142 will not leave any gaps between the bonding surfaces of both the battery cells 20 and the attaching components of the battery, thereby ensuring that the adhesive is isolated from the pressure relief mechanism 213 actuation and outside the area where the channels for emissions are formed.
  • the isolation member 14 may be made of thermoplastic material through a blister process. This helps to simplify the manufacturing process and reduce the cost of the isolation member 14, and, for the isolation member 14 including a main body 141 and a plurality of protrusions 142, the isolation member 14 made of a thermoplastic material through a blister process is Particularly economical, it is possible to form the spacer member 14, for example, by forming a plurality of protrusions 142 on the sheet or film by a blister process on the basis of a sheet or film made of thermoplastic material.
  • the isolation member 14 is also made of a material that is easily damaged by emissions from the battery cells 20 , so that the exhaust can more easily break through the isolation member 14 .
  • the protrusions 142 or the entire isolation member 14 may be made of materials or structures that are easily damaged by high-temperature and high-pressure emissions or have low penetration strength.
  • the protrusions 142 or the entire isolation member 14 may be made of a thermoplastic material with a melting point not greater than the discharge temperature of the discharge, thereby enabling the isolation member to be used under normal use conditions in which the battery cells 20 do not experience thermal runaway. 14 has relatively high structural strength, and at the same time can be reliably destroyed by high temperature and high pressure discharge in a relatively short period of time in an emergency of thermal runaway of the battery cell 20 .
  • the isolation member 14 can also adopt the structure without protrusions according to other embodiments. 142, but a special coating, such as a gel-repellent layer, for preventing the adhesive from being applied between the attachment part and the pressure relief mechanism 213 is provided at the position corresponding to the protrusion 142 in the above-mentioned embodiment.
  • a special coating such as a gel-repellent layer, for preventing the adhesive from being applied between the attachment part and the pressure relief mechanism 213 is provided at the position corresponding to the protrusion 142 in the above-mentioned embodiment.
  • the area coated with the gel-repellent layer at least covers the peripheral edge of each avoidance cavity 134a facing the corresponding pressure relief mechanism 213 , or at least covers the actuation area or the relief area of the pressure relief mechanism 213 .
  • the surface of the protrusions 142 may be further provided with a gel-repellent layer, so as to improve the The adhesive is reliably isolated outside the actuation area where the pressure relief mechanism 213 is actuated and forms a passage for the discharge or outside the escape cavity 134a.
  • FIG. 36 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 includes: 301 providing a plurality of battery cells, at least one battery cell of the plurality of battery cells includes a pressure relief mechanism, and the pressure relief mechanism is configured to or when the temperature reaches a threshold, actuated to relieve internal pressure; 302 provides attachment means adapted to be attached to the battery cell by adhesive; 303 provides isolation means configured to prevent the adhesive is applied between the attachment member and the pressure relief mechanism; and, 304, an adhesive is applied to attach the battery cells to the attachment member.
  • the spacer member By providing the spacer member, the application of adhesive between the attachment member and the pressure relief mechanism can be prevented in an efficient manner during the battery production process. At the same time, the application efficiency and accuracy of the adhesive can also be improved, thereby improving the production efficiency of the battery.
  • the pressure relief mechanism has an actuation region, and the pressure relief mechanism is configured to form a relief passage in the actuation region for releasing the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold;
  • the isolation member has a main body and protrusions disposed protruding from the surface of the main body, the protrusions are disposed to correspond to the positions of the actuation regions of the pressure relief mechanism, and the protrusions are configured to surround at least the actuation regions to prevent sticking agent enters the actuation area.
  • the attachment member includes a relief structure configured to provide a space to allow actuation of the pressure relief mechanism, forming a relief cavity between the relief structure and the pressure relief mechanism; and the isolation member has a body and protrudes beyond the The protrusions are arranged on the surface of the main body, the protrusions are arranged to correspond to the positions of the escape chambers, and the protrusions are configured to surround at least the periphery of the escape chambers facing the pressure relief mechanism to prevent the adhesive from entering the escape chambers.
  • the isolation member can be flexibly manufactured according to actual needs, so that the manufactured single isolation member can use multiple protrusions for the actuation regions of multiple pressure relief mechanisms or respectively for multiple avoidance cavities. effect, which will help reduce production costs.
  • providing the isolation member includes forming protrusions on the surface of the body using a blister process.
  • the required isolation parts can be processed and manufactured relatively conveniently and at low cost, and the advantages in manufacturing are particularly significant for the manufacture of a single isolation part provided with a plurality of protrusions.
  • FIG. 37 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • the apparatus 400 according to some embodiments of the present application includes: a battery cell preparation module 401 for preparing a plurality of battery cells, at least one of the plurality of battery cells includes: a pressure relief Mechanism, the pressure relief mechanism is configured to be actuated to relieve the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value; attachment component preparation module 402 for preparing a suitable for attaching to the battery cell by adhesive The attachment part of the body; the isolation part preparation module 403 for preparing the isolation part configured to prevent the application of adhesive between the attachment part and the pressure relief mechanism; and the assembly module 404 for the isolation part relative to the pressure relief mechanism.
  • the battery cells or attachment members are mounted and secured, and an adhesive is applied to attach the battery cells to the attachment members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申请公开了一种电池及其相关装置、制备方法和制备设备。该电池包括电池单体,所述电池单体包括泄压机构,所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;以及附接部件,其适于通过粘接剂附接至所述电池单体;以及隔离部件,所述隔离部件被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构之间。通过设置隔离部件,能够在电池生产过程中以有效的方式防止粘接剂施加在所述附接部件和所述泄压机构之间。同时,还能够提高粘接剂的施加效率和准确性,从而提高电池的生产效率。

Description

电池及其相关装置、制备方法和制备设备
相关申请的交叉引用
本申请要求享有于2020年07月10日提交的名称为“电池及其相关装置、制备方法和制备设备”的国际专利申请PCT/CN2020/101443的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,具体涉及一种电池及其相关装置、制备方法和制备设备。
背景技术
化学电池、电化电池、电化学电池或电化学池是指通过氧化还原反应,把正极、负极活性物质的化学能,转化为电能的一类装置。与普通氧化还原反应不同的是氧化和还原反应是分开进行的,氧化在负极,还原在正极,而电子得失是通过外部线路进行的,所以形成了电流。这是所有电池的本质特点。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的类型。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。世界上很多电化学科学家,都把研发兴趣集中在做为电动汽车动力的化学电池领域。
锂离子电池作为化学电池的一种,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在一些电子设备、电动交通工具、电动玩具和电动设备上得到了广泛应用,例如,锂离子电池目前广泛地应用于手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具,等等。
随着锂离子电池技术的不断发展,对锂离子电池的性能提出了更高的要求,希望锂离子电池能够同时考虑多方面的设计因素,其中锂离子电池的安全性能尤为重要。
发明内容
本申请提出一种电池及其相关装置、制备方法和制备设备,以提高电池的安全性能。
根据本申请的第一方面,提供了一种电池,该电池包括电池单体,所述电池单体包括泄压机构,所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;以及附接部件,其适于通过粘接剂附接至所述电池单体;以及隔离部件,所述隔离部件被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构之间。
通过设置隔离部件,能够在电池生产过程中以有效的方式防止粘接剂施加在所述附接部件和所述泄压机构之间。同时,还能够提高粘接剂的施加效率和准确性,从而提高电池的生产效率。
在一些实施例中,所述泄压机构具有致动区域,而且所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道。
通过泄压机构致动时在所述致动区域形成的泄放通道,可在电池发生热失控的情况下引导电池单体的排放物经由形成的泄放通道向外排放,从而提高了电池的安全性能。
在一些实施例中,所述隔离部件被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域中。
以此方式针对性布置的隔离部件,能够更可靠地防止粘接剂妨碍泄压机构在所述电池单体的内部压力或温度达到阈值时的正常致动,以及防止粘接剂流入而阻塞泄放通道进而阻塞电池单体泄放的排放物的排出。由此,可进一步提高电池的安全性能。
在一些实施例中,所述隔离部件具有主体以及突出于所述主体表面布置的凸起,所述凸起被布置为与所述泄压机构的所述致动区域的位置相对应,而且所述凸起被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
这种布置能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在泄压机构的表面上,从而对泄压机构在致动时造成阻碍。并且,这种布置可根据实际需要而灵活地设计成这样一种隔离部件,其中单个隔离部件能够以多个凸起分别针对多个泄压机构的致动区域实现隔离粘接剂的效果。这有助于降低生产成本。
在一些实施例中,所述附接部件包括避让结构,所述避让结构被构造为提供允许所述泄压机构致动的空间,并且,其中在所述避让结构和所述泄压机构之间形成避让腔。
设置这种避让结构能够更可靠地保证泄压机构有效致动所需的操作空间或动作空间,此外,避让腔能够提供用于电池单体的排放物的缓冲空间,从而降低电池单体的排放物对外部结构或部件的冲击压力,进一步提高电池的安全性能。
在一些实施例中,所述隔离部件被构造成至少包围所述避让腔面向所述泄压机构一侧的周缘,以防止所述粘接剂进入所述避让腔中。
以此方式针对性布置的隔离部件,能够更可靠地保证避让腔所提供的泄压机构有效致动所需的操作空间或动作空间不会被粘接剂部分地占据,而影响到泄压机构的正常致动,同时也保证了避让腔能够在自电池单体泄放排放物时起到提供缓冲空间的 作用。
在一些实施例中,所述隔离部件具有主体以及突出于所述主体表面布置的凸起,所述凸起被布置为与所述避让腔的位置相对应,并且所述凸起被构造成至少包围所述避让腔面向所述泄压机构一侧的周缘,以防止所述粘接剂进入所述避让腔。
这种布置能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加到避让腔中,从而使得避让腔无法提供泄压机构有效致动所需的操作空间。并且,这种布置可根据实际需要而灵活地设计成这样一种隔离部件,其中单个隔离部件能够以多个凸起分别罩设于多个避让腔上以实现隔离粘接剂的效果,这有助于降低生产成本。
在一些实施例中,所述凸起的高度大于或等于所述粘接剂的预定施加高度,并且被构造成在所述电池单体附接到所述附接部件的情况下被压缩以与所述粘接剂的高度一致。
这种布置方式确保凸起能够有效地防止粘接剂施加在所述附接部件和所述泄压机构之间。同时,这使得隔离部件不会影响附接部件和泄压机构之间的可靠粘接和泄压机构的致动。并且,在通过粘接表面涂覆的粘接剂胶粘压合或接合电池单体及电池的附接部件时,凸起可被压缩至与粘接剂一致的高度,由此凸起将不会在电池单体及电池的附接部件二者的粘接表面之间留出任何空隙,因而能够极为可靠地确保粘接剂被隔离于泄压机构致动并形成排放物的通道的区域之外。
在一些实施例中,所述凸起采用吸塑工艺形成于所述主体表面上。
通过采用吸塑工艺,可以较为便捷地且低成本地加工制造所需的隔离部件,并且尤其对于在单个隔离部件上形成多个凸起的情形,采用吸塑工艺在成片的薄片或薄膜的基础上加工形成凸起,是尤为有利且经济的。
在一些实施例中,所述凸起包括第一凸起和第二凸起,所述第一凸起与所述泄压机构的位置相对应,所述第二凸起围绕所述第一凸起设置,所述第一凸起和所述第二凸起用于防止所述粘接剂施加在所述附接部件和所述泄压机构之间。
第一凸起和第二凸起突出的高度有利于在诸如施加粘接剂时阻挡粘接剂进入到泄压机构及附接部件之间的空间,以避免流入的粘接剂妨碍泄压机构的正常工作。由于第二凸起围绕第一凸起设置,二者在结构上的配合,起到了对粘接剂的多重阻挡作用,因此能够更有效、更可靠的拦截粘接剂。
在一些实施例中,所述第一凸起与所述第二凸起之间形成有凹槽,所述凹槽用于容纳至少部分所述粘接剂,以防止所述粘接剂进入所述附接部件和所述泄压机构之间。
凹槽可以容纳至少部分粘接剂,对于粘接剂而言相当于又增加了一重阻挡。第二凸起在阻挡其外围粘接剂向第一凸起流动时,若第二凸起拦截粘接剂的功能失效,则凹槽还可以存储一定量的从第二凸起溢流过来的粘接剂,从而阻止粘接剂进一步向泄压机构与附接部件之间的空间内流动。
在一些实施例中,所述第二凸起包括:第一侧壁,用于与所述主体相连,且所述第一侧壁为所述第二凸起与所述凹槽共用的壁;第二侧壁,用于与所述主体相连,且所述第二侧壁与所述第一侧壁相对设置;连接壁,用于连接所述第一侧壁和所述第 二侧壁。
采用这种结构,不仅具有良好的阻挡粘接剂的效果,而且加工所需的模具比较简单,加工容易,成本较低。
在一些实施例中,所述第一侧壁和所述第二侧壁中的至少一者包括第一突出部,所述第一突出部沿第一方向突出设置,其中所述第一方向与所述第二凸起的突出方向相垂直。
通过设置第一突出部,可以增大凹槽的容纳体积,从而容纳更多的粘接剂,防止粘接剂进入附接部件和泄压机构之间的空间内。
在一些实施例中,所述第一侧壁和所述第二侧壁中的至少一者相对于所述附接部件朝向所述电池单体的方向倾斜设置。
通过倾斜设置第一侧壁,可以增大凹槽的容纳体积,以容纳更多的粘接剂,从而有效阻止粘接剂进入泄压机构和附接部件之间。通过倾斜设置第二侧壁,可以增大第二凸起外围的粘接剂的涂覆面积,保证粘接可靠性。另外第一侧壁和/或第二侧壁倾斜设置,方便隔离部件在制备过程中的拔模。
在一些实施例中,所述连接壁包括第二突出部,所述第二突出部沿所述附接部件朝向所述电池单体的方向突出设置,或者沿所述电池单体朝向所述附接部件的方向突出设置。
第二突出部的设置使连接壁的表面不平整,从而形成能够容纳粘接剂的空间。这样在粘接剂的高度超过第二凸起的高度而具有向第一凸起流动的趋势时,粘接剂会先存留在连接壁表面的收容空间内,相当于又增加了一重阻挡,防止粘接剂继续向第一凸起方向流动。
在一些实施例中,所述第二凸起包括空腔,所述第一侧壁、所述第二侧壁和所述连接壁中的至少一者设置有开孔,所述开孔与所述空腔相连通,以使至少部分所述粘接剂通过所述开孔进入所述空腔。
通过在第二凸起的至少一个壁上设置开孔,使位于第二凸起周围的粘接剂能够通过开孔进入空腔,不仅充分利用了第二凸起所占的空间,而且可以减少第二凸起周围的粘接剂,以防止粘接剂进入附接部件和泄压机构之间的空间内。
在一些实施例中,所述第一凸起包括:第三侧壁,用于与所述主体相连,且所述第三侧壁为所述第一凸起与所述凹槽共用的壁,所述第三侧壁与所述第一侧壁相对设置;其中,所述第三侧壁包括第三突出部,所述第三突出部沿第一方向突出设置,所述第一方向与所述第二凸起的突出方向相垂直;和/或所述第三侧壁相对于所述附接部件朝向所述电池单体的方向倾斜设置。
采用这种方式,可以增大凹槽的容纳体积,以容纳更多的粘接剂,从而有效防止粘接剂进入泄压机构和附接部件之间。并且,这种设置方式有利于隔离部件在制备过程中的拔模。
在一些实施例中,所述第二凸起的宽度为1mm-8mm。
在一些实施例中,所述第二凸起为环状结构。第二凸起能够阻挡第二凸起外周的粘接剂向第一凸起流动。
在一些实施例中,所述凹槽的宽度为1mm-8mm。
在一些实施例中,所述第二凸起为附接至所述主体表面上的弹性部件。弹性部件具有一定的弹性变形能力,其作为第二凸起来阻挡粘接剂,能够适应较大的安装误差。
在一些实施例中,所述凸起还包括第三凸起,所述第三凸起围绕所述第二凸起设置。围绕第一凸起设置的凸起的数量越多,对粘接剂的阻挡效果越好。
在一些实施例中,所述凸起面向所述泄压机构的壁上设置有通孔,所述通孔被配置为在所述泄压结构致动时使来自所述电池单体的排放物穿过所述隔离部件。
第一凸起的顶壁上设置的通孔,既能够为泄压机构的致动提供空间,并形成排放物的通道,而且通孔能够在第一凸起、凹槽和第二凸起的阻拦功能均失效时,允许粘接剂进入通孔,避免粘接剂与泄压机构粘接而影响泄压机构的顺利打开。
在一些实施例中,所述通孔围绕所述泄压机构设置,以防止所述粘接剂进入所述泄压机构与所述附接部件之间。这样避免粘接剂与泄压机构粘接而影响泄压机构的顺利打开。
在一些实施例中,所述通孔被配置为与所述致动区域的位置相对应,且所述通孔围绕所述致动区域设置,以防止所述粘接剂进入所述致动区域与所述附接部件之间。这样避免粘接剂与泄压机构粘接而影响泄压机构的顺利打开。
在一些实施例中,所述电池包括多个电池单体,所述多个电池单体中的每个电池单体包括所述泄压机构;所述隔离部件包括至少一个所述凸起;其中,所述凸起与所述泄压机构一一对应,或者,所述凸起与至少两个所述泄压机构相对应。
采用这种方式,将隔离部件装配至电池的附接部件的过程将较为简单,同时利用多个凸起又能够以相对独立的方式将涂覆或待涂覆的粘接剂隔离在该电池中包含的多个电池单体的泄压机构或者其泄放区域以外。并且,这样也能够辅助操作人员在涂覆粘接剂时以更高的效率适当地完成粘接剂的涂覆,使得操作人员无需小心翼翼地进行涂覆粘接剂的操作,这将有助于降低电池的装配成本和生产成本。凸起与至少两个泄压机构相对应时,还可以降低装配精度,适应更大的安装误差。
在一些实施例中,所述隔离部件被构造为能够被所述泄压机构致动时来自所述电池单体的排放物破坏。
由此,隔离部件可在电池单体出现热失控的情况下,随泄压机构的致动而被随之流出的排放物所破坏,从而形成供排放物流出的通道,这可以提高电池的安全性。
在一些实施例中,所述隔离部件采用熔点不大于所述排放物的排放温度的热塑性材料制成。
这种设计可使得在电池单体未出现热失控的一般使用状态下隔离部件具有相对高的结构强度,同时在电池单体出现热失控的紧急情况下又能被高温高压的排放物在相对短的时间内破坏,进而使得排放物较快自电池单体排出。
在一些实施例中,所述隔离部件包括用于防止所述粘接剂施加在其上的涂层。由此,隔离部件也可采用不具有凸起的结构实现。
在一些实施例中,所述附接部件包括用于容纳流体的热管理部件,以给所述电 池单体降温。通过设置热管理部件,能够更加灵活主动地对电池单体的温度进行控制,降低电池单体的热失控风险。
在一些实施例中,所述避让结构形成于所述热管理部件,且所述避让结构包括避让底壁和围绕所述避让腔的避让侧壁。这种布置以简单的方式和较低的成本实现了热管理部件和避让结构的设计,并且将避让结构集成于热管理部件有助于减少空间的占用,进而有助于提高电池的能量密度。
在一些实施例中,所述避让侧壁被构造成在所述泄压机构致动时被破坏,从而使所述流体流出。
这种布置以低成本以及简单的方式使得流体能够在必要时流出,从而利用流体快速降低来自电池单体在热失控的情形下排出的排放物的温度,进一步提高了电池的安全性能。
根据本申请的第二方面,提供了一种装置,该装置包括上文中第一方面所描述的电池,该电池用于为该装置提供电能。
根据本申请的第三方面,还提供了一种制备电池的方法,该方法包括提供多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供附接部件,所述附接部件适于通过粘接剂附接至所述电池单体;提供隔离部件,所述隔离部件被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构之间;以及,施加所述粘接剂,以将所述电池单体附接至所述附接部件。
通过设置隔离部件,能够在电池生产过程中以有效的方式防止粘接剂施加在所述附接部件和所述泄压机构之间。同时,还能够提高粘接剂的施加效率和准确性,从而提高电池的生产效率。
在一些实施例中,所述泄压机构具有致动区域,而且所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道;以及,所述隔离部件具有主体以及突出于所述主体表面布置的凸起,所述凸起被布置为与所述泄压机构的所述致动区域的位置相对应,并且所述凸起被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
由此,能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在泄压机构的表面上,从而对泄压机构在致动时造成阻碍。并且,可根据实际需要而灵活地加工制造隔离部件,使得制造的单个隔离部件能够以多个凸起分别针对多个泄压机构的致动区域实现隔离粘接剂的效果,因而有助于降低生产成本。
在一些实施例中,所述附接部件包括避让结构,所述避让结构被构造为提供允许所述泄压机构致动的空间,在所述避让结构和所述泄压机构之间形成避让腔;以及,所述隔离部件具有主体以及突出于所述主体表面布置的凸起,所述凸起被布置为与所述避让腔的位置相对应,并且所述凸起被构造成至少包围所述避让腔面向所述泄压机构一侧的周缘,以防止所述粘接剂进入所述避让腔。
由此,能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在可能妨碍泄压机构致动并形成供排放物流动通过的通道的避让腔中,从而阻碍泄压机构 发挥其设计功能。并且,可根据实际需要而灵活地加工制造隔离部件,使得制造的单个隔离部件能够以多个凸起分别针对多个避让腔实现隔离粘接剂的效果,因而有助于降低生产成本。
在一些实施例中,提供所述隔离部件包括,采用吸塑工艺在所述主体表面上形成所述凸起。通过采用吸塑工艺,可以较为便捷地且低成本地加工制造所需的隔离部件。
根据本申请的第四方面,提供了一种制备电池的设备,该设备包括电池单体制备模块,用于制备多个电池单体,所述多个电池单体中的至少一个电池单体包括:泄压机构,所述泄压机构被构造成能够在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;附接部件制备模块,用于制备适于通过粘接剂附接至所述电池单体的附接部件;隔离部件制备模块,用于制备被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构之间的隔离部件;以及装配模块,用于将所述隔离部件相对于所述电池单体或所述附接部件安装固定,以及施加所述粘接剂以将所述电池单体附接至所述附接部件。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了采用本申请的电池的车辆的一些实施例的结构示意图;
图2示出了根据本申请的一些实施例的电池单体的分解示意图;
图3示出了根据本申请的一些实施例的电池单体的立体示意图;
图4示出了根据本申请的一些实施例的电池单体的立体示意图;
图5示出了根据本申请的一些实施例的电池的分解示意图;
图6示出了根据本申请的一些实施例的电池的分解示意图;
图7示出了根据本申请的一些实施例的电池的剖视图;
图8示出了图7中所示的电池的B部分的放大视图;
图9示出了根据本申请的一些实施例的隔离部件的立体视图;
图10示出了根据本申请的一些实施例的隔离部件还未附接到热管理部件的分解视图;
图11示出了根据本申请的一些实施例的隔离部件已附接到热管理部件的分解视图;
图12示出了根据本申请的一些实施例的热管理部件的俯视图;
图13示出了图12中所示本申请的热管理部件的A-A剖视图;
图14示出了图12中所示本申请的热管理部件的仰视图;
图15示出了根据本申请的一些实施例的隔离部件的立体视图;
图16示出了图15中所示本申请的隔离部件的C部分的放大视图;
图17示出了图15中所示本申请的隔离部件的D-D剖视图;
图18-27示出了图17中所示本申请的一些实施例的隔离部件的E部分的放大视图;
图28示出了根据本申请的一些实施例的隔离部件的立体视图;
图29示出了图28中所示本申请的隔离部件的F部分的放大视图;
图30示出了图28中所示本申请的隔离部件的G-G剖视图;
图31-32示出了图30中所示本申请的一些实施例的隔离部件的H部分的放大视图;
图33-35示出了根据本申请的一些实施例的隔离部件的凸起与泄压机构的对应关系示意图;
图36示出了根据本申请的制备电池的方法的一些实施例的流程示意图;
图37示出了根据本申请的制备电池的设备的一些实施例的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合显示出根据本申请的多个实施例的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当可以理解的是,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中记载的实施例,本领域普通技术人员在不用花费创造性劳动的前提下所获得的所有其他实施例,都将属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”、“包含”、“有”、“具有”、“含有”、“含”等为开放式的用词。因此,“包括”、“包含”、“有”例如一个或多个步骤或元件的一种方法或装置,其具有一个或多个步骤或元件,但不限于仅具有这一个或多个元件。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
如上所述,应当强调,当在本说明书中使用术语“包括/包含”时,用于明确表明表示所述特征、整数、步骤或组件的存在,但不排除存在或添加一个或更多个其他特征、整数、步骤、部件或成组的特征、整数、步骤、部件。如本申请所用,单数形式“一个”、“一”和“该”也包括复数形式,除非上下文另有明确指示。
本说明书中的用词“一”、“一个”可以表示一个,但也可与“至少一个”或“一个或多个”的含义一致。术语“约”一般表示提及的数值加上或减去10%,或更具体地是加上或减去5%。在权利要求书中使用的术语“或”,除非明确表示其仅指可替代的方案,否则其表示“和/或”的意思。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域中所提到的电池按是否可充电可以分为一次性电池和可充电电池。一次性电池(Primary Battery)俗称“用完即弃”电池及原电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。可充电电池又称二次电池(Secondary Battery)或二级电池、蓄电池。可充电电池的制作材料和工艺与一次性电池不同,其优点是在充电后可多次循环使用,可充电电池的输出电流负荷力要比大部分一次性电池高。目前常见的可充电电池的类型有:铅酸电池、镍氢电池和锂离子电池。锂离子电池具有重量轻、容量大(容量是同重量的镍氢电池的1.5倍~2倍)、无记忆效应等优点,且具有很低的自放电率,因而即使价格相对较高,仍然得到了普遍应用。锂离子电池也用于纯电动车及混合动力车,用于这种用途的锂离子电池容量相对略低,但有较大的输出、充电电流,也有的有较长的寿命,但成本较高。
本申请实施例中所描述的电池是指可充电电池。下文中将主要以锂离子电池为例来描述本申请的构思。应当理解的是,其他任意适当类型的可充电电池都是适用的。本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池单体包括正极极片、负极极片、电解液和隔离膜,是组成电池模块和电池包的基本结构单元。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体。
锂离子电池单体主要依靠锂离子在正极极片和负极极片之间移动来工作。锂离子电池单体使用一个嵌入的锂化合物作为一个电极材料。目前用作锂离子电池的正极材料主要常见的有:锂钴氧化物(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)及磷酸锂铁(LiFePO4)。正极极片和负极极片之间设置有隔离膜以形成具有三层材料的薄膜结构。该薄膜结构一般通过卷绕或者叠置的方式制成所需形状的电极组件。例如,柱形电池单体中的三层材料的薄膜结构被卷绕成柱形形状的电极组件,而方形电池单体中的薄膜结构被卷绕或者叠置成具有大致长方体形状的电极组件。
多个电池单体可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。在一些诸如电动汽车等的大功率应用场合,电池的应用包括三个层次:电池单体、电池模块和电池包。电池模块是为了从外部冲击、热、振动等中保护电池单体,将一定数目的电池单体电连接在一起并放入一个框架中而形成的。电池包则是装入电动汽车的电池系统的最终状态。目前的大部分电池包是在一个或多个电池模块上装配电池管理系统(BMS)、热管理部件等各种控制和保护系统而制成的。随着技术的发展,电池模块这个层次可以被省略,也即,直接由电池单体形成电池包。这一改进使得电池系统的重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。本申请中所提到的电池包括电池模块或电池包。
对于电池单体来说,主要的安全危险来自于充电和放电过程,为了有效地避免不必要的风险和损失,对电池单体一般会设计有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使锂离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指在电池单体的内部压力或内部温度达到预定阈值时能够致动以泄放内部压力和/或内部物质的元件或部件。泄压机构具体可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。 本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。高温高压的排放物朝向电池单体的设置泄压机构的方向排放,并且可更具体地沿朝向泄压机构致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的诸如盖体等的一个或多个结构。
在一些传统的方案中,泄压机构一般是设置在电池单体的盖板上。在一些改进的技术方案中,泄压机构也可能被布置在电池单体上其他侧或者其他方向的壳体结构上。然而,无论泄压机构采取何种布置方式或布置位置,都需要利用电池中布置的适当的附接部件通过粘接剂(也称为胶粘剂或粘合剂)将电池单体附接或者说装配至附接部件,其中附接部件具体可能包括电池中的诸如热管理部件、支撑部件等附接部件,而粘接剂则可采用例如导热硅胶、环氧树脂胶、聚氨酯胶等。
可以理解的是,本申请中所称的支撑部件则通常可理解为用于为电池单体提供支撑作用或者抵抗电池单体的重力作用的部件,其通常可诸如附接至电池单体的壳体的底壁或底部,将电池单体支撑或固定于其上。热管理部件是用于容纳流体以调节电池单体的温度的部件,这里的流体可以是液体或气体,调节温度是指对电池单体加热或者冷却降温。较为典型地,用于给电池单体冷却降温的热管理部件也可称为冷却部件、冷却系统或冷却板,等等,其容纳有冷却介质,诸如冷却液或冷却气体,其中冷却介质可以被设计成是循环流动的,以达到更好的温度调节的效果。冷却介质可具体采用诸如水、水和乙二醇的混合液、或者空气,等等。而附接部件则一般是指电池中与电池单体通过粘接剂粘合在一起的部分,如前所述,附接部件可以由热管理部件或支撑部件提供或由其构成,但除此以外,附接部件也可能通过电池中的任意其他适当的部件来提供。
不管采用电池中的哪一部分作为附接部件,这种利用粘接剂将电池单体装配至电池中的方式通常都将粘接剂施加或者涂敷于附接部件和电池单体上彼此附接的粘接表面上,而后利用粘接剂固化后产生的粘附力和内聚力以表面粘合的方式将电池单体和附接部件上对应的粘接表面接合到一起,从而实现将电池单体装配至附接部件的目的。这种设计及其加工方式因其易于实施、工艺简单、成本低廉且附接牢固可靠的优点而得到广泛的应用。
然而,本申请发明人在进行了大量的研究和实验后却发现,上述被广泛采用的利用粘接剂将电池单体附接至电池中的附接部件的设计却意外地可能对上述旨在为电池单体的使用安全提供可靠保障的泄压机构的设计造成不利影响。
具体来说,一方面,在涂覆粘接剂时,有可能因诸如在某一区域不慎涂覆了过多的粘接剂或者因涂覆粘接剂的粘接表面的倾斜而导致部分粘接剂流入和泄压机构致动有关的区域,在这种情况下,若不另行清理流入的粘接剂,则固化后的这部分粘接剂将有可能对泄压机构的致动造成不利影响,甚至有可能堵塞或者部分堵塞当泄压机构致动时所形成的供排放物流出的通道或开口,影响排放物的泄放。
另一方面,电池单体中的泄压机构在电池单体的内部压力或温度达到预定阈值而致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出,此 时高温高压的排放物在泄放过程中可能因其自身的破坏力和/或高温,使得此前被涂覆于排放物途经之处附近的粘接表面的粘接剂熔化并流入和泄压机构致动有关的区域,例如泄压机构致动的部位或者泄压机构致动而形成的供排放物流出的通道或开口,进而对排放物的泄放造成不利影响。
为了确保泄压机构能够发挥其设计功能从而在必要时泄放电池单体内部的高温高压的排放物,就需要以某种方式阻止诸如导热硅胶的粘接剂施加在可能影响泄压机构致动或者可能影响泄压机构形成供排放物流出的开口或通道的区域中。然而,为此放弃以粘接剂实施将电池单体装配至电池中的附接部件的方式,或者在电池单体或附接部件上需要施加粘接剂的粘接表面周围增设阻挡结构,将显著地增加电池的加工制造难度及生产成本。因此,如何确保电池单体中设置的泄压机构能够发挥其设计功能从而保障电池的使用安全性,同时尽可能将电池的加工制造难度及生产成本保持在期望的相对较低的水平,对研究人员以及本领域技术人员而言是一个很难解决的技术问题。
为了解决或至少部分地解决现有技术中的电池存在的上述问题以及其他潜在问题,本申请的发明人提出了一种电池,并将在下文中具体阐述其设计。可以理解的是,本申请实施例描述的电池适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请的实施例描述的电池不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动汽车为例进行说明。
例如,如图1所示,为本申请一实施例的一种车辆1的简易示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。如图1所示,车辆1的内部可以设置电池10,例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。并且车辆1还可以包括控制器30和马达40。控制器30用来控制电池10为马达40的供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。在下文中所称的电池10也可以理解为是包括多个电池单体20的电池包。
如图2-4所示,电池单体20包括盒21、电极组件22和电解液,其中电极组件22被容纳在电池单体20的盒21中,电极组件22包括正极极片、负极极片和隔离膜。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。电极组件22可以是卷绕式的结构,也可以是叠片式的结构。盒21包括壳体211和盖板212。壳体211包括由多个壁形成的容纳腔211a以及开口211b。盖板212 布置在开口211b处以封闭容纳腔211a。除了电极组件22之外,容纳腔211a中还容纳有电解液。电极组件22中的正极极片和负极极片一般会设有极耳,极耳一般包括正极极耳和负极极耳。
具体地,正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂覆正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂覆正极活性物质层的正极集流体作为正极极耳,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。极耳通过连接构件23而与电池单体20外部的正电极端子214a和负电极端子214b相连接。在本申请的描述中,也将正电极端子214a和负电极端子214b合称为电极端子214。对方形电池单体而言,如图2和图4所示,电极端子214一般可设置在盖板212部分。
图5-6示出了根据本申请的一些实施例的电池10的分解视图。如图5-6,电池10可包括用于封装多个电池单体20的箱体11,箱体11可以避免液体或其他异物影响电池单体20的充电或放电,其中多个电池单体20经由汇流部件12彼此电连接,通过汇流部件12串并联多个电池单体20后电池10可提供较高的电压。箱体11可包括盖体111和箱壳112。其中,盖体111和箱壳112可以密封地组合在一起以共同包围形成用于容纳多个电池单体20的电气腔11a,当然这二者之间也可以不密封地彼此组合。在一些实施例中,热管理部件13可以构成用于容纳多个电池单体20的箱体11的一部分。例如,热管理部件13可以构成箱体11的箱壳112的侧部部分112b或者构成侧部部分112b的一部分,或者如图6所示,热管理部件13可以构成箱体11的箱壳112的底部部分112a或者构成底部部分112a的一部分。利用热管理部件13构成箱壳112的一部分的这种设计,有助于使电池10的结构更加紧凑、空间有效利用率提高,有利于提高能量密度。
在一些替代的实施例中,电池10还可以包括防护构件115,如图6和图7所示。本申请中的防护构件115是指布置在热管理部件13的远离电池单体20的一侧来对热管理部件13和电池单体20提供防护的部件。在这些实施例中,收集腔11b可以布置在防护构件115和热管理部件13之间。
参考图7-8所示,该电池10中的至少一个电池单体20包括泄压机构213。在一些实施例中,电池10中的每个电池单体20都设置有泄压机构213,或者,也可以是多个电池单体20中由于其在电池10中所处的位置或其他电池单体20的特性而可能更容易发生热失控的部分电池单体20上设置有泄压机构213。泄压机构213能够在电池单体20的内部压力或温度达到预定的阈值时致动以泄放电池单体20的内部压力。
该电池10还包括适于通过粘接剂附接至电池单体20的附接部件,该附接部件例如可以是电池10中的热管理部件13、支撑部件,等等。为了避免诸如导热硅胶的粘 接剂施加在附接部件和泄压机构213之间从而阻止或影响泄压机构213致动并发挥其如上所述的设计功能,即在电池单体20的内部压力或温度较大时致动以形成用于泄放电池单体20的内部压力的通道或开口的功能,电池10还可设有隔离部件14,该隔离部件14能够防止粘接剂施加在附接部件和泄压机构213之间。以下将主要针对附接部件为热管理部件13的实施例及其中涉及的隔离部件14的设计进行举例说明,可以理解的是,对于附接部件为支撑部件的情形,可适用基本上相同或相似的隔离部件14的构造或配置。
图8中示意性地绘出了隔离部件14,该隔离部件14至少包围了泄压机构213的致动区域,以防止粘接剂进入致动区域。以这种方式,能够避免粘接剂从任何方向流入致动区域而对泄压机构的致动动作的执行造成任何阻碍或不利影响。
在本申请的各个实施例中所采用的隔离部件14,可采用各种可能的构造,以使得上述用于将电池单体20装配至附接部件所用的粘接剂能够被隔离于附接部件和泄压机构213之间的空间之外,或者说,以使得涂覆的粘接剂能够被隔离于一旦粘接剂流入则可能会影响泄压机构213发挥其泄压的设计功能的空间之外。在如下一些优选实施例的描述中将会看到,隔离部件14既可以被设计为包围泄压机构213的部分区域,该部分区域能够在泄压机构213致动时形成泄放电池单体20的内部压力的泄放通道以供排放物流出(可称为致动区域或泄放区域),也可以是附接至附接部件诸如热管理部件13上的对应于泄压机构213的区域,从而包围附接部件所提供的允许泄压机构213致动的空间(例如下文中所描述的避让结构134),等等。
在一些实施例中,隔离部件14可以在涂覆粘接剂之前附接至附接部件诸如热管理部件13上的对应于泄压机构213的区域。需要说明的是,电池中只要是通过粘接剂和电池单体20粘合在一起的部件都可以被认为属于附接部件或者附接部件的一部分,这些部件都可以使用隔离部件14,即可在涂覆粘接剂之前将隔离部件14附接至其上。以此方式,在涂覆粘接剂时,隔离部件14将能够防止粘接剂进入到附接部件上对应于泄压机构213尤其是对应于泄压机构213上用于致动以形成泄放电池单体的内部压力的泄放通道以供排放物流出的区域,从而保证泄压机构213能够致动并正常地实现其设计功能。此外,采用隔离部件14还可以加快粘接剂的涂覆速度和准确性,而不必担心将粘接剂涂覆至和泄压机构213致动有关的区域中,并节省生产时间成本。
图9示出了根据本申请的一些实施例的隔离部件14的立体视图,图10示出了图9所示的隔离部件14和作为附接部件的一种示例的热管理部件13未装配在一起时的分解视图,图11示出了图9所示的隔离部件14和热管理部件13附接在一起时的立体视图。根据图9-11所示的实施例,隔离部件14可以在涂覆粘接剂之前附接至例如热管理部件13的附接部件,并且使得隔离部件14上的特殊结构特征至少对应于泄压机构213或者附接部件设有的避让结构134,其中避让结构134能够提供允许泄压机构213致动的空间。对于其中涉及的避让结构134的具体结构及特征,将在下文详述。
如图9-11所示,根据本申请的一些优选实施例,隔离部件14可以包括主体141和多个凸起142。其中,主体141适于附接至或者被装配至附接部件例如热管理部件13。凸起142从主体141的表面朝外突出,并且凸起142布置为在主体141附接至 附接部件的情况下与泄压机构213或者泄压机构213的泄放区域又或是下文描述的一些实施例中的避让结构134或避让腔134a在突出方向上对齐。尽管在图10-11中所示出的示例中,凸起142布置为和避让结构134对齐,然而结合图8所示不难理解,避让结构134本身的设置与泄压机构213对应或者说二者彼此对齐,因而凸起142也可被认为是和泄压机构213对齐或者和其致动区域(或泄放区域)对齐。又或者,在另一些未示出的实施例中,例如在电池10未设置避让结构134的示例中,凸起142也可布置为直接与泄压机构213对齐或者和其致动区域或泄放区域对齐。
可以理解的是,在此所描述的隔离部件14所包括的主体141和凸起142并不旨在表明隔离部件14必须包含有相互独立的部件,并且根据下文对一些优选实施例的描述可以看出,主体141和凸起142二者成型为一体的构造可能在多个方面是更为有利的。
在本申请中,主体141可以被理解为是隔离部件14中被设计成易于附接至诸如支撑部件或热管理部件13的附接部件的部分,而凸起142则被设计成突出于主体141的表面,凸起142的外周尺寸大于或者等于泄压机构213的外周尺寸或者至少大于或等于泄压机构213的泄放区域,以此方式,在涂覆粘接剂时,一方面可以引导涂胶机按照预定的路径进行涂胶操作,另一方面可以确保不会使粘接剂涂覆到泄压机构213所在的位置,从而能够保证粘接剂高效且准确地涂覆到适当的位置。
尽管在如图9-11示出的实施例中,隔离部件14被设计成具有狭长的薄片状的主体141,在每个主体141上具有突出的一排凸起142,但可以理解的是,本申请中的主体141及凸起142可根据泄压机构213的形状、构造等因素而具有各种不同的形状。出于电池的重量能量密度或体积能量密度方面的考虑,主体141通常具有较薄的厚度,因而主体141一般可呈各种形状的薄膜或薄片状。典型地,该隔离部件14或主体141的壁厚可以在0.01mm至0.05mm之间。凸起142的形状则可例如为图中所示的长圆形或者圆形、椭圆形、方形等等形状。并且,单个主体141上也可以被设计为具有单个凸起142、多排凸起142、或者具有以其他方式排列的多个凸起142,只要凸起142在主体141表面的排列和相对位置能够适应于电池中的电池单体20的泄压机构213的设置位置即可。
根据一些优选实施例,单个隔离部件14可设计成包括一个主体141和从该主体141的表面突出的多个凸起142,主体141整体地附接至电池的附接部件,并且在这种附接的情况下,多个凸起142一一对应地分别对齐该电池10中包含的多个电池单体20的泄压机构213(或者对齐泄压机构213的泄放区域),从而每一个凸起142分别能够包围其对准的泄压机构213(或者至少包围泄压机构213的泄放区域)。由此,将隔离部件14装配至电池的附接部件的过程将较为简单,同时利用多个凸起142又能够以相对独立的方式将涂覆或待涂覆的粘接剂隔离在该电池中包含的多个电池单体20的泄压机构213或者其泄放区域以外。并且,这样也能够辅助操作人员在涂覆粘接剂时以更高的效率适当地完成粘接剂的涂覆,使得操作人员无需小心翼翼地进行涂覆粘接剂的操作,这将有助于降低电池10的装配成本和生产成本。
基于上述方案,由于单个隔离部件14可被设计成具有多个凸起142,这种设计 对于典型的在一个电池10中容纳有多个电池单体20且其中有多个电池单体20分别设有泄压机构213的电池类型而言是尤为有利的,因为在单个隔离部件14装配到位的情况下,该多个凸起142将能够针对多个电池单体20的泄压机构213起到隔离粘接剂的作用。
在包含多个电池单体20的电池10中,电池单体20一般可成排地附接至电池10的附接部件。针对这种情况,可采用如上所述的包括一个主体141和从该主体141的表面突出的多个凸起142的隔离部件14,该隔离部件14可以是一体成型的整体片材,并且该隔离部件14的主体141附接至电池10的附接部件时,其上的多个凸起142可一一对应地分别对齐该电池中包含的多个电池单体20的泄压机构213。可替代地,也可将用于多个电池单体20的多个隔离部件14一体成型,其中成排布置的多个隔离部件14的位置分别对应于多个电池单体20的泄压机构213的位置。这样,可使得将多个电池单体20装配至电池10的装配过程更为简单,装配效率更高。
根据本申请的一些实施例,如先前提及的图8和图10及图12-13所示,附接部件诸如热管理部件13上可设有避让结构134,在避让结构134和泄压机构213之间形成避让腔134a,从而提供允许泄压机构213致动的空间,在这些实施例中,隔离部件14及其中凸起142的布置将与避让结构134或避让腔134a的布置相对应或者说彼此对齐。
具体来说,该避让腔134a可以是例如由避让结构134和泄压机构213共同围绕形成的密闭空腔。在这种方案中,针对来自电池单体20的排放物的排放而言,该避让腔134a的入口一侧表面可因泄压机构213的致动而被打开,而与该入口一侧表面相对的出口一侧表面则可因高温高压的排放物而被部分地破坏而被打开,从而形成排放物的泄放通道。而根据另一些实施例,该避让腔134a可以是例如由避让结构134和泄压机构213共同围绕形成的非密闭空腔,该非密闭空腔中的出口一侧表面可原本就具有供排放物流出的通道。如图8的避让腔134a中的箭头所示,排放物会大致以扇形方向向外排出。
根据一些实施例,如图12-14所示,热管理部件13还包括避让腔134底部的避让底壁134b和围绕避让腔134a的避让侧壁134c。在此所称的避让底壁134b是指避让腔134a与泄压机构213相对的壁,而避让侧壁134c是与避让底壁134b邻接并成一定的角度而围绕避让腔134a的壁,其中避让侧壁134c和避让底壁134b所成夹角优选地可在105°-175°的范围内。热管理部件13还可设置有用于容纳流体的流道133,流体可以为冷却介质,从而能够为电池单体20降温。
相应的,在这些实施例中,隔离部件14的多个凸起142可具体采用如图10-11所示的布置,其中每一个凸起142分别能够包围其对准的避让腔134a,即,凸起142基本上罩设于对应的避让腔134a的避让侧壁134c的上周缘处或者上周缘以外。即,使得隔离部件14的凸起142基本上罩设于对应的避让腔134a的上周缘,从而将涂覆或待涂覆的粘接剂隔离于避让结构134或避让腔134a以外。
根据上述优选实施例的热管理部件13及隔离部件14十分有利于提高电池的装配效率。其中,将隔离部件14装配至电池的附接部件的过程较为简单,同时利用多个 凸起142能够以相对独立的方式将涂覆或待涂覆的粘接剂隔离在电池中包含的多个电池单体20的泄压机构213对应的避让腔134a以外。由此,可防止涂覆的粘接剂影响电池单体20的泄压机构213发挥其设计的功能,从而保障电池的安全使用。并且,这样也能够辅助操作人员在涂覆粘接剂时以更高的效率适当地完成粘接剂的涂覆。
例如,在如图10-11所示的实施例中,当单个狭长的薄片状的主体141被装配至热管理部件13上并装配到位时,该主体141上的8个凸起142将分别罩设于其对准的8个避让结构134或避让腔134a之上,从而使得粘接剂无法进入避让腔134a。换言之,单个隔离部件14的一次装配,可实现对8个甚至更多数量的电池单体20的泄压构件213的隔离操作。
应当理解的是,本申请中并不限定电池单体20中的泄压机构213的布置方向和位置,实际上,无论泄压机构213布置于电池单体20的下部、上部还是侧部等处,本申请提出的隔离部件14的相关设计都可以被适当地应用,并起到保障泄压机构213实现其设计功能以在必要时泄放电池单体内的高温高压的排放物,从而保障电池的安全使用的有益作用。
在一些实施例中如图12-14所示,热管理部件13可被设计成具有如下具体构造。其中,热管理部件13可包括第一导热板131和第二导热板132,第二导热板132上形成对应于流道133的凹槽结构,第一导热板131上则形成避让结构134,通过将第一导热板131和第二导热板132装配在一起,例如第一导热板131和第二导热板132可通过焊接(如钎焊)装配在一起,即可形成如上面的实施例所描述的热管理部件13。当然,可以理解的是,这种通过第一导热板131和第二导热板132装配形成热管理部件13的方式仅为举例说明,上述热管理部件13的形成也可采用其他适当方式制成。
其中,热管理部件13中设置的流道133可至少部分地围绕避让腔134布置,即,避让侧壁134c分隔了流道133和避让腔134a,而在避让侧壁134c上可设置有例如易于被高温高压的排放物破坏的薄弱结构。应理解的是,在本申请中所称的薄弱结构可以包括但不限于:厚度减薄的部分、刻痕(例如如图10和12中所示的十字形刻痕134d)、由易损材料制成的易损部、或者由熔点较低的材料制成的易损部,等等。
通过这种方式,来自电池单体20的排放物进入该避让腔134a中时,将破坏避让侧壁134c上的薄弱结构,从而使得流道133中的冷却介质诸如冷却液流出至避让腔134a中,冷却液随之接触来自电池单体20的高温高压排放物并大量吸热并被汽化,这样就在短时间内显著降低来自电池单体20的高温高压排放物的温度和压强,从而对电池10中的其他未出现热失控的电池单体20等部件起到保护作用。并且,由于隔离部件14的多个凸起142基本上罩设于对应的避让腔134a的避让侧壁134c的上周缘处或上周缘以外,因而这种设计可使得排放物在破坏避让侧壁134c的薄弱结构并引入冷却介质的同时,使得隔离部件14及其凸起142仍然对位于其外侧的诸如导热硅胶的粘接剂起到一定的阻挡作用,提高电池的安全性。
上文结合图9-14主要从隔离部件14与其他部件,例如附接部件或泄压机构213,之间的相对位置关系出发,对隔离部件14的整体构造或配置进行了介绍。基于 此,隔离部件14可以被设计成各种可能的构造以实现上文所描述的功能,即,将可用于将电池单体20装配至附接部件时所用的粘接剂隔离于附接部件和泄压机构213之间的空间之外,或者将涂覆的粘接剂隔离于一旦粘接剂流入则可能影响泄压机构213发挥其泄压的设计功能的空间之外。以下将结合附图15-32主要对隔离部件14的更为具体的构造进行详细描述。
图15示出了根据本申请的一些实施例的隔离部件14的立体视图,图16示出了图15所示的隔离部件14的C部分的放大视图,图17示出了图15所示的隔离部件14沿D-D剖开的剖视图,图18则示出了图17所示的隔离部件14的剖面的E部分的放大视图。根据图15-18所示的实施例,隔离部件14利用凸起142的特殊设计,能够更为有效地阻挡诸如导热硅胶的粘接剂,以将其隔离在附接部件和泄压机构213之间的空间之外,从而保证泄压机构213能够致动并正常地实现其设计功能。
如图15-18所示,根据本申请的一些实施例,隔离部件14上设置的凸起142包括第一凸起1421和第二凸起1422,其中第一凸起1421和第二凸起1422从主体141的表面朝相同方向突出。在装配到位的情况下,隔离部件14设置于电池单体20与附接部件之间。因此具体地,在将隔离部件14的主体141附接至附接部件的情况下,第一凸起1421和第二凸起1422布置为从主体141的表面朝向背离附接部件的方向突出,即朝向电池单体20突出。
第一凸起1421与泄压机构213的位置相对应。具体地,如上文所描述,第一凸起1421可以布置为在主体141附接至附接部件的情况下与泄压机构213或者泄压机构213的致动区域(或泄放区域)或者是上述实施例中的避让结构134或避让腔134a在突出方向上对齐。第一凸起1421突出的这部分高度有利于在诸如施加粘接剂时阻挡粘接剂进入到泄压机构213及附接部件之间的空间,以避免流入的粘接剂妨碍泄压机构213的正常工作。
第二凸起1422与第一凸起1421分隔设置。参考图16,第二凸起1422围绕第一凸起1421设置,具体地,第二凸起1422呈环状结构,围绕第一凸起1421的外周设置。第二凸起1422突出的高度同样有利于在第一凸起1421的四周阻挡粘接剂进入泄压机构213与附接部件之间的空间。并且,由于第二凸起1422围绕第一凸起1421设置,二者在结构上的配合,起到了对粘接剂的多重阻挡作用,因此能够更有效、更可靠的拦截粘接剂,以防止粘接剂进入附接部件和泄压机构213之间而妨碍泄压机构213在电池单体20的内部压力或温度达到阈值时的正常致动,以及防止粘接剂流入而阻塞泄放通道进而阻塞电池单体20泄放的排放物的排出,从而进一步提高电池10的安全性能。
在一些实施例中,参考图16和图18所示,第一凸起1421与第二凸起1422之间形成有凹槽143。凹槽143可以容纳至少部分粘接剂,以防止涂覆或待涂覆的粘接剂施加在附接部件和泄压机构213之间。凹槽143具体可以容纳溢过第二凸起1422的部分粘接剂、将电池单体20附接于附接部件过程中不慎滴落在凹槽143中的粘接剂以及由于其他原因进入凹槽143内的粘接剂等。
第一凸起1421与第二凸起1422之间的凹槽143可以容纳至少部分粘接剂,对 于粘接剂而言相当于又增加了一重阻挡。第二凸起1422在阻挡其外围粘接剂向第一凸起1421流动时,若第二凸起1422拦截粘接剂的功能失效,则凹槽143还可以存储一定量的从第二凸起1422溢流过来的粘接剂,从而阻止粘接剂进一步向泄压机构213与附接部件之间的空间内流动。
为了使隔离部件14实现更好的挡胶效果,可以对第一凸起1421、第二凸起1422或凹槽143的结构进行相应设计。
在一些实施例中,参考图18,第二凸起1422包括第一侧壁1422a、第二侧壁1422b和用于连接第一侧壁1422a和第二侧壁1422b的连接壁1422c。本申请实施例中,第一侧壁1422a与主体141相连,第二侧壁1422b与主体141相连,第一侧壁1422a与第二侧壁1422b相对设置。其中第一侧壁1422a靠近第一凸起1421,第一侧壁1422a为第二凸起1422与凹槽143共用的壁。
在一些实施例中,如图18所示,第一侧壁1422a和第二侧壁1422b平行于将电池单体20附接于附接部件的情况下附接部件朝向电池单体20的方向,即第一侧壁1422a和第二侧壁1422b平行于第二凸起1422的突出方向。连接壁1422c垂直于第二凸起1422的突出方向。这种结构的隔离部件14,不仅具有良好的阻挡粘接剂的效果,而且加工所需的模具比较简单,加工容易,成本较低。
在一些实施例中,参考图19,第一侧壁1422a和第二侧壁1422b中的至少一者包括第一突出部1401,该第一突出部1401沿第一方向X突出设置,其中该第一方向X与第二凸起1422的突出方向相垂直。
这里第一方向X是位于图17所示的D-D剖面内的、与第二凸起1422的突出方向相垂直的方向。因此,本申请实施例中的第一方向X应理解为是与第二凸起1422的突出方向相垂直,例如图19中箭头所示的方向。
示例性的,以在第一侧壁1422a设置第一突出部1401为例,第二凸起1422的实际突出方向为附接部件朝向电池单体20的方向,为方便理解和描述,采用第二凸起1422沿纸面向上的方向为突出方向为例,第一方向X为垂直于第二凸起1422突出方向的方向,例如沿纸面向右。因此第一突出部1401可沿箭头所示的第一方向X突出。
本申请实施例中,由于凹槽143与第二凸起1422共用第一侧壁1422a,第一侧壁1422a上设置第一突出部1401且朝向靠近第二侧壁1422b的方向突出,这样,在第二凸起1422满足对粘接剂进行阻挡的需求的同时,第一突出部1401还可以增大凹槽143的容纳体积,从而容纳更多的粘接剂,防止粘接剂进入附接部件和泄压机构213之间的空间内。
应理解,第一侧壁1422a上设置的第一突出部1401还可以朝图19中所示箭头方向的反方向突出,或者还可以在第二侧壁1422b上设置第一突出部1401,该第二侧壁1422b上的第一突出部1401可以朝与第二凸起1422的突出方向相垂直的方向突出,例如朝靠近或远离第一侧壁1422a的方向突出,本申请实施例对此不作限定。
在实际应用中,可以根据需求在第一侧壁1422a和/或第二侧壁1422b上设置第一突出部1401,以实现有效阻挡粘接剂、增大凹槽143的容纳体积、减少第二凸起1422所占空间、方便隔离部件14在制备过程中的拔模等效果中的一个或多个。
本申请实施例中,第一突出部1401是第一侧壁1422a或第二侧壁1422b的至少部分形成的。
在一些实施例中,参考图20,第一侧壁1422a和第二侧壁1422b中的至少一者相对于附接部件朝向电池单体20的方向倾斜设置。
示例性的,以第一侧壁1422a和第二侧壁1422b均倾斜设置为例,如图20所示,第一侧壁1422a与连接壁1422c相连接的一端向第二侧壁1422b所在一侧倾斜,第二侧壁1422b与连接壁1422c相连接的一端向第一侧壁1422a所在一侧倾斜。其中第一侧壁1422a倾斜设置可以增大凹槽143的容纳体积,以容纳更多的粘接剂,从而有效阻止粘接剂进入泄压机构213和附接部件之间。第二侧壁1422b倾斜设置,可以增大第二凸起1422外围的粘接剂的涂覆面积,保证粘接可靠性。另外第一侧壁1422a和/或第二侧壁1422b倾斜设置,方便隔离部件14在制备过程中的拔模。
应理解,在其他实施例中,第一侧壁1422a和/或第二侧壁1422b的倾斜设置方向还可以有其他形式,例如第一侧壁1422a与连接壁1422c相连接的一端向第一凸起1421所在的一侧倾斜,和/或第二侧壁1422b与连接壁1422c相连接的一端向远离第一侧壁1422a的一侧倾斜,本申请实施例对此不作限定。
可以理解的是,在实际应用中,可以在第一侧壁1422a和/或第二侧壁1422b倾斜设置的同时,在第一侧壁1422a和/或第二侧壁1422b上设置第一突出部1401,本申请实施例对此均不作限定。
需要说明的是,在判断第一侧壁1422a或第二侧壁1422b相对于附接部件朝向电池单体20的方向是否倾斜设置时,可以根据第一侧壁1422a或第二侧壁1422b所在的主平面与附接部件朝向电池单体20的方向之间的空间关系确定。以第一侧壁1422a的主平面为例,其可以是第一侧壁1422a所在的平面,或者是第一侧壁1422a的绝大部分所在平面,或者是第一侧壁1422a上的平整部分所在的平面等。
在一些实施例中,参考图21,连接壁1422c包括第二突出部1402,该第二突出部1402沿附接部件朝向电池单体20的方向突出设置,或者沿电池单体20朝向附接部件的方向突出设置。由于第二凸起1422的突出方向即为附接部件朝向电池单体20的方向,因此第二突出部1402也可以理解为是沿所述第二凸起1422的突出方向突出设置,或者沿与第二凸起1422的突出方向相反的方向突出设置。
示例性的,如图21所示,第二突出部1402沿电池单体20朝向附接部件的方向突出设置。第二突出部1402的设置使连接壁1422c的表面不平整,从而形成能够容纳粘接剂的空间。这样在粘接剂的高度超过第二凸起1422的高度而具有向第一凸起1421流动的趋势时,粘接剂会先存留在连接壁1422c表面的收容空间内,相当于又增加了一重阻挡,防止粘接剂继续向第一凸起1421方向流动。若第二凸起1422的宽度足够,连接壁1422c表面的曲率越小,则连接壁1422c能够存储的粘接剂越多。
本申请实施例中,第二突出部1402为连接壁1422c的至少部分形成的。
应理解,第二突出部1402也可以朝向电池单体20的方向突出设置,本申请实施例对此不作限定。通过合理设计第二突出部1402的结构,可以减少第二凸起1422所占的空间,增大凹槽143的容纳体积等。
还应理解,在实际应用中,可以在连接壁1422c上设置第二突出部1402的同时,在第一侧壁1422a和第二侧壁1422b中的至少一者上设置第一突出部1401,和/或将第一侧壁1422a和第二侧壁1422b中的至少一者倾斜设置,本申请实施例对此均不作限定。
在一些实施例中,参考图22,第二凸起1422包括空腔1404。第一侧壁1422a、第二侧壁1422b和连接壁1422c中的至少一者设置有开孔1405。开孔1405与空腔1404相连通,以使至少部分粘接剂通过开孔1405进入空腔1404。
本申请实施例中,通过在第二凸起1422的至少一个壁上设置开孔1405,使位于第二凸起1422周围的粘接剂能够通过开孔1405进入空腔1404,不仅充分利用了第二凸起1422所占的空间,而且可以减少第二凸起1422周围的粘接剂,以防止粘接剂进入附接部件和泄压机构213之间的空间内。
在第二凸起1422的至少一个壁上设置开孔1405的方案中,第二凸起1422的形状可以采用如上述图18-21或者以下附图中所示的任意一种结构,本申请实施例对第二凸起1422的形状不作限定。
在一些实施例中,空腔1404可以是半包围结构。参考图22,空腔1404可以是由第二凸起1422的壁围成,第二凸起1422的壁位于隔离部件14靠近电池单体20的一侧,空腔1404在隔离部件14靠近附接部件的一侧与外界连通,形成半封闭腔室。在隔离部件14附接于附接部件的情况下,空腔1404与外界相连通的开口可以被附接部件封堵。
在一些实施例中,空腔1404可以是全包围结构。参考图23,空腔1401可以是由第二凸起1422的壁以及主体141围成。示例性的,第二凸起1422可以是与主体141相连的独立的部件。
应理解,为了粘接剂能够顺利从开孔1405进入空腔1404,开孔1405可以尽量开的大一些,防止粘接剂进入空腔时阻力过大或直接将开孔1405封堵。在实际应用中,开孔1405的尺寸可以根据第二凸起1422的结构、粘接剂的涂覆厚度、粘接剂的特性参数例如粘接强度、粘度、凝胶时间等相应设计。
以上对隔离部件14的第二凸起1422的结构进行了详细介绍,下面结合附图对隔离部件14的第一凸起1421进行说明。应理解,本申请实施例中可能以同一附图为例分别描述第一凸起1421和第二凸起1422的结构,但这并不限定隔离部件14是由图中所示的第一凸起1421和第二凸起1422组合而成。
在一些实施例中,参考图23,第一凸起1421可以包括第三侧壁1421a和顶壁1421b。第三侧壁1421a与主体141相连,第三侧壁1421a与第一侧壁1422a相对设置,其中第三侧壁1421a为第一凸起1421与凹槽143共用的壁。顶壁1421b与第三侧壁1421a靠近电池单体20的一端相连。顶壁1421b所在平面与第一凸起1421的突出方向相垂直,或大致垂直。
在一些实施例中,第三侧壁1421a平行于将电池单体20附接于附接部件的情况下附接部件朝向电池单体20的方向,即第三侧壁1421a平行于第一凸起1421的突出方向(也即第二凸起1422的突出方向)。这种结构的隔离部件14,不仅具有良好的阻 挡粘接剂的效果,而且加工所需的模具比较简单,加工容易,成本较低。
在一些实施例中,如图24所示,第三侧壁1421a可以包括第三突出部1403,第三突出部1403沿第一方向X突出设置,其中第一方向X与第一凸起1421的突出方向相垂直。本申请实施例中,第一凸起1421的突出方向与第二凸起1422的突出方向相同,因此这里第一方向X也与第二凸起1422的突出方向相垂直。
示例性的,如图24所示,第三侧壁1421a上设置有第三突出部1403,其中第三突出部1403沿箭头所示的第一方向X突出设置。第三侧壁1421a为第一凸起1421与凹槽143共用的壁,第三侧壁1421a上设置第三突出部1403且朝向远离第一侧壁1422a的方向突出,可以增大凹槽143的容纳体积,从而容纳更多的粘接剂。应理解,第三突出部1403也可以朝向图24中箭头所示方向的反方向突出设置,本申请实施例对此不作限定。
在一些实施例中,如图25所示,第三侧壁1421a相对于附接部件朝向电池单体20的方向倾斜设置。示例性的,第三侧壁1421a与顶壁1421b相连的一端向远离第二凸起1422的方向倾斜,这样可以增大凹槽143的容纳体积,以容纳更多的粘接剂,从而有效防止粘接剂进入泄压机构213和附接部件之间。并且,第三侧壁1421a倾斜设置的方式有利于隔离部件14在制备过程中的拔模。
应理解,在其他一些实施例中,第三侧壁1421a的倾斜设置方向还可以有其他形式,例如第三侧壁1421a与顶壁1421b相连的一端向第二凸起1422所在的一侧倾斜,本申请实施例对此不作限定。另外,在倾斜设置第三侧壁1421a的同时还可以在第三侧壁1421a上设置第三突出部1403。在实际应用中,图23-25示出的以及相关文字描述的第一凸起1421结构可以与图18-23示出的以及相关文字描述的第二凸起1422结构任意组合,本申请实施例对此也不作限定。
类似地,在一些实施例中,第三侧壁1421a上也可以设置开孔,以使凹槽143内的粘接剂通过开孔穿过隔离部件14,进入隔离部件14与附接部件之间。
本申请实施例中,凹槽143是由第一凸起1421的第三侧壁1421a、第二凸起1422的第一侧壁1422a以及主体141形成,因此通过合理设计第一侧壁1422a、第三侧壁1421a以及主体141的结构,可以实现特定结构的凹槽143,达到增大凹槽143的容纳粘接剂的体积的目的。
在一些实施例中,第二凸起1422的宽度可以为1mm-8mm。
需要说明的是,这里所涉及的第二凸起1422的宽度,可以理解为是第二凸起1422的宽度范围。对于等宽的第二凸起1422,其宽度是均一的,则该均一的宽度应大于1mm,小于8mm。对于不等宽的第二凸起1422,则其最大宽度和最小宽度应在1mm-8mm的范围内。
还需要说明的是,第二凸起1422的宽度,是指第二凸起1422在第一方向X上的宽度,第一方向X与第二凸起1422的突出方向垂直。
示例性的,第二凸起1422的截面形状为以下形状的任意一种:几字型,凸透镜型,凹透镜型,梯形,拱形等。
在一些实施例中,凹槽143的宽度为1mm-8mm。凹槽143的宽度含义与第二 凸起1422的宽度含义类似,在此不再赘述。
示例性的,凹槽143的截面形状为以下形状的任意一种:鼓型,袋型,碗型,梯形,矩形等。
在一些实施例中,第一凸起1421和第二凸起1422可以通过吸塑工艺形成在主体141表面上。例如通过在一张或一片由热塑性材料制成的薄片或薄膜的基础上通过吸塑工艺在薄片或薄膜上加工形成第一凸起1421和第二凸起1422,从而制成隔离部件14。这有助于简化隔离部件14的制造过程及降低成本。
在一些实施例中,第一凸起1421和/或第二凸起1422可以是与主体141相连的独立的部件。例如在制备好第一凸起1421和/或第二凸起1422后将其附接于主体141上,从而制成隔离部件14。这在制备较为复杂的第一凸起1421和/或第二凸起1422时,有助于降低模具成本。
在一些实施例中,如图26所示,第二凸起1422可以是附接于主体141表面上的弹性部件。弹性部件具有一定的弹性变形能力,其作为第二凸起1422来阻挡粘接剂,能够适应较大的安装误差。弹性部件例如可以是橡胶垫、硅胶垫、泡棉等。
在一些实施例中,若弹性部件采用疏松结构,则弹性部件内部的疏松孔可用于容纳部分粘接剂。当然,若弹性部件的结构较为紧实,则可以在弹性部件上设置通道,利用通道容纳部分粘接剂。可以理解的是,即使第二凸起1422采用的是非弹性部件制成的话,同样可以在第二凸起1422中设置用于容纳粘接剂的通道,本申请实施例对此不作限定。
需要说明的是,不论第二凸起1422采用弹性部件制成,还是采用其他材料制成,图15-25中描述的有关第二凸起1422的结构设计同样适用于此。
在一些实施例中,第一凸起1421的高度大于或等于粘接剂的预定施加高度,且第一凸起1421被配置为在电池单体20附接到所述附接部件时被压缩至与粘接剂的高度一致;和/或第二凸起1422的高度大于或等于粘接剂的预定施加高度,且第二凸起1422被配置为在电池单体20附接到附接部件时被压缩至与粘接剂的高度一致。
这种布置方式确保第一凸起1421和第二凸起1422能够有效地防止粘接剂施加在附接部件和泄压机构213之间。同时,这使得隔离部件14不会影响附接部件和泄压机构213之间的可靠粘接和泄压机构213的致动。并且,在通过粘接表面涂覆的粘接剂胶粘压合或接合电池单体20及电池10的附接部件时,第一凸起1421和第二凸起1422可被压缩至与粘接剂一致的高度,由此第一凸起1421和第二凸起1422将不会在电池单体20及电池10的附接部件二者的粘接表面之间留出任何空隙,因而能够极为可靠地确保粘接剂被隔离于泄压机构213致动并形成排放物的通道的区域之外。
在一些实施例中,第二凸起1422的高度与第一凸起1421的高度相等。这样第二凸起1422和第一凸起1421将不会在电池单体20及电池10的附接部件二者的粘接表面之间留出任何空隙,因而能够极为可靠地确保粘接剂被隔离于泄压机构213致动并形成排放物的通道的区域之外。
在一些实施例中,凸起142还包括多个围绕第二凸起1422设置的环形凸起,且该多个环形凸起依次环绕,且彼此分隔设置。示例性的,参考图27,凸起142还包 括第三凸起1423,第三凸起1423围绕第二凸起1422设置。第三凸起1423与第二凸起1422的结构设计类似,具体可参考上文关于第二凸起1422的相关描述,为简洁,在此不再赘述。
在一些实施例中,第二凸起1422与第三凸起1423之间形成有凹槽144。该凹槽144由第二凸起1422的一个侧壁(即第二侧壁1422b)、第三凸起1423的一个侧壁以及主体141形成。凹槽144的作用与凹槽143类似,用于容纳至少部分粘接剂。应理解,第三凸起1423的外周还可以设置更多的凸起,凸起的数量越多,对粘接剂的阻挡效果越好。另外,凸起之间也可以设置更多的凹槽,凹槽的数量越多,对粘接剂的阻挡效果越好。
为了防止粘接剂越过上述阻挡粘接剂的凸起142(例如第一凸起1421、第二凸起1422和第三凸起1423等),进入泄压机构213与隔离部件14之间,与泄压机构213粘接而影响泄压机构213的顺利打开,在上述提供的结构基础上,本申请实施例还提供了另一种隔离部件14。
图28示出了根据本申请的一些实施例的隔离部件14的立体视图,图29示出了图28所示的隔离部件14的F部分的放大视图,图30示出了图28所示的隔离部件14沿G-G剖开的剖视图,图31则示出了图30所示的隔离部件14的剖面的H部分的放大视图。根据图25-28所示的实施例,隔离部件14利用凸起142的特殊设计,能够防止粘接剂与泄压机构213粘接,从而保证泄压机构213能够顺利致动。
如图28-31所示,根据本申请的一些实施例,凸起142面向泄压机构213的壁上设置有通孔1406,该通孔1406被配置在泄压机构213致动时使来自电池单体20的排放物穿过隔离部件14。本申请实施例中,凸起142可以是图9至图14中描述的凸起142,也可以是图15至图27中描述的凸起142。
示例性的,参考图28-31所示,这里以凸起142包括第一凸起1421和第二凸起1422为例进行说明。第一凸起1421包括第三侧壁1421a和顶壁1421b,其中顶壁1421b为面向泄压机构213的壁。本申请实施例中,第一凸起1421面向泄压机构213的壁上,即顶壁1421b设置有通孔1406。通孔1406被配置为在泄压结构213致动时使来自电池单体20的排放物穿过隔离部件14。
本申请实施例中,第一凸起1421的顶壁1421b上设置的通孔1406,既能够为泄压机构213的致动提供空间,并形成排放物的通道,而且通孔1406能够在第一凸起1421、凹槽143和第二凸起1422的阻拦功能均失效时,允许粘接剂进入通孔1406,避免粘接剂与泄压机构213粘接而影响泄压机构213的顺利打开。
在一些实施例中,如图32所示,第一凸起1421可以只包括第三侧壁1421a,其中第三侧壁1421a在靠近电池单体20的一端构成通孔1406的边缘。
在一些实施例中,通孔1406围绕泄压机构213设置,以防止粘接剂进入泄压机构213与附接部件之间,避免泄压机构213发生粘接而无法正常致动。
在一些实施例中,当附接部件设置有避让腔134a时,通孔1406被配置为与避让腔134a的位置相对应,且通孔1406围绕避让腔134a面向泄压机构213一侧的周缘,避免泄压机构213发生粘接而无法正常致动。
在一些实施例中,通孔1406被配置为与泄压机构213的致动区域的位置相对应,且通孔1406围绕致动区域设置,以防止粘接剂进入致动区域与附接部件之间,避免泄压机构213发生粘接而无法正常致动。
本申请实施例中,单个隔离部件14可设计成包括一个主体141和从该主体141的表面突出的一个或多个凸起142。电池10可以包括多个电池单体20,该多个电池单体20中的每个电池单体20包括泄压机构213。下面结合附图33-35详细描述凸起142与泄压机构213(或泄压机构213的致动区域,或避让腔134a,或避让结构134)的位置相对应的方式,应理解图中仅以虚线框示意性示出泄压机构213的大致位置,不应理解为是对本申请的限定。
在一些实施例中,如图33所示,凸起142与泄压机构213可以一一对应。这里的凸起142可以是图9至图32中描述的任意一种凸起142。
在一些实施例中,如图34所示,凸起142可以与至少两个泄压机构213相对应。这里的凸起142可以是图9至图32中描述的任意一种凸起142。
本申请实施例中,当凸起142为图15至图32中描述的凸起142时,凸起142包括第一凸起1421和第二凸起1422。在一些实施例中,第一凸起1421与第二凸起1422可以如图15-32中所示,为一一对应的关系。在另一些实施例中,第二凸起1422可以如图35所示,对应至少两个第一凸起1421。
这样,上述提及的凸起142与泄压机构213一一对应,或者凸起142对应至少两个泄压机构213,均理解为是第一凸起1421与泄压机构213一一对应,或者第一凸起1421对应至少两个泄压机构213。
对于第二凸起1422与泄压机构213的对应关系而言,在一些实施例中,如图33所示,第二凸起1422与第一凸起1421一一对应,第二凸起1422与泄压机构213一一对应。在一些实施例中,如图34所示,第二凸起1422与第一凸起1421一一对应,第二凸起1422与至少两个泄压机构213相对应。在一些实施例中,如图35所示,第二凸起1422与至少两个第一凸起1421相对应,第二凸起1422与至少两个泄压机构213相对应。
当第二凸起1422对应多个第一凸起1421(或多个泄压机构213)时,第二凸起1422用于为该多个第一凸起1421阻挡粘接剂。以此方式,在涂覆粘接剂时,一方面可以引导涂胶机按照预定的路径进行涂胶操作,另一方面可以确保不会使粘接剂涂覆到第二凸起1422范围内的区域,防止粘接剂涂覆到泄压机构213所在的位置,从而能够保证粘接剂高效且准确地涂覆到适当的位置。此外涂胶过程中涂覆于第二凸起1422范围内的粘接剂减少,可以减少可能施加到第一凸起1421上的粘接剂,从而防止粘接剂进入泄压机构213与附接部件之间。
根据本申请的一些优选实施例,隔离部件14及其中的凸起142可采用如下具体设计、材料或制备工艺中的一种或多种,并且根据以下优选示例的隔离部件14原则上可适用于本申请的上述任意实施例中。
在一些优选实施例中,隔离部件14中的凸起142的高度可以大于或等于粘接剂的预定施加高度,这样将能够确保在施加粘接剂时粘接剂不会进入或者少量进入到 泄压机构213以及附接部件之间的区域,在尤其是在附接部件中设置有避让结构134的情况下非常有利。此外,凸起142还被构造成在电池单体20附接至附接部件的情况下能够被压缩从而与粘接剂的高度一致,由此确保附接部件和电池单体20之间的连接。典型地,凸起142在电池单体20附接至电池的附接部件之前可具有略大于粘接剂的预定施加高度的高度,在通过粘接表面涂覆的粘接剂胶粘压合或接合电池单体20及电池的附接部件时,利用电池单体20及电池的附接部件上彼此基本平行的粘接表面,简单地压合就可使得凸起142被压缩至与粘接剂一致的高度,此时凸起142将不会在电池单体20及电池的附接部件二者的粘接表面间留出任何空隙,由此确保粘接剂被隔离于泄压机构213致动并形成排放物的通道的区域之外。
在本申请的一些优选实施例中,隔离部件14可以由热塑性材料通过吸塑工艺制成。这有助于简化隔离部件14的制造过程及降低成本,并且,对于包括一个主体141和多个凸起142的隔离部件14而言,利用热塑性材料通过吸塑工艺制成这样的隔离部件14是尤为经济的,其可以例如通过在一张或一片由热塑性材料制成的薄片或薄膜的基础上通过吸塑工艺在薄片或薄膜上加工形成多个凸起142,从而制成隔离部件14。
在一些实施例中,隔离部件14还采用易于被来自电池单体20的排放物破坏的材料制成,从而使得排放物能够较为容易地冲破隔离部件14。可选地,凸起142或者整个隔离部件14可以采用易被高温高压的排放物破坏或者穿透强度较低的材料或者结构制成。根据一些优选实施例,可采用熔点不大于排放物的排放温度的热塑性材料制成凸起142或者整个隔离部件14,由此可使得在电池单体20未出现热失控的一般使用状态下隔离部件14具有相对高的结构强度,同时在电池单体20出现热失控的紧急情况下又能可靠地被高温高压的排放物在相对短的时间内破坏。
可以理解的是,隔离部件14除可以采用如上所述的包括主体141以及突出于主体141表面的凸起142的这种结构以外,根据另一些实施例,隔离部件14也可以采用不具有凸起142的结构,而是在对应于上述实施例中设置凸起142的位置处设置用于防止粘接剂施加在附接部件和泄压机构213之间的专用涂层,例如疏胶层。换言之,在这种实施例中,涂覆有疏胶层的区域至少覆盖各个避让腔134a面向对应的泄压机构213一侧的周缘,或者至少覆盖泄压机构213的致动区域或泄放区域。
当然,根据另一些实施例,在如上所述的包括主体141以及突出于主体141表面的凸起142的的隔离部件14的基础上,在凸起142的表面可进一步设置疏胶层,以更可靠地将粘接剂隔离于泄压机构213致动并形成排放物的通道的致动区域以外或者隔离于避让腔134a以外。
上文中结合图1至图35描述了本申请实施例的电池,下面将结合图36和图37描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
具体而言,图36示出了本申请实施例的制备电池的方法300的示意性流程图。如图36所示,该方法300包括:301提供多个电池单体,多个电池单体中的至少一个电池单体包括泄压机构,泄压机构被构造成能够在电池单体的内部压力或温度达 到阈值时致动以泄放内部压力;302提供附接部件,附接部件适于通过粘接剂附接至电池单体;303提供隔离部件,隔离部件被构造成能够防止粘接剂施加在附接部件和泄压机构之间;以及,304施加粘接剂,以将电池单体附接至附接部件。
通过设置隔离部件,能够在电池生产过程中以有效的方式防止粘接剂施加在附接部件和泄压机构之间。同时,还能够提高粘接剂的施加效率和准确性,从而提高电池的生产效率。
在一些实施例中,泄压机构具有致动区域,而且泄压机构被构造成能够在电池单体的内部压力或温度达到阈值时在致动区域形成用于泄放内部压力的泄放通道;以及,隔离部件具有主体以及突出于主体表面布置的凸起,凸起被布置为与泄压机构的致动区域的位置相对应,并且凸起被构造成至少包围致动区域,以防止粘接剂进入致动区域。
在一些实施例中,附接部件包括避让结构,避让结构被构造为提供允许泄压机构致动的空间,在避让结构和泄压机构之间形成避让腔;以及,隔离部件具有主体以及突出于主体表面布置的凸起,凸起被布置为与避让腔的位置相对应,并且凸起被构造成至少包围避让腔面向泄压机构一侧的周缘,以防止粘接剂进入避让腔。
基于上述实施例,能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在泄压机构的表面上或者避让腔中,从而避免粘接剂对泄压机构在致动时造成阻碍。并且,可根据实际需要而灵活地加工制造隔离部件,使得制造的单个隔离部件能够以多个凸起分别针对多个泄压机构的致动区域或者分别针对多个避让腔实现隔离粘接剂的效果,这将有助于降低生产成本。
在一些优选的实施例中,提供隔离部件包括,采用吸塑工艺在主体表面上形成凸起。通过采用吸塑工艺,可以较为便捷地且低成本地加工制造所需的隔离部件,对于设有多个凸起的单个隔离部件的制造而言,这一加工制造方面的优势尤为显著。
图37示出了本申请实施例的制备电池的设备400的示意性框图。如图37所示,根据本申请的一些实施例的设备400包括:电池单体制备模块401,用于制备多个电池单体,多个电池单体中的至少一个电池单体包括:泄压机构,泄压机构被构造成能够在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;附接部件制备模块402,用于制备适于通过粘接剂附接至电池单体的附接部件;隔离部件制备模块403,用于制备被构造成能够防止粘接剂施加在附接部件和泄压机构之间的隔离部件;以及装配模块404,用于将隔离部件相对于电池单体或附接部件安装固定,以及施加粘接剂以将电池单体附接至附接部件。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的精神和范围。

Claims (38)

  1. 一种电池(10),其特征在于,包括:
    电池单体(20),包括泄压机构(213),所述泄压机构(213)被构造成能够在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    附接部件,其适于通过粘接剂附接至所述电池单体(20);以及
    隔离部件(14),所述隔离部件(14)被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构(213)之间。
  2. 根据权利要求1所述的电池(10),其特征在于,所述泄压机构(213)具有致动区域,而且所述泄压机构(213)被构造成能够在所述电池单体(20)的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道。
  3. 根据权利要求2所述的电池(10),其特征在于,所述隔离部件(14)被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域中。
  4. 根据权利要求2或3所述的电池(10),其特征在于,所述隔离部件(14)具有主体(141)以及突出于所述主体(141)表面布置的凸起(142),所述凸起(142)被布置为与所述泄压机构(213)的所述致动区域的位置相对应,而且所述凸起(142)被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
  5. 根据权利要求1-4中任一项所述的电池(10),其特征在于,所述附接部件包括避让结构(134),所述避让结构(134)被构造为提供允许所述泄压机构(213)致动的空间,并且,
    其中在所述避让结构(134)和所述泄压机构(213)之间形成避让腔(134a)。
  6. 根据权利要求5所述的电池(10),其特征在于,所述隔离部件(14)被构造成至少包围所述避让腔(134a)面向所述泄压机构(213)一侧的周缘,以防止所述粘接剂进入所述避让腔(134a)中。
  7. 根据权利要求5或6所述的电池(10),其特征在于,所述隔离部件(14)具有主体(141)以及突出于所述主体(141)表面布置的凸起(142),所述凸起(142)被布置为与所述避让腔(134a)的位置相对应,并且所述凸起(142)被构造成至少包围所述避让腔(134a)面向所述泄压机构(213)一侧的周缘,以防止所述粘接剂进入所述避让腔(134a)。
  8. 根据权利要求7所述的电池(10),其特征在于,所述凸起(142)的高度大于或等于所述粘接剂的预定施加高度,并且被构造成在所述电池单体(20)附接到所述附接部件的情况下被压缩以与所述粘接剂的高度一致。
  9. 根据权利要求7或8所述的电池(10),其特征在于,所述凸起(142)采用吸塑工艺形成于所述主体(141)表面上。
  10. 根据权利要求4-9中任一项所述的电池(10),其特征在于,所述凸起(142)包括第一凸起(1421)和第二凸起(1422),所述第一凸起(1421)与所述泄压机构(213)的位置相对应,所述第二凸起(1422)围绕所述第一凸起(1421)设置,所述 第一凸起(1421)和所述第二凸起(1422)用于防止所述粘接剂施加在所述附接部件和所述泄压机构(213)之间。
  11. 根据权利要求10所述的电池(10),其特征在于,所述第一凸起(1421)与所述第二凸起(1422)之间形成有凹槽(143),所述凹槽(143)用于容纳至少部分所述粘接剂,以防止所述粘接剂进入所述附接部件和所述泄压机构(213)之间。
  12. 根据权利要求11所述的电池(10),其特征在于,所述第二凸起(1422)包括:
    第一侧壁(1422a),用于与所述主体(141)相连,且所述第一侧壁(1422a)为所述第二凸起(1422)与所述凹槽(143)共用的壁;
    第二侧壁(1422b),用于与所述主体(141)相连,且所述第二侧壁(1422b)与所述第一侧壁(1422a)相对设置;
    连接壁(1422c),用于连接所述第一侧壁(1422a)和所述第二侧壁(1422b)。
  13. 根据权利要求12所述的电池(10),其特征在于,所述第一侧壁(1422a)和所述第二侧壁(1422b)中的至少一者包括第一突出部(1401),所述第一突出部(1401)沿第一方向突出设置,其中所述第一方向与所述第二凸起(1422)的突出方向相垂直。
  14. 根据权利要求12或13所述的电池(10),其特征在于,所述第一侧壁(1422a)和所述第二侧壁(1422b)中的至少一者相对于所述附接部件朝向所述电池单体(20)的方向倾斜设置。
  15. 根据权利要求12-14中任一项所述的电池(10),其特征在于,所述连接壁(1422c)包括第二突出部(1402),所述第二突出部(1402)沿所述附接部件朝向所述电池单体(20)的方向突出设置,或者沿所述电池单体(20)朝向所述附接部件的方向突出设置。
  16. 根据权利要求12-15中任一项所述的电池(10),其特征在于,所述第二凸起(1422)包括空腔(1404),所述第一侧壁(1422a)、所述第二侧壁(1422b)和所述连接壁(1422c)中的至少一者设置有开孔(1405),所述开孔(1405)与所述空腔(1404)相连通,以使至少部分所述粘接剂通过所述开孔(1405)进入所述空腔(1404)。
  17. 根据权利要求12-16中任一项所述的电池(10),其特征在于,所述第一凸起(1421)包括:
    第三侧壁(1421a),用于与所述主体(141)相连,且所述第三侧壁(1421a)为所述第一凸起(1421)与所述凹槽(143)共用的壁,所述第三侧壁(1421a)与所述第一侧壁(1422a)相对设置;
    其中,所述第三侧壁(1421a)包括第三突出部(1403),所述第三突出部(1403)沿第一方向突出设置,所述第一方向与所述第二凸起(1422)的突出方向相垂直;和/或所述第三侧壁(1421a)相对于所述附接部件朝向所述电池单体(20)的方向倾斜设置。
  18. 根据权利要求10-17中任一项所述的电池(10),其特征在于,所述第二凸起 (1422)的宽度为1mm-8mm。
  19. 根据权利要求10-18中任一项所述的电池(10),其特征在于,所述第二凸起(1422)为环状结构。
  20. 根据权利要求11-19中任一项所述的电池(10),其特征在于,所述凹槽(143)的宽度为1mm-8mm。
  21. 根据权利要求10-20中任一项所述的电池(10),其特征在于,所述第二凸起(1422)为附接至所述主体(141)表面上的弹性部件。
  22. 根据权利要求10-21中任一项所述的电池(10),其特征在于,所述凸起(142)还包括第三凸起(1423),所述第三凸起(1423)围绕所述第二凸起(1422)设置。
  23. 根据权利要求4-22中任一项所述的电池(10),其特征在于,所述凸起(142)面向所述泄压机构(213)的壁上设置有通孔(1406),所述通孔(1406)被配置为在所述泄压结构(213)致动时使来自所述电池单体(20)的排放物穿过所述隔离部件(14)。
  24. 根据权利要求23所述的电池(10),其特征在于,所述通孔(1406)围绕所述泄压机构(213)设置,以防止所述粘接剂进入所述泄压机构(213)与所述附接部件之间。
  25. 根据权利要求23或24所述的电池(10),其特征在于,所述通孔(1406)被配置为与所述致动区域的位置相对应,且所述通孔(1406)围绕所述致动区域设置,以防止所述粘接剂进入所述致动区域与所述附接部件之间。
  26. 根据权利要求4-25中任一项所述的电池(10),其特征在于,
    所述电池(10)包括多个电池单体(20),所述多个电池单体(20)中的每个电池单体(20)包括所述泄压机构(213);
    所述隔离部件(14)包括至少一个所述凸起(142);
    其中,所述凸起(142)与所述泄压机构(213)一一对应,或者,所述凸起(142)与至少两个所述泄压机构(213)相对应。
  27. 根据权利要求1-26中任一项所述的电池(10),其特征在于,所述隔离部件(14)被构造为能够被所述泄压机构(213)致动时来自所述电池单体(20)的排放物破坏。
  28. 根据权利要求27所述的电池(10),其特征在于,所述隔离部件(14)采用熔点不大于所述排放物的排放温度的热塑性材料制成。
  29. 根据权利要求1-28中任一项所述的电池(10),其特征在于,所述隔离部件(14)包括用于防止所述粘接剂施加在其上的涂层。
  30. 根据权利要求1-29中任一项所述的电池(10),其特征在于,所述附接部件包括用于容纳流体的热管理部件(13),以给所述电池单体(20)调节温度。
  31. 根据权利要求30所述的电池(10),其特征在于,所述避让结构(134)形成于所述热管理部件(13),且所述避让结构(134)包括避让底壁(134b)和围绕所述避让腔(134a)的避让侧壁(134c)。
  32. 根据权利要求31所述的电池(10),其特征在于,所述避让侧壁(134c)被构造成在所述泄压机构(213)致动时被破坏,从而使所述流体流出。
  33. 一种装置,包括如权利要求1-32中任一项所述的电池,所述电池用于提供电能。
  34. 一种制备电池的方法,包括:
    提供多个电池单体(20),所述多个电池单体(20)中的至少一个电池单体(20)包括:
    泄压机构(213),所述泄压机构(213)被构造成能够在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供附接部件,所述附接部件适于通过粘接剂附接至所述电池单体(20);
    提供隔离部件(14),所述隔离部件(14)被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构(213)之间;以及
    施加所述粘接剂,以将所述电池单体(20)附接至所述附接部件。
  35. 根据权利要求34所述的方法,其特征在于,所述泄压机构(213)具有致动区域,而且所述泄压机构(213)被构造成能够在所述电池单体(20)的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道;以及
    所述隔离部件(14)具有主体(141)以及突出于所述主体(141)表面布置的凸起(142),所述凸起(142)被布置为与所述泄压机构(213)的所述致动区域的位置相对应,并且所述凸起(142)被构造成至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
  36. 根据权利要求34所述的方法,其特征在于,所述附接部件包括避让结构(134),所述避让结构(134)被构造为提供允许所述泄压机构(213)致动的空间,在所述避让结构(134)和所述泄压机构(213)之间形成避让腔(134a);以及
    所述隔离部件(14)具有主体(141)以及突出于所述主体(141)表面布置的凸起(142),所述凸起(142)被布置为与所述避让腔(134a)的位置相对应,并且所述凸起(142)被构造成至少包围所述避让腔(134a)面向所述泄压机构(213)一侧的周缘,以防止所述粘接剂进入所述避让腔(134a)。
  37. 根据权利要求35或36所述的方法,其特征在于,提供所述隔离部件(14)包括,采用吸塑工艺在所述主体(141)表面上形成所述凸起(142)。
  38. 一种制备电池的设备,包括:
    电池单体制备模块,用于制备多个电池单体(20),所述多个电池单体(20)中的至少一个电池单体(20)包括:
    泄压机构(213),所述泄压机构(213)被构造成能够在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    附接部件制备模块,用于制备适于通过粘接剂附接至所述电池单体(20)的附接部件;
    隔离部件制备模块,用于制备被构造成能够防止所述粘接剂施加在所述附接部件和所述泄压机构(213)之间的隔离部件(14);
    装配模块,用于将所述隔离部件(14)相对于所述电池单体(20)或所述附接部件安装固定,以及施加所述粘接剂以将所述电池单体(20)附接至所述附接部件。
PCT/CN2021/082481 2020-07-10 2021-03-23 电池及其相关装置、制备方法和制备设备 WO2022007435A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21730788.3A EP3965212A4 (en) 2020-07-10 2021-03-23 BATTERY, RELATED DEVICE, AND METHOD OF MANUFACTURE AND DEVICE
JP2022546100A JP2023513025A (ja) 2020-07-10 2021-03-23 電池及びその関連装置、製造方法並びに製造機器
CN202180000892.3A CN114175359B (zh) 2020-07-10 2021-03-23 电池及其相关装置、制备方法和制备设备
CA3167996A CA3167996A1 (en) 2020-07-10 2021-03-23 Battery and related apparatus. production method and production device therefor
KR1020227026951A KR102684448B1 (ko) 2020-07-10 2021-03-23 배터리 및 관련 장치, 제조 방법 및 제조 장치
US17/562,608 US11749865B2 (en) 2020-07-10 2021-12-27 Battery and related apparatus, production method and production device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/101443 WO2022006898A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
CNPCT/CN2020/101443 2020-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,608 Continuation US11749865B2 (en) 2020-07-10 2021-12-27 Battery and related apparatus, production method and production device therefor

Publications (1)

Publication Number Publication Date
WO2022007435A1 true WO2022007435A1 (zh) 2022-01-13

Family

ID=77519086

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/101443 WO2022006898A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备
PCT/CN2021/082481 WO2022007435A1 (zh) 2020-07-10 2021-03-23 电池及其相关装置、制备方法和制备设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101443 WO2022006898A1 (zh) 2020-07-10 2020-07-10 电池及其相关装置、制备方法和制备设备

Country Status (9)

Country Link
US (2) US11611128B2 (zh)
EP (3) EP4135111A1 (zh)
JP (2) JP7473665B2 (zh)
KR (1) KR20220133245A (zh)
CN (2) CN114175379B (zh)
CA (1) CA3167996A1 (zh)
ES (1) ES2934659T3 (zh)
FI (1) FI3965217T3 (zh)
WO (2) WO2022006898A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022006898A1 (zh) * 2020-07-10 2022-01-13 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
WO2024026778A1 (zh) * 2022-08-04 2024-02-08 宁德时代新能源科技股份有限公司 电池和用电设备
CN116544488B (zh) * 2023-07-06 2023-11-14 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209947915U (zh) * 2019-07-05 2020-01-14 东软睿驰汽车技术(沈阳)有限公司 一种电池包及电池模组
CN111106277A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN210535737U (zh) * 2019-10-29 2020-05-15 上海蔚来汽车有限公司 电池包的隔热组件

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730961U (zh) * 1980-07-29 1982-02-18
CA1143786A (en) * 1981-02-02 1983-03-29 Wolodymyr R. Elehew Anti-spill device for electrolyte battery
JP3497919B2 (ja) * 1995-05-17 2004-02-16 アルプス電気株式会社 圧力遮断センサ
DE102005017648B4 (de) 2005-04-15 2008-01-10 Daimlerchrysler Ag Flüssigkeitsgekühlte Batterie und Verfahren zum Betreiben einer solchen
CN100561774C (zh) * 2005-09-30 2009-11-18 Tdk兰达株式会社 电池匣
JP5100116B2 (ja) * 2006-12-29 2012-12-19 三洋電機株式会社 パック電池
CN101960645B (zh) * 2008-09-26 2012-09-26 松下电器产业株式会社 铅蓄电池的制造方法和铅蓄电池
JP2010153213A (ja) * 2008-12-25 2010-07-08 Sanyo Electric Co Ltd パック電池
JP5407683B2 (ja) * 2009-09-10 2014-02-05 トヨタ自動車株式会社 電池及び電池の製造方法
DE102009046385A1 (de) 2009-11-04 2011-05-05 SB LiMotive Company Ltd., Suwon Batterie mit Entgasungssystem und Verfahren zum Abführen von Austretungen
JP5492738B2 (ja) * 2010-11-05 2014-05-14 日立ビークルエナジー株式会社 二次電池および二次電池モジュール
JP5722118B2 (ja) * 2011-05-18 2015-05-20 日立オートモティブシステムズ株式会社 蓄電モジュールおよびその製造方法
CN102403477A (zh) * 2011-10-25 2012-04-04 天津和平安耐高能电池科技有限公司 适用于大容量、高功率锂-二氧化锰电池的防爆装置
JP5966922B2 (ja) * 2012-02-14 2016-08-10 株式会社Gsユアサ 蓄電素子
JP5981809B2 (ja) * 2012-08-31 2016-08-31 日立オートモティブシステムズ株式会社 角形二次電池
JP6174388B2 (ja) * 2013-06-19 2017-08-02 日立オートモティブシステムズ株式会社 電池モジュール
CN103474599B (zh) * 2013-09-15 2018-08-31 宁德新能源科技有限公司 具有理想安全性能的锂离子电池和电池包
JP6163261B2 (ja) * 2014-05-29 2017-07-12 日立オートモティブシステムズ株式会社 蓄電モジュール
CN104485479A (zh) * 2014-12-25 2015-04-01 宁德新能源科技有限公司 锂离子电池
US10550289B2 (en) * 2015-05-29 2020-02-04 Lintec Corporation Pressure sensitive adhesive sheet
CN105206895B (zh) * 2015-10-20 2017-08-22 方乐同 电池组的冷却方法及带有冷却装置的电池组
US10454147B2 (en) 2015-11-19 2019-10-22 Intramicron, Inc. Battery pack for energy storage devices
JP2017147128A (ja) * 2016-02-17 2017-08-24 三菱重工業株式会社 電池モジュール、および、電池システム
CN206210970U (zh) * 2016-02-25 2017-05-31 比亚迪股份有限公司 动力电池及其保护系统和电动汽车
CN105811043A (zh) * 2016-03-21 2016-07-27 郑州比克新能源汽车有限公司 纯电动汽车动力电池热管理系统
KR102120118B1 (ko) * 2016-08-18 2020-06-08 주식회사 엘지화학 배터리 모듈
CN107230763B (zh) * 2017-07-12 2023-04-18 湖南艾威尔新能源科技有限公司 锂电池绝缘防爆系统
DE102017212223A1 (de) * 2017-07-18 2019-01-24 Bayerische Motoren Werke Aktiengesellschaft Batterie eines elektrisch angetriebenen kraftfahrzeugs
CN207233830U (zh) * 2017-09-01 2018-04-13 宁德时代新能源科技股份有限公司 电池模组用侧板以及电池模组
US11024901B2 (en) * 2018-01-19 2021-06-01 Hanon Systems Battery cooling plate with integrated air vents
JP2019192412A (ja) * 2018-04-20 2019-10-31 カルソニックカンセイ株式会社 組電池
JP7163615B2 (ja) * 2018-05-09 2022-11-01 株式会社Gsユアサ 蓄電装置
US10756398B2 (en) * 2018-06-22 2020-08-25 Wisk Aero Llc Capacitance reducing battery submodule with thermal runaway propagation prevention and containment features
US20200185798A1 (en) * 2018-12-05 2020-06-11 Nio Usa, Inc. Method and system for joining cells to a battery coldplate
CN209104196U (zh) * 2018-12-29 2019-07-12 宁德时代新能源科技股份有限公司 电池包
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN111106281B (zh) * 2019-08-27 2021-08-06 宁德时代新能源科技股份有限公司 电池包
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
WO2022006898A1 (zh) * 2020-07-10 2022-01-13 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106277A (zh) * 2018-12-29 2020-05-05 宁德时代新能源科技股份有限公司 电池包
CN209947915U (zh) * 2019-07-05 2020-01-14 东软睿驰汽车技术(沈阳)有限公司 一种电池包及电池模组
CN210535737U (zh) * 2019-10-29 2020-05-15 上海蔚来汽车有限公司 电池包的隔热组件

Also Published As

Publication number Publication date
JP2023513025A (ja) 2023-03-30
EP3965217A4 (en) 2022-03-09
US20220123425A1 (en) 2022-04-21
WO2022006898A1 (zh) 2022-01-13
FI3965217T3 (fi) 2023-01-13
CN114175359B (zh) 2023-12-26
US11749865B2 (en) 2023-09-05
JP7473665B2 (ja) 2024-04-23
CN114175359A (zh) 2022-03-11
EP3965212A1 (en) 2022-03-09
KR20220124751A (ko) 2022-09-14
US20220013756A1 (en) 2022-01-13
EP3965217A1 (en) 2022-03-09
JP2023515651A (ja) 2023-04-13
KR20220133245A (ko) 2022-10-04
CA3167996A1 (en) 2022-01-13
EP3965217B1 (en) 2022-12-07
EP3965212A4 (en) 2022-03-30
ES2934659T3 (es) 2023-02-23
US11611128B2 (en) 2023-03-21
CN114175379A (zh) 2022-03-11
EP4135111A1 (en) 2023-02-15
CN114175379B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213026307U (zh) 电池、包括电池的装置和制备电池的设备
CN213782158U (zh) 电池、包括电池的装置和制备电池的设备
WO2022007435A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213636145U (zh) 电池、包括电池的装置和制备电池的设备
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
KR102684448B1 (ko) 배터리 및 관련 장치, 제조 방법 및 제조 장치
RU2815079C1 (ru) Батарея и относящееся к ней устройство, способ ее изготовления и устройство для ее изготовления
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2024113208A1 (zh) 电池和用电设备
CA3236551A1 (en) Battery and electrical device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021730788

Country of ref document: EP

Effective date: 20210617

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21730788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546100

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026951

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3167996

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE