WO2022001198A1 - 低压输电系统、dcdc变换器、控制方法、设备及介质 - Google Patents

低压输电系统、dcdc变换器、控制方法、设备及介质 Download PDF

Info

Publication number
WO2022001198A1
WO2022001198A1 PCT/CN2021/081298 CN2021081298W WO2022001198A1 WO 2022001198 A1 WO2022001198 A1 WO 2022001198A1 CN 2021081298 W CN2021081298 W CN 2021081298W WO 2022001198 A1 WO2022001198 A1 WO 2022001198A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
signal
dcdc converter
power
voltage
Prior art date
Application number
PCT/CN2021/081298
Other languages
English (en)
French (fr)
Inventor
王潇
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227023434A priority Critical patent/KR20220108814A/ko
Priority to EP21830377.4A priority patent/EP3984811B1/en
Priority to JP2022542169A priority patent/JP7453386B2/ja
Priority to US17/566,718 priority patent/US20220118879A1/en
Publication of WO2022001198A1 publication Critical patent/WO2022001198A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to the field of battery technology, in particular to a low-voltage power transmission system, a low-voltage power transmission system, a DCDC converter, and a control method, device, and medium.
  • the low-voltage power transmission system, the DCDC converter, and the control method, device, and medium provided by the embodiments of the present application can improve the safety of the battery.
  • an embodiment of the present application provides a control method, which is applied to a DC DCDC converter, including:
  • Self-wake-up is performed under the condition that the duration of the sleep mode reaches a preset duration, and a wake-up signal for waking up the BMS to enter the working mode is output to the BMS.
  • the DCDC converter when the charging signal, the vehicle start signal, and the enable signal are all low-level, and no communication message sent by the BMS is received, it can be determined that the whole vehicle is powered off state, and enter the sleep mode, perform self-wakeup under the condition that the duration of the sleep mode reaches a preset time length, and output a wake-up signal to the BMS for waking the BMS into the working mode. Therefore, the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • the method further includes:
  • a first power signal is output, and the first power signal is used to supply power to the BMS.
  • the BMS after the DCDC converter self-wakes up, the BMS can be powered by the first power signal, so that the BMS can be supported to operate in a working mode.
  • the communication message includes a first communication message that allows the output of the DCDC converter and a second communication message that prohibits the output of the DCDC converter, and the method further includes:
  • the charging signal is at a high level, if the first communication message is received or the communication message is not received, it is determined that the whole vehicle is in a charging state.
  • the method further includes:
  • the second power signal is determined according to the power demand of the target power module, wherein,
  • the DCDC converter supplies power to the target power module through the second power signal, and the target power module includes a low-voltage power device, and the low-voltage power device includes a BMS;
  • the low-voltage power supply circuit When the low-voltage power supply circuit is turned on, if the output voltage of the low-voltage power supply is greater than the output voltage of the DCDC converter, the power demand of the target power module is zero, and the second power signal is equal to zero; if the output of the low-voltage power supply is equal to zero If the voltage is less than or equal to the output voltage of the DCDC converter, the DCDC converter supplies power to the target power consumption module through the second power signal, and the target power consumption module includes a low-voltage power supply and a low-voltage power consumption device.
  • the target power module when the vehicle is in the charging state, the target power module can be powered according to the conduction state of the low-voltage power supply circuit and the output voltage of the low-voltage power supply and the DCDC converter.
  • the flexibility of the control strategy is improved.
  • the communication message includes a first communication message that allows the output of the DCDC converter and a second communication message that prohibits the output of the DCDC converter, and the method further includes:
  • the vehicle start signal When the charging signal is low level, the vehicle start signal is high level and the first communication message is received, or when the charging signal is low level, the vehicle start signal and the enable signal are high level and not received.
  • the communication message it is determined that the whole vehicle is in a driving state.
  • the vehicle state can be accurately judged according to the charging signal, the vehicle start signal and the first communication message.
  • the method further includes:
  • the DCDC converter supplies power to the target power module through the third power signal, and the target power module includes a low-voltage power device, and the low-voltage power device includes a BMS;
  • the low-voltage power supply circuit When the low-voltage power supply circuit is turned on, if the output voltage of the low-voltage power supply is greater than the output voltage of the DCDC converter, the power demand of the target power module is zero, and the third power signal is equal to zero; if the output of the low-voltage power supply is equal to zero If the voltage is less than or equal to the output voltage of the DCDC converter, the DCDC converter supplies power to the target power module through the third power signal, and the target power module includes a low-voltage power supply and a low-voltage power device.
  • the target power module when the vehicle is in a driving state, the target power module can be powered according to the conduction state of the low-voltage power supply circuit and the output voltage of the low-voltage power supply and the DCDC converter.
  • the flexibility of the control strategy is improved.
  • the communication message includes a first communication message that allows the output of the DCDC converter and a second communication message that prohibits the output of the DCDC converter, and the method further includes:
  • the communication message includes a first communication message that allows the output of the DCDC converter and a second communication message that prohibits the output of the DCDC converter, and the method further includes:
  • the charging signal and the vehicle start signal are at a low level, and the enable signal is at a high level.
  • an embodiment of the present application provides a DCDC converter, including:
  • the parameter acquisition module is used to acquire the charging signal, the vehicle start signal, and the enable signal;
  • the control module is used to determine that the whole vehicle is in the power-off state and enter the sleep mode if the charging signal, the vehicle start signal and the enable signal are all low level and no communication message sent by the battery management system BMS is received;
  • the self-wake-up module is used for self-wake-up under the condition that the duration of the sleep mode reaches a preset duration, and outputs a wake-up signal to the BMS for waking up the BMS to enter the working mode.
  • the DCDC converter in the embodiment of the present application, when the charging signal, the vehicle start signal, and the enable signal are all low-level, and no communication message sent by the BMS is received, it can be determined that the whole vehicle is in a power-off state, and the Enter the sleep mode, perform self-wakeup under the condition that the duration of the sleep mode reaches a preset time length, and output a wake-up signal to the BMS for waking up the BMS to enter the working mode. Therefore, the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • the DCDC converter includes a phase-shifted full-bridge unit.
  • embodiments of the present application provide a low-voltage power transmission system, including:
  • a battery management system, and the DCDC converter provided by the second aspect or any optional implementation manner of the second aspect.
  • the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • the low-voltage power transmission system further includes: a low-voltage power supply, and the low-voltage power supply is respectively connected to the DCDC converter and the battery management system through a low-voltage power supply loop.
  • the low-voltage power transmission system further includes:
  • the state parameter transmission device is used to obtain the state parameters of the battery pack from the battery management system, and send the state parameters of the battery pack to the remote monitoring platform.
  • the state parameter of the battery pack can be sent to the remote monitoring platform through the state parameter transmission device, so that it is convenient for the relevant operator to monitor the state parameter of the battery through the remote monitoring platform.
  • a control device comprising: a memory for storing a program
  • a processor configured to run the program stored in the memory to execute the control method provided by the first aspect or any optional implementation manner of the first aspect.
  • the control device in the embodiment of the present application when the charging signal, the vehicle start signal, and the enable signal are all low levels, and no communication message sent by the BMS is received, it can be determined that the whole vehicle is in a power-off state, and the vehicle enters the power-off state.
  • the sleep mode self-wake-up is performed under the condition that the duration of the sleep mode reaches a preset time length, and a wake-up signal for waking up the BMS to enter the working mode is output to the BMS. Therefore, the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • a computer storage medium where computer program instructions are stored thereon, and when the computer program instructions are executed by a processor, the first aspect or any optional implementation manner of the first aspect is provided. control method.
  • the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • FIG. 1 is a schematic structural diagram of a low-voltage power transmission system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an exemplary control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a DCDC converter provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an exemplary phase-shifted full-bridge unit provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of an exemplary hardware architecture of a control device in an embodiment of the present application.
  • Power sources in electric vehicles can include high-voltage battery packs and low-voltage power supplies.
  • the high-voltage battery pack may include at least one battery module or at least one battery unit, which is not limited herein.
  • the high-voltage battery pack can be used as a power source for electric vehicles to power the motor.
  • the low-voltage power supply can provide 12V or 24V low-voltage power for the low-voltage electrical devices in the vehicle.
  • the low voltage power supply may be a lead-acid battery.
  • the low-voltage electrical devices can be devices that need to be driven by low-voltage, such as instrument controllers, relays, and air pump controllers in the vehicle.
  • electric vehicles can be in different use states, such as driving state, charging state or power-off state.
  • driving state In the driving scene, the electric vehicle is in a driving state.
  • the whole vehicle needs to enter the power-on state. That is to say, the low-voltage electrical devices of the whole vehicle need to be energized.
  • a low-voltage power supply or a DC (Direct Current-Direct Current, DCDC) converter to supply power to the low-voltage electrical device.
  • DCDC Direct Current-Direct Current
  • the car is in the power-on charging state.
  • the vehicle in a stationary parking scenario, after the car is stopped and all low-voltage electrical devices in the vehicle are powered off, the vehicle will be in a state of power off of the entire vehicle.
  • the battery management system can be used to monitor the status of the battery pack. After the vehicle is powered off, the battery management system will also be powered off and cannot monitor the status of the battery pack. If the status of the battery pack is abnormal at this time, it is impossible to find out and take measures in time, so that the safety of the battery pack cannot be guaranteed.
  • BMS battery management system
  • FIG. 1 is a schematic structural diagram of a low-voltage power transmission system provided by an embodiment of the present application. As shown in FIG. 1 , the low-voltage power transmission system 10 includes a DCDC converter 11 and a battery management system 12 .
  • the DCDC converter 11 can convert the high-voltage power of the battery pack 20 into low-voltage power, and output the converted low-voltage power to the target low-voltage electrical device.
  • the DCDC converter 11 When the target vehicle is powered off, the DCDC converter 11 can self-wake up by means of a timer, and wake up the BMS 12 . Therefore, the battery pack 20 can also be monitored by the battery management system 12 when the target vehicle is in a powered-off state.
  • the DCDC converter 11 includes a timer. When the timer determines that the preset time period is reached, the DCDC converter 11 self-wakes up, and sends a wake-up signal to the BMS 12 after self-wake up, and outputs low-voltage power to supply power to the BMS 12 .
  • the BMS12 can implement the monitoring function of the battery pack 20. For example, battery pack status data such as the temperature of the single cell in the battery pack 20 and the voltage of the single cell are collected, and whether the status of the battery pack 20 is abnormal is determined according to the battery pack status data.
  • the BMS 12 can also implement the function of controlling the DCDC converter 11 .
  • the BMS 12 may be specifically implemented as a domain controller.
  • the domain controller refers to an electronic device that integrates the functions of a vehicle controller (VCU), a motor controller (MCU) and a battery management system (BMS). Domain controllers can also aggregate the functions of other modules without limitation.
  • VCU vehicle controller
  • MCU motor controller
  • BMS battery management system
  • the low-voltage power transmission system 10 may further include a low-voltage power supply 13 .
  • the low-voltage power supply 13 may be a lead-acid battery or other power supply device capable of outputting a voltage of 12V or 24V, which is not specifically limited.
  • a first switch module 14 is further provided on the low-voltage power supply circuit where the low-voltage power supply 13 is located.
  • the first switch module 14 When the first switch module 14 is turned on, the low-voltage power supply circuit between the low-voltage power supply 13 and each low-voltage power module is turned on, and the low-voltage power supply 13 can supply power to each low-voltage power module.
  • the low-voltage power supply loop between the low-voltage power supply 13 and the DCDC converter 11 is turned on, and the DCDC converter 11 can supply the low-voltage power supply 13 with electricity.
  • the first switch module 14 may be embodied as a manual switch.
  • the position of the first switch module 14 may be set at other positions of the low-voltage power supply circuit according to actual requirements or specific working scenarios, for example, may be set on the power supply circuit where the DCDC converter 11 is located, which is not limited.
  • the low voltage power transmission system 10 may further include a state parameter transmission device 15 .
  • the state parameter transmission device 15 may transmit the state parameters of the battery pack 20 to the remote monitoring terminal.
  • the state parameters of the battery pack 20 are used to characterize the electrical characteristic state of the battery pack 20 . For example, it may be the voltage parameter of each single cell in the battery pack 20 and/or the temperature parameter of each single cell in the battery pack 20, and the like.
  • wireless communication is possible between the state parameter transmission device 15 and the remote monitoring terminal, for example, using a Global System for Mobile Communications (GSM) network, the 4th generation mobile communication technology (the 4th generation mobile communication technology) , 4G) and other data transmission networks or wireless local area networks such as Wireless Fidelity (Wi-Fi), which are not specifically limited.
  • GSM Global System for Mobile Communications
  • 4G 4th generation mobile communication technology
  • Wi-Fi Wireless Fidelity
  • the low-voltage power transmission system 10 may further include a second switch module 16 disposed in the low-voltage power supply loop.
  • the second switch module 16 may be disposed on the low-voltage positive power transmission line.
  • the position of the second switch module 16 can be set according to specific scenarios and actual needs, and is not limited thereto. Exemplarily, with continued reference to FIG. 1 , if the low-voltage power supply branches of each low-voltage electrical device are connected to a low-voltage power supply trunk, the second switch module 16 may be disposed on the low-voltage power supply trunk. When the second switch module 16 is turned on, it can supply power to each low-voltage electrical device.
  • the low-voltage power supply branch can be connected to a low-voltage power supply loop between the DCDC converter 11 and the low-voltage power supply 13 . If the low-voltage power supply branch can be connected to the low-voltage power supply loop between the DCDC converter 11 and the low-voltage power supply 13, the connection point is called the first connection point.
  • the first switch module 14 is arranged between the first connection point and the low-voltage power supply 13 . Therefore, when the target vehicle is powered off, the second switch module 16 can be selectively turned on to supply power to each low-voltage power consumption module, and the first switch module 14 can be selected to be turned on to supplement the low-voltage power supply 13 . Thus, the entire low-voltage power transmission system 10 is made more flexible.
  • the second switch module 16 can be turned on or off under the control of the vehicle controller 31 .
  • the enabling end of the vehicle controller 31 outputs a control signal, and the control signal is used to control the second switch module 16 .
  • the low-voltage power transmission system 10 provided by the embodiment of the present application only needs to set one DCDC converter 11 to monitor the state of the battery pack of the vehicle in the power-off state, and does not need to set a power distribution module. While ensuring the safety of the battery pack, the topology structure and connection relationship of the low-voltage power transmission system can be simplified, and the use of the wiring harness of the low-voltage power transmission system can be reduced.
  • the DCDC converter 11 After the introduction of the low-voltage power transmission system 10 , the following parts of the embodiments of the present application will specifically describe the DCDC converter 11 .
  • the control method, device, device and medium according to the embodiments of the present application will be described in detail below with reference to the accompanying drawings. It should be noted that these embodiments are not used to limit the scope of the disclosure of the present application.
  • FIG. 2 is a schematic flowchart of a control method provided by an embodiment of the present application. As shown in FIG. 2, the control method 200 in this embodiment may include the following steps:
  • the charging signal is used to indicate whether the whole vehicle is being charged.
  • the above-mentioned charging wake-up signal may be referred to as an A+ signal.
  • an external charging power source such as a charging gun inputs a 12V or 24V low-voltage signal, the charging signal is at a high level; otherwise, the charging signal is at a low level.
  • the vehicle start signal is used to indicate whether the whole vehicle is powered on. If the vehicle start signal is at a high level, confirm that the vehicle is powered on. On the contrary, if the vehicle start signal is low, it is confirmed that the whole vehicle is not powered on.
  • the vehicle start signal may be determined according to the gear position of the ignition switch of the target vehicle. For example, if the ignition switch of the target vehicle is switched to the key on position, the vehicle start signal is at a high level. Otherwise, the vehicle start signal is low.
  • the vehicle start signal may be referred to as a key on signal.
  • the enable signal may be a signal sent by the BMS.
  • the enable signal can be called the ENABLE signal. If the enable signal is high, it indicates that the output of the DCDC converter is allowed. In some embodiments, the enable signal may be received through the ENABLE port of the DCDC converter 11 .
  • the BMS 12 can communicate through the communication line between the BMS 12 and the DCDC converter 11 in addition to sending the enable signal to the DCDC converter 11 .
  • the communication line includes a controller area network (Controller Area Network, CAN) bus, or a serial communication line. Alternatively, it may also be a wireless communication line, which is not specifically limited. Taking the communication line between the two as the CAN bus as an example, the BMS 12 can send CAN messages to the DCDC converter 11 .
  • CAN Controller Area Network
  • the information represented by the CAN message needs to be consistent with the information represented by the ENABLE signal.
  • the ENABLE signal may be a high-level signal, and if the CAN message indicates that the output of the DCDC converter is prohibited, the ENABLE signal may be a low-level signal.
  • the CAN message can be used as the main message, and a fault can be reported. If the CAN message is not received, that is, CANLOSS, the command of the BMS12 can be determined by the ENABLE signal.
  • the DCDC converter 11 wakes up by itself, and wakes up the BMS 12 .
  • the duration of the sleep mode can be determined by a timer to reach a preset duration.
  • the preset duration may be set by the BMS 12 according to specific work scenarios and work needs.
  • duration information representing the preset duration sent by the BMS 12 may also be received. And adjust the preset duration according to the received duration information.
  • the safety of the battery pack 20 may be affected because the BMS 12 cannot monitor the battery pack status parameters in real time when the target vehicle is powered off. Therefore, in order to ensure the safety of the battery pack 20, when the target vehicle is in a power-off state, the DCDC converter 11 can be periodically self-wake-up, thereby periodically waking up the BMS 12. At this time, after being woken up for a period of time, the BMS12 enters the power-down mode from the working mode again.
  • the existing timing duration can be cleared and the timing can be restarted.
  • the preset duration needs to be longer than the duration of the BMS12 being woken up once.
  • the BMS12 re-enters the power-off mode, it will send a power-off prompt signal to the DCDC converter 11.
  • the DCDC converter 11 receives the power-off prompt signal, it can clear the existing timing duration and restart the timing.
  • the wake-up signal may be sent through a communication line.
  • the wake-up signal may be loaded in the CAN message.
  • the BMS 12 can monitor the state parameters of the battery pack 20 .
  • the state parameters of the battery pack 20 are used to characterize the state characteristics of the battery pack. For example, it may be the voltage parameter of each single cell in the battery pack 20 and/or the temperature parameter of each single cell in the battery pack 20, the pressure parameter of the battery pack, the smoke parameter in the battery pack, etc., which are not specifically described. limited.
  • the BMS 12 since the BMS 12 is not powered on before being woken up, in order to wake up the BMS 12 successfully, a low voltage power needs to be supplied to the BMS 12 while the BMS 12 is being woken up.
  • the method further includes: outputting a first power signal, where the first power signal is used to supply power to the BMS 12 .
  • the DCDC converter 11 may be in a low power output mode.
  • the first electrical energy signal may be the output power, and the value of the first electrical signal may be equal to 300W.
  • the DCDC converter, the control method, the device, and the medium in the embodiments of the present application when the charging signal, the vehicle start signal, and the enable signal are all low-level, and no communication message sent by the BMS12 is received , it can be determined that the whole vehicle is in the power-off state, and enters the sleep mode, self-wakeup is performed under the condition that the sleep mode lasts for a preset duration, and a wake-up signal for waking up the BMS12 to enter the working mode is output to the BMS12. Therefore, the DCDC converter 11 can be used to wake up the battery management system to monitor the battery pack, so that the BMS 12 can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack 20 .
  • the charging state in addition to determining the power-off state by using the above four signals, the charging state can also be determined.
  • the following sections describe the state of charge in detail.
  • the method 200 further includes:
  • the charging signal is at a high level
  • the first communication message is received or the communication message is not received, it is determined that the whole vehicle is in a charging state.
  • that the communication message is not received means that the first communication message and the second communication message are not received either.
  • the DCDC converter 11 may also output a second power signal.
  • the method 200 further includes: outputting a second electrical energy signal.
  • the second power signal is determined according to the power demand of the target power consumption module.
  • the DCDC converter 11 may output a fixed voltage, for example, the voltage strength value of the fixed voltage may be 27V, while the voltage strength value of the second power signal may be in the range of 0-3KW.
  • the low-voltage power supply 13 When the low-voltage power supply 13 is disconnected from the low-voltage power supply circuit of the DCDC converter 11 . Illustratively, referring to FIG. 1 , it may be in the specific case that the first switch module 14 is disconnected. At this time, the DCDC converter 11 needs to supply power to the low-voltage electrical device. Among them, the low-voltage electrical device includes BMS12. Exemplarily, the voltage strength value of the second power signal may vary within a range of 300W-3KW.
  • the target power consumption module includes a low-voltage power supply 13 and a low-voltage power consumption device.
  • the low-voltage power supply 13 can meet the power demand of the target power module, that is, the low-voltage power supply The power supply supplies power to the target power consumption module. At this time, the power demand of the target power consumption module to the DCDC converter 11 is zero, and the voltage intensity value of the second power signal is equal to zero.
  • the driving state in addition to using the above four signals to determine the power-off state, the driving state can also be determined.
  • the following sections will describe the driving status in detail.
  • method 200 further includes:
  • the vehicle start signal is at a high level, and the first communication message is received, it is determined that the entire vehicle is in a driving state.
  • the vehicle start signal and the enable signal are at a high level, and no communication message is received, it is determined that the entire vehicle is in a driving state.
  • the method 200 further includes:
  • a third power signal is output.
  • the content of the third power signal is similar to that of the second power signal, and details are not described herein again.
  • the standby state in addition to determining the power-off state by using the above four signals, the standby state can also be determined.
  • the following sections describe the standby state in detail.
  • method 200 further includes:
  • the CAN message indicates that the output of the DCDC converter 11 is prohibited, regardless of the level of the A+ signal, the KEY ON signal, and the ENABLE signal, it can be determined that the whole vehicle is in a standby state.
  • CANLOSS, A+ signal and ENABLE signal are low level, and KEY ON signal is high level, it is determined that the whole vehicle is in standby state.
  • the output power is 0, that is, no power output is performed, and the standby mode is ended after the judgment conditions of other states are satisfied.
  • method 200 further includes:
  • the target state representing that the entire vehicle is waiting to enter the sleep mode is determined. For example, when the vehicle is not ignited and the vehicle is not charged, the whole vehicle may be in a target state of waiting to enter the sleep mode because the BMS 12 has not been completely powered off. In one example, in the target state of waiting to enter the sleep mode, the DCDC converter 11 stops output, that is, the output voltage and output power of the DCDC converter 11 may be equal to 0.
  • method 200 further includes:
  • the charging signal and the vehicle start signal are at a low level, and the enable signal is at a high level, it is determined that the entire vehicle is in a fault state.
  • the DCDC converter since Enable is at a high level in the fault state, the DCDC converter is in an abnormal state of self-awakening, cannot enter the sleep state, reports the fault to the BMS 12, and does not output power.
  • FIG. 3 is a schematic flowchart of an exemplary control method provided by an embodiment of the present application.
  • the first condition is: the ENABLE signal is at a low level and CANLOSS, or the received second CAN message. If the judgment result is yes, it is determined that the whole vehicle is in a standby state; if the judgment result is no, it is determined that the whole vehicle is in a driving state.
  • S308 determine whether the ENABLE signal is a high-level signal. If the judgment result is yes, it is determined that the whole vehicle is in a power-off state; if the judgment result is no, it is determined that the whole vehicle is in a fault state.
  • the embodiments of the present application not only provide a control method, but also provide a corresponding DCDC converter.
  • the device according to the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 4 is a schematic structural diagram of a DCDC converter provided by an embodiment of the present application.
  • the DCDC converter device includes a parameter acquisition module 410 , a control module 420 and a self-wake-up module 430 .
  • the parameter obtaining module 410 is used for obtaining the charging signal, obtaining the vehicle start signal, and obtaining the enabling signal.
  • the control module 420 is used to determine that the whole vehicle is in a power-off state and enter the sleep mode if the charging signal, the vehicle start signal and the enable signal are all low levels and no communication message sent by the battery management system BMS is received.
  • the self-wakeup module 430 is configured to perform self-wakeup under the condition that the duration of the sleep mode reaches a preset duration, and output a wakeup signal to the BMS for waking up the BMS to enter the working mode.
  • the DCDC converter device further includes:
  • the first output module is used for outputting a first power signal, and the first power signal is used for supplying power to the BMS.
  • the DCDC converter device further includes:
  • the state determination module is used for determining that the whole vehicle is in the charging state if the first communication message is received or the communication message is not received under the condition that the charging signal is at a high level.
  • the DCDC converter device further includes:
  • the second output module is configured to output a second power signal, where the second power signal is determined according to the power demand of the target power consumption module.
  • the DCDC converter supplies power to the target power module through the second power signal, the target power module includes a low-voltage power device, and the low-voltage power device includes a BMS.
  • the target power module When the low-voltage power supply circuit is turned on, the target power module includes a low-voltage power supply and a low-voltage power device. If the output voltage of the low-voltage power supply is greater than the output voltage of the DCDC converter, the power demand of the target power module is zero, the second power signal is equal to zero.
  • the DCDC converter supplies power to the target power module through the second power signal, and the target power module includes a low-voltage power supply and a low-voltage power device.
  • the DCDC converter device further includes:
  • the state determination module is used for when the charging signal is at a low level, the vehicle start signal is at a high level and the first communication message is received, or when the charging signal is at a low level and the vehicle start signal and the enable signal are at a high level In the case of high level and no communication message is received, it is determined that the whole vehicle is in a driving state.
  • the DCDC converter device further includes:
  • the third output module is used for outputting a third power signal, and the third power signal is determined according to the power demand of the target power module.
  • the DCDC converter supplies power to the target power module through the third power signal, and the target power module includes a low-voltage power device, and the low-voltage power device includes BMS.
  • the target power module When the low-voltage power supply circuit is turned on, the target power module includes a low-voltage power supply and a low-voltage power device. If the output voltage of the low-voltage power supply is less than the output voltage of the DCDC converter, the power demand of the target power module is zero, the third power signal is equal to zero.
  • the DCDC converter supplies power to the target power module through the third power signal, and the target power module includes a low-voltage power supply and a low-voltage power device.
  • the DCDC converter device further includes:
  • the state determination module is used to determine that the whole vehicle is in a standby state when the first communication message is received, and the charging signal and the vehicle start signal are both high-level, or when the second communication message is received.
  • the DCDC converter device further includes:
  • the state determination module is configured to determine a target state representing that the whole vehicle is waiting to enter the sleep mode when the first communication message is received and the charging signal and the vehicle start signal are at a low level.
  • the DCDC converter device further includes:
  • the state determination module is used to determine that the whole vehicle is in a fault state when the communication message sent by the BMS is not received, the charging signal and the vehicle start signal are at a low level, and the enable signal is at a high level.
  • the DCDC converter includes a phase-shifted full-bridge circuit.
  • the embodiment of the present application shows an exemplary Phase-Shifting Full-Bridge Converter (PSFB) unit with reference to FIG. 5 .
  • PSFB Phase-Shifting Full-Bridge Converter
  • the circuit in FIG. 5 is the main power topology of the DCDC controller provided by the embodiment of the application.
  • the primary side of the DCDC controller adopts a phase-shift full bridge (PSFB), and Q1-4Q4 are four silicon carbide metal oxide semiconductor field effects.
  • (SiC-Metal-Oxide-Semiconductor, SiC-MOS) switch tube using its junction capacitances C1, C2, C3, C4 and transformer leakage inductance C b and resonant inductance Lr as resonant components, make four SiC-MOS switch tubes in turn Turns on and off at zero voltage (ZVS) for soft switching.
  • ZVS zero voltage
  • the clamping diode Dc1 and the clamping diode Dc2 are used to suppress the voltage oscillation of the secondary side, and a DC blocking capacitor Cb is connected in series to suppress the DC component in the primary winding of the high-frequency transformer.
  • the secondary side is a full-wave rectification scheme using synchronous rectification technology. The conversion efficiency of the DCDC converter is improved.
  • Vin is the input DC power supply
  • D1-D4 are the parasitic diodes of the four switch tubes or an external freewheeling diode
  • Tr is the phase-shifted full-bridge power transformer
  • Qs 1 and Qs 2 are the switch tubes
  • L f is The secondary output freewheeling inductance of the phase-shifted full-bridge power supply
  • C f is the secondary output capacitor of the phase-shifted full-bridge power supply
  • R Ld is the secondary load of the phase-shifted full-bridge power supply.
  • the DCDC converter in the embodiment of the present application, when the charging signal, the vehicle start signal, and the enable signal are all low-level, and no communication message sent by the BMS is received, it can be determined that the whole vehicle is in a power-off state, and the Enter the sleep mode, perform self-wakeup under the condition that the duration of the sleep mode reaches a preset time length, and output a wake-up signal to the BMS for waking up the BMS to enter the working mode. Therefore, the DCDC converter can be used to wake up the battery management system to monitor the battery pack, so that the battery management system can also be used to monitor the safety state of the vehicle after the vehicle is powered off, thereby improving the safety of the battery pack.
  • the DCDC converter 11 can self-wake up and enter the working mode, and there is no need to set a vehicle DCDC relay between the DCDC and the battery pack, which simplifies the circuit structure.
  • FIG. 6 shows a schematic diagram of a hardware structure of a control device provided by an embodiment of the present application.
  • the control device may include a processor 601 and a memory 602 storing computer program instructions.
  • the above-mentioned processor 601 may include a central processing unit (Central Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Memory 602 may include mass storage for data or instructions.
  • memory 602 may include a Hard Disk Drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of more than one of the above.
  • HDD Hard Disk Drive
  • floppy disk drive a flash memory
  • optical disk a magneto-optical disk
  • magnetic tape magnetic tape
  • USB Universal Serial Bus
  • USB Universal Serial Bus
  • memory 602 may include removable or non-removable (or fixed) media, or memory 602 is non-volatile solid-state memory.
  • memory 602 may be internal or external to the control device.
  • memory 602 may be a read only memory (ROM).
  • the ROM may be a mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM), or flash memory or both A combination of one or more of the above.
  • Memory 602 may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices typically, magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • a memory typically, includes one or more tangible (non-transitory) computer-readable storage media (eg, memory devices) encoded with software including computer-executable instructions, and when the software is executed (eg, by a or multiple processors), it is operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 601 reads and executes the computer program instructions stored in the memory 602 to implement the methods in the embodiments shown in FIGS. 2 to 3 , and achieve the corresponding technical effects achieved by the implementation of the methods shown in the examples shown in FIGS. 2 to 3 . , which is not repeated here for brevity.
  • control device may also include a communication interface 603 and a bus 610 .
  • the processor 601 , the memory 602 , and the communication interface 603 are connected through the bus 610 and complete the mutual communication.
  • the communication interface 603 is mainly used to implement communication between modules, apparatuses, units and/or devices in the embodiments of the present application.
  • the bus 610 includes hardware, software, or both, coupling the components of the online data flow metering device to each other.
  • the bus may include an Accelerated Graphics Port (AGP) or other graphics bus, an Extended Industry Standard Architecture (EISA) bus, a Front Side Bus (FSB), a Super Transport (Hyper Transport, HT) interconnect, Industry Standard Architecture (ISA) bus, Infiniband interconnect, Low Pin Count (LPC) bus, Memory bus, Micro Channel Architecture (MCA) bus, Peripheral Component Interconnect Connectivity (PCI) bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or two or more of these combination.
  • Bus 610 may include one or more buses, where appropriate. Although embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the control device may execute the control method in the embodiment of the present application, thereby implementing the control method and apparatus described in conjunction with FIG. 1 to FIG. 5 .
  • the embodiments of the present application may provide a computer storage medium for implementation.
  • Computer program instructions are stored on the computer storage medium; when the computer program instructions are executed by the processor, any one of the control methods in the foregoing embodiments is implemented.
  • the functional blocks shown in the above-described structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, and the like.
  • ASIC application specific integrated circuit
  • elements of the present application are programs or code segments used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave.
  • a "machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, Radio Frequency (RF) links, etc. Wait.
  • the code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It will also be understood that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware for performing the specified functions or actions, or by special purpose hardware and/or A combination of computer instructions is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种DCDC变换器、低压输电系统和控制设备,以及DCDC变换器的控制方法和计算机存储介质,包括:获取充电信号;获取车辆启动信号;获取使能信号;若充电信号、车辆启动信号和使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式;在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号,从而提高了电池包的安全性。

Description

低压输电系统、DCDC变换器、控制方法、设备及介质
相关申请的交叉引用
本申请要求享有于2020年06月30日提交的名称为“低压输电系统、DCDC变换器、控制方法、设备及介质”的中国专利申请202010615440.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及低压输电系统及低压输电系统及DCDC变换器及控制方法、设备及介质。
背景技术
随着随着新能源的发展,越来越多的领域采用新能源作为动力。由于具有能量密度高、可循环充电、安全环保等优点,电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
随着新能源的发展的同时,电池安全问题也逐渐引起公众的注意。然而,现阶段,车辆整车下电后无法对电池包进行监控,从而无法保证整车下电后的安全性,特别是无法及时预防电池起火、爆炸等安全性问题。
发明内容
本申请实施例提供的低压输电系统及DCDC变换器及控制方法、设备及介质,可以提高电池的安全性。
第一方面,本申请实施例提供一种控制方法,应用于直流DCDC变换器,包括:
获取充电信号;
获取车辆启动信号;
获取使能信号;
若充电信号、车辆启动信号和使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式;
在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。
根据本申请实施例中的DCDC变换器的控制方法,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态进行监控,提高了电池包的安全性。
在一些实施方式中,在休眠模式持续时长达到预设时长的条件下进行自唤醒之后,方法还包括:
输出第一电能信号,第一电能信号用于为BMS供电。
在本申请实施例中,DCDC变换器自唤醒之后,可以通过第一电能信号为BMS供电,从而能够支持BMS进行工作模式。
在一些实施方式中,通信报文包括允许DCDC变换器输出的第一通信报文和禁止DCDC变换器输出的第二通信报文,方法还包括:
在充电信号为高电平的条件下,若接收到第一通信报文或者未接收到通信报文,确定整车处于充电状态。
通过本实施例,可以根据通信报文,准确地判断出整车处于充电状态。
在一些实施方式中,确定整车处于充电状态之后,方法还包括:
输出第二电能信号,第二电能信号是根据目标用电模块的用电需求量确定的,其中,
在低压供电电源与DCDC变换器的低压供电回路断开的情况下,DCDC变换器通过第二电能信号为目标用电模块供电,目标用电模块包括低压用电器件,低压用电器件包括BMS;
在低压供电回路导通的情况下,若低压供电电源的输出电压大于DCDC变换器的输出电压,则目标用电模块的用电需求量为零,第二电能信号等于零;若低压供电电源的输出电压小于或等于DCDC变换器的输出电压,则DCDC变换器通过第二电能信号为目标用电模块供电,目标用电模块包括低压供电电源和低压用电器件。
通过本实施例,当整车处于充电状态时,可以根据低压供电回路的导通状态、以及低压供电电源和DCDC变换器的输出电压的高低,来为目标用电模块供电。从而提高了控制策略的灵活性。
在一些实施方式中,通信报文包括允许DCDC变换器输出的第一通信报文和禁止DCDC变换器输出的第二通信报文,方法还包括:
在充电信号为低电平、车辆启动信号为高电平且接收到第一通信报文的情况下,或者在充电信号为低电平、车辆启动信号和使能信号为高电平且未接收到通信报文的情况下,确定整车处于行车状态。
通过本实施例,可以根据充电信号、车辆启动信号和第一通信报文对车辆状态进行准确判断。
在一些实施方式中,确定整车处于行车状态之后,方法还包括:
输出第三电能信号,第三电能信号是根据目标用电模块的用电需求量确定的, 其中,
在低压供电电源与DCDC变换器的低压供电回路断开的情况下,DCDC变换器通过第三电能信号为目标用电模块供电,目标用电模块包括低压用电器件,低压用电器件包括BMS;
在低压供电回路导通的情况下,若低压供电电源的输出电压大于DCDC变换器的输出电压,则目标用电模块的用电需求量为零,第三电能信号等于零;若低压供电电源的输出电压小于或等于DCDC变换器的输出电压,则DCDC变换器通过第三电能信号为目标用电模块供电,目标用电模块包括低压供电电源和低压用电器件。
通过本实施例,当车辆处于行车状态时,可以根据低压供电回路的导通状态、以及低压供电电源和DCDC变换器的输出电压的高低,来为目标用电模块供电。从而提高了控制策略的灵活性。
在一些实施方式中,通信报文包括允许DCDC变换器输出的第一通信报文和禁止DCDC变换器输出的第二通信报文,方法还包括:
在接收到第一通信报文、且充电信号和车辆启动信号均为高电平的情况下或者在接收到第二通信报文的条件下,确定整车处于待机状态。
通过本实施例,可以根据通信报文、充电信号以及车辆启动信号准确的确定整车是否处于待机状态。
在一些实施方式中,通信报文包括允许DCDC变换器输出的第一通信报文和禁止DCDC变换器输出的第二通信报文,方法还包括:
在接收到第一通信报文且充电信号和车辆启动信号为低电平的情况下,确定表征整车处于等待进入休眠模式的目标状态。
通过本实施例,可以根据通信报文准确的确定整车是否处于目标状态。
在一些实施方式中,在未接收到BMS发送的通信报文、充电信号和车辆启动信号为低电平、以及使能信号为高电平的情况下,确定整车处于故障状态。
通过本实施例,可以根据通信报文、充电信号、车辆启动信号以及使能信号准确的确定整车是否处于故障状态。
第二方面,本申请实施例提供一种DCDC变换器,包括:
参数获取模块,用于获取充电信号,以及获取车辆启动信号,以及获取使能信号;
控制模块,用于若充电信号、车辆启动信号和使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式;
自唤醒模块,用于在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。
根据本申请实施例中的DCDC变换器,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态 进行监控,提高了电池包的安全性。
在一些实施方式中,DCDC变换器包括移相全桥单元。
通过本实施例的移相全桥单元,可以提高DCDC变换器的转换效率。
第三方面,本申请实施例提供一种低压输电系统,包括:
电池管理系统,和第二方面或第二方面的任一可选的实施方式提供的DCDC变换器。
根据本申请实施例中的低压输电系统,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态进行监控,提高了电池包的安全性。
在一些实施方式中,低压输电系统还包括:低压供电电源,低压供电电源通过低压供电回路分别与DCDC变换器和电池管理系统连接。
在本实施例中,通过设置低压供电电源,可以实现更灵活的用电策略。
在一些实施方式中,低压输电系统还包括:
状态参数传输装置,用于从电池管理系统获取电池包的状态参数,并将电池包的状态参数发送至远程监控平台。
通过本实施例,通过状态参数传输装置可以将电池包的状态参数发送至远程监控平台,从而便于相关操作人员通过远程监控平台对电池的状态参数进行监控。
第四方面,提供一种控制设备,包括:存储器,用于存储程序;
处理器,用于运行所述存储器中存储的所述程序,以执行第一方面或第一方面的任一可选的实施方式提供的控制方法。
根据本申请实施例中的控制设备,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态进行监控,提高了电池包的安全性。
第五方面,提供一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现第一方面或第一方面的任一可选的实施方式提供的控制方法。
根据本申请实施例中的介质,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态进行监控,提高了电池包的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的一种低压输电系统的结构示意图;
图2是本申请实施例提供的一种控制方法的示意流程图;
图3是本申请实施例提供的一种示例性的控制方法的流程示意图;
图4是本申请实施例提供的一种DCDC变换器的结构示意图;
图5是本申请实施例提供的一种示例性地移相全桥单元的结构示意图;
图6是本申请实施例中控制设备的示例性硬件架构的结构图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
电动汽车内的电源可以包括高压电池包和低压供电电源。其中,高压电池包可包括至少一个电池模组或至少一个电池单元,在此并不限定。高压电池包可作为电动汽车的动力源为电机供电。低压供电电源可以为整车中的低压用电器件提供12V或24V的低压电。示例性地,低压供电电源可以是铅酸电池。低压用电器件可以是整车中的仪表控制器、继电器、气泵控制器等需要被低压驱动的设备。
在实际应用过程中,电动汽车可处于不同的使用状态,比如行车状态,充电状态或下电状态等。在行驶场景中,电动汽车处于行车状态。此时,整车需要进入上电状态。也就是说,整车的低压用电器件需要通电。此时,需要利用低压供电电源或直流(Direct Current-Direct Current,DCDC)变换器为低压用电器件供电。而在对汽车进行充电的场景中,如果整车内的低压用电器件均被断电,则汽车处于下电充电状态。如果整车内的低压用电器件处于通电状态,则汽车处于上电充电状态。另外,在静止停车的场景中,汽车停稳且整车内的所有低压用电器件断电后,汽车将会处于整车下电状态。
现阶段,在车辆处于上电状态时,可以利用电池管理系统对电池包的状态进行监控。而车辆下电之后,电池管理系统也会被断电,无法对电池包的状态进行监控。如果此时电池包的状态发生异常,则无法及时发现并及时采取处理措施,从而无法保证电池包的安全性。
因此,缺少一个能够在整车下电时能够唤醒电池管理系统(Battery Management System,BMS)进入工作模式,从而保证电池安全性的技术方案。
图1是本申请实施例提供的一种低压输电系统的结构示意图。如图1所示,低压输电系统10包括DCDC变换器11和电池管理系统12。
对于DCDC变换器11,DCDC变换器11可以将电池包20的高压电转换为低压电,并将转换得到的低压电输出至目标低压用电器件。
在目标车辆处于下电状态时,DCDC变换器11可以依靠定时器进行自唤醒,并将BMS12唤醒。从而,在目标车辆处于下电状态时,也能利用电池管理系统12对电池包20进行监控。示例性地,DCDC变换器11包括一个定时器,当定时器确定达到预设时长,则DCDC变换器11自唤醒,并在自唤醒之后向BMS12发送一个唤醒信号,并输出低压电为BMS12供电。
对于BMS12,BMS12可以实现对电池包20的监控功能。例如采集电池包20中单体电芯的温度、单体电芯的电压等电池包状态数据,并根据电池包状态数据判断电池包20的状态是否异常。此外,BMS12还可以实现对DCDC变换器11进行控制的功能。
需要说明的是,BMS12可以具体实现为域控制器。其中,域控制器表示集整车控制器(Vehicle control unit,VCU)功能、电机控制器(Motor Control Unit,MCU)功能和电池管理系统(Battery Management System,BMS)功能为一体的电子器件。域控制器还可以集合其他模块的功能,对此不作限制。
在一些实施例中,继续参照图1,低压输电系统10还可以包括低压供电电源13。示例性地,低压供电电源13可以是铅酸电池等能够输出12V或24V电压的供电装置,对此不作具体限定。
在一个示例中,低压供电电源13所在的低压供电回路上还设置有第一开关模块14。当第一开关模块14导通时,低压供电电源13与各低压用电模块之间的低压供电回路导通,低压供电电源13可以为各低压用电模块供电。同时,低压供电电源13与DCDC变换器11之间的低压供电回路导通,DCDC变换器11可以为低压供电电源 13补电。在一个示例中,第一开关模块14可以具体实现为手动开关。
需要说明的是,第一开关模块14的位置可以根据实际需求或者具体工作场景设置在低压供电回路的其他位置上,例如可以设置在DCDC变换器11所在的供电回路上,对此不做限定。
在一些实施例中,继续参照图1,低压输电系统10还可以包括状态参数传输装置15。电池管理系统12获取到电池包20的状态参数之后,可以通过状态参数传输装置15将电池包20的状态参数传输至远程监控终端。其中,电池包20的状态参数用于表征电池包20的电学特性状态。例如,可以是电池包20中各单体电芯的电压参数和/或电池包20中各单体电芯的温度参数等。示例性地,状态参数传输装置15和远程监控终端之间可以无线通信,例如,利用全球移动通信系统(Global System for Mobile Communications,GSM)网络、第四代移动通信技术(the 4th generation mobile communication technology,4G)等数据传输网络或者无线保真(Wireless Fidelity,Wi-Fi)等无线局域网络进行传输,对此不做具体限定。
在一些实施例中,低压输电系统10还可以包括设置在低压供电回路中的第二开关模块16。具体地,第二开关模块16可设置在低压正极输电线路上。第二开关模块16的位置可以根据具体场景和实际需求设置,对此不做限制。示例性地,继续参考图1,若各低压用电器件的低压供电支路均连接至一个低压供电干路上,则可以将第二开关模块16设置在该低压供电干路上。当第二开关模块16导通时,可以为各低压用电器件供电。
另外,该低压供电支路可以连接至DCDC变换器11和低压供电电源13之间的低压供电回路上。若将该低压供电支路可以连接至DCDC变换器11和低压供电电源13之间的低压供电回路的连接点称为第一连接点。第一开关模块14设置在第一连接点和低压供电电源13之间。因此,当目标汽车处于下电状态时,选择导通第二开关模块16可以为各低压用电模块供电,选择导通第一开关模块14可以为低压供电电源13补电。从而使得整个低压输电系统10更具灵活性。
此外,第二开关模块16可以在整车控制器31的控制下导通或断开。示例性地,整车控制器31的使能端输出一个控制信号,该控制信号用于对第二开关模块16进行控制。
本申请实施例提供的低压输电系统10仅需设置一个DCDC变换器11即可对处于下电状态的汽车的电池包状态进行监控,且无需设置电源分配模块。在保证了电池包安全性的同时,能够简化了低压输电系统的拓扑结构以及连接关系,减小了低压输电系统的线束的使用。
在介绍完低压输电系统10之后,本申请实施例的下述部分将对DCDC变换器11作具体说明。为了充分了解DCDC变换器11,下面将结合附图,详细描述根据本申请实施例的控制方法、装置、设备和介质,应注意,这些实施例并不用来限制本申请公开的范围。
图2是本申请实施例提供的一种控制方法的示意流程图。如图2所示,本实施例中的控制方法200可以包括以下步骤:
S110,获取充电信号。
其中,充电信号用于表征整车是否正在充电。比如,上述充电唤醒信号可称为A+信号。具体地,若充电枪等外部充电电源输入12V或24V低压信号,则充电信号为高电平,否则充电信号为低电平。
S120,获取车辆启动信号。
其中,车辆启动信号用于表征整车是否上电。若车辆启动信号为高电平,则确认整车上电。相反地,若车辆启动信号为低电平,则确认整车未上电。示例性地,可以根据目标车辆的点火开关所在档位确定车辆启动信号。比如,若目标车辆的点火开关被切换至key on档位,则车辆启动信号为高电平。否则,车辆启动信号为低电平。相应地,车辆启动信号可称为key on信号。
S130,获取使能信号。
其中,使能信号可以是由BMS发送的信号。使能信号可称为ENABLE信号,若使能信号为高电平,则表征允许DCDC变换器输出。在一些实施例中,可以通过DCDC变换器11的使能ENABLE端口接收使能信号。
此外,BMS12除了向DCDC变换器11发送使能信号之外,还可以通过BMS12与DCDC变换器11之间的通信线路进行通信。该通信线路包括控制器局域网络(Controller Area Network,CAN)总线,或者串口通信线路。或者,还可以是无线通信线路,对此不作具体限定。以两者之间的通信线路为CAN总线为例,则BMS12可以向DCDC变换器11发送CAN报文。
具体地,在正常情况下,CAN报文表示的信息需要与ENABLE信号表示的信息一致。示例性地,若CAN报文表示允许DCDC变换器11输出,则ENABLE信号可以为高电平信号,若CAN报文表示禁止DCDC变换器输出,则ENABLE信号可以为低电平信号。在一个示例中,若两者表示的信息不一致,则可以以CAN报文为主,并上报故障。若未接收到CAN报文,即CANLOSS,则可以以ENABLE信号确定BMS12的指令。
还需要说明的是,本申请实施例对S110、S120、S130三者的执行先后次序不作限定,三者可以同步执行,或者异步执行。
S140,若充电信号、车辆启动信号和使能信号均为低电平,且未接收到BMS12发送的通信报文,确定整车处于下电状态,并进入休眠模式。
S150,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS12输出用于唤醒BMS进入工作模式的唤醒信号。
也就是说,在车辆整车处于休眠模式且休眠模式持续时长达到预设时长的情况下,DCDC变换器11自唤醒,并将BMS12唤醒。其中,可以由计时器确定休眠模式持续时长达到预设时长。
对于预设时长,在一些实施例中,预设时长可以由BMS12根据具体工作场景和工作需要进行设置。相应地,还可以接收BMS12发送的表征预设时长的时长信息。并根据接收到的时长信息调整预设时长。
在一些实施例中,若BMS12因目标车辆处于下电状态而处于持续下电模 式,则目标车辆处于下电状态时,可能因为BMS12无法实时监控电池包状态参数而影响电池包20的安全性。因此,为了保证电池包20的安全性,当目标车辆处于下电状态时,可以周期性地自唤醒DCDC变换器11,从而周期性地唤醒BMS12。此时,BMS12在被唤醒一段时长之后,再次由工作模式进入下电模式。
示例性地,为了实现周期性自唤醒DCDC变换器11,DCDC变换器11在向BMS12输出唤醒信号之后,可以清零已有的计时时长并重新开始计时。此时,预设时长需要大于BMS12单次被唤醒的时长。或者,BMS12重新进入下电模式后,会向DCDC变换器11发送一个下电提示信号,DCDC变换器11接收到该下电提示信号后,可以清零已有的计时时长并重新开始计时。
其次,对于唤醒信号,唤醒信号可以是通过通信线路发送。示例性地,唤醒信号可以加载于CAN报文中。
此外,还需要说明的是,BMS12进入工作模式后,BMS12可以对电池包20的状态参数进行监控。其中,电池包20的状态参数用于表征电池包的状态特性。例如,可以是电池包20中各单体电芯的电压参数和/或电池包20中各单体电芯的温度参数、电池包的压力参数、电池包内的烟雾参数等,对此不作具体限定。
在一些实施例中,由于BMS12被唤醒之前没有通电,为了成功唤醒BMS12,在唤醒BMS12的同时还需要为其提供低压电能。
相应地,在满足休眠模式持续时长达到预设时长的条件下进行自唤醒之后,方法还包括:输出第一电能信号,第一电能信号用于为BMS12供电。示例性地,DCDC变换器11可处于低功率输出模式。例如,第一电能信号可以为输出功率,且第一电信号的值可以等于300W。
根据本申请实施例中的低压输电系统及DCDC变换器及控制方法、设备及介质,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS12发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS12输出用于唤醒BMS12进入工作模式的唤醒信号。因此,能够利用DCDC变换器11唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用BMS12对汽车的安全状态进行监控,提高了电池包20的安全性。
在本申请实施例中,除了可以利用上述4个信号确定下电状态之外,还可以确定充电状态。下述部分将对充电状态展开具体说明。
对于充电状态:
在一些实施例中,如果通信报文包括允许DCDC变换器输出的第一通信报文和禁止DCDC变换器输出的第二通信报文,方法200还包括:
在充电信号为高电平的条件下,若接收到第一通信报文或者未接收到通信报文,确定整车处于充电状态。其中,未接收到通信报文表示未接收到第一通信报文以及也未接收到第二通信报文。
示例性地,可以在表一所列出的八种情况下,确定整车处于充电状态。
表1
  CAN A+ KEY ON ENABLE 车辆状态
(1) 允许输出 充电
(2) 允许输出 充电
(3) 允许输出 充电
(4) 允许输出 充电
(5) LOSS 充电
(6) LOSS 充电
(7) LOSS 充电
(8) LOSS 充电
如表1,(1)在CAN报文表示允许DCDC变换器11输出,A+信号、KEY ON信号、ENABLE信号均为高电平的情况下,确定整车处于充电状态。(2)在CAN报文表示允许DCDC变换器11输出,A+信号和KEY ON信号为高电平、ENABLE信号为低电平的情况下,确定整车处于充电状态。(3)在CAN报文表示允许DCDC变换器11输出,A+信号和ENABLE信号为高电平、KEY ON信号为低电平的情况下,确定整车处于充电状态。(4)在CAN报文表示允许DCDC变换器11输出,A+信号为高电平、KEY ON信号和ENABLE信号为低电平的情况下,确定整车处于充电状态。(5)在未接收到CAN报文即CANLOSS,A+信号、KEY ON信号、ENABLE信号均为高电平的情况下,确定整车处于充电状态。(6)在CANLOSS,A+信号和KEY ON信号为高电平、ENABLE信号为低电平的情况下,确定整车处于充电状态。(7)在CANLOSS,A+信号和ENABLE信号为高电平、KEY ON信号为低电平的情况下,确定整车处于充电状态。(8)在CANLOSS,且A+信号为高电平、KEY ON信号和ENABLE信号为低电平的情况下,确定整车处于充电状态。
在一些实施例中,在充电状态下,DCDC变换器11还可以输出第二电能信号。相应地,确定整车处于充电状态之后,方法200还包括:输出第二电能信号。
其中,第二电能信号是根据目标用电模块的用电需求量确定的。示例性地,DCDC变换器11可以输出固定电压,例如固定电压的电压强度值可以为27V,然而第二电能信号的电压强度值可以在0-3KW的范围内。
具体地,对于第二电能信号分为三种情况。
(1)在低压供电电源13与DCDC变换器11的低压供电回路断开的情况下。示例性地,参照图1,可以是在第一开关模块14断开的具体情况下。此时,DCDC变换器11需要为低压用电器件供电。其中,低压用电器件包括BMS12。示例性地,第二电能信号的电压强度值可以在300W-3KW的范围内之内变化。
(2)在上述低压供电回路导通、且低压供电电源的输出电压小于或等于DCDC变换器11的输出电压的情况中,DCDC变换器11需要为低压供电电源13和低压用电器件供电。此时,目标用电模块包括低压供电电源13和低压用电器件。
(3)在上述低压供电回路导通、且低压供电电源的输出电压大于DCDC变换器11的输出电压的情况下,此时由低压供电电源13满足目标用电模块的用电需 求,即低压供电电源为目标用电模块供电,此时目标用电模块对DCDC变换器11的用电需求量为零,第二电能信号的电压强度值等于零。
在本申请实施例中,除了可以利用上述4个信号确定下电状态之外,还可以确定行车状态。下述部分将对行车状态展开具体说明。
对于行车状态:
在一些实施例中,方法200还包括:
在充电信号为低电平、车辆启动信号为高电平且接收到第一通信报文的情况下,确定整车处于行车状态。
或者,在充电信号为低电平、车辆启动信号和使能信号为高电平且未接收到通信报文的情况下,确定整车处于行车状态。
示例性地,可以在表2示出的三种情况下,确定整车处于行车状态。
表2
  CAN A+ KEY ON ENABLE 车辆状态
(1) 允许输出 行车
(2) 允许输出 行车
(3) LOSS 行车
如表2,(1)在CAN报文表示允许DCDC变换器11输出,A+信号为低电平,KEY ON信号、ENABLE信号均为高电平的情况下,确定整车处于行车状态。(2)在CAN报文表示允许DCDC变换器11输出,A+信号和ENABLE信号为低电平、KEY ON信号为高电平的情况下,确定整车处于行车状态。(3)在CANLOSS,A+信号为低电平,KEY ON信号和ENABLE信号为高电平的情况下,确定整车处于行车状态。
在一些实施例中,确定整车处于行车状态之后,方法200还包括:
输出第三电能信号。其中,第三电能信号的内容与第二电能信号的内容相似,在此不再赘述。
在本申请实施例中,除了可以利用上述4个信号确定下电状态之外,还可以确定待机状态。下述部分将对待机状态展开具体说明。
对于待机状态:
在一些实施例中,方法200还包括:
在接收到第一通信报文、且充电信号和车辆启动信号均为高电平的情况下,确定整车处于待机状态。
或者,在接收到第二通信报文的条件下,确定整车处于待机状态。
示例性地,可以在表3示出的两种情况下,确定整车处于待机状态。
表3
  CAN A+ KEY ON ENABLE 车辆状态
(1) 禁止输出 高/低 高/低 高/低 待机
(2) LOSS 待机
如表3所示,(1)在CAN报文表示禁止DCDC变换器11输出,无论A+信号、KEY ON信号、ENABLE信号的高低,即可以确定整车处于待机状态。(2)在CANLOSS,A+信号和ENABLE信号为低电平,KEY ON信号为高电平的情况下,确定整车处于待机状态。
在一些实施例中,DCDC变换器11处于待机模式之后,输出功率为0,即不进行功率输出,直到满足其他状态的判断条件后结束待机模式。
在本申请实施例中,除了可以利用上述4个信号确定下电状态之外,还可以确定表征整车处于预备进入休眠模式的目标状态。下述部分将对目标状态展开具体说明。
对于目标状态:
在一些实施例中,方法200还包括:
在接收到第一通信报文且充电信号和车辆启动信号为低电平的情况下,确定表征整车处于等待进入休眠模式的目标状态。示例性地,当车辆未点火且车辆未充电时,可能由于BMS12还未完全下电使得整车处于等待进入休眠模式的目标状态。在一个示例中,在等待进入休眠模式的目标状态,DCDC变换器11停止输出,即DCDC变换器11的输出电压和输出功率可以等于0。
示例性地,可以在表4示出的两种情况下,确定整车处于待机状态。
表4
  CAN A+ KEY ON ENABLE 车辆状态
(1) 允许输出 目标状态
(2) 允许输出 目标状态
如表4所示,在CAN报文表示允许DCDC变换器输出,且A+信号、KEY ON信号均为低电平时,无论ENABLE信号的高低,均可以确定整车处于目标状态。
在本申请实施例中,除了可以利用上述4个信号确定下电状态之外,还可以确定表征整车处故障状态。下述部分将对故障状态展开具体说明。
对于故障状态:
在一些实施例中,方法200还包括:
在未接收到BMS12发送的通信报文、充电信号和车辆启动信号为低电平、以及使能信号为高电平的情况下,确定整车处于故障状态。示例性地,由于在故障状态下Enable为高电平,则DCDC变换器处于自唤醒异常状态,无法进入休眠状态,上报故障给BMS12,且不输出功率。
示例性地,可以在表5示出的情况下,确定整车处于待机状态。
表5
  CAN A+ KEY ON ENABLE 车辆状态
(1) LOSS 目标状态
如表5,在CANLSS,且A+信号、KEY ON信号均为低电平ENABLE信号为高电平时,均可以确定整车处于故障状态。
为了更加充分的理解,本申请实施例还提供了一种示例性地控制方法。图3是本申请实施例提供的一种示例性的控制方法的流程示意图。
S301,判断A+信号是否为高电平信号。若判断结果为是,执行S302;若判断结果为否,执行S303。
S302,判断是否接收到表示禁止DCDC变换器11输出的第二CAN报文。若判断结果为是,确定整车处于待机状态;若判断结果为否,确定整车处于充电状态。
S303,判断KEY ON信号是否为高电平信号。若判断结果为是,执行S304;若判断结果为否,执行S305或S306或S307。
S304,判断是否满足第一条件。其中,第一条件为:ENABLE信号为低电平且CANLOSS,或者接收到的第二CAN报文。若判断结果为是,确定整车处于待机状态;若判断结果为否,确定整车处于行车状态。
S305,接收到第一CAN报文,确定整车处于目标状态,即等待进入下电模式的状态。
S306,接收到第二CAN报文,确定整车处于待机状态。
S307,未接收到CAN报文,即CANLOSS。继续执行S308。
S308,判断ENABLE信号是否为高电平信号。若判断结果为是,确定整车处于下电状态;若判断结果为否,确定整车处于故障状态。
基于相同的申请构思,本申请实施例除了提供了控制方法之外,还提供了与之对应的DCDC变换器。下面结合附图,详细介绍根据本申请实施例的装置。
本申请实施例提供了一种DCDC变换器。图4是本申请实施例提供的一种DCDC变换器的结构示意图。如图4所示,DCDC变换器装置包括参数获取模块410、控制模块420和自唤醒模块430。
参数获取模块410,用于获取充电信号,以及获取车辆启动信号,以及获取使能信号。
控制模块420,用于若充电信号、车辆启动信号和使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式。
自唤醒模块430,用于在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。
在一些实施例中,DCDC变换器装置还包括:
第一输出模块,用于输出第一电能信号,第一电能信号用于为BMS供电。
在一些实施例中,DCDC变换器装置还包括:
状态确定模块,用于在充电信号为高电平的条件下,若接收到第一通信报文或者未接收到通信报文,确定整车处于充电状态。
在一些实施例中,DCDC变换器装置还包括:
第二输出模块,用于输出第二电能信号,第二电能信号是根据目标用电模块的用电需求量确定的。
在低压供电电源与DCDC变换器的低压供电回路断开的情况下,DCDC变换器通过第二电能信号为目标用电模块供电,目标用电模块包括低压用电器件,低压用电器件包括BMS。
在低压供电回路导通的情况下,目标用电模块包括低压供电电源和低压用电器件,若低压供电电源的输出电压大于DCDC变换器的输出电压,则目标用电模块的用电需求量为零,第二电能信号等于零。
若低压供电电源的输出电压小于或等于DCDC变换器的输出电压,则DCDC变换器通过第二电能信号为目标用电模块供电,目标用电模块包括低压供电电源和低压用电器件。
在一些实施例中,DCDC变换器装置还包括:
状态确定模块,用于在充电信号为低电平、车辆启动信号为高电平且接收到第一通信报文的情况下,或者在充电信号为低电平、车辆启动信号和使能信号为高电平且未接收到通信报文的情况下,确定整车处于行车状态。
在一些实施例中,DCDC变换器装置还包括:
第三输出模块,用于输出第三电能信号,第三电能信号是根据目标用电模块的用电需求量确定的。其中,在低压供电电源与DCDC变换器的低压供电回路断开的情况下,DCDC变换器通过第三电能信号为目标用电模块供电,目标用电模块包括低压用电器件,低压用电器件包括BMS。
在低压供电回路导通的情况下,目标用电模块包括低压供电电源和低压用电器件,若低压供电电源的输出电压小于DCDC变换器的输出电压,则目标用电模块的用电需求量为零,第三电能信号等于零。
若低压供电电源的输出电压小于或等于DCDC变换器的输出电压,则DCDC变换器通过第三电能信号为目标用电模块供电,目标用电模块包括低压供电电源和低压用电器件。
在一些实施例中,DCDC变换器装置还包括:
状态确定模块,用于在接收到第一通信报文、且充电信号和车辆启动信号均为高电平的情况下或者在接收到第二通信报文的条件下,确定整车处于待机状态。
在一些实施例中,DCDC变换器装置还包括:
状态确定模块,用于在接收到第一通信报文且充电信号和车辆启动信号为低电平的情况下,确定表征整车处于等待进入休眠模式的目标状态。
在一些实施例中,DCDC变换器装置还包括:
状态确定模块,用于在未接收到BMS发送的通信报文、充电信号和车辆启动信号为低电平、以及使能信号为高电平的情况下,确定整车处于故障状态。
在一些实施例中,DCDC变换器包括移相全桥电路。本申请实施例结合图5示出了示例性地移相全桥(Phase-ShiftingFull-BridgeConverter,PSFB)单元。
图5中的电路为本申请实施例提供的DCDC控制器的主功率拓扑结构,DCDC控制器的原边采用移相全桥(PSFB),Q1-4Q4为4个碳化硅金属氧化物半导体场效应(SiC-Metal-Oxide-Semiconductor,SiC-MOS)开关管,利用其结电容C1、 C2、C3、C4和变压器漏感C b及谐振电感Lr作为谐振元件,使4个SiC-MOS开关管依次在零电压下导通和关断(ZVS),以实现软开关。使用嵌位二极管Dc1和嵌位二极管Dc2来抑制副边的电压振荡,串联一个隔直电容Cb来抑制高频变压器原边绕组中的直流分量,副边为采用同步整流技术的全波整流方案,提高了DCDC变换器的转换效率。
继续参见图5,Vin为输入的直流电源,D1-D4为4个开关管的寄生二极管或外加续流二极管,Tr为移相全桥电源变压器,Qs 1和Qs 2为开关管,L f为移相全桥电源次级输出续流电感,C f为移相全桥电源次级输出电容,R Ld为移相全桥电源次级负载。
根据本申请实施例中的DCDC变换器,在充电信号、车辆启动信号、使能信号均为低电平、且未接收到BMS发送的通信报文时,可以确定整车处于下电状态,并进入休眠模式,在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向BMS输出用于唤醒BMS进入工作模式的唤醒信号。因此,能够利用DCDC变换器唤醒电池管理系统对电池包进行监控,从而在车辆下电之后也能利用电池管理系统对汽车的安全状态进行监控,提高了电池包的安全性。
此外,DCDC变换器11可以自唤醒并进入工作模式,DCDC与电池包之间无需设置整车DCDC继电器,简化了电路结构。
根据本申请实施例的DCDC变换器的其他细节,与以上结合图1至图3所示实例描述的控制方法类似,并能达到其相应的技术效果,为简洁描述,在此不再赘述。图6示出了本申请实施例提供的控制设备的硬件结构示意图。
在控制设备可以包括处理器601以及存储有计算机程序指令的存储器602。
具体地,上述处理器601可以包括中央处理器(Central Processing Unit,CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器602可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器602可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在一些实例中,存储器602可以包括可移除或不可移除(或固定)的介质,或者存储器602是非易失性固态存储器。在一些实施例中,存储器602可在控制设备的内部或外部。
在一些实例中,存储器602可以是只读存储器(Read Only Memory,ROM)。在一个实例中,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
存储器602可以包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行 (例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器601通过读取并执行存储器602中存储的计算机程序指令,以实现图2至图3所示实施例中的方法,并达到图2至图3所示实例执行其方法达到的相应技术效果,为简洁描述在此不再赘述。
在一个示例中,控制设备还可包括通信接口603和总线610。其中,如图6所示,处理器601、存储器602、通信接口603通过总线610连接并完成相互间的通信。
通信接口603,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线610包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线610可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该控制设备可以执行本申请实施例中的控制方法,从而实现结合图1至图5描述的控制方法和装置。
另外,结合上述实施例中的控制方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种控制方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。 代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置、设备及和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (16)

  1. 一种控制方法,应用于直流DCDC变换器,所述方法包括:
    获取充电信号;
    获取车辆启动信号;
    获取使能信号;
    若所述充电信号、所述车辆启动信号和所述使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式;
    在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向所述BMS输出用于唤醒所述BMS进入工作模式的唤醒信号。
  2. 根据权利要求1所述的控制方法,其中,所述在休眠模式持续时长达到预设时长的条件下进行自唤醒之后,所述方法还包括:
    输出第一电能信号,所述第一电能信号用于为所述BMS供电。
  3. 根据权利要求1或2所述的控制方法,其中,所述通信报文包括允许所述DCDC变换器输出的第一通信报文和禁止所述DCDC变换器输出的第二通信报文,所述方法还包括:
    在所述充电信号为高电平的条件下,若接收到所述第一通信报文或者未接收到所述通信报文,确定整车处于充电状态。
  4. 根据权利要求3所述的控制方法,其中,所述确定整车处于充电状态之后,所述方法还包括:
    输出第二电能信号,所述第二电能信号是根据目标用电模块的用电需求量确定的;
    其中,在低压供电电源与所述DCDC变换器的低压供电回路断开的情况下,所述DCDC变换器通过所述第二电能信号为所述目标用电模块供电,所述目标用电模块包括所述低压用电器件,所述低压用电器件包括所述BMS;
    其中,在所述低压供电回路导通的情况下,若所述低压供电电源的输出电压大于所述DCDC变换器的输出电压,则所述目标用电模块的用电需求量为零,所述第二电能信号等于零;若所述低压供电电源的输出电压小于或等于所述DCDC变换器的输出电压,则所述DCDC变换器通过所述第二电能信号为所述目标用电模块供电,所述目标用电模块包括所述低压供电电源和所述低压用电器件。
  5. 根据权利要求1至4任一项所述的控制方法,其中,所述通信报文包括允许所述DCDC变换器输出的第一通信报文和禁止所述DCDC变换器输出的第二通信报文,所述方法还包括:
    在所述充电信号为低电平、所述车辆启动信号为高电平且接收到所述第一通信报文的情况下,或者在所述充电信号为低电平、所述车辆启动信号和所述使能信号为高电平且未接收到所述通信报文的情况下,确定整车处于行车状态。
  6. 根据权利要求5所述的控制方法,其中,所述确定整车处于行车状态之后,所 述方法还包括:
    输出第三电能信号,所述第三电能信号是根据目标用电模块的用电需求量确定的;
    其中,在低压供电电源与所述DCDC变换器的低压供电回路断开的情况下,所述DCDC变换器通过所述第三电能信号为所述目标用电模块供电,所述目标用电模块包括所述低压用电器件,所述低压用电器件包括所述BMS;
    其中,在所述低压供电回路导通的情况下,若所述低压供电电源的输出电压大于所述DCDC变换器的输出电压,则所述目标用电模块的用电需求量为零,所述第三电能信号等于零;若所述低压供电电源的输出电压小于或等于所述DCDC变换器的输出电压,则所述DCDC变换器通过所述第三电能信号为所述目标用电模块供电,所述目标用电模块包括所述低压供电电源和所述低压用电器件。
  7. 根据权利要求1-6任一项所述的控制方法,其中,所述通信报文包括允许所述DCDC变换器输出的第一通信报文和禁止所述DCDC变换器输出的第二通信报文,所述方法还包括:
    在接收到所述第一通信报文、且所述充电信号和所述车辆启动信号均为高电平的情况下或者在接收到所述第二通信报文的条件下,确定整车处于待机状态。
  8. 根据权利要求1-7任一项所述的控制方法,其中,所述通信报文包括允许所述DCDC变换器输出的第一通信报文和禁止所述DCDC变换器输出的第二通信报文,所述方法还包括:
    在接收到所述第一通信报文且所述充电信号和所述车辆启动信号为低电平的情况下,确定表征整车处于等待进入休眠模式的目标状态。
  9. 根据权利要求1-8任一项所述的控制方法,其中,还包括:
    在未接收到所述BMS发送的通信报文、所述充电信号和所述车辆启动信号为低电平、以及所述使能信号为高电平的情况下,确定整车处于故障状态。
  10. 一种DCDC变换器,包括:
    参数获取模块,用于获取充电信号,以及获取车辆启动信号,以及获取使能信号;
    控制模块,用于若所述充电信号、所述车辆启动信号和所述使能信号均为低电平,且未接收到电池管理系统BMS发送的通信报文,确定整车处于下电状态,并进入休眠模式;
    自唤醒模块,用于在休眠模式持续时长达到预设时长的条件下进行自唤醒,并向所述BMS输出用于唤醒所述BMS进入工作模式的唤醒信号。
  11. 根据权利要求10所述的DCDC变换器,所述DCDC变换器包括移相全桥单元。
  12. 一种低压输电系统,包括:
    电池管理系统,和权利要求10或权利要求11所述的DCDC变换器。
  13. 根据权利要求12所述的电池输电系统,还包括:
    低压供电电源,所述低压供电电源通过低压供电回路分别与所述DCDC变换器和 所述电池管理系统连接。
  14. 根据权利要求13所述的电池输电系统,还包括:
    状态参数传输装置,用于从所述电池管理系统获取所述电池包的状态参数,并将所述电池包的状态参数发送至远程监控平台。
  15. 一种DCDC变换器的控制设备,包括:
    存储器,用于存储程序;
    处理器,用于运行所述存储器中存储的所述程序,以执行权利要求1-9任一权利要求所述的DCDC变换器的控制方法。·
  16. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现权利要求1-9任一权利要求所述的DCDC变换器的控制方法。
PCT/CN2021/081298 2020-06-30 2021-03-17 低压输电系统、dcdc变换器、控制方法、设备及介质 WO2022001198A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227023434A KR20220108814A (ko) 2020-06-30 2021-03-17 저전압 전력 전송 시스템, dcdc 변환기, 제어 방법, 기기 및 매체
EP21830377.4A EP3984811B1 (en) 2020-06-30 2021-03-17 Low-voltage power transmission system, dcdc converter, control method, device and medium
JP2022542169A JP7453386B2 (ja) 2020-06-30 2021-03-17 低電圧送電システム、dcdcコンバータ、制御方法、デバイス及び媒体
US17/566,718 US20220118879A1 (en) 2020-06-30 2021-12-31 Low-voltage power transmission system, dcdc converter, control method, device, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010615440.3 2020-06-30
CN202010615440.3A CN113859047B (zh) 2020-06-30 2020-06-30 低压输电系统、dcdc变换器、控制方法、设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/566,718 Continuation US20220118879A1 (en) 2020-06-30 2021-12-31 Low-voltage power transmission system, dcdc converter, control method, device, and medium

Publications (1)

Publication Number Publication Date
WO2022001198A1 true WO2022001198A1 (zh) 2022-01-06

Family

ID=78981456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081298 WO2022001198A1 (zh) 2020-06-30 2021-03-17 低压输电系统、dcdc变换器、控制方法、设备及介质

Country Status (6)

Country Link
US (1) US20220118879A1 (zh)
EP (1) EP3984811B1 (zh)
JP (1) JP7453386B2 (zh)
KR (1) KR20220108814A (zh)
CN (1) CN113859047B (zh)
WO (1) WO2022001198A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115837861A (zh) * 2022-10-24 2023-03-24 宁德时代新能源科技股份有限公司 Bms休眠唤醒电路、方法、bms和用电设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112339608A (zh) * 2019-08-09 2021-02-09 广州汽车集团股份有限公司 基于烟雾浓度的电池热失控监控方法、装置、系统及车辆
KR102305054B1 (ko) * 2020-01-30 2021-09-27 (주)미섬시스텍 배터리관리시스템(bms)의 전원공급 자동 제어 장치 및 방법
CN113306396B (zh) * 2021-07-01 2023-08-11 安徽江淮汽车集团股份有限公司 纯电动汽车dcdc唤醒系统及唤醒方法
US20230041983A1 (en) * 2021-08-04 2023-02-09 Micron Technology, Inc. Interface for refreshing non-volatile memory
CN115158021A (zh) * 2022-06-23 2022-10-11 中国第一汽车股份有限公司 电动汽车高压上电的控制方法、控制装置和车辆
CN116080405B (zh) * 2023-03-24 2023-06-27 成都赛力斯科技有限公司 车辆上下电系统、实现方法和计算机设备
CN117048371B (zh) * 2023-10-13 2023-12-15 万帮数字能源股份有限公司 一种新能源汽车充电唤醒系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208066A1 (en) * 2017-01-26 2018-07-26 Borgward Trademark Holdings Gmbh Method, battery management system and vehicle for charging awakening
CN110641284A (zh) * 2019-11-19 2020-01-03 厦门金龙联合汽车工业有限公司 一种电动汽车动力电池安全监控的低压电源管理系统
CN110861530A (zh) * 2019-11-25 2020-03-06 芜湖天量电池系统有限公司 一种动力电池的监控系统及方法
CN111032415A (zh) * 2017-08-24 2020-04-17 株式会社自动网络技术研究所 电源系统及电动汽车

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293841B2 (ja) * 2010-02-09 2013-09-18 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP5459408B2 (ja) 2010-10-21 2014-04-02 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法ならびに電動車両
FR3014376B1 (fr) * 2013-12-11 2016-01-08 Renault Sas Procede et systeme d'endormissement d'un vehicule a traction au moins partiellement electrique
DE102014209249A1 (de) * 2014-05-15 2015-11-19 Ford Global Technologies, Llc Elektrisches Ladeverfahren für ein Fahrzeug und elektrische Fahrzeugladevorrichtung
JP6458712B2 (ja) 2015-11-13 2019-01-30 トヨタ自動車株式会社 車両用電源システム
CN105922873B (zh) * 2016-05-18 2018-05-04 北京新能源汽车股份有限公司 车辆及用于车辆的低压蓄电池的充电控制方法和系统
JP6790849B2 (ja) 2017-01-13 2020-11-25 トヨタ自動車株式会社 車両用電源システム
US20190296575A1 (en) * 2018-03-23 2019-09-26 Beijing Hanergy Solar Power Investment Co., Ltd. Solar battery system and control method thereof
CN110626206B (zh) * 2018-05-31 2021-10-01 宁德时代新能源科技股份有限公司 充电唤醒装置及电池系统
CN110803025B (zh) * 2018-08-02 2022-01-25 长城汽车股份有限公司 低压电源管理方法和系统及电动车辆和存储介质
CN110722989B (zh) * 2019-09-09 2021-05-18 力高(山东)新能源技术有限公司 一种新能源汽车电池管理系统休眠方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208066A1 (en) * 2017-01-26 2018-07-26 Borgward Trademark Holdings Gmbh Method, battery management system and vehicle for charging awakening
CN111032415A (zh) * 2017-08-24 2020-04-17 株式会社自动网络技术研究所 电源系统及电动汽车
CN110641284A (zh) * 2019-11-19 2020-01-03 厦门金龙联合汽车工业有限公司 一种电动汽车动力电池安全监控的低压电源管理系统
CN110861530A (zh) * 2019-11-25 2020-03-06 芜湖天量电池系统有限公司 一种动力电池的监控系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984811A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115837861A (zh) * 2022-10-24 2023-03-24 宁德时代新能源科技股份有限公司 Bms休眠唤醒电路、方法、bms和用电设备

Also Published As

Publication number Publication date
JP7453386B2 (ja) 2024-03-19
CN113859047B (zh) 2024-04-02
JP2023509205A (ja) 2023-03-07
CN113859047A (zh) 2021-12-31
EP3984811A4 (en) 2022-09-28
US20220118879A1 (en) 2022-04-21
KR20220108814A (ko) 2022-08-03
EP3984811A1 (en) 2022-04-20
EP3984811B1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2022001198A1 (zh) 低压输电系统、dcdc变换器、控制方法、设备及介质
KR102007835B1 (ko) 배터리 관리 시스템의 전원 장치
CN204835609U (zh) 电动汽车及电动汽车的车载充电器
JP5126297B2 (ja) 電力管理システム及び車載電力管理装置
KR101798514B1 (ko) 차량 및 그 충전 제어방법
US20230202343A1 (en) Low-voltage battery charging system and method
CN108340803B (zh) 一种电池包的控制方法、装置、动力电池及汽车
WO2015122214A1 (ja) 電力授受制御装置
CN109435711A (zh) 一种新能源汽车低压蓄电池防亏电系统及方法
CN104709104A (zh) 电动车电池包的快换方法及快换系统
USRE46230E1 (en) Inverter with network interface
CN112224079B (zh) 一种纯电动汽车的充电管理方法及系统
CN112918324A (zh) 一种新能源汽车低压蓄电池的控制方法及系统
CN108162782A (zh) 节能直流充电桩和充电方法
US11207999B2 (en) Charger and charging method for charging the battery of an electric motorcycle by using charging stations for cars
US11130457B2 (en) Control system and vehicle
CN112208381B (zh) 一种新能源汽车充电系统控制电路及控制方法
CN113352940A (zh) 一种蓄电池补电方法、系统及车辆
CN211032243U (zh) 一种电池温度控制系统、电池系统及整车系统
CN103516042A (zh) 供电装置及供电方法
CN219192120U (zh) 车载休眠唤醒系统及智能车辆
CN215186048U (zh) 一种备电供电电路
CN218141048U (zh) 电动汽车供电系统及电动汽车
JP2020031484A (ja) 蓄電システムおよびパワーコンディショナ
CN218702730U (zh) 蓄电池充电系统和车辆

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021830377

Country of ref document: EP

Effective date: 20220111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023434

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022542169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE