WO2021258523A1 - 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统 - Google Patents

利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统 Download PDF

Info

Publication number
WO2021258523A1
WO2021258523A1 PCT/CN2020/109950 CN2020109950W WO2021258523A1 WO 2021258523 A1 WO2021258523 A1 WO 2021258523A1 CN 2020109950 W CN2020109950 W CN 2020109950W WO 2021258523 A1 WO2021258523 A1 WO 2021258523A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
femtosecond laser
sheet
nanotube array
exposed
Prior art date
Application number
PCT/CN2020/109950
Other languages
English (en)
French (fr)
Inventor
姜澜
闫剑锋
乔明
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021258523A1 publication Critical patent/WO2021258523A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the invention belongs to the technical field of femtosecond laser application, and specifically relates to a method and system for preparing titanium dioxide with exposed high-active surface by using femtosecond laser.
  • Titanium dioxide (TiO 2 ) is the most commonly used semiconductor photocatalytic material. Because of its high stability, non-toxicity, and low cost, it has been widely used in photoelectrochemical hydrolysis to produce hydrogen, photocatalytic hydrolysis to produce hydrogen, and photocatalytic degradation of organic pollutants. And other fields. However, the catalytic performance of titanium dioxide is limited by its ability to absorb ultraviolet light and the rapid recombination of photogenerated electrons and holes. For this reason, researchers have carried out a large number of studies on the morphology, structure, exposed crystal faces, and energy bands of titanium dioxide.
  • Anatase titanium dioxide with exposed ⁇ 010 ⁇ crystal planes is usually prepared by chemical methods, mostly by controlling the fluoride ion concentration (CN106082321A; CN101670280A; Nature 2008,453,7195,638) and pH value (CN103086424A; CN101670280A; Nature 2008,453,7195,638) during the hydrothermal reaction process; CN105347393A; Nano Lett 2005, 5,1261), but this method can only use titanium precursor solutions as raw materials, usually in an autoclave, and the resulting products are dispersed materials such as nanoparticles, nanosheets or nanobelts , Its scope of application is severely restricted.
  • the purpose of the present invention is to propose a method and system for preparing titanium dioxide with exposed high active surface by using femtosecond laser, so as to solve the technology of obtaining anatase titanium dioxide with exposed ⁇ 010 ⁇ crystal surface after processing solid titanium dioxide in the traditional method. problem.
  • the method of using femtosecond laser to prepare titanium dioxide with exposed high active surface includes the following steps:
  • step (1-4) Use solution B of step (1-3), take the titanium sheet of step (1-1) as anode and platinum mesh as cathode to perform anodization at a temperature of 23°C, a voltage of 20V-40V, and time It takes 1 to 2 hours to obtain a titanium sheet with a solid titanium dioxide nanotube array film on the surface;
  • step (1) Focus a femtosecond laser with a wavelength of 800nm, a repetition frequency of 80MHz, and a pulse width of 50fs onto the solid titanium dioxide nanotube array film of step (1), so that the laser intensity is 1.1 ⁇ 10 12 W/cm 2 ⁇ 1.7 ⁇ 10 12 W/cm 2 , set the scanning speed of the femtosecond laser focus spot to be 1mm/s ⁇ 5mm/s, so that the surface of the laser in step (1) is a solid titanium dioxide nanotube array film for progressive scanning on the surface of the titanium sheet , Get anatase titanium dioxide with exposed ⁇ 010 ⁇ crystal plane.
  • the system of using femtosecond laser to prepare titanium dioxide exposing highly active surface includes a high repetition frequency femtosecond laser, a neutral density attenuation sheet, an electronically controlled shutter, a femtosecond laser galvanometer, a femtosecond laser field mirror and a support base ;
  • the femtosecond laser pulse output by the high repetition frequency femtosecond laser adjusts the energy through the neutral density attenuator and then enters the femtosecond laser galvanometer to control the laser irradiation direction.
  • the surface is focused by the femtosecond laser field lens to the solid titanium dioxide nanometer
  • the electronically controlled shutter is placed between the neutral density attenuator sheet and the femtosecond laser galvanometer to control the opening and closing of the femtosecond laser; the titanium sheet with the solid titanium dioxide nanotube array film on the surface is fixed on On the supporting base, the femtosecond laser galvanometer is controlled by software to realize the control of the position of the laser focal spot, and then realize the progressive scanning processing of the sample.
  • the method of the present invention for preparing titanium dioxide with exposed high-active surface using femtosecond laser firstly uses anodizing method to prepare a solid titanium dioxide nanotube array film on the surface of a titanium sheet, and then obtains a thin film with exposure through the femtosecond laser progressive scanning ⁇ 010 ⁇
  • the crystal face of anatase titanium dioxide Compared with the traditional method, the invention has the advantages of being able to directly process solid titanium dioxide, low processing environment requirements, high energy utilization rate, fast speed and the like.
  • the anatase titanium dioxide with exposed ⁇ 010 ⁇ crystal plane prepared by the method and system of the present invention can be used for photocatalysis and the preparation of solar cells, which is beneficial to obtain high photocatalysis or photoelectric conversion efficiency.
  • Fig. 1 is a schematic diagram of a method for preparing titanium dioxide with exposed highly active surfaces by using a femtosecond laser according to the present invention.
  • 1 is a titanium sheet
  • 2 is a titanium sheet with a solid titanium dioxide nanotube array film on the surface
  • 3 is a cross section of a single titanium dioxide nanotube
  • 4 is a femtosecond laser pulse
  • 5 is a single titanium dioxide nanometer processed by a femtosecond laser
  • the section of the tube, 6 is a single anatase nanocrystalline grain with ⁇ 010 ⁇ crystal plane exposed.
  • Fig. 2 is a schematic diagram of a system for preparing titanium dioxide with exposed high active surface by using femtosecond laser according to the present invention.
  • 7 is a high-repetition frequency femtosecond laser
  • 8 is a neutral density attenuator
  • 9 is an electronically controlled shutter
  • 10 is a femtosecond laser galvanometer
  • 11 is a femtosecond laser field lens
  • 2 is a solid titanium dioxide nanometer surface
  • the titanium sheet of the tube array film, 12 is the support base.
  • FIG. 3 is the Raman spectrum of the solid titanium dioxide nanotube array film before and after laser processing in Example 1.
  • Example 4 is a high power HRTEM image of the titanium dioxide prepared in Example 1.
  • the method of using femtosecond laser to prepare titanium dioxide with exposed high active surface includes the following steps:
  • step (1-4) Use solution B of step (1-3), take the titanium sheet of step (1-1) as anode and platinum mesh as cathode to perform anodization at a temperature of 23°C, a voltage of 20V-40V, and time It takes 1 to 2 hours to obtain a titanium sheet 2 with a solid titanium dioxide nanotube array film on the surface;
  • step (1) Focus a femtosecond laser with a wavelength of 800nm, a repetition frequency of 80MHz, and a pulse width of 50fs onto the solid titanium dioxide nanotube array film of step (1), so that the laser intensity is 1.1 ⁇ 10 12 W/cm 2 ⁇ 1.7 ⁇ 10 12 W/cm 2 , set the scanning speed of the femtosecond laser focusing spot to be 1mm/s ⁇ 5mm/s, so that the surface of the laser in step (1) is a solid titanium dioxide nanotube array film on the surface of the titanium sheet 2 line by line Scanning, anatase titanium dioxide with exposed ⁇ 010 ⁇ crystal plane is obtained.
  • the system of the present invention for preparing titanium dioxide exposing highly active surfaces using a femtosecond laser has its structure as shown in Figure 2. It includes a high repetition frequency femtosecond laser 7, a neutral density attenuation sheet 8, an electronically controlled shutter 9, and a femtosecond laser.
  • the second laser galvanometer 10 realizes the control of the laser irradiation direction.
  • the femtosecond laser field lens 11 is used to focus on the titanium sheet 2 whose surface is a solid titanium dioxide nanotube array film in step (1), and the electronically controlled shutter 9 is placed in the center Between the sexual density attenuating sheet 8 and the femtosecond laser galvanometer 10, it is used to control the opening and closing of the femtosecond laser; the titanium sheet 2 whose surface is a solid titanium dioxide nanotube array film is fixed on the support base 12.
  • the femtosecond laser galvanometer 10 is controlled by software to realize the control of the position of the laser focal spot, thereby realizing the progressive scanning processing of the sample.
  • the titanium sheet 1 with a purity of 99% or more after surface polishing is cut into a rectangle of 2 cm ⁇ 4 cm. Put the titanium sheet into ethanol and deionized water for ultrasonic cleaning three times in sequence, washing for 10 minutes each time, and put it in a blast drying box to dry for later use;
  • step (1-4) Using the solution B of step (1-3), taking the titanium sheet 1 of step (1-1) as the anode and the platinum mesh as the cathode, place the platinum mesh and the titanium sheet 1 opposite to each other at a distance of 3 cm to perform the anode Oxidize at a temperature of 23°C, a voltage of 20V, and a duration of 2 hours to obtain a titanium sheet 2 with a solid titanium dioxide nanotube array film on the surface;
  • the titanium sheet 2 whose surface is a solid titanium dioxide nanotube array film in step (1-4) is washed 5 times in ethanol and deionized water, and dried for use.
  • the solid titanium dioxide nanotube on the titanium sheet 2 has an amorphous structure, and the cross section 3 of a single titanium dioxide nanotube has no crystal grains.
  • the laser field lens 11 is focused on the upper surface of the titanium sheet 2 prepared in step (1), the surface of which is a titanium dioxide nanotube array film, and the electronically controlled shutter 9 is placed between the neutral density attenuator sheet 8 and the femtosecond laser galvanometer 10, Used to control the opening and closing of the femtosecond laser; a titanium sheet 2 with a solid titanium dioxide nanotube array film on the surface is fixed on the support base 12.
  • the wavelength of the femtosecond laser used is 800nm, the repetition frequency is 80Mhz, and the pulse width is 50fs.
  • the intensity of the laser focused to the solid titanium dioxide nanotube array film is adjusted by the neutral density attenuator 8 to 1.4 ⁇ 10 12 W/cm 2 , Set the scanning speed of the femtosecond laser galvanometer 10 to 1mm/s, so that the laser spot scans line by line on the surface of the titanium sheet 2 whose surface is a solid titanium dioxide nanotube array film, and the interval of each line is set to 10 ⁇ m to get exposure ⁇ 010 ⁇ The crystal face of anatase titanium dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提出了一种利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统,属于飞秒激光应用技术领域。本发明首先利用阳极氧化法,在钛片表面制备了固体二氧化钛纳米管阵列薄膜,然后通过飞秒激光逐行扫描获得具有暴露{010}晶面的锐钛矿二氧化钛。与传统方法相比,本发明具有可对固体二氧化钛进行直接加工、加工环境要求低、能量利用率高、速度快等优点。利用本发明的方法及系统制备得到的暴露{010}晶面的锐钛矿二氧化钛,可以用于光催化和制备太阳能电池,有利于获得高的光催化或光电转化效率。

Description

利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
相关申请的引用
本申请要求申请号为202010579947.8、申请日为2020年6月23日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本发明属于飞秒激光应用技术领域,具体涉及利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统。
背景技术
高效地利用太阳能是解决目前人类所面临的能源问题和环境问题的重要手段。二氧化钛(TiO 2)是最常用的半导体光催化材料,因具有高稳定性、无毒、廉价等特点,已被广泛应用于光电化学水解产氢、光催化水解产氢、光催化降解有机污染物等领域。但二氧化钛的催化性能受限于只能吸收紫外光和光生电子与空穴的快速复合,为此研究人员针对二氧化钛的形貌、结构、暴露晶面、能带等开展了大量的研究。理论计算和实验结果表明,暴露高活性晶面的二氧化钛具有较高的催化活性(Chemical reviews 2014,114,19,9559-9612),其中主要暴露{010}晶面的锐钛矿二氧化钛因表面原子结构、能带结构和不同晶面的协同作用而表现出最佳的催化性能(AngewandteChemie International Edition 2011,9,2133-2137)。
暴露{010}晶面的锐钛矿二氧化钛通常采用化学方法制备,大多数通过控制水热反应过程中的氟离子浓度(CN106082321A;CN101670280A;Nature 2008,453,7195,638)和pH值(CN103086424A;CN105347393A;Nano Lett 2005,5,1261)实现,但该方法只能以钛的前驱体溶液为原料,通常需要在高压反应釜中进行,所得产物为纳米颗粒、纳米片或纳米带等分散的材料,其应用范围受到严重限制。对固体二氧化钛,常采用热处理的方法获得锐钛矿二氧化钛,但热处理方法通常只能获得主要暴露低活性的{101}晶面的锐钛矿二氧化钛,无法获得暴露{010}晶面的锐钛矿二氧化钛。CN108788472A及《光学通讯》(Optics Communications 2019,441,49-54)报道了利用飞秒激光在固体二氧化钛表面烧蚀形成周期性微纳结构的方法,CN110230084A报道了一种基于飞秒激光退火处理在钛表面获得图案化的锐钛矿或金红石二氧化钛的方法,但以上方法也无法获得暴露{010}晶面的锐钛矿二氧 化钛。目前,还没有能够直接对固体二氧化钛进行加工获得暴露{010}晶面的锐钛矿二氧化钛的方法。寻找一种以固体二氧化钛为原料,暴露{010}晶面的锐钛矿二氧化钛的制备新方法对于提高二氧化钛催化剂活性具有重要意义。
发明内容
本发明的目的是提出一种利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统,以解决传统方法中无法对固体二氧化钛进行加工后获得暴露{010}晶面的锐钛矿二氧化钛的技术难题。
本发明提出的利用飞秒激光制备暴露高活性面的二氧化钛的方法,包括以下步骤:
(1)利用阳极氧化法,在钛片表面制备固体二氧化钛纳米管阵列薄膜,过程如下:
(1-1)将钛片依次放入乙醇和去离子水中超声清洗三遍,烘干待用;
(1-2)按体积比为1:49~1:99量取水和乙二醇,配置成溶液A;
(1-3)向溶液A中加入质量分数为0.4%~0.6%的氟化铵,得到溶液B;
(1-4)利用步骤(1-3)的溶液B,以步骤(1-1)的钛片为阳极,铂网为阴极,进行阳极氧化,温度为23℃,电压为20V~40V,时间为1~2小时,得到表面为固体二氧化钛纳米管阵列薄膜的钛片;
(1-5)将步骤(1-4)的钛片置于乙醇和去离子水中清洗若干次、烘干备用;
(2)将波长为800nm、重复频率为80MHz、脉冲宽度为50fs的飞秒激光聚焦到步骤(1)的固体二氧化钛纳米管阵列薄膜上,使激光强度为1.1×10 12W/cm 2~1.7×10 12W/cm 2,设置飞秒激光聚焦光斑的扫描速度为1mm/s~5mm/s,使得激光在步骤(1)的表面为固体二氧化钛纳米管阵列薄膜的钛片表面进行逐行扫描,得到暴露{010}晶面的锐钛矿二氧化钛。
本发明提出的利用飞秒激光制备暴露高活性面的二氧化钛的系统,包括高重频飞秒激光器、中性密度衰减片、电控快门、飞秒激光振镜、飞秒激光场镜和支撑底座;高重频飞秒激光器输出的飞秒激光脉冲通过中性密度衰减片调节能量后进入飞秒激光振镜实现对激光辐照方向的调控,通过飞秒激光场镜聚焦到表面为固体二氧化钛纳米管阵列薄膜的钛片上,电控快门置于中性密度衰减片与飞秒激光振镜之间,用于控制飞秒激光的开闭;表面为固体二氧化钛纳米管阵列薄膜的钛片被固定在支撑底座上,通过软件控制飞秒激光振镜,实现对激光焦斑的位置的控制,进而实现对样品的逐行扫描加工。
本发明提出的利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统,其优点是:
本发明的利用飞秒激光制备暴露高活性面的二氧化钛的方法,首先利用阳极氧化法,在钛片表面制备了固体二氧化钛纳米管阵列薄膜,然后通过飞秒激光逐行扫描获得具有暴 露{010}晶面的锐钛矿二氧化钛。与传统方法相比,本发明具有可对固体二氧化钛进行直接加工、加工环境要求低、能量利用率高、速度快等优点。利用本发明的方法及系统制备得到的暴露{010}晶面的锐钛矿二氧化钛,可以用于光催化和制备太阳能电池,有利于获得高的光催化或光电转化效率。
附图说明
图1是本发明提出的一种利用飞秒激光制备暴露高活性面的二氧化钛的方法示意图。
图1中,1是钛片,2是表面为固体二氧化钛纳米管阵列薄膜的钛片,3是单个二氧化钛纳米管的截面,4是飞秒激光脉冲,5是飞秒激光加工后的单个二氧化钛纳米管的截面,6是暴露{010}晶面的单个锐钛矿纳米晶粒。
图2是本发明提出的一种利用飞秒激光制备暴露高活性面的二氧化钛的系统示意图。
图2中,7是高重频飞秒激光器,8是中性密度衰减片,9是电控快门,10是飞秒激光振镜,11是飞秒激光场镜,2是表面为固体二氧化钛纳米管阵列薄膜的钛片,12是支撑底座。
图3是实施例1中激光加工前后固体二氧化钛纳米管阵列薄膜的拉曼光谱图。
图4是实施例1所制得的二氧化钛的高倍HRTEM图。
具体实施方式
本发明提出的利用飞秒激光制备暴露高活性面的二氧化钛的方法,包括以下步骤:
(1)利用阳极氧化法,在钛片1表面制备固体二氧化钛纳米管阵列薄膜,过程如下:
(1-1)将钛片1依次放入乙醇和去离子水中超声清洗三遍,烘干待用;
(1-2)按体积比为1:49~1:99量取水和乙二醇,配置成溶液A;
(1-3)向溶液A中加入质量分数为0.4%~0.6%的氟化铵,得到溶液B;
(1-4)利用步骤(1-3)的溶液B,以步骤(1-1)的钛片为阳极,铂网为阴极,进行阳极氧化,温度为23℃,电压为20V~40V,时间为1~2小时,得到表面为固体二氧化钛纳米管阵列薄膜的钛片2;
(1-5)将步骤(1-4)的钛片2置于乙醇和去离子水中清洗若干次、烘干备用;
(2)将波长为800nm、重复频率为80MHz、脉冲宽度为50fs的飞秒激光聚焦到步骤(1)的固体二氧化钛纳米管阵列薄膜上,使激光强度为1.1×10 12W/cm 2~1.7×10 12W/cm 2,设置飞秒激光聚焦光斑的扫描速度为1mm/s~5mm/s,使得激光在步骤(1)的表面为固体二氧化钛纳米管阵列薄膜的钛片2表面进行逐行扫描,得到暴露{010}晶面的锐钛矿二氧化钛。
本发明提出的利用飞秒激光制备暴露高活性面的二氧化钛的系统,其结构如图2所示, 包括高重频飞秒激光器7、中性密度衰减片8、电控快门9、飞秒激光振镜10、飞秒激光场镜11和支撑底座12;所述的高重频飞秒激光器7输出的飞秒激光脉冲,通过中性密度衰减片8调节能量后再经电控快门9进入飞秒激光振镜10,实现对激光辐照方向的调控,通过飞秒激光场镜11聚焦到步骤(1)的表面为固体二氧化钛纳米管阵列薄膜的钛片2上,电控快门9置于中性密度衰减片8与飞秒激光振镜10之间,用于控制飞秒激光的开闭;表面为固体二氧化钛纳米管阵列薄膜的钛片2固定在支撑底座12上。通过软件控制飞秒激光振镜10实现对激光焦斑的位置的控制,进而实现对样品的逐行扫描加工。
下面结合附图以及实施例对本发明做进一步介绍。
实施例1
(1)利用阳极氧化法,在钛片1表面制备固体二氧化钛纳米管阵列薄膜,过程如下:
(1-1)将表面抛光后的纯度为99%以上的钛片1切为2cm×4cm的长方形。将钛片依次放入乙醇和去离子水中超声清洗三遍,每次清洗10min,放入鼓风干燥箱中烘干待用;
(1-2)按体积比为1:49量取水和乙二醇,配置成溶液A;
(1-3)向溶液A中缓慢加入质量分数为0.5%的氟化铵,搅拌至氟化铵完全溶解,得到溶液B;
(1-4)利用步骤(1-3)的溶液B,以步骤(1-1)的钛片1为阳极,铂网为阴极,将铂网与钛片1相对放置,距离3cm,进行阳极氧化,温度为23℃,电压为20V,时长为2小时,得到表面具有固体二氧化钛纳米管阵列薄膜的钛片2;
(1-5)将步骤(1-4)的表面为固体二氧化钛纳米管阵列薄膜的钛片2置于乙醇和去离子水中清洗5次、烘干备用。钛片2上的固体二氧化钛纳米管为无定形结构,单个二氧化钛纳米管的截面3中无晶粒。
(2)搭建一个利用飞秒激光制备暴露高活性面的二氧化钛的系统,包括高重频飞秒激光器7、中性密度衰减片8、电控快门9、飞秒激光振镜10、飞秒激光场镜11和支撑底座12;高重频飞秒激光器7输出的飞秒激光脉冲通过中性密度衰减片8调节能量后进入飞秒激光振镜10实现对激光辐照方向的调控,通过飞秒激光场镜11聚焦到步骤(1)所制备的表面为二氧化钛纳米管阵列薄膜的钛片2的上表面,电控快门9置于中性密度衰减片8与飞秒激光振镜10之间,用于控制飞秒激光的开闭;表面为固体二氧化钛纳米管阵列薄膜的钛片2被固定在支撑底座12上。
(3)采用的飞秒激光波长为800nm,重复频率为80Mhz,脉冲宽度为50fs,通过中性密度衰减片8调节聚焦到固体二氧化钛纳米管阵列薄膜的激光强度为1.4×10 12W/cm 2,设置飞秒激光振镜10的扫描速度为1mm/s,使得激光光斑在表面为固体二氧化钛纳米管阵列薄膜的钛片2表面进行逐行扫描,每行间隔设置为10μm,得到暴露{010}晶面的锐钛矿二 氧化钛。飞秒激光加工后的单个二氧化钛纳米管的截面5中出现暴露{010}晶面的单个锐钛矿纳米晶粒6。飞秒激光加工前后的二氧化钛的拉曼光谱比较如图3所示,从图3中可以看出,激光加工后二氧化钛由无定形转变为锐钛矿。利用高分辨率的透射电镜(HRTEM)观察所得二氧化钛纳米管阵列薄膜,得到如图4所示的高倍HRTEM图,从图4中可以看出,飞秒激光加工后得到的二氧化钛的微观结构中出现晶格条纹,条纹间距为
Figure PCTCN2020109950-appb-000001
对应{010}晶面的锐钛矿二氧化钛,说明得到了暴露{010}晶面的锐钛矿二氧化钛。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,该方法包括以下步骤:
    (1)利用阳极氧化法,在钛片表面制备固体二氧化钛纳米管阵列薄膜,包括如下步骤:
    (1-1)将钛片依次放入乙醇和去离子水中超声清洗,烘干待用;
    (1-2)按体积比为1:49~1:99量取水和乙二醇,配置成溶液A;
    (1-3)向所述溶液A中加入氟化铵,得到溶液B;
    (1-4)利用所述步骤(1-3)的溶液B,以所述步骤(1-1)的钛片为阳极,铂网为阴极,进行阳极氧化,得到表面为固体二氧化钛纳米管阵列薄膜的钛片;
    (1-5)将所述步骤(1-4)得到的表面为固体二氧化钛纳米管阵列薄膜的钛片清洗、烘干备用;
    (2)将飞秒激光聚焦到步骤(1)的固体二氧化钛纳米管阵列薄膜上,使激光在步骤(1)的表面为固体二氧化钛纳米管阵列薄膜的钛片表面进行逐行扫描,得到暴露{010}晶面的锐钛矿二氧化钛。
  2. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(1-5)中,将所述步骤(1-4)的钛片置于乙醇和去离子水中清洗、烘干备用。
  3. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(1-3)中,所述氟化铵的质量分数为0.4%~0.6%。
  4. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(1-4)中,所述阳极氧化的温度为23℃。
  5. 根据权利要求1或4所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(1-4)中,所述阳极氧化的电压为20V~40V。
  6. 根据权利要求1、4或5中任一项所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(1-4)中,所述阳极氧化的时间为1~2小时。
  7. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(2)中,所述飞秒激光的波长为800nm、重复频率为80MHz、脉冲宽度为50fs。
  8. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(2)中,所述聚焦到固体二氧化钛纳米管阵列薄膜的激光强度为1.1×10 12W/cm 2~1.7×10 12W/cm 2
  9. 根据权利要求1所述的利用飞秒激光制备暴露高活性面的二氧化钛的方法,其特征在于,所述步骤(2)中,所述飞秒激光聚焦光斑的扫描速度为1mm/s~5mm/s。
  10. 一种利用飞秒激光制备暴露高活性面的二氧化钛的系统,其特征在于,该系统包括高重频飞秒激光器、中性密度衰减片、电控快门、飞秒激光振镜、飞秒激光场镜和支撑底座;高重频飞秒激光器输出的飞秒激光脉冲通过中性密度衰减片调节能量后进入飞秒激光振镜实现对激光辐照方向的调控,通过飞秒激光场镜聚焦到表面为固体二氧化钛纳米管阵列薄膜的钛片上,电控快门置于中性密度衰减片与飞秒激光振镜之间,用于控制飞秒激光的开闭;表面为固体二氧化钛纳米管阵列薄膜的钛片被固定在支撑底座上,通过软件控制飞秒激光振镜,实现对激光焦斑的位置的控制,进而实现对样品的逐行扫描加工。
PCT/CN2020/109950 2020-06-23 2020-08-19 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统 WO2021258523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010579947.8A CN111850653B (zh) 2020-06-23 2020-06-23 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN202010579947.8 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258523A1 true WO2021258523A1 (zh) 2021-12-30

Family

ID=72988393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109950 WO2021258523A1 (zh) 2020-06-23 2020-08-19 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统

Country Status (2)

Country Link
CN (1) CN111850653B (zh)
WO (1) WO2021258523A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749173A (zh) * 2022-04-24 2022-07-15 长春工业大学 一种Ag-TiO2复合光催化材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095130A (ja) * 2006-10-06 2008-04-24 Biito:Kk チタン又はチタン合金の装飾方法及び装飾された物品
CN101589173A (zh) * 2007-02-07 2009-11-25 Imra美国公司 沉积结晶二氧化钛纳米颗粒和薄膜的方法
CN106006727A (zh) * 2016-05-17 2016-10-12 苏州盛丰源新材料科技有限公司 均相晶化TiO2纳米溶液及其制备方法、晶化设备
CN108356409A (zh) * 2018-01-26 2018-08-03 合肥工业大学 一种水中气泡调谐用钛片及其加工方法和使用方法
CN108788472A (zh) * 2018-05-24 2018-11-13 清华大学 基于电子动态调控的二氧化钛表面周期结构加工方法
CN108946800A (zh) * 2018-08-01 2018-12-07 中国科学院生态环境研究中心 一种晶面暴露的二氧化钛及其制备方法和用途
CN109913927A (zh) * 2019-04-16 2019-06-21 北京理工大学 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法
CN110230084A (zh) * 2019-04-15 2019-09-13 清华大学 基于飞秒激光退火处理的钛表面多晶结构形成方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014829B (zh) * 2012-11-29 2015-09-16 中国科学院金属研究所 制备富含{001}/{010}/{101}晶面锐钛矿TiO2单晶的方法
CN105883912B (zh) * 2016-05-15 2017-09-29 北京工业大学 一种自支撑二氧化钛三维微纳米结构制备方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法
CN110241451B (zh) * 2019-07-19 2020-08-18 大博医疗科技股份有限公司 一种表面改性钛植入物及其功能化处理方法
CN110465294A (zh) * 2019-08-28 2019-11-19 青岛理工大学 纳米铁/介孔(001)面复合-花型晶体包覆型TiO2单晶的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095130A (ja) * 2006-10-06 2008-04-24 Biito:Kk チタン又はチタン合金の装飾方法及び装飾された物品
CN101589173A (zh) * 2007-02-07 2009-11-25 Imra美国公司 沉积结晶二氧化钛纳米颗粒和薄膜的方法
CN106006727A (zh) * 2016-05-17 2016-10-12 苏州盛丰源新材料科技有限公司 均相晶化TiO2纳米溶液及其制备方法、晶化设备
CN108356409A (zh) * 2018-01-26 2018-08-03 合肥工业大学 一种水中气泡调谐用钛片及其加工方法和使用方法
CN108788472A (zh) * 2018-05-24 2018-11-13 清华大学 基于电子动态调控的二氧化钛表面周期结构加工方法
CN108946800A (zh) * 2018-08-01 2018-12-07 中国科学院生态环境研究中心 一种晶面暴露的二氧化钛及其制备方法和用途
CN110230084A (zh) * 2019-04-15 2019-09-13 清华大学 基于飞秒激光退火处理的钛表面多晶结构形成方法及系统
CN109913927A (zh) * 2019-04-16 2019-06-21 北京理工大学 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法

Also Published As

Publication number Publication date
CN111850653B (zh) 2021-07-06
CN111850653A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2017198033A1 (zh) 一种自支撑二氧化钛三维微纳米结构制备方法
Sun et al. An ordered and porous N-doped carbon dot-sensitized Bi 2 O 3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity
Szymanski et al. Some recent developments in photoelectrochemical water splitting using nanostructured TiO 2: a short review
Duan et al. Enhanced dye illumination in dye-sensitized solar cells using TiO 2/GeO 2 photo-anodes
Nishanthi et al. An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays
CN110230084B (zh) 基于飞秒激光退火处理的钛表面多晶结构形成方法及系统
Chen et al. Design of efficient dye-sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes
Li et al. Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method
Ali et al. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting
Sun et al. Design of highly ordered Ag–SrTiO3 nanotube arrays for photocatalytic degradation of methyl orange
WO2021258523A1 (zh) 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN104475073B (zh) 一种二氧化钛纳米线阵列薄膜及其制备与应用
Nishanthi et al. Remarkable role of annealing time on anatase phase titania nanotubes and its photoelectrochemical response
Radecka et al. Oxide nanomaterials for photoelectrochemical hydrogen energy sources
Awaid et al. Effect of electrolyte composition on structural and photoelectrochemical properties of titanium dioxide nanotube arrays synthesized by anodization technique
CN102776513A (zh) TiO2纳米管/PbS/CuS的纳米复合材料制备工艺
KR20210067787A (ko) 광전기화학적 수처리용 광전극, 이의 제조방법 및 이의 용도
González et al. Synthesis of ruthenium-doped TiO2 nanotube arrays for the photocatalytic degradation of terasil blue dye
CN103866314B (zh) 可见光响应的黑色二氧化钛纳米薄膜的制备方法及应用
Dang et al. Synthesis of titanium dioxide/reduced graphene oxide nanocomposite material via the incorporated hydrothermal co-precipitation method for fabricating photoanode in dye-sensitized solar cell
JP4728666B2 (ja) アモルファスチタニアの製造方法
CN111020501A (zh) 一种铋酸铜薄膜的制备方法
CN108677208B (zh) 一种锰修饰二氧化钛纳米管增强光电响应的制备方法
CN104576070A (zh) 二氧化钛纳米棒-金空心球-CdS复合光阳极的制备方法
Li et al. Effects of surface modification of nanotube arrays on the performance of CdS quantum-dot-sensitized solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941608

Country of ref document: EP

Kind code of ref document: A1