CN109913927A - 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法 - Google Patents

一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法 Download PDF

Info

Publication number
CN109913927A
CN109913927A CN201910301942.6A CN201910301942A CN109913927A CN 109913927 A CN109913927 A CN 109913927A CN 201910301942 A CN201910301942 A CN 201910301942A CN 109913927 A CN109913927 A CN 109913927A
Authority
CN
China
Prior art keywords
femtosecond laser
titanium dioxide
dope
method based
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910301942.6A
Other languages
English (en)
Other versions
CN109913927B (zh
Inventor
姜澜
李欣
梁密生
陈孝喆
许晨阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910301942.6A priority Critical patent/CN109913927B/zh
Publication of CN109913927A publication Critical patent/CN109913927A/zh
Application granted granted Critical
Publication of CN109913927B publication Critical patent/CN109913927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提出了一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,属于光催化电极材料制备领域。首先利用飞秒激光加工系统,采取飞秒激光直写方式,在金属钛表面直接加工微米阵列。然后将经过飞秒激光加工的微米阵列结构,放到电化学工作站中进行阳极氧化,得到二氧化钛的微纳复合结构。最后对二氧化钛微纳复合结构进行退火处理,使其产生结晶。对比现有技术,本发明方法制备过程无需真空装置,无需氢化还原,价格相对低廉,制造的光电极具有丰富的氧空位和微纳复合结构,并显著降低了光电极的禁带,极大提高了的光吸收、光电转化率等。

Description

一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法
技术领域
本发明涉及一种多级二氧化钛光电极制备方法,具体涉及一种基于飞秒激 光增强自掺杂的二氧化钛光电极制备方法,属于光催化电极材料制备领域。
背景技术
二氧化钛作为一种光催化材料,以其化学性质稳定、氧化-还原性强、抗腐 蚀、无毒及成本低等特性,成为目前最为广泛使用的半导体光催化剂,在能源、 环境、生物检测等领域具有广泛的应用。近年来,由于二氧化钛光电极良好的 稳定性以及可回收性,得到了广泛的应用。
一般情况下,光电极的光吸收率越高,吸收的太阳能量就越多;禁带越小, 太阳光的利用率就越高。因此,选用具有高光吸收、低禁带的光电极,可以显 著提高太阳光利用率。因二氧化钛具有较宽的禁带(3.0-3.2eV),其对太阳光 的可利用波长被限制在380nm以下,而该部分只占太阳光能量的百分之五。研究 表明,通过氧空位自掺杂的方式,可以有效减小禁带宽度,且不引入新的载流 子复合中心,从而提高二氧化钛对太阳光,尤其是可见光的利用率。此外,二 氧化钛作为光电极,其表面的微纳复合结构可以有效提高对太阳光的吸收率。
目前,制备含氧空位掺杂的二氧化钛光电级微纳复合结构,主要通过采用 3D打印和电火花加工等加工方法获得微结构,再进行氢化还原。但是,这种方 法得到的微米结构尺寸较大,且后续需要进行氢化还原,需要采用高压设备和 氢气处理,工艺复杂、价格昂贵,不适用于光电极的大规模应用。因此,迫切 需要一种精度高、价格低,并且制备过程可控的光催化电极的制造新方法。
发明内容
本发明的目的是为了克服现有技术的缺陷,为有效解决制备氧空位自掺杂 的二氧化钛光电极的问题,提出一种基于飞秒激光增强自掺杂的二氧化钛光电 极制备方法。该方法无需真空装置,无需氢化还原,价格相对低廉,制造的微 纳结构高度可控,具有高光吸收率、低禁带、结构稳定、易回收等性能。
为实现上述发明目的,本发明通过以下技术方案实现:
一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,包括以下步骤:
步骤一:利用飞秒激光加工系统,采取飞秒激光直写方式,在金属钛表面 直接加工微米阵列。加工过程通过程序进行控制,首先进行行扫,然后进行列 扫,从而加工出任意大小和形状的微米阵列。
在加工过程中,要采取合适的激光输出功率和聚焦物镜倍数,从而使金属 钛的结构表面非晶化,该非晶化有利于阳极氧化过程中氧空位的形成。其中, 所述合适的激光输出功率范围为5mw-30mw,聚焦物镜采用10倍物镜。
在加工过程中,扫描速度范围(飞秒激光的激光焦点在金属钛上的移动速 度)可以为200-10000μm/s,优选为200μm/s;间距范围(飞秒激光的激光焦点 走的直线之间的间隔)可以为25-75μm,优选为25μm。
加工的微米列阵,可以是锥状结构、圆柱结构、方台结构等各种类型的结 构。
步骤二:将经过飞秒激光加工的微米阵列结构,放到电化学工作站中进行 阳极氧化,得到二氧化钛的微纳复合结构。如,微米锥-纳米管微纳复合结构、 微米柱-纳米管微纳复合结构。
通过阳极氧化,将使钛金属表面完全转化为二氧化钛,同时,纳米管会在 微米结构表面垂直生长,呈空间三维曲面分布,布满整个微米结构的外表面。 在微米列阵结构陷光效应的基础上,大大提高了光吸收能力,同时大量的纳米 管提供了高比表面积。
优选的,进行阳极氧化处理时,电化学工作站的工作电压设定为45V,时间 为1个小时。
步骤三:对二氧化钛微纳复合结构进行退火处理,使其产生结晶。
经过阳极氧化后,电极的晶型为无定型二氧化钛。考虑锐钛矿的光电性能 比较好,采用退火方法使二氧化钛微纳复合结构产生结晶。
退火处理可在加热炉中进行,优选温度控制在500℃;持续至少1小时。
需要说明的是,对于应用本方法原理,通过不同加热参数而获得的含氧空 位自掺杂的多级结的光催化电极,仍然属于本专利保护范围。
有益效果
本发明方法,可获得高光吸收率的表面微纳结构并实现氧空位自掺杂,且 无需氢化处理,成本较低。
本发明方法,通过程序控制,利用飞秒激光加工出任意大小和形状的微米 结构,该结构具有显著地陷光效应,可实现太阳光的高效吸收。
本发明方法,通过激光加工结合阳极实现氧空位自掺杂,将禁带降低至 1.92eV,实现了太阳能的高效转化。
附图说明
图1为本发明方法的流程图,其中,(a)为金属钛片,(b)为激光加工过 后的微米锥结构示意图,(c)为阳极氧化后的二氧化钛多级结构示意图,(d)、 (e)、(f)分别为三个阶段基片的实物图。
图2为采用飞秒激光加工钛金属后得到的表面结构形貌电镜图。其中,(a) 为钛金属微米锥阵列结构的形貌,(b)为单个微米锥形貌图。
图3为采用飞秒激光加工钛金属后得到的表面结构纵截面的晶格分析图。 其中,(a)为钛金属微米锥阵的纵截面,(b)为该截面上不同区域的晶格图像 和电子衍射条纹。由该图可知,激光加工会使结构表面非晶化。
图4为微米锥-纳米管多级结构阵列形貌图。其中(a)为微米锥-纳米管多 级结整体形貌图,图中可见微米锥表面分布有纳米管层。(b)为纳米管具体形貌 电镜图。由图中可知,纳米管内径约50nm,外径80nm。
图5为采取本发明方法制备的二氧化钛微米锥-纳米管光电极,将纳米管剥 离后,通过TEM观察(a)晶格图以及(b)电子衍射图案。
图6为本发明实例图。飞秒激光以不同能量和不同扫描速度在金属钛片上 加工微米锥状阵列后,再经过阳极氧化和退火处理,得到的二氧化钛光电极的 光吸收率(a)和禁带变化情况(b)的比较。
图7为本发明实施例图。飞秒激光以不同能量和不同扫描间距在金属钛片 商加工微米锥状阵列后,再经过相同参数下的阳极氧化和退火处理得到的二氧 化钛光电极的在太阳光光谱下(a)和可见光下(b)光电流大小的比较。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例
以钛金属基底为例,说明本发明方法的实施过程,包括以下步骤:
首先,利用飞秒激光加工系统,在钛金属表面加工微米锥结构阵列。如图1 (a)所示。
本实施例中,微米锥的扫描速度为200μm/s,间隔为25μm。得到的微米 锥深度为70μm,半高处直径为20μm,单位平方厘米上微米锥阵列结构可达15 万个。
根据本领域公知常识,微米结构的形状以及尺寸大小会对光吸收有显著的 影响。此处不限于锥状结构,可以采用此种方法得到微米圆柱阵列、微米方台 阵列等。
如图3(a)所示,在空气中,利用飞秒激光在钛金属基底上,加工出微米 锥阵列结构。对该结构用FIB离子束进行切片,得到的厚度为20nm左右的薄片, 图中Top区域为微米锥顶端。根据该图可知,在激光对钛基底进行加工后,得 到的微米锥表面有非晶化以及由纳米多晶出现。此特征为本方法的主要特征之 一。
如图4(a)所示,将飞秒激光加工的微米锥阵列结构放到电化学工作站中 进行阳极氧化,得到二氧化钛的微米锥-纳米管微纳复合结构。阳极氧化使得钛 金属表面完全转化为二氧化钛,同时在微米锥的基础形貌使得纳米管呈空间三 维曲面分布,在微米锥陷光效应的基础上,大大提高了比表面积。
本实施例中,电化学工作站的工作电压设定为45V,对电极为面积为1cm2的 铂金(Pt)电极,溶液环境为NH4F的乙二醇(EG)溶液,质量分数为0.37%。 阳极氧化有诸多溶液环境可以使用,本发明采取的是含有0.37%氟化铵的乙二醇 溶液进行阳极氧化。
经过阳极氧化后,电极的晶型为无定型二氧化钛。考虑锐钛矿的光电性能 比较好,采用高温退火的方式使二氧化钛微纳复合结构产生结晶。本实例中, 高温退火在空气条件下进行,温度为500℃,持续1小时。然后,在30分钟内 冷却至20℃。
图5(a)为制备的二氧化钛纳米管透射电子显微镜(scanning electronmicroscopy) 图。从图5(a)中可以看出,纳米管二氧化钛纳米管的晶型对应为锐钛矿,并可看到有大量的空位缺陷分布。图5(b)为飞纳米管的电子衍射图。
图6(a)为制备的光电极的光吸收性能测试图。黑色曲线代表为纯P25(粒 径为25nm的二氧化钛纳米颗粒),绿色曲线代表经过阳极氧化处理和高温退火 处理而未经过飞秒激光加工的二氧化钛样品。蓝色曲线,粉色曲线,红色曲线 分别代表不同的激光参数加工后得到的二氧化钛光电极样品。从图6(a)中可 以看出,经过飞秒激光加工后再阳极氧化和退火处理的样品,相比较于未经过 飞秒激光加工的样品在整个紫外-可见光波段的光吸收性能都得到了极大的提 高,且激光的能量与加工的微米锥尺寸大小都会对光吸收有显著地影响。在图 6(b)中,可以看出,经过飞秒激光加工过的样光学禁也有明显减小。
除了良好的光吸收性能外,图7为不同能量的秒激光在钛金属基底上加工 不同尺寸的微米锥结构,阳极氧化后的光电流性能测试曲线。从图中可以发现, 在1M太阳光谱的辐照下,飞秒激光处理过的样品的光电流相比未经飞秒激光处 理过的样品提高了8倍。而在可见光下,飞秒激光处理过的样品的光电流相比 未经飞秒激光处理过的样品提高了15倍。
本领域的普通技术人员可以理解,上述实施方式是实现本发明的具体实施 例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发 明的精神和范围。

Claims (8)

1.一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,包括以下步骤:
步骤一:利用飞秒激光加工系统,采取飞秒激光直写方式,在金属钛表面直接加工微米阵列;
步骤二:将经过飞秒激光加工的微米阵列结构,放到电化学工作站中进行阳极氧化,得到二氧化钛的微纳复合结构;
步骤三:对二氧化钛微纳复合结构进行退火处理,使其产生结晶。
2.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤一中,所述加工过程通过程序进行控制,首先进行行扫,然后进行列扫,从而加工出任意大小和形状的微米阵列。
3.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤一中,加工过程中,要采取合适的激光输出功率和聚焦物镜倍数,其中,所述合适的激光输出功率范围为5mw-30mw,聚焦物镜采用10倍物镜。
4.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤一中,在加工过程中,扫描速度,即飞秒激光的激光焦点在金属钛上的移动速度范围为200-10000μm/s。
5.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤一中,间距范围,即飞秒激光的激光焦点走的直线之间的间隔范围为25-75μm。
6.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤二进行阳极氧化处理时,电化学工作站的工作电压设定为45V,时间为1个小时。
7.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤三进行退火处理时,温度控制在500℃。
8.如权利要求1所述的一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法,其特征在于,步骤三进行退火处理时,加热时间持续不小于1小时,并在30分钟内冷却至20℃。
CN201910301942.6A 2019-04-16 2019-04-16 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法 Active CN109913927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910301942.6A CN109913927B (zh) 2019-04-16 2019-04-16 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910301942.6A CN109913927B (zh) 2019-04-16 2019-04-16 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法

Publications (2)

Publication Number Publication Date
CN109913927A true CN109913927A (zh) 2019-06-21
CN109913927B CN109913927B (zh) 2020-12-25

Family

ID=66969970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910301942.6A Active CN109913927B (zh) 2019-04-16 2019-04-16 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法

Country Status (1)

Country Link
CN (1) CN109913927B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110695515A (zh) * 2019-09-18 2020-01-17 清华大学 利用飞秒激光在蚕丝薄膜上加工纳米锥阵列的方法及系统
CN110898838A (zh) * 2019-09-06 2020-03-24 天津大学 毫秒激光直写技术合成Ni掺杂FeOOH/NF的制备方法及应用
CN111850653A (zh) * 2020-06-23 2020-10-30 清华大学 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN112844348A (zh) * 2019-11-28 2021-05-28 桂林理工大学 一种具有微纳米结构的TiO2纳米管阵列光阳极的制备方法
CN115159567A (zh) * 2022-08-16 2022-10-11 济南大学 一种缺陷诱导杂原子掺杂二氧化钛电极材料及其制备方法
CN115248204A (zh) * 2022-07-20 2022-10-28 济南大学 一种用于拉曼检测的二氧化钛固相微萃取探头及制备方法
CN116833578A (zh) * 2023-08-31 2023-10-03 中国科学院长春光学精密机械与物理研究所 金属表面电解氧化层超疏水防腐蚀的激光加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110898838A (zh) * 2019-09-06 2020-03-24 天津大学 毫秒激光直写技术合成Ni掺杂FeOOH/NF的制备方法及应用
CN110695515A (zh) * 2019-09-18 2020-01-17 清华大学 利用飞秒激光在蚕丝薄膜上加工纳米锥阵列的方法及系统
CN110695515B (zh) * 2019-09-18 2020-10-27 清华大学 利用飞秒激光在蚕丝薄膜上加工纳米锥阵列的方法及系统
CN112844348A (zh) * 2019-11-28 2021-05-28 桂林理工大学 一种具有微纳米结构的TiO2纳米管阵列光阳极的制备方法
CN111850653A (zh) * 2020-06-23 2020-10-30 清华大学 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
WO2021258523A1 (zh) * 2020-06-23 2021-12-30 清华大学 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN115248204A (zh) * 2022-07-20 2022-10-28 济南大学 一种用于拉曼检测的二氧化钛固相微萃取探头及制备方法
CN115159567A (zh) * 2022-08-16 2022-10-11 济南大学 一种缺陷诱导杂原子掺杂二氧化钛电极材料及其制备方法
CN116833578A (zh) * 2023-08-31 2023-10-03 中国科学院长春光学精密机械与物理研究所 金属表面电解氧化层超疏水防腐蚀的激光加工方法
CN116833578B (zh) * 2023-08-31 2023-10-31 中国科学院长春光学精密机械与物理研究所 金属表面电解氧化层超疏水防腐蚀的激光加工方法

Also Published As

Publication number Publication date
CN109913927B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN109913927A (zh) 一种基于飞秒激光增强自掺杂的二氧化钛光电极制备方法
CN104362412B (zh) 一种ZnO/g-C3N4纳米复合材料及其制备方法
CN107723777B (zh) 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
CN106498372B (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
CN105251490B (zh) 基于水热法制备α‑Fe2O3纳米管阵列的方法
CN106917128B (zh) 一种锡-钼共掺杂二氧化钛纳米管阵列电极及制备方法
CN106540673A (zh) 一种三维TiO2/ZnO异质结阵列的合成方法
CN108466015A (zh) 一种纳米结构三维分布的超双疏金属表面及其制备方法
CN105088312A (zh) 二氧化钛纳米管阵列薄膜的制备方法
CN103132120A (zh) 一种制备可高效降解有机污染物的光电催化电极材料的方法
CN102569444B (zh) 广谱高吸收的太阳能电池结构及其制作方法
Iqbal et al. Chromium incorporated copper vanadate nano-materials for hydrogen evolution by water splitting
CN102995091A (zh) 一种用于场发射的二氧化钛纳米尖阵列薄膜的制备方法
CN109382083A (zh) 碳纳米管掺杂的二氧化钛纳米管光催化材料及其制备方法
CN104399503B (zh) 铁、氮、氟共掺杂二氧化钛纳米管阵列光催化剂及其制备方法和应用
CN103628111B (zh) 大面积Ti网上制备TiO2纳米管阵列的方法
CN108910864B (zh) 一种石墨烯基光电转化器件及其制备方法和应用
CN103871745A (zh) 一种树枝状ZnO纳米线阵列结构材料及其制备方法和应用
CN110116273A (zh) 飞秒激光协同氧化反应制备宽谱带抗反射结构的方法
CN108722442B (zh) 一种二硫化钼/钨酸锰纳米棒复合材料及其制备方法和应用
CN110747506A (zh) 一种过渡金属掺杂的InxGa1-xN纳米柱及其制备方法与应用
CN105833871A (zh) 一种富缺陷的钴镶嵌碳纳米管、制备方法及其应用
CN109482218A (zh) 一种采用Ni2P纳米晶增强光催化的方法
CN104576070A (zh) 二氧化钛纳米棒-金空心球-CdS复合光阳极的制备方法
Kamble et al. Synthesis of Bi-doped titanium oxide by chemical bath deposition for dye synthesized solar cell application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant