CN106498372B - 光沉积制备Bi/BiVO4复合光电阳极材料的方法 - Google Patents

光沉积制备Bi/BiVO4复合光电阳极材料的方法 Download PDF

Info

Publication number
CN106498372B
CN106498372B CN201610936131.XA CN201610936131A CN106498372B CN 106498372 B CN106498372 B CN 106498372B CN 201610936131 A CN201610936131 A CN 201610936131A CN 106498372 B CN106498372 B CN 106498372B
Authority
CN
China
Prior art keywords
bivo
electrode
light
composite photoelectric
photoelectric anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610936131.XA
Other languages
English (en)
Other versions
CN106498372A (zh
Inventor
王其召
牛腾娇
和继娟
白燕
张淑玲
佘厚德
王芳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201610936131.XA priority Critical patent/CN106498372B/zh
Publication of CN106498372A publication Critical patent/CN106498372A/zh
Application granted granted Critical
Publication of CN106498372B publication Critical patent/CN106498372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种光沉积制备Bi/BiVO4复合光电阳极的方法,是将BiVO4电极浸于Bi(NO3)3·5H2O的乙二醇/水混合溶液中,光照使得在BiVO4电极表明均匀生长一层灰黑色膜;用乙醇洗涤,即得Bi/BiVO4复合光电阳极。本发明利用简单的光还原过程将Bi金属粒子成功的负载到了多孔BiVO4薄膜上,而且金属Bi粒子的引入扩大了钒酸铋对可见光吸收范围;另外,金属Bi粒子中的电子转移到BiVO4导带上从而提高载流子的浓度,在纯Na2SO4溶液中BiVO4表面的空穴氧化了部分金属Bi纳米粒子,有效促进了电子‑空穴对的分离,提高了光电化学分解水的性能。

Description

光沉积制备Bi/BiVO4复合光电阳极材料的方法
技术领域
本发明涉及一种BiVO4基复合光电阳极材料的制备,尤其涉及Bi/BiVO4复合光电阳极材料的方法,主要用于光电产氢的三电极体系中,属于复合材料技术领域和清洁能源领域。
背景技术
目前,氢气被认为是最理想的清洁能源,因为它有高的燃烧值并且产物无污染,所以被广泛的用于代替化石燃料来解决能源短缺和环境污染问题。现在很多学者正在探索制氢的方法。自从1972年Fujisima和Honda发现TiO2电极可以光催化分解水,光催化分解水技术和光电解水技术就开始迅速发展。光电解水反应效率高、污染小。目前利用取之不尽用之不竭的太阳能和外加电场作用分解水是一种最有前景的方法之一。到目前为止,已经研究了许多半导体材料作为光阳极,特别是二元金属氧化物被广泛的应用于光电产氢领域。然而因这些材料的化学性质不稳定,电子-空穴对容易复合,可见光吸收能力弱,电子-空穴对迁移速度慢等因素限制了它们在光电化学领域的应用。即使通过各种改性提高了其性能,但入射光子转换效率依然较低。为了克服以上的缺陷,学者们探究了像Bi2MoO6,BiVO4,Bi2WO6等多金属氧化物,因为它可以调控电子结构且化学稳定性较好。特别是BiVO4是一种禁带宽度较窄(Eg=2.4~2.5 eV)吸收可见光的n型半导体,它的价带位置在2.4 eV vs NHE(标准氢电极),导带位置与氢气还原电势接近,这就可以确保水在电解池中会发生氧化反应,所以BiVO4在三电极体系中可以作为优良的光电阳极材料。
近年来,大量的研究已经解决了BiVO4电子-空穴对再结合和太阳能转化效率低的问题。总的来说,BiVO4的光电化学性能通过各种方法已经得到了一定程度的提高。普遍的方法包括:离子掺杂、形貌调控、与WO3,ZnFeO4,氧化石墨烯,BiOI形成异质结,负载产氧助催化剂Co3O4,NiO,FeOOH,NiOOH,或者在表面沉积贵金属纳米粒子Ag、Au 等。由于贵金属纳米粒子表面等离子体共振效应,贵金属与半导体结合可以很好的提高光催化性能和光电化学性能。然而,我们更希望用低成本的金属取代贵金属来达到更好的经济效益。因此许多研究者已经将研究对象转向了过渡金属Bi,金属Bi资源丰富、有较好的单斜晶相、无毒。近年来Bi’课题组广泛的研究了Bi和Bi-基材料。通过水热法制备铋合金纳米微球有很好的光催化产氢性能。因此,在BiVO4表面沉积过渡金属粒子Bi,以期提高BiVO4光电化学性能和光催化降解性能,应用于光催化降解有机污染物和三电极体系光电化学分解水等领域,达到更好的经济效益。
发明内容
本发明的目的是提供一种沉积制备Bi/BiVO4复合光电阳极的方法,通过简单的光还原过程将Bi金属粒子负载到了多孔光电阳极BiVO4薄膜上,以提高光电阳极BiVO4光电化学分解水的性能。
一、Bi/BiVO4光电阳极的制备
本发明光沉积制备Bi/BiVO4复合光电阳极的方法,是将BiVO4电极浸于Bi(NO3)3·5H2O的乙二醇/水混合溶液中,光照使得在BiVO4电极表明均匀生长一层灰黑色膜;用乙醇洗涤,即得Bi/BiVO4复合光电阳极。
所述Bi(NO3)3·5H2O的乙二醇/水混合溶液中,Bi(NO3)3·5H2O的浓度为0.01~0.05M;乙二醇/水混合溶液中,乙二醇的体积百分数为1~50%。
所述光照以300 W 氙灯作为光源,光照时间为30~90min。
二、Bi/BiVO4光电阳极的表征
1、X-射线衍射图(XRD)
图1为BiVO4(Bi/BV-0)和Bi/BiVO4(Bi/BV-30、Bi/BV-60、Bi/BV-90。)薄膜的XRD图。图1显示,BiVO4的所有衍射峰表明为单斜晶体,且没有其他杂质峰和其他晶相的衍射峰出现。光反应以后Bi/BiVO4的强衍射峰在27.14℃、37.93℃、39.61℃、48.73℃和56.02℃出现,而且随着光沉积的时间延长衍射峰的强度也增强,原因可能是随着时间的延长复合材料的结晶度更好。
2、电镜扫描图(SEM)
图2为光电极的电镜扫描图。其中a为多孔BiVO4薄膜,b、c、d分别为在BiVO4薄膜沉积30、60、90min时薄薄的一层铋金属均匀覆盖在BiVO4薄膜上。图2现表明随着光沉积时间的延长不同大小规则的块状物越来越多。说明这些卷状物是在光反应时形成的。所有电极的XRD表征都证明了金属铋的存在。所以,更加证明金属铋粒子成功的负载到了BiVO4薄膜上。
3、紫外-可见漫反光谱(DRS)
图3 为BiVO4和 B/BV-60的紫外漫反射图。众所周知,BiVO4是能很好响应可见光的n型半导体。图3的表征显示,Bi/BiVO4电极比纯BiVO4(300~500 nm)电极吸收强度大大降低,这可能是因为BiVO4表面的金属铋粒子阻挡了光的吸收。但Bi/BiVO4的吸收边(约为515 nm)发生了红移,这就使得Bi/BiVO4电极可以吸收更多的可见光从而使得光性能更好。
三、Bi/BiVO4光电阳极光电化学性能测试
BiVO4及Bi/BiVO4电极的光电化学性能用传统的三电极体系连接CHI660D电化学工作站(CHI上海)测试,三个电极分别为Ag/AgCl (0.35M KCl)为参比电极、铂箔为对电极和B/BV/FTO为工作电极。0.5 M Na2SO4为电解液。带有滤光片的300 W氙灯(CEL-HXF300)作为模拟太阳光,在室温下从工作电极背面照射,照射面积为2 cm2。线性扫描(LSV)和循环伏安曲线(CV)在扫速为50 mV/s时测试。光电阳极的I-t曲线在偏压为0.6 V和1.0 V下测定。光电转换效率用带有单色仪(71SWS,北京的七星级光学仪器有限公司)的氙灯(PLS-SXE300C)照射下测试,外加电压为1.0 V Ag/AgCl (3.5 M)。
图4为BiVO4及Bi/BiVO4电极的循环伏安曲线。从图4中可以看出,当电压从-1.2 V到 -0.4V时BiVO4的电流密度急剧增加。当电压超过-0.4V时,BiVO4薄膜电流密度没有变化趋近于0,说明BiVO4薄膜有稳定的电化学性能。这也为光电流测试时的偏压提供了参考。Bi/BiVO4电极在正电势内随着金属铋含量的增加电流增大。负电势是Bi/BiVO4光电极的还原峰,推测这也是H2O的还原峰。我们认为金属铋和BiVO4自身构成了一个紧密连接的电解池,因为在室温下金属铋比Pt电极更活泼,所以H+向工作电极移动吸附在铋粒子上,H+被还原为H2,这个还原峰(-0.83 V)接近水的还原电势。因此可以分解水。
图5为BiVO4及Bi/BiVO4电极电流密度线性扫描图。发现无光照时BiVO4薄膜几乎没有电流。随着金属铋含量和电压的增加,电流也逐渐增加最后趋于平衡,这与循环伏安曲线一致。在光照时,所有的电极在不同电压下都有不同的电流密度。在0~0.7 V时纯BiVO4比B/BV-30复合材料获得更多的光电流,但在0.7 V以后,Bi/BiVO4电极表现出了更好的光电化学性能。两个可能的原因:第一,起初时金属铋粒子遮挡了模拟太阳光使得光电流比纯BiVO4电极少。第二,电子更多的聚集在金属铋粒子上,而空穴更多的聚集在BiVO4表面,这就加速了载流子的分离从而提高了光电化学性能。
图6、7分别为Bi/BVO4在0.6 V、1.0 V vsAg/AgCl (0.35 M KCl)偏压时i-t循环曲线。实验条件是模拟太阳光时用不同的电压。通过6可以明显的看出在电压为0.6V时,B/BV-30比B/BV-0光电流密度小。这不仅是因为金属铋粒子降低了光的透过率,而且因为BiVO4在相对低的偏压时本身就是一个很好的光响应材料。当偏压为1.0V时,所有的Bi/BiVO4光电极的光电流密度都比纯BiVO4电极高。随着偏压的增大所有光电极的光电流密度增大。光照下,在0.5 M Na2SO4电解液中B/BV-60电极表现出了最好的光电化学性能,这与LSV分析符合。这主要是因为金属有很多的电子可以提高载流子密度,另一方面金属铋很容易被牺牲剂表面的空穴氧化,因此有效的将电子-空穴对分离从而提高光电流密度。总的来说,金属铋的电子迁移到BiVO4的导带,因为BiVO4导带有更正的电势能,而在BiVO4表面的空穴发生氧化反应,促进了光电化学反应的进行。
为了更好的说明不同波长的入射光照射下载流子的传递行为,测试了在Na2SO4电解液中偏压为1.0V时的光电转换效率。用下列公式处理光电转换效率数据。IPCE= 1240Isc / (l Pin)其中Isc、l和Pin所使用的单位分别为μA cm-2 、nm和W m-2。计算结果表明在350~500 nm之间,BiVO4电极光电转换效率为3~9%,Bi/BiVO4电极光电转换效率为10~28%。图8 为光电转换效率曲线。图8表明BiVO4在超过500 nm波长时几乎没有光电流,而金属铋的复合材料在500~550 nm波长间都有光电流,这与紫外漫反射图分析相一致。性能最好的B/BV-60电极的光电转换效率比BiVO4电极高这也与I-t图相符。
图9为光照后的XRD图。在仅有Na2SO4电解液时,金属铋粒子经过光电化学反应后所有的衍射峰都减弱,但是在Na2SO3电解液中时不会发生改变。Na2SO3被认为是空穴牺牲剂,金属铋被光生空穴氧化。光照下部分金属铋粒子是被光生空穴所消耗,有效的分离了电子-空穴对,在光电化学反应中加速了载流子的迁移速度提高光电化学性能。
根据紫外漫反射与公式计算得出BiVO4的导带为0.29 eV价带为2.19 eV,因此可能的反应机理如图10。光照下金属铋粒子产生电子-空穴对,电子向电势更正的BiVO4导带迁移,电子在通过外电路到达Pt电极与氢离子反应生成氢气。同时金属铋粒子也被BiVO4价带的空穴所氧化,抑制了载流子的再结合。铋离子的形成构成了掺杂能级,有利于载流子的传递。最终在光电化学电解池中实现了光催化分解水。
综上所述,金属铋粒子通过光沉积负载在BiVO4膜上。所有制备的样品中B/BV-60有最好的光电化学性能。光电化学测试表明,金属铋粒子的引入提高了光电极的光电化学性能和光电转换效率,并且比纯BiVO4薄膜高很多。可能的两个原因是金属/半导体的复合加快了载流子的分离。金属铋粒子的引入也能够提高可见光吸收能力;部分金属铋粒子被活性氧氧化为铋原子减小了铋的带隙,有利于提高光电流响应。
附图说明
图1为 BiVO4和Bi / BiVO4光电极不同沉积时间的衍射图。
图2为 SHAPE \* MERGEFORMAT BiVO4和Bi / BiVO4光电极不同沉积时间的扫描电镜图,其中(a)B/BV-0(b)B/BV-30(c)B/BV-60(d)B/BV-90 。
图3 为BiVO4和 B/BV-60的紫外漫反射图。
图4为 BiVO4和 Bi/BVO4电极在Na2SO4电解液中的循环伏安曲线。
图5 为BiVO4和 Bi/BVO4电极的线性扫描。
图6 为Bi/BVO4在0.6 V偏压时i-t循环曲线。
图7为Bi/BVO4在1.0 V vsAg/AgCl (0.35 M KCl) 循环曲线。
图8 光电转换效率曲线。
图9 光照后所有光电极的XRD。
图 10为 Bi/BiVO4反应机理图。
具体实施方式
下面通过具体实施例对本发明Bi/BiVO4复合光电阳极的制备及性能作进一步说明。
实施例1
(1)BiVO4光电阳极的制备:根据Kim和Choi课题组电沉积结合热处理的方法,多孔BiVO4膜被成功制备。步骤:首先用CHI 660D电化学工作站通过电沉积法制备BiOI纳米片。用丙酮/异丙醇/蒸馏水(体积比:1:1:1)超声清洗过的FTO玻璃作为工作电极,Ag/AgCl(3.5 M KCl) 电极为参比电极,Pt电极为对电极。用6M HNO3将50 mL0.4 M KI溶液pH调节至1.5~1.7,再加入0.970 g Bi(NO3)3·5H2O直至溶解,溶液颜色变为橙红色。然后慢慢滴加20ml 0.498 g 1, 4-苯醌乙醇溶液搅拌数分钟,溶液又变为血红色。电沉积用循环伏安法扫描,电压:-0.13-0 V,扫速:5 mV/ s。获得BiOI薄膜用蒸馏水洗涤。随后,0.1 mL 0.2 M乙酰丙酮氧钒-二甲基亚砜溶液用微量注射器滴在制备好的BiOI薄膜上,在马弗炉中以2 ℃/min速率升至450℃煅烧2h。多余的V2O5和氧化铋等用1 M NaOH浸泡消除,留下纯黄色的钒酸铋薄膜。最终获得的BiVO4电极用蒸馏水洗涤自然干燥,即得BiVO4光电阳极薄膜,标记为Bi/BV-0。
(2)Bi/BiVO4复合光电阳极的制备:将BiVO4电极浸泡在20 mL 0.01 M Bi(NO3)3·5H2O的乙二醇/水(V%=1)溶液中,以300 W 氙灯作为光源照射30min,使BiVO4薄膜上均匀地生长一层灰黑色膜;用乙醇完全洗涤,即得Bi/BiVO4复合光电阳极,标记为Bi/BV-30,当U=1.3V时I=7.3mA/cm2
实施例2
(1)BiVO4光电阳极的制备:同实施例1;
(2)Bi/BiVO4复合光电阳极的制备:将BiVO4电极浸泡在20 mL 0.01 M Bi(NO3)3·5H2O的乙二醇/水(V%=1)溶液中,以300 W 氙灯作为光源照射60min,使BiVO4薄膜上均匀地生长一层灰黑色膜;用乙醇完全洗涤,即得Bi/BiVO4复合光电阳极,标记为Bi/BV-60。当U=1.3V时I=9.48mA/cm2
实施例3
(1)BiVO4光电阳极的制备:同实施例1;
(2)Bi/BiVO4复合光电阳极的制备:将BiVO4电极浸泡在20 mL 0.01 M Bi(NO3)3·5H2O的乙二醇/水(V%=1)溶液中,以300 W 氙灯作为光源照射90min,使BiVO4薄膜上均匀地生长一层灰黑色膜;用乙醇完全洗涤,即得Bi/BiVO4复合光电阳极,标记为Bi/BV-90。当U=1.3V时I=8.4mA/cm2
实施例4
(1)BiVO4光电阳极的制备:同实施例1;
(2)Bi/BiVO4复合光电阳极的制备:将BiVO4电极浸泡在20 mL 0.01 M Bi(NO3)3·5H2O的乙二醇/水(V%=1)溶液中,以300 W 氙灯作为光源照射60min,使BiVO4薄膜上均匀地生长一层灰黑色膜;用乙醇完全洗涤,即得Bi/BiVO4复合光电阳极。当U=1.3V时I=9.48mA/cm2
实施例5
(1)BiVO4光电阳极的制备:同实施例1;
(2)Bi/BiVO4复合光电阳极的制备:将BiVO4电极浸泡在20 mL 0.01 M Bi(NO3)3·5H2O的乙二醇/水(V%=1)溶液中,以300 W 氙灯作为光源照射60min,使BiVO4薄膜上均匀地生长一层灰黑色膜;用乙醇完全洗涤,即得Bi/BiVO4复合光电阳极,当U=1.3V时I=9.48mA/cm2

Claims (3)

1.光沉积制备Bi/BiVO4复合光电阳极的方法,是将BiVO4电极浸于Bi(NO3)3·5H2O的乙二醇/水混合溶液中,光照使得在BiVO4电极表面 均匀生长一层灰黑色膜;用乙醇洗涤,即得Bi/BiVO4复合光电阳极;所述光照以300 W 氙灯作为光源,光照时间为30~90min。
2.如权利要求1所述光沉积制备Bi/BiVO4复合光电阳极的方法,其特征在于:所述Bi(NO3)3·5H2O的乙二醇/水混合溶液中,Bi(NO3)3·5H2O的浓度为0.01~0.05M。
3.如权利要求1所述光沉积制备Bi/BiVO4复合光电阳极的方法,其特征在于:所述乙二醇/水混合溶液中,乙二醇的体积百分数为1~50%。
CN201610936131.XA 2016-11-01 2016-11-01 光沉积制备Bi/BiVO4复合光电阳极材料的方法 Active CN106498372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610936131.XA CN106498372B (zh) 2016-11-01 2016-11-01 光沉积制备Bi/BiVO4复合光电阳极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610936131.XA CN106498372B (zh) 2016-11-01 2016-11-01 光沉积制备Bi/BiVO4复合光电阳极材料的方法

Publications (2)

Publication Number Publication Date
CN106498372A CN106498372A (zh) 2017-03-15
CN106498372B true CN106498372B (zh) 2019-01-22

Family

ID=58319041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610936131.XA Active CN106498372B (zh) 2016-11-01 2016-11-01 光沉积制备Bi/BiVO4复合光电阳极材料的方法

Country Status (1)

Country Link
CN (1) CN106498372B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518213B (zh) * 2017-09-18 2020-06-16 天津大学 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用
CN107626297B (zh) * 2017-09-29 2019-09-17 中南大学 一种空心微球状铋/钒酸铋复合光催化剂及其制备方法和应用
CN108301016A (zh) * 2018-01-25 2018-07-20 国家纳米科学中心 一种背照式光电阳极及其制备方法和用途
CN108654595A (zh) * 2018-05-17 2018-10-16 齐鲁工业大学 一种光催化还原二氧化碳的助催化剂及其制备方法与应用
CN109133259A (zh) * 2018-09-26 2019-01-04 上海电力学院 一种利用光阳极活化硫酸盐处理废水并副产氢气的方法
CN109280937B (zh) * 2018-11-27 2021-02-05 西北师范大学 一种zif-67/钒酸铋复合材料的制备及作为光电阳极材料的应用
CN110498487B (zh) * 2019-09-06 2021-12-24 西安建筑科技大学 一种十六烷基三甲基溴化铵改性钼酸铋光电极的制备方法、产品及其应用
CN110639533B (zh) * 2019-10-22 2022-05-17 盐城工学院 一种铜/改性钒酸铋复合光催化材料、制备方法及应用
CN111468177B (zh) * 2020-05-15 2022-04-15 山东师范大学 用于制备吡啶碱的分子筛催化剂及其制备方法与应用
CN113235124B (zh) * 2021-05-18 2022-04-26 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN113769728B (zh) * 2021-09-29 2023-05-26 陕西科技大学 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用
CN114618472B (zh) * 2022-01-10 2023-11-10 华北理工大学 一种氧化铋光阳极薄膜及其制备方法
CN116212966B (zh) * 2023-01-10 2023-10-03 齐齐哈尔大学 一种间接z型多组分铋基mof异质结及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028390A (zh) * 2012-12-24 2013-04-10 陕西科技大学 一种沿高活性(040)晶面取向生长圆饼片状N/BiVO4 光催化剂的制备方法
CN103433020A (zh) * 2013-08-15 2013-12-11 陕西科技大学 一种Eu/BiVO4光催化剂及其制备方法和应用
CN103521252A (zh) * 2013-10-30 2014-01-22 苏州大学 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028390A (zh) * 2012-12-24 2013-04-10 陕西科技大学 一种沿高活性(040)晶面取向生长圆饼片状N/BiVO4 光催化剂的制备方法
CN103433020A (zh) * 2013-08-15 2013-12-11 陕西科技大学 一种Eu/BiVO4光催化剂及其制备方法和应用
CN103521252A (zh) * 2013-10-30 2014-01-22 苏州大学 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ag-BiVO4复合光催化剂的制备及其可见光光催化机理的研究;吴春红等;《分子催化》;20150831;第29卷(第4期);全文
Pt/BiVO4光催化剂的制备及其光催化降解性能;张中杰等;《环境化学》;20140630;第33卷(第6期);第1004页1实验部分

Also Published As

Publication number Publication date
CN106498372A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN106498372B (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
Teng et al. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition
Li et al. Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays
Mor et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
KR100928072B1 (ko) 염료감응 태양전지 및 그 제조방법
Jia et al. Electron-transfer cascade from CdSe@ ZnSe core-shell quantum dot accelerates photoelectrochemical H2 evolution on TiO2 nanotube arrays
Bashiri et al. Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell
Davi et al. Enhanced photoelectrochemical water oxidation efficiency of CuWO4 photoanodes by surface modification with Ag2NCN
CN109569630A (zh) 一种负载镍钴水滑石纳米粒子的钒酸铋复合材料制备及在光电水氧化中的应用
Ahmad et al. Three dimensional rosette-rod TiO2/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting
Li et al. Photoelectrochemical performance of hydrogenated ZnO/CdS core–shell nanorod arrays
Ampelli et al. Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells
Bayat et al. Vertically aligned rutile TiO2 nanorods sensitized with sulfur and nitrogen co-doped graphene quantum dots for water splitting: an energy level study
CN107675200B (zh) 一种改性g-C3N4量子点/TiO2纳米线光阳极及其应用
CN103871750B (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
Vo et al. Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting
Rao et al. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition
Momeni et al. Effect of electrodeposition time on morphology and photoelecrochemical performance of bismuth vanadate films
Le et al. Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation
Sánchez-Tovar et al. Electrochemical formation of novel TiO2-ZnO hybrid nanostructures for photoelectrochemical water splitting applications
Abouelela et al. Anodic nanoporous WO3 modified with Bi2S3 quantum dots as a photoanode for photoelectrochemical water splitting
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
Xu et al. Heterogeneous three-dimensional TiO 2/ZnO nanorod array for enhanced photoelectrochemical water splitting properties
Cao et al. Mechanism investigation of the postnecking treatment to WO3 photoelectrodes
Xu et al. Enhanced photoelectrochemical performance with in-situ Au modified TiO2 nanorod arrays as photoanode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant