WO2017198033A1 - 一种自支撑二氧化钛三维微纳米结构制备方法 - Google Patents

一种自支撑二氧化钛三维微纳米结构制备方法 Download PDF

Info

Publication number
WO2017198033A1
WO2017198033A1 PCT/CN2017/081354 CN2017081354W WO2017198033A1 WO 2017198033 A1 WO2017198033 A1 WO 2017198033A1 CN 2017081354 W CN2017081354 W CN 2017081354W WO 2017198033 A1 WO2017198033 A1 WO 2017198033A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
tio
microstructure
micro
dimensional micro
Prior art date
Application number
PCT/CN2017/081354
Other languages
English (en)
French (fr)
Inventor
黄婷
卢金龙
肖荣诗
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2017198033A1 publication Critical patent/WO2017198033A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the preparation of a surface micro-nano functional structure, in particular to a method for preparing a self-supporting crystalline TiO 2 three-dimensional micro-nano structure on a Ti substrate by ultra-fast laser etching and chemical treatment.
  • Nano TiO 2 has wide application in dye sensitized solar cells, lithium ion batteries, photocatalysis, etc. due to its advantages of safe and non-toxicity, high photoelectric conversion efficiency and good stability. Although the widely used nano-powders have higher efficiency in photocatalytic applications, it is difficult to collect and recover the nanoparticles dispersed in the solution during the reaction, which may cause secondary pollution to the degrading liquid; It needs to be combined with a conductive substrate by subsequent processing. This indirect bonding can increase the charge transfer impedance and limit the further improvement of device performance.
  • the Ti-based TiO 2 self-supporting structure has a direct charge transport path, which can realize rapid transfer of photogenerated electrons, reduce charge transfer impedance, and improve photoelectric conversion capability, and is widely used for dye-sensitized solar energy.
  • Battery photoanode, lithium ion battery electrode, photocatalytic material The adsorption amount of the sensitizer by the photoanode of the dye-sensitized solar cell, the contact area of the electrode of the lithium ion battery with the electrolyte, and the adsorption amount of the degradant during the photocatalytic reaction all require a high specific surface area for the TiO 2 structure.
  • the TiO 2 structures prepared directly on the surface of the Ti substrate are mostly one-dimensional structures such as nanowires, and the specific surface area is limited.
  • the preparation of TiO 2 micro/nanostructures with three-dimensional morphology can increase the light utilization efficiency and specific surface area, which is of great significance for practical applications.
  • the invention combines ultra-fast laser etching, NaOH chemical treatment and the like, first prepares the micro-structure on the surface of the Ti substrate by ultra-fast laser etching, and then prepares the nano-structure on the surface of the micro-structure by NaOH chemical treatment, and finally passes under acidic conditions. Ion exchange and annealing in air to obtain a three-dimensional micro-nanostructure of crystalline TiO 2 .
  • the micro-structure obtained by ultra-fast laser etching has excellent light absorption performance, and the crystalline TiO 2 three-dimensional micro-nano structure can maintain this advantage, and has the advantages of large specific surface area, and one-dimensional structure such as TiO 2 nanowire. The light absorption and substance adsorption properties are improved.
  • the invention provides a new method for large-area, high-efficiency and controllable preparation of three-dimensional micro-nanostructures of crystalline TiO 2 .
  • a method for preparing a crystalline TiO 2 three-dimensional micro-nano structure on a Ti substrate which is characterized in that: first, an ultra-fast laser is used to etch a pure Ti sheet, and a micro-structure is prepared on the surface of the Ti sheet; The Ti piece is placed in a NaOH solution for hydrothermal chemical treatment to convert the microstructure Ti to Na 2 Ti 2 O 5 and obtain nanostructures on the surface of the microstructure; and then transform the Na 2 Ti 2 O 5 by ion exchange under acidic conditions. Into H 2 Ti 2 O 5 ; finally, H 2 Ti 2 O 5 is converted into crystalline TiO 2 by annealing in air to realize the preparation of the self-supporting crystalline TiO 2 three-dimensional micro-nano structure.
  • a micro-structure is prepared on the surface of the pure Ti sheet by ultra-fast laser etching; then the laser-etched Ti piece is placed in a NaOH solution for hydrothermal chemical treatment to convert the microstructure Ti into Na 2 Ti 2 O 5 , and obtained nanostructure structure surface microns; through the ion under acidic conditions to exchange the Na 2 Ti 2 O 5 is converted into H 2 Ti 2 O 5; Finally annealed in air to H 2 Ti 2 O 5 converted to crystalline TiO 2 A self-supporting crystalline TiO 2 three-dimensional micro-nano structure is obtained.
  • the purity of the Ti flakes is 99 wt.% or more.
  • the ultrafast laser may include a picosecond to femtosecond laser having a pulse width of less than 10 picoseconds, and an ultrafast laser etching having an energy density of ⁇ 0.3 J/cm 2 .
  • the concentration of the NaOH solution used in the hydrothermal reaction is 1-10 M
  • the temperature is 150-220 ° C
  • the hydrothermal treatment time is 6-48 h
  • the acid concentration for ion exchange is 0.1-1 M
  • the ion exchange time is 1-12 h.
  • the annealing is performed in an air or oxygen atmosphere at an annealing temperature of 300 to 800 ° C and an annealing time of 1-6 h.
  • ultra-fast laser etching parameters and chemical processing parameters can respectively regulate micro-structure and nano-structure, and optimize the morphology of the TiO 2 three-dimensional micro-nano structure; 2) TiO 2 The three-dimensional micro-nano structure is directly bonded to the Ti substrate, and the charge transport impedance is small. 3) The TiO 2 three-dimensional micro-nano structure has self-supporting characteristics, and the recycling efficiency is high in the catalytic reaction compared with the TiO 2 powder material. Subsequent bonding treatment with the conductive substrate can be reduced.
  • Embodiment 1 is a pore micro-structure (A, B) after ultra-fast laser etching in Embodiment 1 and a three-dimensional micro-nano structure (C, D) after chemically treating the structure;
  • Embodiment 2 is a columnar array micro-structure (A, B) after ultra-fast laser etching in Embodiment 2 and a three-dimensional micro-nano structure (C, D) after chemically treating the structure;
  • Example 3 is a columnar array micro-structure (A, B) after ultra-fast laser etching in Example 3 and after chemically treating the structure Three-dimensional micro-nanostructures (C, D);
  • Figure 4 shows the XRD test results after (A), chemical treatment and annealing (B) after ultrafast laser etching;
  • Example 6 is a comparison of the surface reflectance of the flat surface nanowire structure (A) and the three-dimensional micro-nanostructure (B) prepared in Example 2.
  • the ultrafast laser parameters are 800fs pulse width, 80 ⁇ J single pulse energy, 800KHz repetition frequency, 40 ⁇ m focal spot diameter after laser galvanometer (energy density 6.4J/cm 2 ), and adjacent processing line spacing of 10 ⁇ m during processing.
  • the speed is 500 mm/s, and the Ti wafer is scanned and etched 20 times in the same direction under this parameter;
  • Ultrafast laser pulse width 800 fs parameters, pulse energy 5 J, the repetition frequency of 800KHz, the focused spot diameter of laser light by the galvanometer of 40 m (an energy density of 0.4J / cm 2), adjacent to the processing line when a pitch of 50 ⁇ m processing, scanning
  • the speed is 500 mm/s, and the horizontal and vertical directions of the Ti wafer are respectively scanned and etched 100 times under the parameter;
  • the ultrafast laser parameters are 800fs pulse width, 5 ⁇ J single pulse energy, 800KHz repetition frequency, 40 ⁇ m focal spot diameter after laser galvanometer (energy density 0.4J/cm 2 ), adjacent processing line spacing of 40 ⁇ m during processing, scanning
  • the speed is 500 mm/s, and the horizontal and vertical directions of the Ti wafer are respectively scanned and etched 100 times under the parameter;
  • step 3 The Ti piece obtained after the etching in step 2) is placed in a NaOH solution (10 ml, 3 M), and hydrothermally reacted at 220 ° C for 24 h;
  • Example 1 formed a non-uniform pore micro-structure on the surface (Figs. 1A, 1B).
  • a uniform convex micro-tapered array structure was formed on the surface (Figs. 2A, 2B, Figs. 3A, 3B).
  • the microstructure morphology is maintained (Fig. 1C, 2C, 3C); wherein, Examples 1 and 2 form a nanowire structure on the surface of the microstructure.
  • embodiment 3 A nano-sheet structure was obtained on the surface, and all the examples were able to obtain a three-dimensional micro-nano composite structure (Fig. 1D, 2D, 3D).
  • the XRD results show that in all the examples, the microstructure of the micro-structure after ultra-fast laser etching is mainly Ti (Fig. 4A). After chemical treatment, the microstructure of Ti is transformed into Na 2 Ti 2 O 5 , and the acidic condition is after ion exchange. 2 Ti 2 O 5 is converted into H 2 Ti 2 O 5 After the final heat treatment, H 2 Ti 2 O 5 is converted into anatase type TiO 2 (Fig. 4B).
  • TiO 2 nano-structured three-dimensional microstructure prepared in Example 1 were, under dark conditions with the embodiment of TiO 2 nanowire structures directly on the surface of Ti prepared in a flat dye adsorption performance test in methyl orange solution adsorption process test samples every 30min
  • the absorbance of the solution after 90 min adsorption, the absorbance of the solution of the TiO 2 nanowire structure on the flat surface decreased by 0.21 (Fig. 5A), and the three-dimensional micro/nanostructure of TiO 2 decreased by 0.43 (Fig. 5B); the solution concentration was proportional to the absorbance according to Lambert-Beer law.
  • the relationship between the material adsorption performance of the TiO 2 three-dimensional micro-nano structure is more than double that of the planar nano-wire structure, and the material adsorption performance of the three-dimensional micro-nano structure in other embodiments is also more than doubled.
  • the surface TiO 2 nanowire structure, other three-dimensional micro-nano structures can also achieve the effect of reducing the reflectance similar to that of FIG. 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

一种自支撑TiO2三维微纳米结构制备方法涉及表面微纳米功能结构的制备,在Ti基底上通过超快激光刻蚀与化学处理相结合制备结晶型TiO2三维微纳米结构的方法。首先采用超快激光对纯Ti片进行刻蚀,在纯Ti片表面制备出微米结构;然后将超快激光刻蚀后的Ti片放入NaOH溶液中对微米结构进行水热化学处理,在微米结构表面制备纳米结构;最后在酸性条件下离子交换与空气中退火。通过上述工艺步骤,在Ti基底上获得结晶型TiO2三维微纳米复合结构。该方法制备的TiO2与基底结合牢固,且可分别对微米结构和纳米结构进行调控,从而实现应用性能的提升,在染料敏化太阳能电池、锂离子电池、光催化等领域具有广阔应用前景。

Description

一种自支撑二氧化钛三维微纳米结构制备方法 技术领域
本发明涉及表面微纳米功能结构的制备,具体为一种采用超快激光刻蚀与化学处理相结在Ti基底上制备自支撑结晶型TiO2三维微纳米结构的方法。
背景技术
纳米TiO2以安全无毒、光电转换效率高、稳定性好的优点,在染料敏化太阳能电池、锂离子电池、光催化等领域具有广泛应用。目前广泛应用的纳米粉体虽然在光催化应用时具有较高的效率,但反应过程中分散在溶液中的纳米颗粒收集与回收难度大,进而会对降解液造成二次污染;在电极应用时需要通过后续处理将其与导电基底结合,这种间接结合可增加电荷传输阻抗,限制了器件性能的进一步提升。
与纳米颗粒的上述问题形成对比,Ti基底TiO2自支撑结构具有直接的电荷传输通路,可以实现光生电子的快速转移,减小电荷传输阻抗,提高光电转换能力,被广泛用于染料敏化太阳能电池光阳极、锂离子电池电极、光催化材料。染料敏化太阳能电池光阳极对敏化剂的吸附量、锂离子电池电极与电解液的接触面积、光催化反应时对降解物的吸附量均对TiO2结构提出高比表面积的要求。目前,直接在Ti基底表面制备的TiO2结构多为纳米线等一维结构,比表面积有限。通过三维形貌TiO2微纳米结构的制备,可增加光利用效率与比表面积,对实际应用具有重要意义。
本发明将超快激光刻蚀、NaOH化学处理等工艺结合,先用超快激光刻蚀在Ti基底表面制备微米结构,再通过NaOH化学处理在微米结构表面制备纳米结构,最后通过酸性条件下的离子交换与空气中退火得到结晶型TiO2三维微纳米结构。超快激光刻蚀后得到的微米结构具有优异的光吸收性能,结晶型TiO2三维微纳米结构可保持这一优点,并兼具比表面积大的优点,同TiO2纳米线等一维结构相比,提高了光吸收与物质吸附性能。
发明内容
本发明提供了一种大面积、高效、可控制备结晶型TiO2三维微纳米结构的新方法。
一种在Ti基底上制备结晶型TiO2三维微纳米结构的方法,其特征是:首先采用超快激光对纯Ti片进行刻蚀,在Ti片表面制备微米结构;然后将激光刻蚀后的Ti片放入NaOH溶液中进行水热化学处理将微米结构Ti转变成Na2Ti2O5,并在微米结构表面获得纳米结构;再通过酸性条件下的离子交换将Na2Ti2O5转变成H2Ti2O5;最后通过空气中退火将H2Ti2O5转变为结晶型TiO2,实现自支撑结晶型TiO2三维微纳米结构的制备。
首先采用超快激光刻蚀在纯Ti片表面制备出微米结构;然后将激光刻蚀后的Ti片放入NaOH溶液中进行水热化学处理将微米结构Ti转变成Na2Ti2O5,并在微米结构表面获得纳米结构;再通过酸性条件下的离子交换将Na2Ti2O5转变成H2Ti2O5;最后通过空气中退火将H2Ti2O5转变为结晶型TiO2,获得自支撑结晶型TiO2三维微纳米结构。
进一步,Ti片的纯度在99wt.%以上。
进一步,超快激光可包括脉宽小于10皮秒的皮秒到飞秒激光、超快激光刻蚀的能量密度≥0.3J/cm2
进一步,水热反应所用的NaOH溶液浓度为1-10M,温度为150-220℃,水热处理时间6-48h;离子交换所用酸浓度为0.1-1M,离子交换时间1-12h。
进一步,退火在空气或氧气氛围中进行,退火温度300-800℃,退火时间1-6h。
本发明的优点是:1)超快激光刻蚀参数和化学处理参数可以分别对微米结构和纳米结构进行调控,针对TiO2三维微纳米结构具体的应用需求,优化其形貌;2)TiO2三维微纳米结构与Ti基底直接结合,电荷传输阻抗小;3)TiO2三维微纳米结构具有自支撑特点,同TiO2粉体材料相比,在催化反应时重复利用效率高,在电极应用时可减少与导电基底的后续结合处理。
附图说明
图1为实施例1超快激光刻蚀后的孔洞微米结构(A、B)和该结构化学处理后的三维微纳米结构(C、D);
图2为实施例2超快激光刻蚀后的柱状阵列微米结构(A、B)和该结构化学处理后的三维微纳米结构(C、D);
图3为实施例3超快激光刻蚀后的柱状阵列微米结构(A、B)和该结构化学处理后的 三维微纳米结构(C、D);
图4为超快激光刻蚀后(A)、化学处理及退火后(B)的XRD测试结果;
图5为平整表面纳米线结构(A)与实施例1制备的三维微纳米结构(B)在染料吸附过程中溶液吸光度变化;
图6为平整表面纳米线结构(A)与实施例2制备的三维微纳米结构(B)表面反射率对比。
具体实施方式
以下结合实施例进一步阐述本发明用超快激光刻蚀、水热化学法结合制备结晶型TiO2自支撑三维微纳米结构的方法,但本发明并不仅仅局限于下述实施例。
实施例1
1)用2000目的砂纸对纯Ti片(99.9wt.%,10mm×10mm×1mm)打磨后,超声清洗10分钟并干燥;
2)用超快激光对步骤1)得到的Ti片表面进行刻蚀。超快激光参数为脉宽800fs、单脉冲能量80μJ、重复频率800KHz、激光经振镜后的聚焦光斑直径为40μm(能量密度6.4J/cm2)、加工时相邻加工线间距为10μm、扫描速度500mm/s,在该参数下对Ti片进行同一方向扫描刻蚀20次;
3)将步骤2)刻蚀后得到的Ti片放入NaOH溶液(10ml,1M)中,在220℃下水热反应12h;
4)将步骤3)水热反应后的Ti片用去离子水冲洗后放入10ml浓度为1M的盐酸中2h,将水热反应产物中的Na离子脱出;
5)将步骤4)得到的Ti片用去离子水清洗后干燥,使用马弗炉在450℃下退火2h。
实施例2
1)用2000目的砂纸对纯Ti片(99.9wt.%,10mm×10mm×1mm)打磨后,超声清洗10分钟并干燥;
2)用超快激光对步骤1)得到的Ti片表面进行刻蚀。超快激光参数为脉宽800fs、单脉冲能量5μJ、重复频率800KHz、激光经振镜后的聚焦光斑直径为40μm(能量密度0.4J/cm2)、加工时相邻加工线间距为50μm、扫描速度500mm/s,在该参数下对Ti片水平与垂直方向分别扫描刻蚀100次;
3)将步骤2)刻蚀后得到的Ti片放入NaOH溶液(10ml,1M)中,在220℃下水热反应12h;
4)将步骤3)水热反应后的Ti片用去离子水冲洗后放入10ml浓度为1M的盐酸中离子交换2h,将水热反应产物中的Na离子脱出;
5)将步骤4)得到的Ti片用去离子水清洗后干燥,使用马弗炉在450℃下退火2h。
实施例3
1)用2000目的砂纸对纯Ti片(99.9wt.%,10mm×10mm×1mm)打磨后,超声清洗10分钟并干燥;
2)用超快激光对步骤1)得到的Ti片表面进行刻蚀。超快激光参数为脉宽800fs、单脉冲能量5μJ、重复频率800KHz、激光经振镜后的聚焦光斑直径为40μm(能量密度0.4J/cm2)、加工时相邻加工线间距为40μm、扫描速度500mm/s,在该参数下对Ti片水平与垂直方向分别扫描刻蚀100次;
3)将步骤2)刻蚀后得到的Ti片放入NaOH溶液(10ml,3M)中,在220℃下水热反应24h;
4)将步骤3)水热反应后的Ti片用去离子水冲洗后放入10ml浓度为1M的盐酸中离子交换2h,将水热反应产物中的Na离子脱出;
5)将步骤4)得到的Ti片用去离子水清洗后干燥,使用马弗炉在450℃下退火2h。
实施例1中超快激光刻蚀后在表面形成不均匀的孔洞微米结构(图1A、1B)。实施例2、3中超快激光刻蚀后在表面形成均匀凸起微米锥形阵列结构(图2A、2B,图3A、3B)。将超快激光刻蚀后得到的以上两种结构分别经NaOH化学处理后,微米结构形貌得到保持(图1C、2C、3C);其中,实施例1、2在微米结构表面形成纳米线结构,实施例 3则在表面获得纳米片状结构,所有实施例均能获得三维微纳米复合结构(图1D、2D、3D)。
XRD结果显示,在所有实施例中,超快激光刻蚀后的微米结构成分主要为Ti(图4A),经化学处理后微米结构Ti转变成Na2Ti2O5、酸性条件离子交换后Na2Ti2O5转变成H2Ti2O5最终热处理后H2Ti2O5转变为锐钛矿型TiO2(图4B)。
在黑暗条件下分别将实施例1制备的TiO2三维微纳米结构与在平整Ti表面直接制备的TiO2纳米线结构在甲基橙溶液中进行染料吸附性能测试,吸附过程中每隔30min取样测试溶液的吸光度,90min吸附结束后平整表面TiO2纳米线结构所在溶液吸光度下降0.21(图5A),TiO2三维微纳米结构下降0.43(图5B);根据朗伯-比尔定律溶液浓度与吸光度成正比的关系,TiO2三维微纳米结构的物质吸附性能比平面纳米线结构提升一倍以上,其他实施例中的三维微纳米结构的物质吸附性能也均有一倍以上不同程度的提高。
对实施例2中制备的TiO2三维微纳米结构与平整表面TiO2纳米线结构进行表面反射率测试,TiO2三维微纳米结构具有更低的反射率(图6),光吸收能力优于平整表面TiO2纳米线结构,其他三维微纳米结构同样可以达到类似图6降低反射率的效果。

Claims (5)

  1. 一种自支撑二氧化钛三维微纳米结构制备方法,其特征是:首先采用超快激光刻蚀在纯Ti片表面制备出微米结构;然后将激光刻蚀后的Ti片放入NaOH溶液中进行水热化学处理将微米结构Ti转变成Na2Ti2O5,并在微米结构表面获得纳米结构;再通过酸性条件下的离子交换将Na2Ti2O5转变成H2Ti2O5;最后通过空气中退火将H2Ti2O5转变为结晶型TiO2,获得自支撑结晶型TiO2三维微纳米结构。
  2. 根据权利要求1所述的方法,其特征在于,Ti片的纯度在99wt.%以上。
  3. 根据权利要求1所述的方法,其特征在于,超快激光可包括脉宽小于10皮秒的皮秒到飞秒激光、超快激光刻蚀的能量密度≥0.3J/cm2
  4. 根据权利要求1所述的方法,其特征在于,水热反应所用的NaOH溶液浓度为1-10M,温度为150-220℃,水热处理时间6-48h;离子交换所用酸浓度为0.1-1M,离子交换时间1-12h。
  5. 根据权利要求1所述的方法,其特征在于,退火在空气或氧气氛围中进行,退火温度300-800℃,退火时间1-6h。
PCT/CN2017/081354 2016-05-15 2017-04-21 一种自支撑二氧化钛三维微纳米结构制备方法 WO2017198033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610320230.5 2016-05-15
CN201610320230.5A CN105883912B (zh) 2016-05-15 2016-05-15 一种自支撑二氧化钛三维微纳米结构制备方法

Publications (1)

Publication Number Publication Date
WO2017198033A1 true WO2017198033A1 (zh) 2017-11-23

Family

ID=56717512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081354 WO2017198033A1 (zh) 2016-05-15 2017-04-21 一种自支撑二氧化钛三维微纳米结构制备方法

Country Status (2)

Country Link
CN (1) CN105883912B (zh)
WO (1) WO2017198033A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511730A (zh) * 2018-05-03 2018-09-07 陕西科技大学 一种多孔网状Zn2Ti3O8/TiO2纳米复合片状粒子及其制备方法和应用
CN110683576A (zh) * 2019-10-11 2020-01-14 山东贝科锐钛新材料科技有限公司 一种锂离子电池
US10687718B2 (en) 2016-05-10 2020-06-23 Apple Inc. Systems and methods for non-pulsatile blood volume measurements
CN112467081A (zh) * 2020-12-02 2021-03-09 四川大学 高负载多层分级纳米结构自支撑钛酸锂电极及其制备方法
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105883912B (zh) * 2016-05-15 2017-09-29 北京工业大学 一种自支撑二氧化钛三维微纳米结构制备方法
CN110092414B (zh) * 2018-01-30 2021-01-26 北京大学 一类具有特殊微观结构的金属氧化物材料及其制备方法
CN109292815B (zh) * 2018-09-04 2021-03-05 陕西理工大学 一种TiO2纳米片团簇膜的原位制备方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法
CN109731564A (zh) * 2019-02-25 2019-05-10 湖南科技大学 一种刻蚀TiO2纳米薄膜的方法
CN109972168A (zh) * 2019-04-16 2019-07-05 厦门大学 多重陷光纳米二氧化钛电极及其制备方法和应用
CN110563032A (zh) * 2019-10-11 2019-12-13 山东贝科锐钛新材料科技有限公司 一种TiO2纳米片自支撑薄膜的制备方法
CN112844348A (zh) * 2019-11-28 2021-05-28 桂林理工大学 一种具有微纳米结构的TiO2纳米管阵列光阳极的制备方法
CN112844349B (zh) * 2019-11-28 2023-05-05 桂林理工大学 一种利用激光刻蚀Ti片制备TiOx光阳极的方法
CN111850653B (zh) * 2020-06-23 2021-07-06 清华大学 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统
CN113130211A (zh) * 2021-03-17 2021-07-16 北京工业大学 一种高染料吸附量染料敏化太阳能电池光阳极及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020311A (zh) * 2010-12-03 2011-04-20 上海大学 一种具有分级结构纳米TiO2的制备方法
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法
CN105883912A (zh) * 2016-05-15 2016-08-24 北京工业大学 一种自支撑二氧化钛三维微纳米结构制备方法
CN106086881A (zh) * 2016-06-08 2016-11-09 合肥工业大学 一种具有核壳结构的TiN/TiO2三维纳米线阵列及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210802A (ja) * 2005-11-01 2007-08-23 Itagaki Kinzoku Kk 微細針状二酸化チタン群生成方法及び板表面の実質的反応面積測定方法
CN100391851C (zh) * 2006-02-14 2008-06-04 浙江大学 一种制备三维纳米花结构二氧化钛的方法
CN101417814A (zh) * 2008-11-21 2009-04-29 桂林工学院 一种一维金红石型纳米晶二氧化钛的制备方法
CN105129847B (zh) * 2015-08-24 2017-02-01 昆明理工大学 一种二氧化钛纳米管组成的纳米片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020311A (zh) * 2010-12-03 2011-04-20 上海大学 一种具有分级结构纳米TiO2的制备方法
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法
CN105883912A (zh) * 2016-05-15 2016-08-24 北京工业大学 一种自支撑二氧化钛三维微纳米结构制备方法
CN106086881A (zh) * 2016-06-08 2016-11-09 合肥工业大学 一种具有核壳结构的TiN/TiO2三维纳米线阵列及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687718B2 (en) 2016-05-10 2020-06-23 Apple Inc. Systems and methods for non-pulsatile blood volume measurements
CN108511730A (zh) * 2018-05-03 2018-09-07 陕西科技大学 一种多孔网状Zn2Ti3O8/TiO2纳米复合片状粒子及其制备方法和应用
CN110683576A (zh) * 2019-10-11 2020-01-14 山东贝科锐钛新材料科技有限公司 一种锂离子电池
CN112467081A (zh) * 2020-12-02 2021-03-09 四川大学 高负载多层分级纳米结构自支撑钛酸锂电极及其制备方法
CN112467081B (zh) * 2020-12-02 2021-10-15 四川大学 高负载多层分级纳米结构自支撑钛酸锂电极及其制备方法
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法

Also Published As

Publication number Publication date
CN105883912A (zh) 2016-08-24
CN105883912B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2017198033A1 (zh) 一种自支撑二氧化钛三维微纳米结构制备方法
Cai et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting
Smith et al. Quasi-core-shell TiO 2/WO 3 and WO 3/TiO 2 nanorod arrays fabricated by glancing angle deposition for solar water splitting
US20200071186A1 (en) Linear Porous Titanium Dioxide Material And Preparation And Use Thereof
Yang et al. A facile synthesis of anatase TiO 2 nanosheets-based hierarchical spheres with over 90%{001} facets for dye-sensitized solar cells
Mali et al. CdS-sensitized TiO 2 nanocorals: hydrothermal synthesis, characterization, application
CN105271393B (zh) 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法
US20120012177A1 (en) HIGH EFFICIENT DYE-SENSITIZED SOLAR CELLS USING TiO2-MULTIWALLED CARBON NANO TUBE (MWCNT) NANOCOMPOSITE
Samir et al. Sub-100 nm TiO 2 tubular architectures for efficient solar energy conversion
Venkatachalam et al. Preparation and characterization of nanostructured TiO2 thin films by hydrothermal and anodization methods
Atta et al. Nanotube arrays as photoanodes for dye sensitized solar cells using metal phthalocyanine dyes
Wei et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy
Hsu et al. TiO2 nanowires on anodic TiO2 nanotube arrays (TNWs/TNAs): Formation mechanism and photocatalytic performance
Wang et al. Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells
Wang et al. A facile way to fabricate graphene sheets on TiO 2 nanotube arrays for dye-sensitized solar cell applications
Awaid et al. Effect of electrolyte composition on structural and photoelectrochemical properties of titanium dioxide nanotube arrays synthesized by anodization technique
KR101453605B1 (ko) 양끝이 열린 산화티타늄 나노튜브 제조 및 이를 이용한 염료감응형 태양전지
Xu et al. Growth of hierarchical TiO 2 flower-like microspheres/oriented nanosheet arrays on a titanium mesh for flexible dye-sensitized solar cells
González et al. Synthesis of ruthenium-doped TiO2 nanotube arrays for the photocatalytic degradation of terasil blue dye
KR101526647B1 (ko) 태양 전지 구조체를 제공하는 방법 및 이러한 방법에 의해 얻어진 태양 전지
CN104576070B (zh) 二氧化钛纳米棒‑金空心球‑CdS复合光阳极的制备方法
CN109179492B (zh) 一种钛酸锂纳米颗粒及其制备方法和应用
CN103896331A (zh) 模板法制备的二维TiO2纳米材料的方法
Puntsagdorj et al. Increase in photocurrent density of WO3 photoanode by placing a layer of an ordered array of mesoporous WO3 micropillars on top of a WO3 sheet layer
WO2021258523A1 (zh) 利用飞秒激光制备暴露高活性面的二氧化钛的方法及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798597

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798597

Country of ref document: EP

Kind code of ref document: A1