WO2021258736A1 - Cof 驱动模块、 cof 显示模组及前两者的制造方法 - Google Patents

Cof 驱动模块、 cof 显示模组及前两者的制造方法 Download PDF

Info

Publication number
WO2021258736A1
WO2021258736A1 PCT/CN2021/074790 CN2021074790W WO2021258736A1 WO 2021258736 A1 WO2021258736 A1 WO 2021258736A1 CN 2021074790 W CN2021074790 W CN 2021074790W WO 2021258736 A1 WO2021258736 A1 WO 2021258736A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
chip
glass
pads
layer
Prior art date
Application number
PCT/CN2021/074790
Other languages
English (en)
French (fr)
Inventor
朱庆华
黄双平
华卫华
Original Assignee
深圳市全洲自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市全洲自动化设备有限公司 filed Critical 深圳市全洲自动化设备有限公司
Publication of WO2021258736A1 publication Critical patent/WO2021258736A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits

Definitions

  • the present invention relates to the field of display technology, in particular to a COF drive module, COF liquid crystal display module, COF OLED display module, COF electronic ink display module, COF liquid crystal display module manufacturing method, and OLED display module manufacturing method And the manufacturing method of electronic ink display module.
  • COG Chip On Glass
  • the use of the COG solution requires a relatively large step 2a on the edge of the panel 1a for placing the external connection lines of the driving chips 3a and 3a.
  • COF Chip On Flex, or, Chip On Film, often called flip-chip film
  • COF Chip On Flex, or, Chip On Film, often called flip-chip film
  • the area ratio of the display area can be increased. Under the circumstance that the external dimensions of the panel remain unchanged, it can achieve higher resolution than the display module using COG technology.
  • the line width/line spacing of conventional FPC is generally not less than 50/50 ⁇ m, and the highest precision line in the world can reach 20/20 ⁇ m, and the cost is extremely high. This is very different from the conventional size of the COG solution (about 10 ⁇ m), which leads to a great limitation in the chip selection of the COF solution, and also increases the cost of the overall solution. Therefore, how to improve the line accuracy of the FPC with a lower cost has become an urgent problem to be solved in the development of COF technology.
  • a COF drive module which includes an FPC submodule and a COG drive submodule.
  • the FPC submodule includes a first FPC cable and a second FPC cable;
  • the COG drive submodule includes COG glass placed on the FPC submodule and The drive chip on the COG glass, the COG glass is provided with micron-level pads and conductive leads;
  • the COG glass is connected to the first FPC cable and the second FPC cable respectively;
  • the input end of the drive chip is through the COG glass and the second FPC cable
  • the line is connected to the external control module; the output terminal of the driving chip is connected to the external display panel through the COG glass and the first FPC cable.
  • COG glass-hard substrates are partially used for COF; the bottleneck of existing COF solutions can be overcome by mixing hard substrates (COG glass) and flexible substrates (FPC sub-modules). Realize micron-level fine lines in COF with high yield and low cost.
  • Micron-level fine circuits can be processed on hard substrates such as COG glass, so that conventional, low-cost, small-size driver ICs can be used instead of COF-specific, high-cost ICs. Then it is connected to the flexible substrate circuit by fan-in and fan-out.
  • the flexible substrate can be used with 25 ⁇ m pitch lines or 50 ⁇ m or larger pitch lines, which will significantly reduce the accuracy of the flexible substrate and flexible circuit. The combination of the two can greatly reduce the process difficulty and comprehensive cost of COF products.
  • the COG glass is a small piece, integrated on a large flexible circuit board, or connected between two small flexible circuits, or on one of two interconnected flexible circuit boards.
  • a small piece of COG glass is the constituent element of the protected object of this patent, and the width of its circuit and pad is in the micron level, and it is named RU here, Rigid circuit board of ⁇ m Grade refers to a rigid board with a circuit width of ⁇ m-a micron rigid board.
  • the COG glass is provided with chip input terminal pads, chip output terminal pads, lead input terminal pads and lead output terminal pads;
  • the lead input terminal pad and the lead output terminal pad are located on the peripheral side of the upper surface of the COG glass; the chip input terminal pad and the chip output terminal pad are located on the non-edge position of the upper surface of the COG glass;
  • the input terminal pad of the driver chip is connected to the chip input terminal pad through the bonding process, and the output terminal pad of the driver chip is connected to the chip output terminal pad through the bonding process;
  • the lead input terminal pad is connected to the chip input terminal pad through the fan-in lead on the COG glass, and the chip output terminal pad is connected to the lead output terminal through the fan-out lead on the COG glass;
  • the lead input end pad is welded to the output end lead of the second FPC cable; the lead output end pad is welded to the input end lead of the first FPC cable.
  • the lead wires connecting the FPC submodule and the COG drive submodule are two-sided, three-sided, or four-sided.
  • the respective numbers of the chip input terminal pads, the chip output terminal pads, the lead input terminal pads and the lead output terminal pads are all at least 2;
  • the typical distance between adjacent chip input terminal pads is 3 ⁇ 50 ⁇ m;
  • the typical distance between adjacent chip output terminal pads is 3 ⁇ 50 ⁇ m
  • the typical distance between adjacent lead input terminal pads is 15 ⁇ 1000 ⁇ m;
  • the typical distance between adjacent lead output terminal pads is 15 ⁇ 500 ⁇ m.
  • connection between the COG glass and the FPC sub-module is a full-enclosed structure surrounded by four sides, a semi-enclosed structure surrounded by three sides, a semi-enclosed structure surrounded by two sides, or an open structure in which a multi-stage FPC and COG are mixed and matched.
  • the FPC When fully enclosed, the FPC is a whole, hollowed out in the middle (or not hollowed out); when half-enclosed, one side of the FPC is opened; with an open structure, the FPC is divided into several sections.
  • the first FPC cable and the second FPC cable are provided with directly connected conductive lines, and the directly connected conductive lines are set as power lines, ground lines or other lines that do not need to pass through the driver chip.
  • the base material in the width direction of the first FPC cable and/or the second FPC cable is provided with half-cuts, grooves or hollows, so that the deformation will not accumulate excessively during thermal expansion and contraction, which can avoid large The stress increases the reliability of the combination of the first FPC cable and/or the second FPC cable with the COG glass and the display panel.
  • the material of COG glass can be replaced by polyimide, phenolic resin, glass fiber/epoxy resin, BT resin, epoxy resin, soda lime glass, borosilicate glass, quartz glass, sapphire, ceramics, silicon wafers
  • the material of COG glass can be replaced by a combination of conductor, semiconductor substrate and insulating layer.
  • the material of the pads and conductive lines on the COG glass can be made of copper, chromium, nickel, gold, silver, ITO (ITO is an N-type oxide semiconductor-indium tin oxide, and ITO film is an indium tin oxide semiconductor transparent conductive film) , Mo, Al/Mo or other various semiconductor conductive materials can be replaced by conductive film materials that can achieve high lithography accuracy; or, the material of the pads and conductive lines on the COG glass is based on the ITO layer, with an additional copper layer, Chromium layer, nickel layer, gold layer, silver layer, Mo layer, Al/Mo layer or semiconductor conductive material layer.
  • the thickness of the coating on the hard substrate is usually between 10 and 300 nm.
  • the resistance of this film is too large, and it is difficult to drive LCD screens with a diameter of 10 ⁇ m and a thickness of more than six inches.
  • the power consumption of products in the LCD and TP industries is very small, and the load capacity of the line is not high.
  • Based on the micron-level circuits processed by the traditional COG process its power supply capacity is difficult to meet the requirements of COF and other application scenarios.
  • it is necessary to modify the traditional COG process add a metal film on the ITO film layer, or directly use metal-coated glass to make fine lines.
  • a COF display module includes a display panel, including the COF drive module described above, and the input end of the display panel is connected to the output end of the first FPC cable.
  • the display panel is a liquid crystal display panel, an OLED display panel or an electronic ink display panel
  • a method for manufacturing a COF drive module includes:
  • Step A Make micron-level chip pads, lead pads and conductive leads on a small piece of COG glass.
  • the conductive leads are divided into input leads and output leads, and the chip pads are divided into chip input terminal pads and chip output terminal soldering.
  • the lead pad is divided into lead input pad and lead output pad; the input lead connects the lead input pad and the chip input pad in the form of fan-in, and the output lead connects the chip output in the form of fan-out Pad and lead output terminal pad;
  • Step B Bond the driver chip on the COG glass, and connect the pads on the driver chip to the chip input terminal pads and the chip output terminal pads on the COG glass correspondingly;
  • Step C Connect one end of the first FPC cable and the second FPC cable to the lead pads respectively;
  • the other end interface of the second FPC cable is used to connect to an external control module; the other end interface of the first FPC cable is used to connect to the display panel and send a display signal to the display panel.
  • step A fabricating micron-sized ITO chip pads, ITO lead pads and ITO conductive leads on COG glass;
  • Optimizing the material of the circuit and thickening the plating layer, under the premise of ensuring the accuracy of the circuit, can greatly improve the conductive performance of the dense circuit.
  • the thickness of the ITO layer of micron-sized ITO chip pads, ITO lead pads and ITO conductive leads are made on the COG glass to be 10 to 1000 nm.
  • step A includes:
  • Step A1 Coating on ITO glass (ITO conductive glass is made on the basis of soda-lime-based or silicon-boron-based substrate glass and coated with a layer of indium tin oxide film by various methods such as sputtering and evaporation) Apply a photosensitive glue, ITO glass includes ITO layer and glass layer;
  • Step A2 One-time exposure and development to remove the photosensitive adhesive layer outside the chip pads, lead pads and the upper part of the conductive leads;
  • Step A3 Etch the chip pad, the lead pad and the ITO layer outside the upper part of the conductive lead; demold, remove the die pad, the lead pad and the photosensitive adhesive layer on the upper part of the conductive lead;
  • Step A4 Coating the secondary photosensitive glue, exposing and developing, removing the chip pads, lead pads and the upper secondary photosensitive glue of the conductive leads;
  • Step A5 Add a conductive layer on top of the ITO layer of the chip pad, the lead pad and the conductive lead; remove the secondary photosensitive glue;
  • the new technical solutions given in this patent are summarized as follows: use a hard board substrate such as glass as a carrier, and realize the wiring of high-precision conductive circuit materials (such as ITO, CR, MO, AL/MO, etc.) on the carrier; first Realize precision circuit; then, through the method of coating after mask or direct coating, thicken the original circuit with a more conductive material, thereby greatly improving the conductivity of the circuit while ensuring the accuracy of the circuit performance.
  • the copper plating on the surface of the ITO circuit is taken as an example, but the involved methods and materials are not limited to this.
  • the production of ITO circuits At present, the production of 10/10 ⁇ m precision circuits in the LCD industry is a conventional technology, which is relatively low in difficulty and low in cost.
  • the specific process includes: After the incoming ITO glass is cleaned->glued->developed->etched->released, the ITO film can be processed into micron-level precision circuits.
  • the resistance of ITO material is 2 to 3 orders of magnitude larger than that of pure metal, and the power supply capacity of ITO circuit is difficult to meet the requirements of application scenarios such as COF; in this patent, a metal film is plated on the ITO fine circuit to improve the fine circuit Load capacity.
  • Step 1 after the ITO circuit is made, a secondary photosensitive adhesive mask is made on the surface to protect the non-circuit area, and electroless copper deposition is performed on the ITO circuit; secondary photosensitive adhesive mask It is similar to a photoresist mask, but a negative photolithography chrome plate is used for overprint exposure.
  • the design of the chrome plate and the primary and secondary lithography process should ensure that the secondary photoresist mask pattern is slightly smaller than the first made ITO pattern, and the amplitude is about 0.5 ⁇ 1.0 ⁇ m on each edge ( This gap is used to wrap the ITO pattern to achieve the effect of completely sealing the ITO circuit with a copper layer).
  • This process needs to be completed by an over-engraving exposure machine. For a large area and the accuracy of over-engraving cannot be achieved, a STEPPER over-engraving exposure machine can be used. (Stepper engraving exposure machine) to complete, after the process is completed to the baking after development, a layer of photosensitive resin line is formed in the gap of the ITO line.
  • the step height of the ITO line is generally 10 ⁇ 300 nanometers, and the step height of the photoresist line At 1400 ⁇ 2000nm, the height difference is 1100 ⁇ 1700nm. Within this height difference, copper can be plated, and the copper thickness should not exceed 1700nm, otherwise it is prone to peeling problems. Electroless copper plating uses copper plating water as an example to introduce, but copper plating schemes and materials are not limited to this. The copper ions in the copper plating water will only be deposited on the ITO circuit, but will not be combined with the photosensitive glue, so after a period of soaking, a certain thickness of copper layer is deposited on the ITO surface, and the photosensitive glue circuit between them remains intact . When the thickness of the copper layer meets the requirements, remove the ITO glass from the copper plating water, clean it, and finally remove the film to obtain a high-precision copper circuit.
  • the technologies involved are mature technologies that have been popularized in China, and the material supply and cost are suitable for mass production.
  • Step A includes:
  • Step A6 Coating photosensitive glue on the ITO glass, the ITO glass includes an ITO layer and a glass layer;
  • Step A7 Expose and develop, and remove the photosensitive glue on the chip pads, lead pads and conductive leads;
  • Step A8 Add a conductive layer on top of the ITO layer of the chip pad, the lead pad and the conductive lead;
  • Step A9 Completely remove the photosensitive glue
  • Step A10 Remove the exposed ITO layer by micro-etching technology, that is, remove the ITO other than the chip pads, lead pads and conductive leads.
  • Steps A6 ⁇ A10 are summarized as follows: first use a negative photo-etched chrome plate for exposure and development, expose the expected circuit, and cover the other areas with photosensitive glue; then coat the semi-finished product, such as electroless copper, and plating on the wire A pure metal film; then cleaning, stripping, and then microetching with weak acid to remove non-circuit areas. Finally, cleaning and drying are performed to obtain high-precision copper circuits.
  • the material of COG glass is soda lime glass.
  • Polyimide, phenolic resin, glass fiber/epoxy resin, BT resin, epoxy resin, borosilicate glass, quartz glass, sapphire, ceramic, silicon wafer can also be used. , Or replaced by a combination of conductor, semiconductor substrate and insulating layer;
  • the ITO layer on COG glass is made of copper, chromium, nickel, gold, silver, Mo, Al/Mo or semiconductor conductive materials; or, the ITO layer on COG glass is based on the ITO layer, with additional copper, chromium, and nickel layers Layer, gold layer, silver layer, Mo layer, Al/Mo layer or semiconductor conductive material layer.
  • step C the first FPC cable and the second FPC cable are located on the same roll of flexible circuit board, and step C is completed in the form of roll-to-roll processing.
  • the respective numbers of the chip input terminal pads, the chip output terminal pads, the lead input terminal pads and the lead output terminal pads are all at least 2;
  • the typical distance between adjacent chip input terminal pads is 3 ⁇ 50 ⁇ m
  • the typical distance between adjacent chip output terminal pads is 3 ⁇ 50 ⁇ m
  • the typical distance between adjacent lead input terminal pads is 15 ⁇ 1000 ⁇ m;
  • the typical distance between adjacent lead output terminal pads is 15 ⁇ 500 ⁇ m.
  • the present invention also provides a method for manufacturing a COF display module, including the method for manufacturing the COF drive module described above, and the COF drive module manufactured by the method is used to assemble the display panel.
  • the present invention has the following beneficial effects: the partial conversion of COF to COG glass-hard substrate is realized; through the mixing and matching of hard substrate (COG glass) and flexible substrate (FPC sub-module), it can be used at a lower cost Overcome the bottleneck of the existing COF program.
  • Micron-level fine circuits can be processed on hard substrates such as COG glass, so that conventional, low-cost, small-size driver ICs can be used instead of COF-specific, high-cost ICs. Then it is connected to the flexible substrate circuit by fan-in and fan-out.
  • the flexible substrate can be used with 25 ⁇ m pitch lines or 50 ⁇ m or larger pitch lines, which will significantly reduce the accuracy of the flexible substrate and flexible circuit.
  • the combination of the two can greatly reduce the process difficulty and comprehensive cost of COF products.
  • Advantages of the new method a) The technologies involved are mature technologies that have been popularized in China, and the material supply and cost are suitable for large-scale production. b) Compared with traditional PCB technology, micron-level precision circuits can be processed, which easily breaks the processing limit of the existing PCB/FPC industry. c) Compared with the traditional COG process, it overcomes the defect of large resistance of the ITO circuit and greatly improves the power supply capacity of the dense circuit.
  • Figure 1 is a schematic diagram of the structure of a prior art COG solution.
  • Figure 2 is a schematic structural diagram of an embodiment of a COF drive module of the present invention.
  • FIG 3 is a schematic diagram of the COG glass module structure of an embodiment of a COF drive module of the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a COF display module of the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a COF display module of the present invention.
  • FIG. 6 is a schematic structural diagram of the processing process of an embodiment of the COG glass module of the COF drive module of the present invention.
  • FIG. 7 is a schematic structural diagram of the processing process of another embodiment of the COG glass module of a COF drive module of the present invention.
  • FIG. 8 is a schematic diagram of the assembly process of an embodiment of a COF display module of the present invention, single-chip.
  • FIG. 9 is a schematic diagram of the assembly process of another embodiment of a COF display module of the present invention, single-chip.
  • FIG. 10 is a schematic diagram of the assembly process of the roll material of a COF display module of the present invention.
  • a COF drive module includes an FPC sub-module 21 and a COG drive sub-module 22.
  • the FPC sub-module 21 includes a first FPC cable 211 and a second FPC cable 212;
  • the COG driving sub-module 22 includes a COG glass 221 placed on the FPC sub-module 21 and a driving chip 222 placed on the COG glass 221.
  • the COG glass 221 is provided with micron-level pads and conductive leads;
  • the COG glass 221 is respectively connected to the first FPC cable 211 and the second FPC cable 212;
  • the input terminal of the driving chip 222 is connected to the external control module through the COG glass 221 and the second FPC cable 212;
  • the output terminal of the driving chip 222 is connected to an external display panel through the COG glass 221 and the first FPC cable 211.
  • Part of COF is changed to hard base material.
  • the COG glass 221 is provided with chip input terminal pads 2215, chip output terminal pads 2216, lead input terminal pads 2213, and lead output terminal pads 2214; COG glass 221 is provided with first leads 2211 and Two leads 2212, the first lead 2211 connects the chip output terminal pad 2216 and the lead output terminal pad 2214 in a fan-out manner, and the second lead 2212 leads the input terminal pad 2213 and the chip input terminal pad 2215 in a fan-in manner .
  • connection between the COG glass 221 and the FPC sub-module 21 is a three-sided bonding enclosure structure.
  • the present invention also provides a COF display module, which includes the above COF drive module, and also includes a display panel 1.
  • the display panel 1 is connected to the lead output terminal pad 2214 and is driven by the COF drive module. Signal.
  • the invention provides a COF drive module.
  • a COF drive module includes an FPC sub-module 21 and a COG drive sub-module 22.
  • the FPC sub-module 21 includes a first FPC cable 211 and a second FPC cable 212;
  • the COG driving sub-module 22 includes a COG glass 221 placed on the FPC sub-module 21 and a driving chip 222 placed on the COG glass 221.
  • the COG glass 221 is provided with micron-level pads and conductive leads;
  • the COG glass 221 is respectively connected to the first FPC cable 211 and the second FPC cable 212;
  • the input terminal of the driving chip 222 is connected to the external control module through the COG glass 221 and the second FPC cable 212;
  • the output terminal of the driving chip 222 is connected to an external display panel through the COG glass 221 and the first FPC cable 211.
  • the partial change of COF to hard substrates can overcome the bottleneck of the existing COF scheme by mixing hard substrates and flexible substrates.
  • Micron-level fine lines can be processed on the hard substrate, so that conventional, low-cost, small-size ICs can be used instead of COF-specific, high-cost ICs. Then it is connected to the flexible substrate circuit by fan-in and fan-out.
  • the flexible substrate can be used with 25 ⁇ m pitch lines or 50 ⁇ m or larger pitch lines, which will significantly reduce the accuracy of the flexible substrate and flexible circuit. Requirements. The combination of the two can greatly reduce the process difficulty and comprehensive cost of COF products.
  • the COG glass 221 is provided with chip input terminal pads 2215, chip output terminal pads 2216, lead input terminal pads 2213, and lead output terminal pads 2214; COG glass 221 is provided with first leads 2211 and Two leads 2212, the first lead 2211 connects the chip output terminal pad 2216 and the lead output terminal pad 2214 in a fan-out manner, and the second lead 2212 leads the input terminal pad 2213 and the chip input terminal pad 2215 in a fan-in manner .
  • the lead input terminal pad 2213 and the lead output terminal pad 2214 are located on the peripheral side of the upper surface of the COG glass 221; the chip input terminal pad 2215 and the chip output terminal pad 2216 are located at non-edge positions on the upper surface of the COG glass 221;
  • the input terminal pad of the driver chip 222 is connected to the chip input terminal pad 2215 through a bonding process, and the output terminal pad of the driver chip 222 is connected to the chip output terminal pad 2216 through a bonding process;
  • the lead input terminal pad 2213 is connected to the chip input terminal pad 2215 through a fan-in lead on the COG glass 221, and the chip output terminal pad 2216 is connected to the lead output terminal pad 2214 through a fan-out lead on the COG glass 221;
  • the lead input end pad 2213 is welded to the output end lead of the second FPC cable 212; the lead output end pad 2214 is welded to the input end lead of the first FPC cable 211.
  • the number of chip input terminal pads 2215, chip output terminal pads 2216, lead input terminal pads 2213, and lead output terminal pads 2214 are all two or more; adjacent chip input terminal pads 2215 The distance between the adjacent chip output terminal pads 2216 is 15 ⁇ m; the distance between adjacent lead input terminal pads 2213 is 150 ⁇ m; the distance between adjacent lead output terminal pads 2214 The distance between them is 150 ⁇ m.
  • the distance between adjacent chip input terminal pads 2215 can also be 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 48 ⁇ m or 50 ⁇ m;
  • the distance between adjacent chip output terminal pads 2216 can also be 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 48 ⁇ m or 50 ⁇ m;
  • adjacent The distance between the lead input terminal pads 2213 can also be 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, 400 ⁇ m or 500 ⁇ m;
  • the distance between adjacent lead output terminal pads 2214 The distance can also be 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇
  • connection between the COG glass 221 and the FPC sub-module 21 is a four-sided bonded full-enclosed structure.
  • the first FPC cable 211 and the second FPC cable 212 are provided with directly connected conductive lines, and the directly connected conductive lines are set as power lines, ground lines or other lines that do not need to pass through the driver chip.
  • the material of COG glass 221 is soda lime glass, and polyimide, phenolic resin, glass fiber/epoxy resin, BT resin, epoxy resin, borosilicate glass, quartz glass, sapphire, ceramics can also be used. , Silicon wafer, or a combination of conductor, semiconductor substrate and insulating layer;
  • the material of the pad and the conductive circuit on the COG glass 221 is copper, chromium, nickel, gold, silver, ITO, Mo, Al/Mo or semiconductor conductive material; or the material of the pad and the conductive circuit on the COG glass 221 is ITO
  • the layer is the base, and a copper layer, a chromium layer, a nickel layer, a gold layer, a silver layer, a Mo layer, an Al/Mo layer or a semiconductor conductive material layer are added.
  • the first embodiment is shown in Figure 4.
  • a COF display module includes a display panel 1 and the aforementioned COF drive module.
  • the input end of the display panel 1 is connected to the output end of the first FPC cable 211.
  • the second embodiment is shown in Figure 5.
  • the third embodiment is shown in Figures 8-9.
  • the fourth embodiment is shown in Figure 10.
  • the base material in the width direction of the first FPC cable 211 and/or the second FPC cable 212 is provided with a half-cut, slotted or hollow structure 2111, so that the deformation will not accumulate excessively during thermal expansion and contraction, which can avoid the occurrence of high
  • the large stress improves the reliability of the combination of the first FPC cable 211 and/or the second FPC cable 212 with the COG glass 221 and the display panel.
  • a method for manufacturing a COF drive module includes:
  • Step A Make micron-level chip pads, lead pads and conductive leads on a small piece of COG glass 221.
  • the conductive leads are divided into input leads and output leads, and the chip pads are divided into chip input terminal pads 2215 and chip output
  • the terminal pad 2216, the lead pad is divided into the lead input terminal pad 2213 and the lead output terminal pad 2214;
  • the input lead connects the lead input terminal pad 2213 and the chip input terminal pad 2215 in the form of fan-in, and the output lead is fanned Connect the chip output terminal pad 2216 and the lead output terminal pad 2214 in the form of output;
  • Step B Bond the driver chip 222 on the COG glass 221, and the pads on the driver chip 222 and the chip input terminal pads 2215 and the chip output terminal pads 2216 on the COG glass 221 are correspondingly connected;
  • Step C Connect one end of the first FPC cable 211 and the second FPC cable 212 to the lead pads respectively;
  • the other end interface of the second FPC cable 212 is used to connect to an external control module; the other end interface of the first FPC cable 211 is used to connect to a display panel and send a display signal to the display panel.
  • step A fabricating micron-level ITO chip pads, ITO lead pads and ITO conductive leads on COG glass 221;
  • Optimizing the material of the circuit and thickening the plating layer, under the premise of ensuring the accuracy of the circuit, can greatly improve the conductive performance of the dense circuit.
  • the thickness of the ITO layer of micron-level ITO chip pads, ITO lead pads, and ITO conductive leads are made on the COG glass 221 to be 10-1000 nm.
  • step A includes:
  • Step A1 Coat photosensitive adhesive 05 once on ITO glass 08, Figure 6c2, ITO glass 08 includes ITO layer 081 and glass layer 082, Figure 6c1;
  • Step A2 One-time exposure and development to remove the photosensitive adhesive layer outside the chip pads, lead pads and the upper part of the conductive leads, Figure 6c3;
  • Step A3 Etch the chip pad, the lead pad and the ITO layer outside the upper part of the conductive lead, as shown in Figure 6c4; demold, remove the chip pad, the lead pad and the photosensitive adhesive layer on the upper part of the conductive lead;
  • Step A4 Coating the secondary photosensitive adhesive 06, exposing and developing, and removing the chip pads, lead pads and the upper secondary photosensitive adhesive 06 of the conductive leads, as shown in Figure 6c5;
  • Step A5 Add a conductive layer 083 on the top of the ITO layer of the chip pad, the lead pad and the conductive lead, Figure 6c5; remove the secondary photosensitive glue, Figure 6c6.
  • steps A1 to A5 are replaced by steps A6 to A10, and the copper thickness of the conductive layer 083 can reach 2 ⁇ m:
  • Step A6 Coat the photosensitive adhesive 05 on the ITO glass 08 once, as shown in Figure 7d1, the ITO glass 08 includes an ITO layer 081 and a glass layer 082;
  • Step A7 One-time exposure and development to remove the primary photosensitive glue 05 on the chip pads, lead pads and conductive leads, as shown in Figure 7d2;
  • Step A8 Add a conductive layer 083 on top of the ITO layer of the chip pad, the lead pad and the conductive lead.
  • the thickness of the conductive layer 083 is more than 5 times the thickness of the ITO layer, 7d3;
  • Step A9 Completely remove the photosensitive adhesive layer 05 once, Figure 7d4;
  • Step A10 Remove the exposed ITO layer by micro-etching technology, Figure 7d5.
  • the material of COG glass 221 is soda lime glass, and polyimide, phenolic resin, glass fiber/epoxy resin, BT resin, epoxy resin, borosilicate glass, quartz glass, sapphire, ceramics can also be used. , Silicon wafer, or a combination of conductor, semiconductor substrate and insulating layer;
  • the ITO layer on the COG glass 221 is made of copper, chromium, nickel, gold, silver, Mo, Al/Mo or semiconductor conductive materials; or, the ITO layer on the COG glass 221 is based on the ITO layer, with additional copper and chromium layers , Nickel layer, gold layer, silver layer, Mo layer, Al/Mo layer or semiconductor conductive material layer instead.
  • step C the first FPC cable 211 and the second FPC cable 212 are located on the same roll of flexible circuit board, and step C is completed in the form of roll-to-roll processing.
  • the respective numbers of chip input terminal pads 2215, chip output terminal pads 2216, lead input terminal pads 2213, and lead output terminal pads 2214 are more than two;
  • the typical distance between adjacent chip input terminal pads 2215 is 3 ⁇ 50 ⁇ m;
  • the typical distance between adjacent chip output terminal pads 2216 is 3 ⁇ 50 ⁇ m;
  • the typical distance between adjacent lead input terminal pads 2213 is 15 ⁇ 1000 ⁇ m;
  • the typical distance between adjacent lead output terminal pads 2214 is 15-500 ⁇ m.
  • COF is partially changed to a hard substrate-COG glass, and the bottleneck of the existing COF solution can be overcome by mixing hard substrates (COG glass) and flexible substrates (FPC sub-modules). Realize micron-level precision circuits with lower cost and higher yield.
  • the process and raw materials are very mature, easy to mass manufacture and promote, and have industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种COF驱动模块、包括该COF驱动模块的COF液晶显示模组、OLED显示模组、电子墨水显示模组和上述二者的制造方法。COF驱动模块包括FPC子模块(21)和COG驱动子模块(22),FPC子模块(21)包括第一FPC排线(211)和第二FPC排线(212);COG驱动子模块(22)包括置于FPC子模块(21)上的COG玻璃(221)和置于COG玻璃(221)上的驱动芯片(222), COG玻璃(221)设置有微米级的焊盘和导电引线;COG玻璃(221)分别与第一FPC排线(211)和第二FPC排线(212)连接;驱动芯片(222)的输入端通过COG玻璃(221)及第二FPC排线(212)连接至外部控制模块;驱动芯片(222)的输出端通过COG玻璃(221)及第一FPC排线(211)连接至外部的显示面板;通过硬质基材(COG玻璃)和柔性基材(FPC子模块)混搭的方式,可以克服现有COF方案的瓶颈,以很高的良率和较低的成本在COF中实现微米级的细密线路。

Description

COF驱动模块、COF显示模组及前两者的制造方法 技术领域
本发明涉及显示技术领域,尤其涉及一种COF驱动模块、COF液晶显示模组、COF OLED显示模组、COF电子墨水显示模组、COF液晶显示模组的制造方法、OLED显示模组的制造方法和电子墨水显示模组的制造方法。
背景技术
在液晶显示模组、OLED显示模组或电子墨水显示模组等相关显示模组技术领域,现有主流的解决方案是COG(COG是Chip On Glass的缩写,即芯片被直接邦定在玻璃上)技术,参照图1所示,采用COG解决方案需要在面板1a的边沿留出一个比较宽大的台阶2a用于放置驱动芯片3a和3a的外部连接线路。而相同尺寸的面板采用COF(Chip On Flex,or,Chip On Film,常称覆晶薄膜,是将集成电路固定在柔性线路板上的晶粒软膜构装技术,运用软质附加电路板作为封装芯片载体,将芯片与软性基板电路结合)技术的话,由于没有芯片占据显示面板的一部分区域,就能提高显示区的面积占比。在面板外形尺寸保持不变的情况下,可以比采用COG技术的显示模组做到更高的分辨率。
技术问题
目前,现有的COF解决方案因FPC的线路精度不足而受到较大的限制。常规FPC的线路线宽/线距一般不小于50/50μm,全球范围内精度最高的线路能达到20/20μm,且成本极高。这与COG解决方案的常规尺寸(10μm左右)差距甚大,导致COF解决方案在芯片选型方面受限极大,也增加了整体解决方案的成本。因此,如何用较低的成本提高FPC的线路精度,成为COF技术发展亟需解决的问题。
技术解决方案
提供一种COF驱动模块,包括FPC子模块和COG驱动子模块,FPC子模块包括第一FPC排线和第二FPC排线;COG驱动子模块包括置于FPC子模块上的COG玻璃和置于COG玻璃上的驱动芯片,COG玻璃设置有微米级的焊盘和导电引线;COG玻璃分别与第一FPC排线和第二FPC排线连接;驱动芯片的输入端通过COG玻璃及第二FPC排线连接至外部控制模块;驱动芯片的输出端通过COG玻璃及第一FPC排线连接至外部的显示面板。
通过上述技术方案,将COF的局部改用COG玻璃-硬质基材;通过硬质基材(COG玻璃)和柔性基材(FPC子模块)混搭的方式,可以克服现有COF方案的瓶颈,以很高的良率和较低的成本在COF中实现微米级的细密线路。
在COG玻璃等硬质基材上可以加工出微米级的细密线路,这样就能够采用常规的、低成本的小尺寸驱动IC,而不必选用COF专用的、高成本的IC。然后再通过扇入扇出的方式与柔性基材线路相连,柔性基材上可以使用25μm间距的线路,也可以使用50μm或更大间距的线路,这将显著降低对柔性基材和柔性线路精度的要求;两者相结合,能极大地降低COF产品的工艺难度和综合成本。
优选的,COG玻璃是小块的,集成在一块大的柔性电路板上,或连接在两块小的柔性电路之间,或在两块相互连接的柔性电路板的一块上面。小块COG玻璃是本专利保护对象的构成元素,其线路和焊盘的宽度尺寸在微米级,在此将其命名为RU,Rigid circuit board of μm grade即具备μm级别线路宽度的硬板-微米硬板。优势在于:①提高传统硬板制造过程的集成化,减少占地面积,减少资源消耗,提高良率,提高产出,从而降低产品成本;②产品本身相对传统硬板,集成度更高,体积更小,适合更小的安装空间,可与管脚细密的IC或密集线路的器件(如,LCD屏幕)直接对接;③产品本身无铅化,生产过程对环境的危害,以及污水废气处理投入资金远远小于传统PCB行业,可以减少对人类社会的危害、减少资源消耗。由于其从生产过程到产品自身的环保优势会加速产品替代的进程,是一个符合人类社会未来发展要求的产品。
优选的,COG玻璃上设置有芯片输入端焊盘、芯片输出端焊盘、引线输入端焊盘和引线输出端焊盘;
引线输入端焊盘和引线输出端焊盘位于COG玻璃的上表面的周侧;芯片输入端焊盘和芯片输出端焊盘位于COG玻璃的上表面的非边缘位置;
驱动芯片的输入端焊盘通过邦定工艺连接至芯片输入端焊盘,驱动芯片的输出端焊盘通过邦定工艺连接至芯片输出端焊盘;
引线输入端焊盘通过位于COG玻璃上的扇入引线连接至芯片输入端焊盘,芯片输出端焊盘通过位于COG玻璃上的扇出引线连接至引线输出端焊盘;
引线输入端焊盘焊接第二FPC排线的输出端引线;引线输出端焊盘焊接第一FPC排线的输入端引线。
优选的,FPC子模块和COG驱动子模块对接的引线,为两边出线、三边出线或四边出线的方式。
优选的,芯片输入端焊盘、芯片输出端焊盘、引线输入端焊盘和引线输出端焊盘各自的数量都在2个以上;
相邻的芯片输入端焊盘之间的典型距离为3~50μm;
相邻的芯片输出端焊盘之间的典型距离为3~50 μm;
相邻的引线输入端焊盘之间的典型距离为15~1000μm;
相邻的引线输出端焊盘之间的典型距离为15~500μm。
优选的,COG玻璃与FPC子模块的连接方式为四边包围的全包围式结构、三边包围的半封闭式结构、两边包围的半包围式结构或多段FPC与COG混搭的开放式结构。
全包围时,FPC是一个整体,中间被掏空了(也可以不掏空);半包围时,FPC有一边开了口;开放式结构,FPC就被分成几段了。
优选的,第一FPC排线和第二FPC排线设置有直连导电线路,直连导电线路设置为电源线、地线或其它无需经过驱动芯片的线路。
优选的,第一FPC排线和/或第二FPC排线的宽度方向的基材设置有半切、开槽或镂空,这样热胀冷缩时变形就不会积累过大,可以避免产生较大的应力,提高第一FPC排线和/或第二FPC排线与COG玻璃及显示面板结合的可靠性。
优选的,COG玻璃的材质可以被聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、钠钙玻璃、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片所替换,或,COG玻璃的材质可以被导体、半导体基材加绝缘层的组合所替换。
COG玻璃上的焊盘和导电线路材质可以被铜、铬、镍、金、银、ITO(ITO是一种N型氧化物半导体-氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜)、Mo、Al/Mo或其它各种半导体导电材料等可以实现高光刻精度的导电膜材料所替换;或,COG玻璃上的焊盘和导电线路材质为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层。
申请人在此补充说明的内容,传统COG工艺加工细密线路的问题:
在LCD和TP行业,以玻璃等硬质基板为载体,可以将基材上的导电薄膜(比如ITO、MO、AL/MO等)加工成微米级的精密线路。为了能够加工出微米级的细密线路,硬质基材上的镀膜厚度通常介于10~300nm。膜层越厚,加工过程中越容易出现侧蚀。从这个角度来说,膜层的厚度越小,越容易保证细密线路的良率。不过从另外一个角度来看,膜层的厚度越薄其供电能力越弱。以传统COG技术为例,典型的ITO镀膜厚度为30~100nm,这种膜层的电阻偏大,直径10μm粗细的线路难以驱动六寸以上的LCD屏幕。LCD和TP行业的产品功耗都很小,对线路的负载能力要求不高。基于传统COG工艺加工出来的微米级线路,其供电能力难以满足COF等应用场景的要求。为了提高供电能力,需要对传统COG工艺进行修改,在ITO膜层之上增加金属膜,或直接用镀金属膜的玻璃来做细密线路。
一种COF显示模组,包括显示面板,包括上面介绍的COF驱动模块,显示面板的输入端连接第一FPC排线的输出端。
优选的,显示面板为液晶显示面板、OLED显示面板或电子墨水显示面板
一种COF驱动模块的制造方法,包括:
步骤A.在小块COG玻璃上制作微米级的芯片焊盘、引线焊盘和导电引线,导电引线分为入输入引线和输出引线,芯片焊盘分为芯片输入端焊盘和芯片输出端焊盘,引线焊盘分为引线输入端焊盘和引线输出端焊盘;输入引线以扇入的形式连接引线输入端焊盘和芯片输入端焊盘,输出引线以扇出的形式连接芯片输出端焊盘和引线输出端焊盘;
步骤B.将驱动芯片邦定在COG玻璃上,驱动芯片上的焊盘和COG玻璃上的芯片输入端焊盘和芯片输出端焊盘对应连接;
步骤C. 将第一FPC排线和第二FPC排线一端接口分别与引线焊盘对应连接;
第二FPC排线的另一端接口用于连接外部控制模块;第一FPC排线的另一端接口用于连接显示面板,并向显示面板发送显示信号。
优选的,步骤A中:在COG玻璃上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线;
然后,通过沉铜、沉金、镀铜或镀金的方式在ITO芯片焊盘、ITO引线焊盘和ITO导电引线上增加一层铜、金或其它类型的金属材料。
优化线路的材质并把镀层增厚,在保证线路精度的前提下,可以极大地提高细密线路的导电性能。
优选的,步骤A中:在COG玻璃上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线的ITO层的厚度为10~1000 nm。
优选的,步骤A包括:
步骤A1:在ITO玻璃(ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用溅射、蒸发等多种方法镀上一层氧化铟锡膜加工制作成的)上涂布一次感光胶,ITO玻璃包括ITO层和玻璃层;
步骤A2:一次曝光显影,去除芯片焊盘、引线焊盘和导电引线上部之外的感光胶层;
步骤A3:蚀刻芯片焊盘、引线焊盘和导电引线上部之外ITO层;脱模,去除芯片焊盘、引线焊盘和导电引线上部的感光胶层;
步骤A4:涂布二次感光胶,曝光、显影,去除芯片焊盘、引线焊盘和导电引线上部二次感光胶;
步骤A5:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层;去除二次感光胶;
本专利给出的新的技术方案,概述如下:以玻璃等硬板基板为载体,并在载体上实现高精密导电线路的材料(比如ITO、CR、MO、AL/MO等)的布线;先实现精密线路;然后,再通过掩膜后镀膜或直接镀膜等方式,在原来的线路基础上用导电性更强的材料进行加厚,从而在保证线路精度的前提下,大大提高了线路的导电性能。比如以ITO线路表面镀铜为例进行说明,但涉及方法和材料不局限于此。
ITO线路的制作:目前在LCD行业制作10/10μm精度的线路属于常规技术,难度较低、成本不高。具体流程包括:ITO玻璃来料经过清洗->涂胶->显影->蚀刻->脱模等工艺后,ITO薄膜可以被加工成微米级的精密线路。
不过,ITO材料的电阻比纯金属要大2~3个数量级,ITO线路的供电能力难以满足COF等应用场景的要求;本专利中,在ITO细密线路上镀一层金属膜,来提高细密线路的负载能能力。
方式一,如步骤A1~A5所述,在做成ITO线路之后,在表面做二次感光胶掩膜,把非线路区保护起来,在ITO线路上进行化学沉铜;二次感光胶掩膜与一次感光胶掩膜类似,不过用的是负图光刻铬版进行对位套刻曝光。
为了避免线路在镀膜后变形,铬版的设计和一次、二次光刻工艺要确保到二次感光胶掩膜图形略小于首次做成的ITO图形,幅度约为每边缘错开0.5~1.0μm(这个间隙用于包裹ITO图形,达到用铜层完全密闭ITO线路的效果),这个过程需要采用套刻曝光机来完成,对于面积较大导致套刻精度无法达成时,可以采用STEPPER套刻曝光机(步进套刻曝光机)来完成,工序完成到显影后烘烤之后,在ITO线路间隙内形成了一层感光胶线路,ITO线路台阶高度一般在10~300纳米,光刻胶线路台阶高度在1400~2000纳米,高度落差在1100~1700纳米,在这个高度差内,可以镀铜,铜厚不得超过1700纳米,否则容易出现脱膜问题。化学镀铜,以用镀铜水为例子进行介绍,但镀铜方案和材料不仅限于此。镀铜水内铜离子只会沉积在ITO线路上,但不会与感光胶结合,所以经过一段时间的浸泡,ITO表面沉积了一定厚度的铜层,而其之间的感光胶线路则保持原样。当铜层厚度达到要求时,将ITO玻璃从镀铜水中取出,并清洁干净,最后进行脱膜,就可以获得高精密的铜质线路。
新方法的优势:a)涉及的技术都属于成熟技术,在中国已经普及,材料供应和成本都适合做大规模生产。b)相较于传统PCB工艺来说,可加工出微米级的精密线路,轻易突破现有PCB/FPC行业的加工极限。c)相较于传统COG工艺来说,克服了ITO线路电阻偏大的缺陷,大幅提高了细密线路的供电能力。
实施例二
步骤A包括:
步骤A6:在ITO玻璃上涂布感光胶,ITO玻璃包括ITO层和玻璃层;
步骤A7:曝光显影,去除芯片焊盘、引线焊盘和导电引线上部的感光胶;
步骤A8:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层;
步骤A9:彻底去除感光胶;
步骤A10:通过微蚀刻技术去除裸露的ITO层,即去掉芯片焊盘、引线焊盘和导电引线之外的ITO。
步骤A6~A10概述为:先用负图光刻铬板进行曝光、显影,将预期的线路暴露出来,其它区域用感光胶覆盖住;然后将此半成品进行镀膜,比如化学沉铜,在线路上镀一层纯金属膜;然后进行清洗、脱膜,再用弱酸微蚀刻,去掉非线路区。最后进行清洗烘干得到高精密的铜质线路。
优选的,COG玻璃的材质为钠钙玻璃,也可以用聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片,或导体、半导体基材加绝缘层的组合所替换;
COG玻璃上的ITO层为铜、铬、镍、金、银、Mo、Al/Mo或半导体导电材料;或,COG玻璃上的ITO层为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层所替代。
优选的,步骤C中,第一FPC排线和第二FPC排线位于同一卷柔性电路板上,步骤C以卷对卷的加工形式完成。
优选的,芯片输入端焊盘、芯片输出端焊盘、引线输入端焊盘和引线输出端焊盘各自的数量都在2个以上;
相邻的芯片输入端焊盘之间的典型距离为3~50 μm;
相邻的芯片输出端焊盘之间的典型距离为3~50 μm;
相邻的引线输入端焊盘之间的典型距离为15~1000μm;
相邻的引线输出端焊盘之间的典型距离为15~500μm。
本发明还提供了一种COF显示模组的制造方法,包括上述COF驱动模块的制造方法,使用上述方法制造的COF驱动模块组装显示面板。
有益效果
本发明具有如下有益效果:实现了COF的局部改用COG玻璃-硬质基材;通过硬质基材(COG玻璃)和柔性基材(FPC子模块)混搭的方式,可以用较低的成本克服现有COF方案的瓶颈。在COG玻璃等硬质基材上可以加工出微米级的细密线路,这样就能够采用常规的、低成本的小尺寸驱动IC,而不必选用COF专用的、高成本的IC。然后再通过扇入扇出的方式与柔性基材线路相连,柔性基材上可以使用25μm间距的线路,也可以使用50μm或更大间距的线路,这将显著降低对柔性基材和柔性线路精度的要求;两者相结合,能极大地降低COF产品的工艺难度和综合成本。新方法的优势:a)涉及的技术都属于成熟技术,在中国已经普及,材料供应和成本都适合做大规模生产。b)相较于传统PCB工艺来说,可加工出微米级的精密线路,轻易突破现有PCB/FPC行业的加工极限。c)相较于传统COG工艺来说,克服了ITO线路电阻偏大的缺陷,大幅提高了细密线路的供电能力。
附图说明
图1为现有技术COG解决方案的结构示意图。
图2为本发明一种COF驱动模块的一个实施例的结构示意图。
图3为本发明一种COF驱动模块的实施例的COG玻璃的模块结构示意图。
图4为本发明一种COF显示模组的一个实施例的结构示意图。
图5为本发明一种COF显示模组的另一个实施例的结构示意图。
图6为本发明一种COF驱动模块的COG玻璃模块的一个实施例的加工过程的结构示意图。
图7为本发明一种COF驱动模块的COG玻璃模块的另一个实施例的加工过程的结构示意图。
图8为本发明一种COF显示模组的一个实施例的组装过程的示意图,单片。
图9为本发明一种COF显示模组的另一个实施例的组装过程的示意图,单片。
图10为本发明一种COF显示模组的卷料的组装过程的示意图。
图中:
1-显示面板;21-FPC子模块;211-第一FPC排线;2111-镂空结构;212-第二FPC排线;22-COG驱动子模块;221-COG玻璃;2211-第一引线;2212-第二引线;2213-引线输入端焊盘;2214-引线输出端焊盘;2215-芯片输入端焊盘;2216-芯片输出端焊盘;222-驱动芯片;00-焊盘; 01-导电线路; 05-一次感光胶;06-二次感光胶;08-ITO玻璃;081-ITO层;082-玻璃层;083-导电层。
本发明的最佳实施方式
如图2~3所示:
一种COF驱动模块,包括FPC子模块21和COG驱动子模块22,FPC子模块21包括第一FPC排线211和第二FPC排线212;
COG驱动子模块22包括置于FPC子模块21上的COG玻璃221和置于COG玻璃221上的驱动芯片222,COG玻璃221设置有微米级的焊盘和导电引线;
COG玻璃221分别与第一FPC排线211和第二FPC排线212连接;
驱动芯片222的输入端通过COG玻璃221及第二FPC排线212连接至外部控制模块;
驱动芯片222的输出端通过COG玻璃221及第一FPC排线211连接至外部的显示面板。COF的局部改用硬质基材。通过硬质基材和柔性基材混搭的方式,可以克服现有COF方案的瓶颈。
本实施例中,COG玻璃221上设置有芯片输入端焊盘2215、芯片输出端焊盘2216、引线输入端焊盘2213和引线输出端焊盘2214;COG玻璃221设置有第一引线2211和第二引线2212,第一引线2211以扇出的方式连接芯片输出端焊盘2216和引线输出端焊盘2214,第二引线2212以扇入的方式引线输入端焊盘2213和芯片输入端焊盘2215。
本实施例中,COG玻璃221与FPC子模块21的连接方式为三边邦定的包围式结构。
如图2~4所示,本发明还提供了一种COF显示模组,包括上述COF驱动模块,还包括显示面板1,显示面板1与引线输出端焊盘2214连接,通过COF驱动模块提供驱动信号。
本发明的实施方式
下面结合附图1~10对本发明作进一步的说明。
本发明提供了一种COF驱动模块。
一种COF驱动模块,包括FPC子模块21和COG驱动子模块22,FPC子模块21包括第一FPC排线211和第二FPC排线212;
COG驱动子模块22包括置于FPC子模块21上的COG玻璃221和置于COG玻璃221上的驱动芯片222,COG玻璃221设置有微米级的焊盘和导电引线;
COG玻璃221分别与第一FPC排线211和第二FPC排线212连接;
驱动芯片222的输入端通过COG玻璃221及第二FPC排线212连接至外部控制模块;
驱动芯片222的输出端通过COG玻璃221及第一FPC排线211连接至外部的显示面板。COF的局部改用硬质基材,通过硬质基材和柔性基材混搭的方式,可以克服现有COF方案的瓶颈。
在硬质基材上可以加工出微米级的细密线路,这样就能够采用常规的、低成本的小尺寸IC,而不必选用COF专用的、高成本的IC。然后再通过扇入扇出的方式与柔性基材线路相连,柔性基材上可以使用25μm间距的线路,也可以使用50μm或更大间距的线路,这将显著降低对柔性基材和柔性线路精度的要求。两者相结合,能极大地降低了COF产品的工艺难度和综合成本。
本实施例中,COG玻璃221上设置有芯片输入端焊盘2215、芯片输出端焊盘2216、引线输入端焊盘2213和引线输出端焊盘2214;COG玻璃221设置有第一引线2211和第二引线2212,第一引线2211以扇出的方式连接芯片输出端焊盘2216和引线输出端焊盘2214,第二引线2212以扇入的方式引线输入端焊盘2213和芯片输入端焊盘2215。
引线输入端焊盘2213和引线输出端焊盘2214位于COG玻璃221的上表面的周侧;芯片输入端焊盘2215和芯片输出端焊盘2216位于COG玻璃221的上表面的非边缘位置;
驱动芯片222的输入端焊盘通过邦定工艺连接至芯片输入端焊盘2215,驱动芯片222的输出端焊盘通过邦定工艺连接至芯片输出端焊盘2216;
引线输入端焊盘2213通过位于COG玻璃221上的扇入引线连接至芯片输入端焊盘2215,芯片输出端焊盘2216通过位于COG玻璃221上的扇出引线连接至引线输出端焊盘2214;
引线输入端焊盘2213焊接第二FPC排线212的输出端引线;引线输出端焊盘2214焊接第一FPC排线211的输入端引线。
本实施例中,芯片输入端焊盘2215、芯片输出端焊盘2216、引线输入端焊盘2213和引线输出端焊盘2214各自的数量都在2个以上;相邻的芯片输入端焊盘2215之间的距离为15μm;相邻的芯片输出端焊盘2216之间的距离为15 μm;相邻的引线输入端焊盘2213之间的距离为150μm;相邻的引线输出端焊盘2214之间的距离为150μm。
作为优选的替代方案,或根据实际需要,采用本发明提出的工艺,相邻的芯片输入端焊盘2215之间的距离也可以为5μm、8μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、48μm或50μm;相邻的芯片输出端焊盘2216之间的距离也可以为5μm、8μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、48μm或50μm;相邻的引线输入端焊盘2213之间的距离也可以为20μm、30μm、50μm、75μm、100μm、125μm、150μm、200μm、250μm、300μm、400μm或500μm;相邻的引线输出端焊盘2214之间的距离也可以为20μm、30μm、50μm、75μm、100μm、125μm、150μm、200μm、250μm、300μm、400μm或500μm。
本实施例中,COG玻璃221与FPC子模块21的连接方式为四边邦定的全包围式结构。
本实施例中,第一FPC排线211和第二FPC排线212设置有直连导电线路,直连导电线路设置为电源线、地线或其它无需经过驱动芯片的线路。
本实施例中,COG玻璃221的材质为钠钙玻璃,也可以用聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片,或导体、半导体基材加绝缘层的组合所替换;
COG玻璃221上的焊盘和导电线路材质为铜、铬、镍、金、银、ITO、Mo、Al/Mo或半导体导电材料;或,COG玻璃221上的焊盘和导电线路材质为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层。
如图4~10所示。
实施例一,如图4所示。
一种COF显示模组,包括显示面板1和上述COF驱动模块,显示面板1的输入端连接第一FPC排线211的输出端。
实施例二,如图5所示。
实施例三,如图8~9所示。
实施例四,如图10所示。
第一FPC排线211和/或第二FPC排线212的宽度方向的基材设置有半切、开槽或镂空结构2111,这样热胀冷缩时变形就不会积累过大,可以避免产生较大的应力,提高第一FPC排线211和/或第二FPC排线212与COG玻璃221及显示面板结合的可靠性。
一种COF驱动模块的制造方法,包括:
步骤A.在小块COG玻璃221上制作微米级的芯片焊盘、引线焊盘和导电引线,导电引线分为入输入引线和输出引线,芯片焊盘分为芯片输入端焊盘2215和芯片输出端焊盘2216,引线焊盘分为引线输入端焊盘2213和引线输出端焊盘2214;输入引线以扇入的形式连接引线输入端焊盘2213和芯片输入端焊盘2215,输出引线以扇出的形式连接芯片输出端焊盘2216和引线输出端焊盘2214;
步骤B.将驱动芯片222邦定在COG玻璃221上,驱动芯片222上的焊盘和COG玻璃221上的芯片输入端焊盘2215和芯片输出端焊盘2216对应连接;
步骤C. 将第一FPC排线211和第二FPC排线212一端接口分别与引线焊盘对应连接;
第二FPC排线212的另一端接口用于连接外部控制模块;第一FPC排线211的另一端接口用于连接显示面板,并向显示面板发送显示信号。
本实施例中,步骤A中:在COG玻璃221上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线;
然后,通过沉铜、沉金、镀铜或镀金的方式在ITO芯片焊盘、ITO引线焊盘和ITO导电引线上增加一层铜、金或其它类型的金属材料。
优化线路的材质并把镀层增厚,在保证线路精度的前提下,可以极大地提高细密线路的导电性能。
本实施例中,步骤A中:在COG玻璃221上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线的ITO层的厚度为10~1000nm。
如图6所示。
本实施例中,步骤A包括:
步骤A1:在ITO玻璃08上涂布一次感光胶05,图6c2,ITO玻璃08包括ITO层081和玻璃层082,图6c1;
步骤A2:一次曝光显影,去除芯片焊盘、引线焊盘和导电引线上部之外的感光胶层,图6c3;
步骤A3:蚀刻芯片焊盘、引线焊盘和导电引线上部之外ITO层,图6c4;脱模,去除芯片焊盘、引线焊盘和导电引线上部的感光胶层;
步骤A4:涂布二次感光胶06,曝光、显影,去除芯片焊盘、引线焊盘和导电引线上部二次感光胶06,图6c5;
步骤A5:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层083,图6c5;去除二次感光胶,图6c6。
如图7所示,步骤A1~A5被步骤A6~A10替换,导电层083的铜厚可以达到2μm:
步骤A6:在ITO玻璃08上涂布一次感光胶05,图7d1,ITO玻璃08包括ITO层081和玻璃层082;
步骤A7:一次曝光显影,去除芯片焊盘、引线焊盘和导电引线上部的一次感光胶05,图7d2;
步骤A8:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层083,导电层083的厚度是ITO层的厚度的5倍以上,7d3;
步骤A9:彻底去除一次感光胶层05,图7d4;
步骤A10:通过微蚀刻技术去除裸露的ITO层,图7d5。
本实施例中,COG玻璃221的材质为钠钙玻璃,也可以用聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片,或导体、半导体基材加绝缘层的组合所替换;
COG玻璃221上的ITO层为铜、铬、镍、金、银、Mo、Al/Mo或半导体导电材料;或,COG玻璃221上的ITO层为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层所替代。
本实施例中,步骤C中,第一FPC排线211和第二FPC排线212位于同一卷柔性电路板上,步骤C以卷对卷的加工形式完成。
本实施例中,芯片输入端焊盘2215、芯片输出端焊盘2216、引线输入端焊盘2213和引线输出端焊盘2214各自的数量都在2个以上;
相邻的芯片输入端焊盘2215之间的典型距离为3~50 μm;
相邻的芯片输出端焊盘2216之间的典型距离为3~50 μm;
相邻的引线输入端焊盘2213之间的典型距离为15~1000μm;
相邻的引线输出端焊盘2214之间的典型距离为15~500μm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。
工业实用性
通过本技术方案,将COF的局部改用硬质基材-COG玻璃,通过硬质基材(COG玻璃)和柔性基材(FPC子模块)混搭的方式,可以克服现有COF方案的瓶颈,以较低的成本和较高的良率实现微米级的精密线路。从工艺到原材料都非常成熟,易于批量制造和推广,具备工业实用性。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (15)

  1. 一种COF驱动模块,其特征在于,包括FPC子模块(21)和COG驱动子模块(22),所述FPC子模块(21)包括第一FPC排线(211)和第二FPC排线(212);
    所述COG驱动子模块(22)包括置于FPC子模块(21)上的COG玻璃(221)和置于COG玻璃(221)上的驱动芯片(222),所述COG玻璃(221)设置有微米级的焊盘和导电引线;
    所述COG玻璃(221)分别与所述第一FPC排线(211)和第二FPC排线(212)连接;
    所述驱动芯片(222)的输入端通过所述COG玻璃(221)及第二FPC排线(212)连接至外部控制模块;
    所述驱动芯片(222)的输出端通过所述COG玻璃(221)及第一FPC排线(211)连接至外部的液晶显示面板、OLED显示面板或电子墨水显示面板。
  2. 如权利要求1所述COF驱动模块,其特征在于,所述COG玻璃(221)上设置有芯片输入端焊盘(2215)、芯片输出端焊盘(2216)、引线输入端焊盘(2213)和引线输出端焊盘(2214);
    所述引线输入端焊盘(2213)和引线输出端焊盘(2214)位于所述COG玻璃(221)的上表面的周侧;所述芯片输入端焊盘(2215)和芯片输出端焊盘(2216)位于所述COG玻璃(221)的上表面的非边缘位置;
    FPC子模块(21)和COG驱动子模块(22)对接的引线,为两边出线、三边出线或四边出线的方式;
    所述驱动芯片(222)的输入端焊盘通过邦定工艺连接至所述芯片输入端焊盘(2215),所述驱动芯片(222)的输出端焊盘通过邦定工艺连接至所述芯片输出端焊盘(2216);
    所述引线输入端焊盘(2213)通过位于所述COG玻璃(221)上的扇入引线连接至所述芯片输入端焊盘(2215),所述芯片输出端焊盘(2216)通过位于所述COG玻璃(221)上的扇出引线连接至所述引线输出端焊盘(2214);
    所述引线输入端焊盘(2213)焊接所述第二FPC排线(212)的输出端引线;所述引线输出端焊盘(2214)焊接所述第一FPC排线(211)的输入端引线。
  3. 如权利要求2所述COF驱动模块,其特征在于,所述芯片输入端焊盘(2215)、芯片输出端焊盘(2216)、引线输入端焊盘(2213)和引线输出端焊盘(2214)各自的数量都在2个以上;
    相邻的所述芯片输入端焊盘(2215)之间的距离为3~50 μm;
    相邻的所述芯片输出端焊盘(2216)之间的距离为3~50 μm;
    相邻的所述引线输入端焊盘(2213)之间的距离为15~1000μm;
    相邻的所述引线输出端焊盘(2214)之间的距离为15~500μm。
  4. 如权利要求1所述COF驱动模块,其特征在于,所述FPC子模块(21)与所述COG玻璃(221)的连接方式为四边包围的全封闭式结构、三边包围的半封闭式结构或多段FPC与COG混搭的开放式结构。
  5. 如权利要求1所述COF驱动模块,其特征在于,所述第一FPC排线(211)和第二FPC排线(212)设置有直连导电线路,所述直连导电线路设置为电源线、地线或其它无需经过驱动芯片的线路。
  6. 如权利要求1所述COF驱动模块,其特征在于,所述第一FPC排线(211)和/或所述第二FPC排线(212)的宽度方向的基材设置有半切、开槽或镂空结构(2111);这些结构可以吸收热胀冷缩时的变形,避免应力累积过大。
  7. 如权利要求1所述COF驱动模块,其特征在于,所述COG玻璃(221)的材质为钠钙玻璃,也可以用聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片所替换,或,COG玻璃(221)的材质为导体、半导体基材加绝缘层的组合;
    所述COG玻璃(221)上的焊盘和导电线路材质为铜、铬、镍、金、银、ITO、Mo、Al/Mo或半导体导电材料;或,COG玻璃(221)上的焊盘和导电线路材质为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层。
  8. 一种COF显示模组,包括显示面板(1),其特征在于,还包括权利要求1~7任一项所述COF驱动模块,所述显示面板(1)的输入端连接所述第一FPC排线(211)的输出端;
    显示面板(1)为液晶显示面板、OLED显示面板或电子墨水显示面板。
  9. 一种COF驱动模块的制造方法,其特征在于,包括:
    步骤A.在小块COG玻璃(221)上制作微米级的芯片焊盘、引线焊盘和导电引线,所述导电引线分为入输入引线和输出引线,芯片焊盘分为芯片输入端焊盘(2215)和芯片输出端焊盘(2216),引线焊盘分为引线输入端焊盘(2213)和引线输出端焊盘(2214);所述输入引线以扇入的形式连接所述引线输入端焊盘(2213)和芯片输入端焊盘(2215),所述输出引线以扇出的形式连接所述芯片输出端焊盘(2216)和引线输出端焊盘(2214);
    步骤B.将驱动芯片(222)邦定在所述COG玻璃(221)上,所述驱动芯片(222)上的焊盘和所述COG玻璃(221)上的芯片输入端焊盘(2215)和芯片输出端焊盘(2216)对应连接;
    步骤C. 将第一FPC排线(211)和第二FPC排线(212)一端接口分别与所述引线输出端焊盘(2214)和引线输入端焊盘(2213)对应连接;
    所述第二FPC排线(212)的另一端接口用于连接外部控制模块;所述第一FPC排线(211)的另一端接口用于连接显示面板,并向显示面板发送显示信号。
  10. 如权利要求9所述COF驱动模块的制造方法,其特征在于,所述步骤A中:在COG玻璃(221)上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线;
    然后,通过沉铜、沉金、镀铜或镀金等镀膜方式在ITO芯片焊盘、ITO引线焊盘和ITO导电引线上增加一层铜、金或其它类型的金属材料。
  11. 如权利要求9所述COF驱动模块的制造方法,其特征在于,所述步骤A中:在COG玻璃(221)上制作微米级的ITO芯片焊盘、ITO引线焊盘和ITO导电引线的ITO层的厚度为15~1000nm。
  12. 如权利要求9所述COF驱动模块的制造方法,其特征在于,所述步骤A包括:
    步骤A1:在ITO玻璃(08)上涂布一次感光胶(05),ITO玻璃(08)主要包括ITO层(081)和玻璃层(082);
    步骤A2:一次曝光显影,去除芯片焊盘、引线焊盘和导电引线上部之外的感光胶层;
    步骤A3:蚀刻芯片焊盘、引线焊盘和导电引线上部之外ITO层;脱模,去除芯片焊盘、引线焊盘和导电引线上部的感光胶层;
    步骤A4:涂布二次感光胶(06),曝光、显影,去除芯片焊盘、引线焊盘和导电引线上部二次感光胶(06);
    步骤A5:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层(083);去除二次感光胶;
    或,所述步骤A包括:
    步骤A6:在ITO玻璃(08)上涂布感光胶,ITO玻璃(08)主要包括ITO层(081)和玻璃层(082);
    步骤A7:一次曝光显影,去除芯片焊盘、引线焊盘和导电引线上部的感光胶层;
    步骤A8:在芯片焊盘、引线焊盘和导电引线的ITO层上部添加导电层(083);
    步骤A9:彻底去除感光胶层;
    步骤A10:通过微蚀刻技术去除裸露的ITO层,即去掉芯片焊盘、引线焊盘和导电引线之外的ITO。
  13. 如权利要求12所述COF驱动模块的制造方法,其特征在于,所述COG玻璃(221)的材质为钠钙玻璃,也可以用聚酰亚胺、酚醛树脂、玻璃纤维/环氧树脂、BT树脂、环氧树脂、硼硅玻璃、石英玻璃、蓝宝石、陶瓷、硅片,或,所述COG玻璃(221)的材质为导体、半导体基材加绝缘层的组合;
    所述COG玻璃(221)上的ITO层为铜、铬、镍、金、银、Mo、Al/Mo或半导体导电材料;或,COG玻璃(221)上的ITO层为以ITO层为基底,附加铜层、铬层、镍层、金层、银层、Mo层、Al/Mo层或半导体导电材料层所替代。
  14. 如权利要求9所述COF驱动模块的制造方法,其特征在于,所述步骤C中,第一FPC排线(211)和第二FPC排线(212)位于同一卷柔性电路板上,所述步骤C以卷对卷的加工形式完成。
  15. 如权利要求9所述COF驱动模块的制造方法,其特征在于,所述芯片输入端焊盘(2215)、芯片输出端焊盘(2216)、引线输入端焊盘(2213)和引线输出端焊盘(2214)各自的数量都在2个以上;
    相邻的所述芯片输入端焊盘(2215)之间的距离为3~50μm;
    相邻的所述芯片输出端焊盘(2216)之间的距离为3~50 μm;
    相邻的所述引线输入端焊盘(2213)之间的距离为15~1000μm;
    相邻的所述引线输出端焊盘(2214)之间的距离为15~500μm。
PCT/CN2021/074790 2020-06-22 2021-02-02 Cof 驱动模块、 cof 显示模组及前两者的制造方法 WO2021258736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021166848.9 2020-06-22
CN202021166848.9U CN212112052U (zh) 2020-06-22 2020-06-22 一种cof液晶显示模组

Publications (1)

Publication Number Publication Date
WO2021258736A1 true WO2021258736A1 (zh) 2021-12-30

Family

ID=73614687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074790 WO2021258736A1 (zh) 2020-06-22 2021-02-02 Cof 驱动模块、 cof 显示模组及前两者的制造方法

Country Status (2)

Country Link
CN (1) CN212112052U (zh)
WO (1) WO2021258736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212112052U (zh) * 2020-06-22 2020-12-08 深圳市全洲自动化设备有限公司 一种cof液晶显示模组

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963287A (en) * 1997-08-11 1999-10-05 Nec Corporation Display unit with flexible printed circuit board
WO2003107085A1 (ja) * 2002-06-13 2003-12-24 ナノックス株式会社 液晶表示装置
CN1690780A (zh) * 2004-04-23 2005-11-02 夏普株式会社 显示装置
CN1901179A (zh) * 2005-07-18 2007-01-24 三星电子株式会社 带布线基板以及利用该基板的薄膜上芯片封装
CN101399247A (zh) * 2007-09-25 2009-04-01 冲电气工业株式会社 Cof封装及用于cof封装的载带基板
CN201298121Y (zh) * 2008-10-31 2009-08-26 厦门赛特勒电子有限公司 驱动芯片封装结构改进的液晶显示模块
CN204065606U (zh) * 2014-09-16 2014-12-31 冀雅(廊坊)电子有限公司 一种cog液晶显示模块
CN209895115U (zh) * 2019-05-10 2020-01-03 深圳市优丽达科技有限公司 一种液晶驱动芯片封装结构
WO2020039709A1 (ja) * 2018-08-22 2020-02-27 株式会社ジャパンディスプレイ 表示装置及び集積回路モジュール
CN111179755A (zh) * 2020-01-03 2020-05-19 京东方科技集团股份有限公司 一种芯片封装结构、显示装置
CN212112052U (zh) * 2020-06-22 2020-12-08 深圳市全洲自动化设备有限公司 一种cof液晶显示模组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963287A (en) * 1997-08-11 1999-10-05 Nec Corporation Display unit with flexible printed circuit board
WO2003107085A1 (ja) * 2002-06-13 2003-12-24 ナノックス株式会社 液晶表示装置
CN1690780A (zh) * 2004-04-23 2005-11-02 夏普株式会社 显示装置
CN1901179A (zh) * 2005-07-18 2007-01-24 三星电子株式会社 带布线基板以及利用该基板的薄膜上芯片封装
CN101399247A (zh) * 2007-09-25 2009-04-01 冲电气工业株式会社 Cof封装及用于cof封装的载带基板
CN201298121Y (zh) * 2008-10-31 2009-08-26 厦门赛特勒电子有限公司 驱动芯片封装结构改进的液晶显示模块
CN204065606U (zh) * 2014-09-16 2014-12-31 冀雅(廊坊)电子有限公司 一种cog液晶显示模块
WO2020039709A1 (ja) * 2018-08-22 2020-02-27 株式会社ジャパンディスプレイ 表示装置及び集積回路モジュール
CN209895115U (zh) * 2019-05-10 2020-01-03 深圳市优丽达科技有限公司 一种液晶驱动芯片封装结构
CN111179755A (zh) * 2020-01-03 2020-05-19 京东方科技集团股份有限公司 一种芯片封装结构、显示装置
CN212112052U (zh) * 2020-06-22 2020-12-08 深圳市全洲自动化设备有限公司 一种cof液晶显示模组

Also Published As

Publication number Publication date
CN212112052U (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
JP4773167B2 (ja) ハイブリッド金バンプを含む微細電子素子チップ、これのパッケージ、これを含む液晶ディスプレー装置及びこのような微細電子素子チップの製造方法
US9386695B2 (en) Wiring substrate having multiple core substrates
WO2020147589A1 (zh) 一种新型led芯片封装制作方法
JP7485467B2 (ja) 駆動基板及びその製作方法並びに表示装置
WO2021022692A1 (zh) 显示面板及液晶显示器
WO2021258736A1 (zh) Cof 驱动模块、 cof 显示模组及前两者的制造方法
JP4479512B2 (ja) 回路基板用部材および回路基板用部材の製造方法
US5525838A (en) Semiconductor device with flow preventing member
WO2023165357A1 (zh) 显示装置及其制备方法
CN114156395A (zh) 阵列基板及其制备方法、显示面板和背光模组
JP2010141126A (ja) 半導体装置の製造方法
CN215268840U (zh) Cof驱动模块及cof显示模组
JPH01195285A (ja) メタライズガラス基板の製造方法
JP4075652B2 (ja) 半導体装置の製造方法
JP4006970B2 (ja) 両面回路基板の製造方法
JP2006013030A (ja) 回路基板用部材およびその製造方法
JP2008243899A (ja) 回路基板の製造方法および回路基板
JP2003101193A (ja) 回路基板の製造方法
US20230275192A1 (en) Micro light-emitting diode display and manufacturing method thereof
JP3945341B2 (ja) 回路基板用部材
JP4006971B2 (ja) 回路基板の製造方法
WO2024044912A1 (zh) 布线基板及其制造方法、发光基板及显示装置
JP4862238B2 (ja) 回路基板の製造方法
JP2006186154A (ja) 配線基板の製造方法及び電気光学装置の製造方法
JP4135375B2 (ja) 回路基板用部材および回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21828535

Country of ref document: EP

Kind code of ref document: A1