WO2021256063A1 - ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置 - Google Patents

ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置 Download PDF

Info

Publication number
WO2021256063A1
WO2021256063A1 PCT/JP2021/015092 JP2021015092W WO2021256063A1 WO 2021256063 A1 WO2021256063 A1 WO 2021256063A1 JP 2021015092 W JP2021015092 W JP 2021015092W WO 2021256063 A1 WO2021256063 A1 WO 2021256063A1
Authority
WO
WIPO (PCT)
Prior art keywords
breakout
mold
temperature
deviance
thermometers
Prior art date
Application number
PCT/JP2021/015092
Other languages
English (en)
French (fr)
Inventor
稜介 益田
佳也 橋本
章敏 松井
周吾 森田
達郎 林田
大河 郡山
丈英 平田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US18/009,909 priority Critical patent/US11925974B2/en
Priority to EP21826706.0A priority patent/EP4151335A4/en
Priority to KR1020227043790A priority patent/KR20230010724A/ko
Priority to CN202180042296.1A priority patent/CN115715239A/zh
Priority to JP2021537031A priority patent/JP6950860B1/ja
Priority to BR112022025427A priority patent/BR112022025427A2/pt
Publication of WO2021256063A1 publication Critical patent/WO2021256063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to a breakout prediction method, an operation method of a continuous casting machine, and a breakout prediction device.
  • molten steel is injected into a mold, the injected molten steel is cooled by a mold in which a water-cooled pipe is embedded to solidify the surface, and a semi-solidified slab is discharged from the lower part of the mold.
  • a continuous casting process is known in which a slab is drawn by a drawing roll and finally produced by spray cooling to produce a completely solidified slab.
  • productivity improvement by high-speed casting.
  • increasing the casting speed causes a decrease in the solidification shell thickness of the slab at the lower end of the mold and a non-uniform solidification shell thickness distribution.
  • the coagulation shell is constrained to the mold.
  • the coagulation shell is constrained to the mold from the temperature change measured by a temperature measuring instrument such as a thermocouple embedded in a copper plate. It is known to detect that it has been done and predict a breakout.
  • a plurality of temperature measuring instruments are horizontally arranged below the molten metal surface of a mold of a continuous casting machine to form a temperature measuring column, and the temperature measuring columns are arranged in a plurality of stages in the casting direction. Arranged and, of any two stages of the plurality of stages, the temperature measuring instruments arranged in the upper temperature measuring row and the temperature measuring instruments arranged in the lower temperature measuring row are arranged on the same vertical line. Disclosed is a method for monitoring a constraining breakout in which the measured values are arranged, transmitted to an arithmetic unit, and it is determined that a constraining breakout occurs when both the following conditions 1 and 2 are satisfied.
  • Condition 1 In the upper temperature measurement column and / or the lower temperature measurement column, the measured values of the temperature measuring instruments adjacent to each other increase and further decrease.
  • Condition 2 The measured value of the lower temperature measuring device placed on the vertical line is higher than the measured value of the upper temperature measuring device.
  • the vector to be used is defined as the sensitivity coefficient vector
  • the step of defining the vector whose component is the detection value of each of the plurality of thermometers is defined as the detection temperature vector
  • the component of the detection temperature vector in the direction orthogonal to the sensitivity coefficient vector is calculated as the degree of deviation.
  • Steps to be performed a step of giving a first score to a thermometer whose deviation degree component exceeds the threshold, and the presence or absence of each score of a plurality of thermometers with the first score as a score for each thermometer.
  • the core thermometer A breakout prediction method including a step of giving a second score and a step of detecting the occurrence of a sign of breakout by the second score is disclosed.
  • the restrictive breakout monitoring method disclosed in Patent Document 1 has a configuration in which the amount of temperature change is obtained from the time-series data of the detected temperature. Therefore, there is a possibility of erroneous detection that breakout may occur even though the detection temperature has changed due to a factor other than a sign of breakout such as a change in casting speed.
  • the temperature measurement value itself is defined as a detection temperature vector and the deviance is calculated. Therefore, during unsteady operation such as changing the width of the slab during operation, the deviance may increase and breakout may occur due to the change in the casting width of molten steel for the mold. If there is, there is a risk of false detection.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a breakout prediction method capable of accurately predicting breakout, an operation method of a continuous casting machine, and a breakout prediction device. It is to be.
  • the breakout prediction method includes a step in which the dimensions of the slabs drawn from the mold in the continuous casting machine are input and a plurality of steps embedded in the mold.
  • the step of calculating the component in the direction orthogonal to the influence coefficient vector obtained from the principal component analysis as the degree of deviation from normal operation without breakout, and the above It is characterized by having a step of predicting a breakout based on the degree of deviation.
  • the detection temperature of each of the plurality of thermometers is determined according to the size of the slab. It is characterized in that an interpolation process is executed at the center point of each of a plurality of divided calculation cells to calculate the temperature.
  • the breakout prediction method according to the present invention is characterized in that, in the above invention, the number of the calculation cells is kept constant even if the dimensions of the slab are changed.
  • the plurality of the above inventions in the step of calculating the deviation degree, have the same distance from the upper end of the mold in the casting direction of the molten steel with respect to the mold.
  • the average value of each temperature of the calculation cell is obtained, the difference from the average value is obtained for each temperature of the plurality of calculation cells, and the deviance is calculated from the obtained difference using the influence coefficient vector. It is characterized by calculating.
  • the deviation It is characterized in that a breakout is predicted based on the adjacency of the calculated cell in which the absolute value of the degree exceeds a preset second threshold value.
  • the step of predicting the breakout gives a first score to the calculation cell in which the deviance exceeds the second threshold value.
  • the breakout prediction method according to the present invention is characterized in that, in the above invention, the influence coefficient vector is a sensitivity coefficient vector having each sensitivity coefficient of the plurality of thermometers as a component. be.
  • the method of operating the continuous casting machine according to the present invention is characterized in that when a breakout is predicted based on the breakout prediction method of the above invention, the casting speed for injecting molten steel into the mold is reduced. It is something to do.
  • the breakout prediction device has an input means for inputting the dimensions of the slab drawn from the mold in the continuous casting machine, and a plurality of thermometers embedded in the mold and detecting the temperature of the mold. Based on the insertion processing execution means that executes the insertion processing according to the dimensions of the slab with respect to the detected temperature detected by the plurality of thermometers, and the temperature calculated by executing the insertion processing.
  • a deviance calculation means that calculates the component in the direction orthogonal to the influence coefficient vector obtained from the principal component analysis as the deviance from normal operation without breakout, and a break based on the deviance. It is characterized by providing a breakout predicting means for predicting an out.
  • the breakout prediction method, the operation method of the continuous casting machine, and the breakout prediction device according to the present invention have the effect of being able to predict breakout with high accuracy.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a continuous casting machine according to an embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of a mold in which a thermometer is embedded in the continuous casting machine according to the embodiment.
  • FIG. 3A is a diagram illustrating the situation of molten steel and solidified shell in the mold in the precursory phenomenon of breakout.
  • FIG. 3B is a diagram showing the state of the broken portion of the solidified shell in the sign phenomenon of breakout.
  • FIG. 4A shows the temperature distribution of the mold at the moment when seizure occurs.
  • FIG. 4B is a diagram showing the temperature distribution of the mold 10 seconds after the moment when seizure occurs.
  • FIG. 5 is a flowchart showing an example of the procedure of the breakout prediction method according to the embodiment.
  • FIG. 5 is a flowchart showing an example of the procedure of the breakout prediction method according to the embodiment.
  • FIG. 6 is a diagram showing the correlation of the detected temperature of the thermometer in the normal state where breakout does not occur.
  • FIG. 7 is a diagram showing the correlation of the detected temperature of the thermometer when a sign such as burn-in leading to breakout occurs.
  • FIG. 8A is a diagram showing the relationship between the detection temperature of the thermometer and the temperature at which the interpolation process is executed in the case where the width of the slab extracted from the lower end of the mold is wide.
  • FIG. 8B is a diagram showing the relationship between the detection temperature of the thermometer and the temperature at which the interpolation process is executed in the case where the width of the slab drawn from the lower end of the mold is narrow.
  • FIG. 8A is a diagram showing the relationship between the detection temperature of the thermometer and the temperature at which the interpolation process is executed in the case where the width of the slab drawn from the lower end of the mold is narrow.
  • FIG. 9 is a diagram showing the positional relationship between the thermometer and the calculation cell located at the same distance from the upper end of the mold.
  • FIG. 10A is a diagram showing a time-series change in the absolute value of the deviance in the case where the burn-in occurred.
  • FIG. 10B is a diagram showing a time-series change in the rate of change in the degree of deviation over time in the case where burn-in occurs.
  • FIG. 11A is a diagram showing a time-series change in the absolute value of the deviance in the case where the burn-in does not occur.
  • FIG. 11B is a diagram showing a time-series change in the rate of change in the degree of deviation over time in a case where seizure does not occur.
  • FIG. 10A is a diagram showing a time-series change in the absolute value of the deviance in the case where the burn-in does not occur.
  • FIG. 11B is a diagram showing a time-series change in the rate of change in the
  • FIG. 12 is a diagram showing an example of an adjacency determination method when the calculation cell for executing the interpolation process has a one-stage configuration.
  • the calculation cells are arranged in two stages, an upper stage and a lower stage in the casting direction, and the upper calculation cell has three adjacent points and the lower calculation cell has one of the three adjacent points in the upper stage. It is a figure which showed the determination method which satisfies the condition of adjacency when the score is acquired in the calculation cell corresponding to a point.
  • FIG. 14 is a graph of time-series detection data of a case where breakout is predicted by the breakout prediction method according to the embodiment of the present invention.
  • the breakout prediction method, the operation method of the continuous casting machine, and the embodiment of the breakout prediction device according to the present invention will be described below.
  • the present invention is not limited to the present embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of the continuous casting machine 1 according to the embodiment.
  • the continuous casting machine 1 according to the embodiment is made of copper for cooling the tundish 3 into which the molten steel 2 is injected and the molten steel 2 poured from the tundish 3 via the immersion nozzle 4.
  • a breakout sign phenomenon is determined from the mold 5, a plurality of slab support rolls 7 for transporting the semi-solidified slab 6 drawn from the mold 5, and the detection temperature of the thermometer 8 embedded in the mold 5.
  • a determination unit 20 is provided.
  • the thermometer 8 uses a thermocouple, but the thermometer 8 is not limited to this.
  • FIG. 2 is a perspective view showing a schematic configuration of a mold 5 in which thermometers 81, 1 to 8 m, n are embedded in the continuous casting machine 1 according to the embodiment.
  • the mold 5 includes a pair of long-side cooling plates 5a and a pair of short-side cooling plates 5b, and is formed in a substantially square cylinder shape penetrating in the vertical direction.
  • a cooling water channel (not shown) is formed inside the long side cooling plate 5a and the short side cooling plate 5b along the inner wall surface, and the molten steel 2 is cooled by flowing cooling water through the cooling water channel.
  • thermometers 81, 1 to 8 m, n are embedded at a predetermined depth from the outer wall surface of the long side cooling plate 5a.
  • thermometers 8 1, 1 to 8 m, n are not particularly distinguished, they are simply referred to as the thermometer 8.
  • the thermometers 8 1,1 to 8 m, n are configured to have three or more stages in the casting direction A, the first stage thermometers 8 1,1 to 81, n , and the second stage thermometers. It is divided into 8 2, 1 to 8 2, n and the nth stage thermometers 8 m, 1 to 8 m, and n , and they are buried on the same plane.
  • the casting direction A is the direction in which the molten steel 2 is poured from the tundish 3 through the dipping nozzle 4 with respect to the mold 5, and the direction in which the slab 6 is pulled out from the lower end of the mold 5. In the same direction as.
  • thermometer 8 shown in FIG. 2 is only an example for the purpose of explaining the present invention, and is a pair of lengths of the pair of long side cooling plates 5a and the pair of short side cooling plates 5b of the mold 5.
  • the thermometer 8 may be arranged on at least one of the side cooling plates 5a, at least one of the pair of short side cooling plates 5b, or all of the pair of long side cooling plates 5a and the pair of short side cooling plates 5b. Of these, it is preferable to arrange thermometers on all of the pair of long-side cooling plates 5a and the pair of short-side cooling plates 5b.
  • the thermometer 8 can be arranged in the mold 5 in a multi-stage arrangement or a one-stage arrangement having more than three stages in the casting direction A.
  • FIG. 3A is a diagram illustrating the situation of the molten steel 2 and the solidified shell 10 in the mold 5 in the sign phenomenon of breakout.
  • FIG. 3B is a diagram showing the state of the broken portion 11 of the solidified shell 10 in the sign phenomenon of breakout.
  • thermometer 8 Since the molten steel 2 and the mold 5 are in contact with each other at the fractured portion 11, the temperature of the mold 5 rises locally. Therefore, for example, as shown by the arrow B in FIG. 3B, when the downwardly moving breaking portion 11 passes through the arrangement positions of the thermometers 8 m', 1 to 8 m', n, the thermometer 8 The detection temperature of m', 1 to 8 m', n becomes high. After that, the solidified shell 10 above the broken portion 11 is restrained by the mold 5 and continues to be cooled, so that the detected temperatures of the thermometers 8 m', 1 to 8 m', and n decrease monotonically.
  • the fractured portion 11 since the fractured portion 11 propagates not only in the downward direction but also in the lateral direction, the fractured portion 11 forms a V shape and expands as shown in FIG. 3 (b). If the break portion 11 of the solidification shell 10 occurs below the thermometer 8 m', 1 to 8 m', n , the break portion 11 occurs at the position of the thermometer 8 m', 1 to 8 m', n. Since the passage of No. 11 does not occur, only a decrease in the detected temperature of the thermometers 8 m', 1 to 8 m', and n is observed.
  • FIG. 4A shows the temperature distribution of the mold 5 at the moment when seizure occurs.
  • FIG. 4B is a diagram showing the temperature distribution of the mold 5 10 seconds after the moment when seizure occurs. From the temperature distributions of the mold 5 shown in FIGS. 4 (a) and 4 (b), it can be read that the V-shaped high temperature portion propagates downward and laterally.
  • the change in the temperature distribution of the mold 5 as described above may also occur due to a decrease in the casting speed, a change in the molten metal level, a change in the width of the slab 6.
  • the mold temperature at the same distance from the upper end of the mold 5 changes synchronously.
  • the width of the slab 6 drawn from the lower end of the mold 5 the position is near both ends of the width of the slab 6. The fluctuation of the mold temperature measured by the thermometer 8 becomes large.
  • the evaluation value of the non-interlocking of the estimated temperature at a plurality of locations where the interpolation processing is executed according to the width of the slab 6 is calculated, and the rate of change of the evaluation value is determined.
  • the accuracy of breakout prediction is improved by determining the adjacency of temperature changes at the changed points.
  • FIG. 5 is a flowchart showing an example of the procedure of the breakout prediction method according to the embodiment.
  • the breakout prediction method shown in this flowchart is executed by the determination unit 20 shown in FIG.
  • the determination unit 20 has at least the functions of the interpolation processing execution means, the deviation degree calculation means, and the breakout prediction means in the present invention. The details of each step in FIG. 5 will be described later as appropriate.
  • the determination unit 20 relates to thermometers 81, 1 to 8 m, n during normal operation (hereinafter, also referred to as normal) in which breakout has not occurred in advance.
  • the sensitivity coefficient is calculated (step S1).
  • this sensitivity coefficient uses the temperature obtained by interpolation processing based on the normal temperature actually measured by the thermometer so that it can be used for casting of different widths and failure of the thermometer, as will be described later. To calculate. Since this sensitivity coefficient may change due to changes in the surface state of the mold 5 over the course of operation, it is preferable to update the sensitivity coefficient at an appropriate time such as during casting.
  • the determination unit 20 continuously detects the temperatures T 1, 1 to T m, n of the mold 5 using the thermometers 8 1, 1 to 8 m, n (step S2).
  • the determination unit 20 uses an input device (not shown) which is an input means such as a personal computer provided in the continuous casting machine 1 for the detected temperature of the thermometers 81, 1 to 8 m, n.
  • Center of calculation cells 12 1, 1 to 12 k, p which are equally divided according to the dimensions of the slab 6 drawn out from the mold 5 (for example, the width of the slab 6 and the thickness of the slab 6) input by
  • the temperature insertion process of the mold 5 is executed (step S3).
  • the average bias is removed from the temperatures T'1,1 to T'k, p of the mold 5 obtained by the interpolation treatment. That is, at the temperatures T'1, 1 to T'k, p of the mold 5 obtained by the interpolation treatment, the distances from the upper end of the mold 5 are the same, respectively, in the calculation cells 12 1, 1 to 12 1, Temperature of p T'1,1 to T'1, p , and calculation cell 12 2,1 to 12 2, temperature of p T'2,1 to T'2, p , T'k, 1 to T' Calculate the average value for k and p, respectively.
  • step S4 the difference from the average value of the calculation cells 12 1,1 to 12 1, p , the temperature T'1, 1 to T'1, p , and the temperature T'of the calculation cells 12 2, 1 to 12 2, p.
  • the difference from the average value of 2,1 to T'2, p is obtained (step S4).
  • the determination unit 20 calculates the deviance degree from the difference from the obtained average value using the sensitivity coefficient (step S5).
  • the sensitivity coefficient vector which is a vector whose component is the sensitivity coefficient, which is the influence coefficient, is the calculation cell obtained by the above-mentioned interpolation process for the thermometers 81, 1 to 8 m, n during normal operation. It shows the direction showing the average behavior of the temperature of. Then, in the vector whose component is the difference from the average value, the component parallel to the direction of the sensitivity coefficient vector is the component of the average behavior, and the component in the direction orthogonal to the direction of the sensitivity coefficient vector is the component from the average behavior. It is a component of the degree of deviation.
  • the determination unit 20 predicts breakout based on the adjacent situation of the calculation cell 12 in which the absolute value of the deviance exceeds the threshold value X when the calculated time change rate of the deviance exceeds the threshold value Y.
  • a determination is made (step S6).
  • the time change rate of the deviance represents the rate (degree) in which the absolute value of the deviance changes in a predetermined time (per unit time).
  • the determination unit 20 proceeds to step S2.
  • the determination unit 20 automatically lowers the casting speed to a predetermined speed (step S7).
  • the determination unit 20 predicts a breakout, the casting speed is sufficiently reduced to form a solidified shell 12 having a sufficient thickness in the mold 5 even at the location where seizure occurs. Breakouts can be avoided. After that, the determination unit 20 returns the processing routine after reducing the casting speed to a predetermined value.
  • FIG. 6 is a diagram showing the correlation of the detected temperatures of the thermometers 81, 1 to 8 m, n in the normal state where breakout does not occur.
  • FIG. 7 is a diagram showing the correlation between the detected temperatures of the thermometers 81, 1 to 8 m, and n when a sign such as burn-in leading to breakout occurs.
  • FIGS. 6 and 7 show the case of two thermometers 8 i and j1 and thermometers 8 i and j2 located at the same distance from the upper end of the mold 5 in the casting direction A. Is.
  • the detected temperatures of the thermometers 8i and j1 and the thermometers 8i and j2 in the normal state are broken lines indicating the direction of the sensitivity coefficient vector which is a vector whose component is the sensitivity coefficient (in FIG. 6). In the example shown, it is distributed in a range close to the line at an angle of 45 degrees to the right. Then, if the detected temperatures Ti and j1 detected by the thermometers 8 i and j1 increase, the detected temperatures Ti and j 2 detected by the thermometers 8 i and j 2 also increase. On the other hand, if the detected temperatures Ti and j1 detected by the thermometers 8 i and j1 decrease, the detected temperatures Ti and j 2 detected by the thermometers 8 i and j 2 also decrease.
  • thermometers 8i and j1 and the thermometers 8i and j2 in the normal state have a correlation are as follows. For example, when the casting speed of the continuous casting machine 1 is higher, the solidified shell 10 is thinned because the slab 6 is pulled out before the solidified shell 10 is sufficiently grown. As a result, the thermal resistance becomes small and the temperature of the molten steel 2 is easily transmitted to the thermometers 8 i and j1 and the thermometers 8 i and j2.
  • thermometers 8 i, j1 and the thermometer. 8 It becomes difficult to convey to i and j2.
  • thermometer 8 1, 1 ⁇ 8 m since the temperature of the transmitted ease thermometer 8 1, 1 ⁇ 8 m, the molten steel every n 2 are different, the sensitivity coefficient of the thermometer 8 1,1 ⁇ 8 m, n is generally not constant. Therefore, the slope of the sensitivity coefficient vector shown in FIG. 6 may change depending on the installation location of the thermometers 81, 1 to 8 m, n with respect to the mold 5, and the variation in construction.
  • thermometers 8i and j1 and the thermometers 8i and j2 have a correlation in the normal state is considered to be the flow of the molten steel 2 in the mold 5 and the fluctuation of the molten metal level.
  • most of the sensitivity coefficients of the thermometers 81, 1 to 8 m, and n are contributed by the overall temperature change of the mold 5 due to the increase / decrease in the casting speed. Therefore, in order to take into consideration more various phenomena of the continuous casting process in the sensitivity coefficient, it is necessary to remove the overall temperature change of the mold 5 due to the increase / decrease in the casting speed as an average bias.
  • the average value Tave of all the detection temperatures T 1,1 to T m, n detected by the thermometer 8 1,1 to 8 m, n is obtained, and the detection temperature T is obtained.
  • a method of taking the difference between each of 1, 1 to T m and n and the average value Tave can be mentioned.
  • thermometer 8 A method for each thermometer 8 can be mentioned.
  • a method using principal component analysis can be considered.
  • a method of experimentally determining the ease of transmission of the temperature of the molten steel 2 in individual thermometers 81, 1 to 8 m, n when the overall temperature changes due to fluctuations in the molten metal level. can be considered.
  • the detected temperatures of the thermometers 8i, j1 and 8i, j2 at the time of the occurrence of a sign such as burn-in leading to breakout are broken lines indicating the direction of the sensitivity coefficient vector (shown in FIG. 7) as shown in FIG. In the example, it is distributed at a position away from the line at an angle of 45 degrees to the right.
  • thermometer 8 i, j1 This is because when the burn lead to breakout occurs, the detected temperature T i at a temperature gauge 8 i, j1 close to the position of the breaking portion 11 of the solidified shell 10, j1 is lowered, slightly later thermometer 8 i, j1 This is because the detection temperatures Ti, j1 + 1 and the detection temperatures Ti, j1-1 of the thermometers 8 i, j1 + 1 and the thermometers 8 i, j1-1 located on both sides of the above are lowered.
  • the occurrence of breakout is determined by the degree to which the detected temperatures T 1, 1 to T m, n of the thermometers 81, 1 to 8 m, n deviate from the broken line indicating the direction of the sensitivity coefficient vector. It turns out that it is possible to do.
  • the deviance is the component in the direction orthogonal to the sensitivity coefficient vector in the temperature vector, which is a vector whose components are the detected temperatures T 1, 1 to T m, n of the thermometer 81, 1 to 8 m, n. It can be seen that it is possible to calculate and determine the occurrence of breakout based on this deviance.
  • the deviance component which is a component in the direction orthogonal to the sensitivity coefficient vector, is calculated in the temperature vector whose component is the detected temperature of the thermometers 8 i, j1 and the thermometer 8 i, j2. .. Then, the occurrence of breakout is determined based on the calculated deviation degree component.
  • the direction of the sensitivity coefficient vector is the same as the direction of the first principal component of the normal temperature distribution
  • the direction orthogonal to the direction of the sensitivity coefficient vector is the direction of the normal temperature distribution. It is the same as the direction of the second main component.
  • the casting width when the molten steel 2 is injected into the mold 5 in other words, the casting width 6 drawn from the lower end of the mold 5.
  • the width is changed during operation, there is a risk of erroneously predicting (false positive) that a breakout will occur even though there is no sign that leads to a breakout.
  • FIG. 8A shows a case where the width (casting width) of the slab 6 to be pulled out from the lower end of the mold 5 is wide, and the detection temperatures T m1, n1 to T m1 of the thermometers 8 m1, n1 to 8 m1, n1 + 18. is a diagram showing the relationship between the temperature T 'm1, n1 ⁇ T' m1, n1 + 18 executing the interpolation process and n1 + 18.
  • FIG. 8B shows a case where the width (casting width) of the slab 6 drawn from the lower end of the mold 5 is narrow, and the detection temperatures T m1, n1 to T m1 of the thermometers 8 m1, n1 to 8 m1, n1 + 18.
  • thermometers 8 m1, n1 to 8 m1, n1 + 18 are arranged at the same distance from the upper end of the mold 5 in the casting direction A.
  • the temperature T 'm1, n1 ⁇ T' m1, n1 + 18 is the central point of the computational cell 12 m1, n1 ⁇ 12 m1, n1 + 18 obtained by equally dividing in accordance with the width of the slab 6, the thermometer 8 m1, n1 ⁇ It is an estimated temperature of the mold 5 calculated by executing the insertion process with respect to the detected temperature T m1, n1 to T m1, n1 + 18 of 8 m1, n1 + 18. The method of interpolation processing will be described later.
  • thermometer 8 m1, n1 + 7 a thermometer that detects the detection temperature T m1, n1 + 7 , the detection temperature T m1, n1 + 11 , the detection temperature T m1, n1 + 12 , and the detection temperature T m1, n1 + 16 , respectively.
  • the temperature detection of 8 m1, n1 + 7 , thermometer 8 m1, n1 + 11 , thermometer 8 m1, n1 + 12 , and thermometer 8 m1, n1 + 16 is defective.
  • thermometer 8 having poor temperature detection Even when the thermometer 8 having poor temperature detection is included, if the detected temperatures T m1, n1 to T m1, n1 + 18 themselves are used for predicting breakout, the temperature will deviate from the sensitivity coefficient vector and breakout will occur. There is a risk of false detection as a sign of occurrence. On the other hand, at the temperatures T'm1, n1 to T'm1, n1 + 18 in which the interpolation process is executed, even if the thermometer 8 having poor temperature detection is included, the estimated temperature of the mold 5 is set in the section where the temperature detection is poor. By using it, the risk of false detection of the occurrence of a sign leading to breakout can be reduced.
  • FIG. 9 is a diagram showing the positional relationship between the thermometers 8 i, 1 to 8 i, j and the calculation cells 12 i, 1 to 12 i, j located at the same distance from the upper end of the mold 5.
  • the calculation cells 12 i, 1 to 12 i, j are thermometers 8 i, 1 to 8 i, located at the same distance from the upper end of the mold 5 on the long side cooling plate 5a of the mold 5.
  • the section corresponding to the width of the slab 6 is equal to or equal to the number of cells. It is divided.
  • the detected temperatures detected by the thermometers 8 i, 1 to 8 i, j are linearly interpolated, and the mold 5 (long side cooling plate 5a) at the position of the center point of each of the calculation cells 12 i, 1 to 12 i, j is performed. ) Estimated temperature is calculated.
  • the number of cells of the calculation cell 12 for the interpolation process may be the same as or different from the number of the thermometers 8 in the vertical direction and the horizontal direction, but is constant regardless of the fluctuation of the casting width during casting. And.
  • the above interpolation process can be applied when obtaining the sensitivity coefficient vector using principal component analysis and when calculating the deviance.
  • the principal component analysis is performed using the interpolated temperature instead of the actual detection temperature. Even if the slab width is changed, the temperature vector of the same score can be used, so principal component analysis can be performed including data of different widths. This eliminates the need to obtain different impact coefficients for each width, and it is possible to determine the impact coefficient vector including data on different slab widths.
  • the deviance can also be calculated using the influence coefficient vector calculated based on the temperature obtained by interpolating the detected temperature. Therefore, breakout prediction of different slab widths is possible based on a unified standard. Further, even if the slab width is changed during casting, the risk of false detection regarding the occurrence of a sign leading to breakout can be reduced.
  • FIG. 10A is a diagram showing a time-series change in the absolute value of the deviance in the case where the burn-in occurred.
  • FIG. 10B is a diagram showing a time-series change in the rate of change in the degree of deviation over time in the case where burn-in occurs.
  • FIG. 11A is a diagram showing a time-series change in the absolute value of the deviance in the case where the burn-in does not occur.
  • FIG. 11B is a diagram showing a time-series change in the rate of change in the degree of deviation over time in a case where seizure does not occur.
  • the absolute value of the deviance increases sharply at a certain time during operation.
  • the absolute value of the deviance is constantly large during operation.
  • the absolute value of the deviance may be constantly increased even if an abnormality such as burn-in does not occur. Therefore, as shown in FIGS. 10 (a) and 11 (a), when a single threshold value X is provided for the absolute value of the deviance, the presence or absence of burn-in, which is a sign leading to breakout, occurs. It becomes difficult to distinguish.
  • FIG. 12 is a diagram showing an example of an adjacency determination method when the calculation cell 12 for executing the interpolation process has a one-stage configuration (calculation cells 12 1, 1 to 12 1, p). That is, FIG. 12 shows an example of a determination method in the lateral adjacency of the calculation cells 12 1, 1 to 121, p located at the same distance from the upper end of the mold 5 in the casting direction A. In addition, in the method of determining the adjacency of this example shown in FIG. 12, it is premised that the time change rate of the deviance exceeds the threshold value Y.
  • the calculation cells 12 1, 1 to 121, p for the calculation cell 12 in which the absolute value of the deviance exceeds the preset threshold value X as described above.
  • 1 point is given as the score for each calculation cell, which is the first score.
  • the calculation cell 12 whose absolute value of deviance does not exceed the threshold value X is given 0 points as a score for each calculation cell.
  • the score for each calculation cell is shifted to the previous calculation cell 12 as the forward shift vector, and the score for each calculation cell is shifted to the next calculation cell 12.
  • the product of each element of the forward shift vector and the backward shift vector is defined as an adjacent product vector.
  • the adjacent product vector determined in this way is calculated, if there are three adjacent calculation cells 12 in which the absolute value of the deviance exceeds the threshold value X, the center of the three adjacent calculation cells 12 is located. Since the score of the calculation cell 12 is 1 point and the score of the other calculation cells 12 is 0 point, this score is defined as the second score.
  • the calculation cells 12 1,1 to 121, p are calculated. Since the absolute value of the deviance from cells 12 1 , 5 exceeds the set threshold value X, the calculation cells 12 1 , 3 and the calculation cells 12 1 , 4 and the calculation cells 12 1 , 5 are scored separately for each calculation cell. One point is given as (first score). On the other hand, for the other calculation cells 12 1 , 1, the calculation cells 12 1 , 2, and the calculation cells 12 1, 6 to 12 1, p , 0 points are given as the score for each calculation cell (first score). Give.
  • the vector in which these calculated cell scores (first score) are arranged is (0,0,1,1,1,0, ..., 0,0,0).
  • the forward shift belt is (0,1,1,1,0,0, ..., 0,0,0)
  • the backward shift vector is (0,0,0,1,1,1,. ⁇ ⁇ , 0,0,0).
  • the adjacent product vector obtained by multiplying the elements of the forward shift vector and the backward shift vector is (0,0,0,1,0,0, ..., 0,0,0). Therefore, when there are three adjacent calculation cells 12 that exceed the threshold X, the three adjacent calculation cells 12 1 , 3 and the calculation cells 12 1 , 4 and the calculation cells 12 that exceed the threshold X are present.
  • the score (second score) of the calculation cells 12 1 and 4 in the center of 1 , 5 is 1 point, and the other calculation cells 12 1, 1 to 12 1 , 3 and the calculation cells 12 1, 5 to 12 It can be seen that the score of 1, p (second score) is 0 points.
  • any element of the adjacency product vector is 1, it can be determined that a sign such as burn-in leading to breakout has occurred. can.
  • the score for each calculation cell is shifted to the previous calculation cell 12 as the forward shift vector, and the score for each calculation cell is shifted to the next calculation cell 12 as the backward shift vector.
  • the adjacent product vector of three adjacent calculation cells 12 is obtained, but the present invention is not limited to this. That is, according to the number of cells of the set calculation cell 12, the score for each calculation cell is shifted to the previous calculation cell 12 by one or more as the forward shift vector, and the score for each calculation cell is one or more after the calculation cell 12.
  • the one shifted to may be used as the backward shift vector.
  • the number of shifting the score for each calculation cell to the back calculation cell 12 in order to obtain the backward shift vector is the same as the number of shifting the score for each calculation cell to the previous calculation cell 12 in order to obtain the forward shift vector. .. Then, the product of the elements of the forward shift vector and the backward shift vector obtained in this way may be used as the adjacent product vector.
  • the score for each calculation cell is shifted to the calculation cell 12 three before, and the score for each calculation cell is shifted to the calculation cell 12 three behind, which is the backward shift vector. Then, each element of the forward shift vector and the backward shift vector is multiplied, the adjacent product vector of the adjacent seven calculation cells 12 is calculated, the second score is obtained, and any element of the adjacent product vector is 1. If so, it is determined that a sign such as burn-in leading to breakout has occurred. As a result, it is possible to determine with higher accuracy that a sign leading to breakout has occurred, so that breakout can be predicted with higher accuracy.
  • the above-mentioned adjacency determination method can be expanded.
  • the calculation cell 12 has two stages (calculation cell 12 1,1 to 12 1, p , and calculation cell 12 2, 1 to 12 2, p ) in the casting direction A (vertical direction), that is, the upper stage and the lower stage. ), And 3 adjacent points in the upper calculation cells 12 1, 1 to 12 1, p , and 3 adjacent points in the upper calculation cells 12 2, 1 to 12 2, p in the lower row. It is a figure which showed the determination method which satisfies the condition of adjacency when the score is obtained in the calculation cell 122 , i corresponding to 1 point.
  • the score for each calculation cell (first score) indicating whether or not the absolute value of the deviance exceeds the threshold value X for the upper calculation cells 12 1, 1 to 12 1, p is used. Then, the adjacency in the upper calculation cells 12 1, 1 to 12 1, p is determined, and the upper adjacent product vector is calculated.
  • the absolute value of the degree of deviation between the calculation cells 12 1 , 3 and the calculation cells 12 1, 4 and the calculation cells 12 1, 5 is the threshold value X.
  • the upper adjacent product vector is (0,0,0,1,0,0, ..., 0,0,0). Since the method for obtaining the upper adjacent product vector is the same as the method for obtaining the adjacent product vector described with reference to FIG. 12, detailed description thereof will be omitted here.
  • the sum of each element of the score vector for each calculation cell, the forward shift vector, and the backward shift vector is taken, and if any one of them has a score, The score of the calculation cells 12 2, 1 to 12 2, p is set as 1 point. Then, the array of these scores is used as the lower adjacent sum vector. Next, the product of each element of the upper adjacent product vector and the lower adjacent sum vector is defined as the upper and lower adjacent product vector. Finally, if any of the elements of the upper and lower adjacent product vectors has a score (second score) of 1, it is determined that the adjacency is established.
  • the absolute value of the deviance of the calculation cells 12 2 , 3 exceeds the threshold value X, and the lower adjacent sum vector. Is (0,1,1,1,0,0, ..., 0,0,0). And since the upper and lower adjacent product vector is (0,0,0,1,0,0, ..., 0,0,0), there is an element that scores 1 point as the second score. It can be determined that the adjacency is established.
  • the adjacency By determining the adjacency, it is possible to determine the position where the seizure occurred in the mold 5. Further, when the number of stages of the thermometer 8 in the casting direction A is increased and seizure leading to breakout occurs, the judgment of the adjacency indicates the situation in which the fractured portion 11 propagates vertically in the casting direction A. It is also possible to grasp by the phenomenon propagating in the direction A.
  • the arrangement position of the calculation cells 12 1, 1 to 12 k, p in the mold 5 is not considered, but the long side cooling plate 5a and the short side cooling plate 5b of the mold 5 are used.
  • the thermometers 81, 1 to 8 m, n arranged on the front surface side and the back surface side of the mold 5 perform the interpolation processing separately, and the calculation cells 12 1, 1 for each surface.
  • the number of adjacent points for obtaining the adjacent product vector and the adjacent sum vector is not limited to three and may be changed.
  • the phenomenon of breakout in the mold 5 in the continuous casting process not only propagates in the lateral direction but also changes in temperature behavior from the upstream side to the downstream side (from the top to the bottom of the mold 5) in the casting direction A. appear. That is, for some reason, the mold 5 and the molten steel 2 come into contact with each other to cause seizure, the solidified shell 12 is restrained by the mold 5, and the molten steel 2 is pulled out from the lower part of the mold 5, so that it occurs directly under the seizure. The broken portion 11 of the solidified shell 12 moves downward while repeating the phenomenon that the mold 5 and the molten steel 2 come into contact with each other at the broken portion 11 of the solidified shell 12 to cause further seizure.
  • the upper and lower adjacencies (the occurrence situation of the same phenomenon in the adjacent places) are determined. Therefore, it is not necessary that all of the plurality of thermometers 8 and the plurality of calculation cells 12 are arranged at the same distance from the upper end of the mold 5 in the casting direction A.
  • FIG. 14 is a graph of time-series detection data of a case where breakout is predicted by the breakout prediction method (method of the present invention) according to the embodiment of the present invention.
  • the time t1 is the moment when the breakout is predicted by the breakout prediction method according to the embodiment of the present invention.
  • the time t 2 is the moment when the breakout is predicted by the conventional breakout prediction method.
  • the conventional breakout prediction method is a method of predicting breakout by lowering the detection temperature of the upper thermometer 8 in the two-stage thermometer 8 to be lower than the detection temperature of the lower thermometer 8 for a certain period of time. be. Further, the time t 2, the by breakout is predicted, and starts the control to reduce the casting speed to a predetermined value.
  • the timing is earlier than the conventional breakout prediction method for obtaining the amount of temperature change with respect to the time-series data of the detected temperature. Breakout can be predicted.
  • Table 1 below shows the results when the breakout prediction method (method of the present invention) according to the embodiment of the present invention is applied to past breakout prediction cases.
  • Case 1 and Case 5 are cases in which a breakout has occurred
  • Cases 2 to 4 are cases in which a breakout has not occurred.
  • "correct detection" is a case where a breakout occurs, and is a case where the occurrence of a sign leading to the breakout is correctly detected, and by extension, the occurrence of the breakout is correctly predicted.
  • over-detection is a case where breakout has not occurred, and the occurrence of a sign leading to breakout is over-detected (false positive), and eventually the occurrence of breakout is erroneously predicted. Is. Further, in Table 1 below, “undetected” is a case where no breakout has occurred, and the occurrence of a sign leading to the breakout has not been detected, and by extension, the occurrence of the breakout has not been predicted.
  • the present invention can provide a breakout prediction method capable of accurately predicting breakout, an operation method of a continuous casting machine, and a breakout prediction device.

Abstract

ブレークアウト予知方法は、連続鋳造機における鋳型から引き抜かれる鋳片の寸法が入力されるステップと、鋳型に埋設された複数の温度計によって、鋳型の温度を検出するステップと、複数の温度計が検出した検出温度に対して、鋳片の寸法に応じて内挿処理を実行するステップと、内挿処理を実行して算出した温度を基に、主成分分析から得られる影響係数ベクトルと直交する方向の成分を、ブレークアウトが発生していない正常な操業時からの逸脱度として算出するステップと、逸脱度に基づいてブレークアウトを予知するステップと、を有する。

Description

ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置
 本発明は、ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置に関する。
 従来、連続鋳造機の操業方法として、溶鋼を鋳型内に注入し、注入された溶鋼を、水冷管が埋設された鋳型により冷却して表面を凝固させ、半凝固状態の鋳片を鋳型下部より引き抜きロールによって引き抜き、最終的にスプレー冷却によって完全に凝固した鋳片を製造する連続鋳造プロセスが知られている。連続鋳造プロセスにおいては、高速鋳造による生産性向上がますます求められている。一方で、鋳込速度の高速化は、鋳型下端における鋳片の凝固シェル厚の減少や不均一な凝固シェル厚分布を生じさせる。その結果、凝固シェル厚の薄い部位が鋳型を出るときに、凝固シェルが破れて漏鋼が発生する、いわゆるブレークアウトが発生することがある。ブレークアウトが発生すると長時間のダウンタイムが発生するため、生産性が著しく悪化する。そのため、高速鋳造を行いながらブレークアウトの発生を的確に予知できるブレークアウト予知方法が望まれる。
 ブレークアウト予知方法としては、凝固シェルが鋳型に拘束される拘束性ブレークアウトの対策について、銅板に埋設された熱電対などの温度測定器により計測される温度の変化から、鋳型に凝固シェルが拘束されたことを検知して、ブレークアウトを予知することが知られている。
 例えば、特許文献1には、連続鋳造機の鋳型の湯面より下方に、複数個の温度測定器を水平に配列して測温列を形成し、この測温列を鋳込方向に複数段配置し、且つ、複数段のうちの任意の2段のうち、上段の測温列に配列される温度測定器と、下段の測温列に配列される温度測定器とを同一の鉛直線上に配置して、それら測定値を演算装置に伝送し、下記条件1及び条件2を共に満たした場合に、拘束性ブレークアウトが発生すると判定する拘束性ブレークアウトの監視方法が開示されている。
 条件1:上段の測温列および/または下段の測温列にて、互いに隣り合う温度測定器の測定値が上昇しさらに下降する。
 条件2:鉛直線上に配置される下段の温度測定器の測定値が、上段の温度測定器の測定値よりも高い。
 また、特許文献2には、連続鋳造機の鋳型に埋設され、且つ、感度係数を求めた複数の温度計により鋳型の温度を検出するステップと、複数の温度計の各々の感度係数を成分とするベクトルを感度係数ベクトルとし、複数の温度計の各々の検出値を成分とするベクトルを検出温度ベクトルと定義するステップと、感度係数ベクトルに直交する方向の検出温度ベクトルの成分を逸脱度として算出するステップと、逸脱度の成分が閾値を超えた温度計に対して第1のスコアを与えるステップと、第1のスコアを温度計別の得点として、複数の温度計の各々の得点の有無を成分とする温度計別得点ベクトルを定義するステップと、温度計別得点ベクトルにおいて、各温度計と各温度計に隣接する温度計とに得点が与えられている場合に、中心となる温度計に第2のスコアを与えるステップと、第2のスコアによりブレークアウトの予兆の発生を検知するステップと、を含む、ブレークアウト予知方法が開示されている。
特開2017-154155号公報 特許第5673100号公報
 しかしながら、特許文献1に開示された拘束性ブレークアウトの監視方法では、検出温度の時系列データに対して温度変化量を求める構成である。そのため、鋳込速度の変化などのブレークアウトの予兆以外の要因によって検出温度が変化したのにも係わらず、ブレークアウトが発生する可能性があると誤検知するおそれがある。
 また、特許文献2に開示されたブレークアウト予知方法では、温度計測値そのものを検出温度ベクトルと定義して逸脱度を計算している。そのため、操業中に鋳片の幅を変更するなどの非定常操業時に、鋳型に対する溶鋼の鋳込幅などが変更されたことによって、逸脱度が大きくなってしまい、ブレークアウトが発生する可能性があると誤検知するおそれがある。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、精度よくブレークアウトを予知することができるブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置を提供することである。
 上述した課題を解決し、目的を達成するために、本発明に係るブレークアウト予知方法は、連続鋳造機における鋳型から引き抜かれる鋳片の寸法が入力されるステップと、前記鋳型に埋設された複数の温度計によって、前記鋳型の温度を検出するステップと、前記複数の温度計が検出した検出温度に対して、前記鋳片の寸法に応じて内挿処理を実行するステップと、前記内挿処理を実行して算出した温度を基に、主成分分析から得られる影響係数ベクトルと直交する方向の成分を、ブレークアウトが発生していない正常な操業時からの逸脱度として算出するステップと、前記逸脱度に基づいてブレークアウトを予知するステップと、を有することを特徴とするものである。
 また、本発明に係るブレークアウト予知方法は、上記の発明において、前記内挿処理を実行するステップでは、前記複数の温度計の各々の検出温度に対して、前記鋳片の寸法に応じて等分割した複数の計算セルの各々の中心点で内挿処理を実行して温度を算出することを特徴とするものである。
 また、本発明に係るブレークアウト予知方法は、上記の発明において、前記計算セルの個数は、前記鋳片の寸法が変更されても一定に保つことを特徴とするものである。
 また、本発明に係るブレークアウト予知方法は、上記の発明において、前記逸脱度として算出するステップでは、前記鋳型に対する溶鋼の鋳込方向で前記鋳型の上端からの距離が同じ位置にある前記複数の計算セルの各々の温度の平均値を求め、前記複数の計算セルの各々の温度に対して前記平均値との差分を求め、求めた前記差分から、前記影響係数ベクトルを用いて前記逸脱度を算出することを特徴とするものである。
 また、本発明に係るブレークアウト予知方法は、上記の発明において、前記ブレークアウトを予知するステップでは、前記逸脱度の時間変化率が予め設定された第1の閾値を超えた場合に、前記逸脱度の絶対値が予め設定された第2の閾値を超えた前記計算セルの隣接性に基づいて、ブレークアウトを予知することを特徴とするものである。
 また、本発明に係るブレークアウト予知方法は、上記の発明において、前記ブレークアウトを予知するステップは、前記逸脱度が前記第2の閾値を超えた前記計算セルに対して第1のスコアを与えるステップと、前記第1のスコアを与えた前記計算セルの隣接性に基づいて、前記第1のスコアから第2のスコアを演算するステップと、前記第2のスコアに基づいてブレークアウトを予知するステップと、を有することを特徴とするものである。
 また、本発明に係るブレークアウトの予知方法は、上記の発明において、前記影響係数ベクトルは、前記複数の温度計の各々の感度係数を成分とする感度係数ベクトルであることを特徴とするものである。
 また、本発明に係る連続鋳造機の操業方法は、上記の発明のブレークアウト予知方法に基づいてブレークアウトを予知した場合に、前記鋳型に溶鋼を注入する鋳込速度を低下させることを特徴とするものである。
 また、本発明に係るブレークアウト予知装置は、連続鋳造機における鋳型から引き抜かれる鋳片の寸法を入力する入力手段と、前記鋳型に埋設されており、前記鋳型の温度を検出する複数の温度計と、前記複数の温度計が検出した検出温度に対して、前記鋳片の寸法に応じて内挿処理を実行する内挿処理実行手段と、前記内挿処理を実行して算出した温度を基に、主成分分析から得られる影響係数ベクトルと直交する方向の成分を、ブレークアウトが発生していない正常な操業時からの逸脱度として算出する逸脱度算出手段と、前記逸脱度に基づいてブレークアウトを予知するブレークアウト予知手段と、を備えることを特徴とするものである。
 本発明に係るブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置は、精度よくブレークアウトを予知することができるという効果を奏する。
図1は、実施形態に係る連続鋳造機の概略構成を示す模式図である。 図2は、実施形態に係る連続鋳造機における温度計が埋設された鋳型の概略構成を示した斜視図である。 図3(a)は、ブレークアウトの予兆現象における鋳型内の溶鋼及び凝固シェルの状況を説明する図である。図3(b)は、ブレークアウトの予兆現象における凝固シェルの破断部の状況を示した図である。 図4(a)は、焼き付きが発生した瞬間の鋳型の温度分布である。図4(b)は、焼き付きが発生した瞬間から10秒後の鋳型の温度分布を示した図である。 図5は、実施形態に係るブレークアウト予知方法の手順の一例を示したフローチャートである。 図6は、ブレークアウトが発生しない正常時における、温度計の検出温度の相関を示した図である。 図7は、ブレークアウトにつながる焼き付きなどの予兆が発生した際における、温度計の検出温度の相関を示した図である。 図8(a)は、鋳型の下端から抜き抜く鋳片の幅が広い事例における、温度計の検出温度と内挿処理を実行した温度との関係を示した図である。図8(b)は、鋳型の下端から引き抜く鋳片の幅が狭い事例における、温度計の検出温度と内挿処理を実行した温度との関係を示した図である。 図9は、鋳型の上端から同じ距離の位置にある温度計及び計算セルの位置関係を示した図である。 図10(a)は、焼き付きが発生した事例での逸脱度の絶対値の時系列変化を示した図である。図10(b)は、焼き付きが発生した事例での逸脱度の時間変化率の時系列変化を示した図である。 図11(a)は、焼き付きが発生していない事例での逸脱度の絶対値の時系列変化を示した図である。図11(b)は、焼き付きが発生していない事例での逸脱度の時間変化率の時系列変化を示した図である。 図12は、内挿処理を実行する計算セルが1段構成の場合での隣接性の判定方法の例を示した図である。 図13は、計算セルが鋳込方向に上段と下段との2段で配置されており、上段の計算セルにて隣接3点、且つ、下段の計算セルにて上段の隣接3点のうち1点に対応する計算セルで得点を獲得している場合に、隣接性の条件を満たすとする判定方法を示した図である。 図14は、本発明の実施形態に係るブレークアウト予知方法によって、ブレークアウトを予知した事例の時系列検出データのグラフである。
 以下に、本発明に係るブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置の実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。
 図1は、実施形態に係る連続鋳造機1の概略構成を示す模式図である。図1に示すように、実施形態に係る連続鋳造機1は、溶鋼2が注入されているタンディッシュ3と、タンディッシュ3から浸漬ノズル4を介して注がれた溶鋼2を冷却する銅製の鋳型5と、鋳型5から引き抜かれた半凝固状態の鋳片6を搬送する複数の鋳片支持ロール7と、鋳型5に埋設された温度計8の検出温度からブレークアウトの予兆現象を判定する判定部20とを備える。なお、本実施形態において、温度計8としては熱電対を用いているが、これに限定されるものではない。
 図2は、実施形態に係る連続鋳造機1における温度計81,1~8m,nが埋設された鋳型5の概略構成を示した斜視図である。図2に示すように、鋳型5は、一対の長辺冷却プレート5aと一対の短辺冷却プレート5bとを備え、上下方向に貫通する略角筒状に形成されている。長辺冷却プレート5a及び短辺冷却プレート5bの内部には、内壁面に沿って図示しない冷却水路が形成されており、この冷却水路に冷却水を流通させることによって溶鋼2を冷却する。
 また、鋳型5の長辺冷却プレート5aの内部には、温度計81,1~8m,nが、長辺冷却プレート5aの外壁面から所定の深さに埋め込まれている。なお、以下の説明においては、温度計81,1~8m,nを特に区別しない場合、単に温度計8とも記載する。図2では、温度計81,1~8m,nを鋳込方向Aで3段以上の構成とし、第1段の温度計81,1~81,n、第2段の温度計82,1~82,n、及び、第n段の温度計8m,1~8m,nに分けて、それぞれ同一平面上に埋設している。本実施形態において、鋳込方向Aとは、鋳型5に対して、タンディッシュ3から浸漬ノズル4を介して溶鋼2が注がれる方向であり、鋳型5の下端から鋳片6が引き抜かれる方向と同方向である。
 なお、図2に示される温度計8の配置は、本発明の説明のための一例に過ぎず、鋳型5の一対の長辺冷却プレート5a及び一対の短辺冷却プレート5bのうち、一対の長辺冷却プレート5aの少なくとも一方、一対の短辺冷却プレート5bの少なくとも一方、または、一対の長辺冷却プレート5aと一対の短辺冷却プレート5bとの全て、に温度計8を配置すればよい。そのうち、一対の長辺冷却プレート5aと一対の短辺冷却プレート5bとの全てに、温度計を配置することが好ましい。また、温度計8は、鋳込方向Aに3段より多い多段配列や1段配列で鋳型5に配置することも可能である。
 次に、ブレークアウトの予兆現象について説明する。図3(a)は、ブレークアウトの予兆現象における鋳型5内の溶鋼2及び凝固シェル10の状況を説明する図である。図3(b)は、ブレークアウトの予兆現象における凝固シェル10の破断部11の状況を示した図である。
 図3(a)及び図3(b)に示されるように、ブレークアウトの予兆現象では、何らかの要因で鋳型5内において焼き付きが発生し、凝固シェル10が鋳型5に拘束される。一方、図3(b)に示した鋳込方向Aと同じ向きで、鋳型5の下端から鋳片6が引き抜かれるため、焼き付きの直下に凝固シェル10の破断部11が生じる。この凝固シェル10の破断部11では、鋳型5と溶鋼2とが接触し、さらなる焼き付きが発生する。以上の現象を繰り返しながら、凝固シェル10の破断部11が下方へ移動するとともに、破断部11よりも上方の凝固シェル10は厚くなる。そして、最終的に、破断部11が鋳型5の下端を通過すると、破断部11から溶鋼2が漏出し、ブレークアウトが発生する。
 なお、破断部11では、溶鋼2と鋳型5とが接触しているため、局所的に鋳型5の温度が上昇する。そのため、例えば、図3(b)の矢印Bで示すように、下方へ移動する破断部11が温度計8m’,1~8m’,nの配置位置を通過するときに、温度計8m’,1~8m’,nの検出温度が高温になる。その後、破断部11より上の凝固シェル10は鋳型5に拘束されて冷却され続けるため、温度計8m’,1~8m’,nの検出温度は単調的に減少する。一方、破断部11は、下方向のみならず横方向へも伝播するため、図3(b)に示すように、V字型をなして破断部11が拡大する。なお、凝固シェル10の破断部11が温度計8m’,1~8m’,nよりも下部で発生した場合は、温度計8m’,1~8m’,nの位置で破断部11の通過が発生しないため、温度計8m’,1~8m’,nの検出温度の低下のみが観測される。
 図4(a)は、焼き付きが発生した瞬間の鋳型5の温度分布である。図4(b)は、焼き付きが発生した瞬間から10秒後の鋳型5の温度分布を示した図である。図4(a)及び図4(b)にそれぞれ示された鋳型5の温度分布から、V字型の高温部が下方向及び横方向へ伝播していることが読み取れる。
 上記のような鋳型5の温度分布の変化は、鋳込速度の低下や湯面レベルの変動、及び、鋳片6の幅の変更などによっても生じ得る。鋳込速度の低下または湯面レベルの変動の場合は、鋳型5の上端から同じ距離の位置にある鋳型温度が同期して変化する。一方、操業中に鋳型5に溶鋼2を注入する際の鋳込幅、言い換えると、鋳型5の下端から引き抜く鋳片6の幅を変更する場合には、鋳片6の幅両端の近傍に位置する温度計8で計測される鋳型温度の変動が大きくなる。
 したがって、実施形態に係るブレークアウト予知方法では、鋳片6の幅に応じて内挿処理を実行した複数の箇所における推定温度の非連動性の評価値を算出し、その評価値の変化率、及び、変化した箇所における温度変化の隣接性の判定をすることによって、ブレークアウトの予知精度を向上させている。以下に、上記の技術思想による、実施形態に係るブレークアウト予知方法について詳細に説明する。
 図5は、実施形態に係るブレークアウト予知方法の手順の一例を示したフローチャートである。このフローチャートに示されるブレークアウト予知方法は、図1に示した判定部20により実行される。なお、判定部20は、本発明における、内挿処理実行手段、逸脱度算出手段、及び、ブレークアウト予知手段、の機能を少なくとも有している。また、図5における各ステップの詳細については、適宜後述する。
 実施形態に係るブレークアウト予知方法において、判定部20は、予めブレークアウトが発生していない正常な操業時(以下、正常時とも記載する)の温度計81,1~8m,nについての感度係数を算出しておく(ステップS1)。ここで、この感度係数は、後述するように異幅の鋳造や温度計の故障などに対応できるように、温度計で実測した正常な温度を基準として内挿処理して得られた温度を用いて算出する。なお、この感度係数は、操業を経ることで、鋳型5の表面状態が変化することによって変化する可能性があるため、鋳込間など適切な時期に更新することが好ましい。次に、判定部20は、温度計81,1~8m,nを用いて連続的に鋳型5の温度T1,1~Tm,nを検出する(ステップS2)。次に、判定部20は、温度計81,1~8m,nの検出温度に対して、連続鋳造機1に設けられたパーソナルコンピュータなどの入力手段である不図示の入力装置によって作業者により入力された、鋳型5から引き抜かれる鋳片6の寸法(例えば、鋳片6の幅や、鋳片6の厚み)に応じて等分割した計算セル121,1~12k,pの中心点で、鋳型5の温度の内挿処理を実行する(ステップS3)。次に、内挿処理によって得られた鋳型5の温度T’1,1~T’k,pに対して平均バイアス除去を行う。すなわち、内挿処理によって得られた鋳型5の温度T’1,1~T’k,pにおいて、鋳型5の上端からの距離がそれぞれ同じ位置である、計算セル121,1~121,pの温度T’1,1~T’1,p、及び、計算セル122,1~122,pの温度T’2,1~T’2,p、T’k,1~T’k,pに対して、それぞれ平均値を求める。その後、計算セル121,1~121,pの温度T’1,1~T’1,pの平均値からの差分及び、計算セル122,1~122,pの温度T’2,1~T’2,pの平均値からの差分、を求める(ステップS4)。次に、判定部20は、求めた平均値からの差分から、感度係数を用いて逸脱度を算出する(ステップS5)。
 ここで、影響係数である感度係数を成分とするベクトルである感度係数ベクトルは、正常な操業時における温度計81,1~8m,nについて、上記の内挿処理で得られた計算セルの温度の平均的な挙動を示す方向を表すものである。そして、前記平均値からの差分を成分とするベクトルにおける、感度係数ベクトルの方向と平行な成分が平均的挙動の成分であり、感度係数ベクトルの方向と直交する方向の成分が平均的挙動からの逸脱度の成分である。
 次に、判定部20は、算出した逸脱度の時間変化率が閾値Yを超えた場合に、逸脱度の絶対値が閾値Xを超えた計算セル12の隣接状況に基づいて、ブレークアウト予知の判定を行う(ステップS6)。なお、逸脱度の時間変化率とは、所定時間(単位時間あたり)において逸脱度の絶対値が変化した割合(程度)を表すものである。ブレークアウトが予知されないと判定した場合(ステップS6にてNo)、判定部20は、ステップS2に移行する。一方、ブレークアウトを予知したと判定した場合(ステップS6にてYes)、判定部20は、鋳込速度を所定の速度まで自動的に下げる(ステップS7)。このように、判定部20がブレークアウトを予知した場合に、鋳込速度を十分低下させることによって、焼き付きが発生した箇所でも鋳型5内において十分な厚さの凝固シェル12が形成されるため、ブレークアウトを回避することができる。その後、判定部20は、鋳込速度を所定の値まで下げた後、処理ルーチンをリターンする。
 次に、実施形態に係るブレークアウト予知方法で用いる感度係数について、最初に温度計81,1~8m,nの検出温度を用いる場合に関して説明する。図6は、ブレークアウトが発生しない正常時における、温度計81,1~8m,nの検出温度の相関を示した図である。図7は、ブレークアウトにつながる焼き付きなどの予兆が発生した際における、温度計81,1~8m,nの検出温度の相関を示した図である。なお、簡単のため、図6及び図7は、鋳込方向Aで鋳型5の上端から同じ距離の位置にある2つの温度計8i,j1及び温度計8i,j2の場合について表示したものである。
 図6に示されるように、正常時における温度計8i,j1及び温度計8i,j2の検出温度は、感度係数を成分とするベクトルである感度係数ベクトルの方向を示す破線(図6に示した例では右斜め45度のライン)に近い範囲に分布する。そして、温度計8i,j1で検出される検出温度Ti,j1が上昇すれば、温度計8i,j2で検出される検出温度Ti,j2も上昇する。一方、温度計8i,j1で検出される検出温度Ti,j1が低下すれば、温度計8i,j2で検出される検出温度Ti,j2も低下する。
 上記のように、正常時における温度計8i,j1及び温度計8i,j2が相関を持つ理由は以下の通りである。例えば、連続鋳造機1の鋳込速度が速いほど場合、凝固シェル10が十分に成長しないうちに鋳片6が引き抜かれるため、凝固シェル10が薄くなる。その結果、熱抵抗が小さくなり溶鋼2の温度が温度計8i,j1及び温度計8i,j2に伝わりやすくなる。一方、鋳込速度が遅いほど、凝固シェル10が十分に成長してから引き抜かれるため、凝固シェル10が厚くなり熱抵抗が大きくなって、溶鋼2の温度が温度計8i,j1及び温度計8i,j2に伝わり難くなる。これらの傾向は、全ての温度計81,1~8m,nに共通して成立するため、正常時における温度計81,1~8m,nの検出温度は、感度係数ベクトルの方向を示す破線に近い範囲に、楕円に近い形状で分布する。ただし、温度計81,1~8m,nごとに溶鋼2の温度の伝わりやすさは異なるため、温度計81,1~8m,nの感度係数は、一般に一定ではない。したがって、図6に示した、感度係数ベクトルの傾きは、鋳型5に対する温度計81,1~8m,nの設置場所や施工のばらつきなどによって変わり得る。
 また、正常時における温度計8i,j1及び温度計8i,j2が相関を持つ理由は、上記の他に、鋳型5内における溶鋼2の流動や、湯面変動などが考えられる。しかし、温度計81,1~8m,nの感度係数の大半は,上記の鋳込速度の増減に伴う鋳型5の全体的な温度変化が寄与する。したがって、感度係数において、連続鋳造プロセスのより多様な現象を加味して考慮するためには、鋳込速度の増減に伴う鋳型5の全体的な温度変化を、平均バイアスとして除去する必要がある。
 平均バイアスの除去方法としては、例えば、温度計81,1~8m,nにより検出される検出温度T1,1~Tm,nの全ての平均値Taveを求めて、検出温度T1,1~Tm,nのそれぞれと平均値Taveとの差分を取る方法が挙げられる。その他の平均バイアスの除去方法としては、例えば、鋳込方向Aで鋳型5の上端から同じ距離の位置にある温度計8i,1~8i,nにより検出される検出温度Ti,1~Ti,nの平均値Ti,aveを求めて、検出温度Ti,1~Ti,nのそれぞれと平均値Ti,aveとの差分を取ることを、前記同じ距離の位置にある温度計8ごとに行う方法が挙げられる。
 また、影響係数ベクトルである感度係数ベクトルを求める一つの方法としては、主成分分析を用いる方法が考えられる。その他の方法としては、例えば、湯面の変動などで全体の温度が変わるときの個々の温度計81,1~8m,nにおける溶鋼2の温度の伝わりやすさを、実験的に求める方法が考えられる。
 一方、ブレークアウトにつながる焼き付きなどの予兆発生時における温度計8i,j1及び8i,j2の検出温度は、図7に示されるように、感度係数ベクトルの方向を示す破線(図7に示した例では右斜め45度のライン)から離れた位置に分布する。これは、ブレークアウトにつながる焼き付きが発生する場合、凝固シェル10の破断部11の位置に近い温度計8i,j1で検出温度Ti,j1が低下し、少し遅れて温度計8i,j1の両隣に位置する温度計8i,j1+1及び温度計8i,j1―1の検出温度Ti,j1+1及び検出温度Ti,j1―1が低下するからである。
 以上の考察から、温度計81,1~8m,nの検出温度T1,1~Tm,nが、感度係数ベクトルの方向を示す破線から逸脱する度合によって、ブレークアウトの発生を判定することが可能であることがわかる。言い換えると、温度計81,1~8m,nの検出温度T1,1~Tm,nを成分とするベクトルである温度ベクトルにおける、感度係数ベクトルと直交する方向の成分を逸脱度として算出し、この逸脱度に基づいてブレークアウトの発生を判定することが可能であることがわかる。
 例えば、図6及び図7では、温度計8i,j1及び温度計8i,j2の検出温度を成分とする温度ベクトルにおける、感度係数ベクトルと直交する方向の成分である逸脱度成分を算出する。そして、この算出した逸脱度成分に基づいてブレークアウトの発生を判定する。なお、図6及び図7において、感度係数ベクトルの方向は、正常時の温度分布の第1主成分の方向と同じであり、感度係数ベクトルの方向と直交する方向は、正常時の温度分布の第2主成分の方向と同じである。
 しかしながら、検出温度T1,1~Tm,nそのものをブレークアウトの予知に用いると、鋳型5に溶鋼2を注入する際の鋳込幅、言い換えると、鋳型5の下端から引き抜く鋳片6の幅を、操業中に変更するなどの非定常時に、ブレークアウトにつながる予兆が発生していないにも関わらず、ブレークアウトが発生すると誤って予知する(誤検知する)おそれがある。
 図8(a)は、鋳型5の下端から抜き抜く鋳片6の幅(鋳込幅)が広い事例における、温度計8m1,n1~8m1,n1+18の検出温度Tm1,n1~Tm1,n1+18と内挿処理を実行した温度T’m1,n1~T’m1,n1+18との関係を示した図である。図8(b)は、鋳型5の下端から引き抜く鋳片6の幅(鋳込幅)が狭い事例における、温度計8m1,n1~8m1,n1+18の検出温度Tm1,n1~Tm1,n1+18と内挿処理を実行した温度T‘m1,n1~T’m1,n1+18との関係を示した図である。なお、図8(a)及び図8(b)において、温度計8m1,n1~8m1,n1+18は、鋳込方向Aで鋳型5の上端から同じ距離の位置に配置されている。また、温度T‘m1,n1~T’m1,n1+18は、鋳片6の幅に応じて等分割した計算セル12m1,n1~12m1,n1+18の中心点で、温度計8m1,n1~8m1,n1+18の検出温度Tm1,n1~Tm1,n1+18に対し、内挿処理を実行して算出した鋳型5の推定温度である。なお、内挿処理の手法については後述する。
 鋳造中に鋳込幅が変更し、図8(a)から図8(b)の状態に変化した場合において、温度計8m1,n1~8m1,n1+18の検出温度Tm1,n1~Tm1,n1+18に着目した場合、検出温度Tm1,n1+3及び検出温度Tm1,n1+15のみ温度変化が大きく、他の検出温度に顕著な温度変化は見られない。そのため、図8(a)及び図8(b)のそれぞれに示した事例において、検出温度Tm1,n1~Tm1,n1+18そのものをブレークアウトの予知に用いると、感度係数ベクトルから逸脱して、ブレークアウトにつながる予兆が発生していると誤検知するおそれがある。
 一方、鋳造中に鋳込幅が変更し、図8(a)から図8(b)の状態に変化した場合において、計算セル12の個数(セル数)を鋳片6の寸法が変更されても一定に保って内挿処理を実行した温度T’m1,n1~T’m1,n1+18に着目すると、温度T’m1,n1~T’m1,n1+18の温度変化は小さい。そのため、図8(a)及び図8(b)のそれぞれに示した事例において、内挿処理を実行した温度T‘m1,n1~T’m1,n1+18をブレークアウトの予知に用いることによって、ブレークアウトにつながる予兆の発生の誤検知のリスクを低下させることができる。
 また、図8(a)及び図8(b)では、検出温度Tm1,n1+7、検出温度Tm1,n1+11、検出温度Tm1,n1+12、及び、検出温度Tm1,n1+16をそれぞれ検出する温度計8m1,n1+7、温度計8m1,n1+11、温度計8m1,n1+12、及び、温度計8m1,n1+16の温度検出が不良である。そして、このように温度検出が不良な温度計8を含む場合においても、検出温度Tm1,n1~Tm1,n1+18そのものをブレークアウトの予知に用いると、感度係数ベクトルから逸脱して、ブレークアウト発生の予兆と誤検知するおそれがある。一方、内挿処理を実行した温度T‘m1,n1~T’m1,n1+18では、温度検出が不良な温度計8を含む場合でも、その温度検出が不良な区間において、鋳型5の推定温度を用いることにより、ブレークアウトにつながる予兆の発生の誤検知のリスクを低下させることができる。
 次に、内挿処理の手法について説明する。図9は、鋳型5の上端から同じ距離の位置にある温度計8i,1~8i,j及び計算セル12i,1~12i,jの位置関係を示した図である。
 図9に示すように、計算セル12i,1~12i,jは、鋳型5の長辺冷却プレート5aにおいて鋳型5の上端から同じ距離の位置にある温度計8i,1~8i,jに対して、長辺冷却プレート5aのうち、鋳片6の幅に相当する区間(鋳型5の幅方向で一対の短辺冷却プレート5bに挟まれた区間)を、一定のセル数で等分割したものである。そして、温度計8i,1~8i,jが検出した検出温度を線形補間し、計算セル12i,1~12i,jのそれぞれの中心点の位置における鋳型5(長辺冷却プレート5a)の推定温度を算出する。なお、内挿処理のための計算セル12のセル数は、鉛直方向及び水平方向において、温度計8の個数と同一でも異なっていてもよいが、鋳造中の鋳込幅の変動に依らず一定とする。
 上記の内挿処理は、主成分分析を用いて感度係数ベクトルを求める場合及び逸脱度を算出する場合に適用可能である。この場合には、実際の検出温度の代わりに内挿処理した温度を用いて主成分分析を行う。鋳片幅が変更された場合も、同じ点数の温度ベクトルを利用できることから、異なる幅のデータも含めて主成分分析を実施できる。これにより、幅毎に異なる影響係数を求める必要がなくなり、異なる鋳片幅のデータも含めて影響係数ベクトルを定めることができる。そして、逸脱度についても、検出温度を内挿処理した温度に基づいて計算した影響係数ベクトルを用いて計算できる。したがって、統一した基準に基づいて、異なる鋳片幅のブレークアウト予知が可能となる。さらに、鋳造中に鋳片幅が変更する場合においてもブレークアウトにつながる予兆発生に関する誤検知のリスクも低減させることができる。
 次に、ブレークアウト予知の判定について説明する。図10(a)は、焼き付きが発生した事例での逸脱度の絶対値の時系列変化を示した図である。図10(b)は、焼き付きが発生した事例での逸脱度の時間変化率の時系列変化を示した図である。図11(a)は、焼き付きが発生していない事例での逸脱度の絶対値の時系列変化を示した図である。図11(b)は、焼き付きが発生していない事例での逸脱度の時間変化率の時系列変化を示した図である。
 図10(a)では、操業中のある時間において逸脱度の絶対値が急激に上昇している。一方、図11(a)では、操業中において逸脱度の絶対値が恒常的に大きい。温度計81,1~8m,nの検出温度から内挿処理された温度に基づいて算出される感度係数が、鋳型5の表面形状の変化などの要因によって予め求めた値からずれた場合には、図11(a)に示すように、焼き付きのような異常が発生していなくても、逸脱度の絶対値が恒常的に大きくなる可能性がある。そのため、逸脱度の絶対値に対して、図10(a)及び図11(a)に示すように、単一の閾値Xを設けた場合には、ブレークアウトにつながる予兆である焼き付き発生の有無の判別が困難になる。
 ここで、ブレークアウトにつながる予兆である焼き付きは、突如発生して、凝固シェル10の破断部11が鋳型5の下方及び横方向に伝播する。そのため、図10(a)に示すように、焼き付きが発生する際の逸脱度の絶対値は、操業中のある時間において急激に上昇する。したがって、図10(b)に示すように、逸脱度の時間変化率は急激に増加する。一方、図11(a)のように、焼き付きのような異常が発生していなくても、操業中において逸脱度の絶対値が恒常的に大きい場合には、図11(b)に示すように、逸脱度の時間変化率は急激に増加しない。よって、図10(b)及び図11(b)に示すように、逸脱度の時間変化率に対して、単一の閾値Yを設けることによって、ブレークアウトにつながる予兆である焼き付きの発生の有無の判別が容易になる。
 次に、逸脱度の時間変化率が閾値Yを超えた場合における、感度係数ベクトルから算出した逸脱度の絶対値が、予め設定した閾値Xを超えたときに、この閾値Xを超えた計算セル12の隣接性を判定する判定方法について説明する。
 図12は、内挿処理を実行する計算セル12が1段構成の場合(計算セル121,1~121,p)での隣接性の判定方法の例を示した図である。すなわち、図12では、鋳込方向Aで鋳型5の上端から同じ距離の位置にある計算セル121,1~121,pの横方向の隣接性における判定方法の例を示している。なお、図12に示した、本例の隣接性の判定方法では、逸脱度の時間変化率が閾値Yを超えた場合を前提としている。
 本例の隣接性の判定方法では、まず、計算セル121,1~121,pのうち、上述のように逸脱度の絶対値が予め設定した閾値Xを超えた計算セル12に対して、第1のスコアである計算セル別得点として1点を付与する。一方、計算セル121,1~121,pのうち、逸脱度の絶対値が前記閾値Xを超えない計算セル12に対しては、計算セル別得点として0点を付与する。そして、この計算セル別得点のベクトルに対して、計算セル別得点を1つ前の計算セル12にずらしたものを前方シフトベクトルとし、計算セル別得点を1つ後の計算セル12にずらしたものを後方シフトベクトルと定める。さらには、前方シフトベクトル及び後方シフトベクトルの各要素を掛け合わせたものを隣接積ベクトルと定める。このように定めた隣接積ベクトルを算出すると、逸脱度の絶対値が前記閾値Xを超えた計算セル12が、隣接して3つ存在する場合には、隣接する3つの計算セル12の中央の計算セル12の得点は1点となり、それ以外の計算セル12の得点が0点となるので、この得点を第2のスコアと定める。
 図12に示される例を用いて具体的に説明すると、図12では、まず、計算セル121,1~121,pのうち、計算セル121,3と計算セル121,4と計算セル121,5との逸脱度の絶対値が設定した閾値Xを超えているため、計算セル121,3と計算セル121,4と計算セル121,5とに、計算セル別得点(第1のスコア)として1点を付与する。一方、その他の計算セル121,1、計算セル121,2、及び、計算セル121,6~121,pに対しては、計算セル別得点(第1のスコア)として0点を付与する。そして、これらの計算セル得点(第1のスコア)を配列したベクトルは(0,0,1,1,1,0,・・・,0,0,0)となる。そして、前方シフトベルトは(0,1,1,1,0,0,・・・,0,0,0)であり、後方シフトベクトルは(0,0,0,1,1,1,・・・,0,0,0)である。前方シフトベクトル及び後方シフトベクトルの各要素を掛け合わせた隣接積ベクトルは(0,0,0,1,0,0,・・・,0,0,0)となる。よって、前記閾値Xを超えた計算セル12が隣接して3つ存在する場合には、前記閾値Xを超えた隣接する3つの計算セル121,3と計算セル121,4と計算セル121,5の中央の計算セル121,4の得点(第2のスコア)は1点となり、それ以外の計算セル121,1~121,3、及び、計算セル121,5~121,pの得点(第2のスコア)が0点となることがわかる。
 したがって、図12を用いて説明した隣接性の判定方法においては、隣接積ベクトルの何れかの要素が1となれば、ブレークアウトにつながる焼き付きなどの予兆が発生していることを判定することができる。
 なお、図12では、計算セル別得点を1つ前の計算セル12にずらしたものを前方シフトベクトルとし、計算セル別得点を1つ後の計算セル12にずらしたものを後方シフトベクトルとして、隣接する3つの計算セル12の隣接積ベクトルを求めているが、これに限定されるものではない。すなわち、設定した計算セル12のセル数に応じて、計算セル別得点を1つ以上前の計算セル12にずらしたものを前方シフトベクトルとし、計算セル別得点を1つ以上後の計算セル12にずらしたものを後方シフトベクトルとすればよい。なお、この際、後方シフトベクトルを求めるために計算セル別得点を後ろの計算セル12にずらす数は、前方シフトベクトルを求めるために計算セル別得点を前の計算セル12にずらす数と同じする。そして、このように求めた前方シフトベクトル及び後方シフトベクトルの各要素を掛け合わせたものを隣接積ベクトルとすればよい。
 例えば、計算セル別得点を3つ前の計算セル12にずらしたものを前方シフトベクトルとし、計算セル別得点を3つ後ろの計算セル12にずらしたものを後方シフトベクトルとする。そして、前方シフトベクトル及び後方シフトベクトルの各要素を掛け合わせ、隣接する7つの計算セル12の隣接積ベクトルを算出し、第2のスコアを求めて、隣接積ベクトルの何れかの要素が1となれば、ブレークアウトにつながる焼き付きなどの予兆が発生していると判定する。これにより、ブレークアウトにつながる予兆が発生していることを、より高精度で判定することができるため、精度よくブレークアウトを予知することができる。
 さらに、内挿処理を行うための計算セル12が、鋳込方向Aで2段以上で構成されている場合にも、上記隣接性の判定方法を拡張することができる。
 図13は、計算セル12が鋳込方向A(縦方向)に上段と下段との2段(計算セル121,1~121,p、及び、計算セル122,1~122,p)で配置されており、上段の計算セル121,1~121,pにて隣接3点、且つ、下段の計算セル122,1~122,pにて上段の隣接3点のうち1点に対応する計算セル122,iで得点を獲得している場合に、隣接性の条件を満たすとする判定方法を示した図である。
 本方法では、まず、上段の計算セル121,1~121,pに対して逸脱度の絶対値が閾値Xを超えているか否かを示す計算セル別得点(第1のスコア)を用いて、上段の計算セル121,1~121,pにおける隣接性を判定し、上段隣接積ベクトルを算出する。
 図13には、上段の計算セル121,1~121,pにおいて、計算セル121,3と計算セル121,4と計算セル121,5との逸脱度の絶対値が閾値Xを超えた場合の例であり、上段隣接積ベクトルは(0,0,0,1,0,0,・・・,0,0,0)である。なお、上段隣接積ベクトルを求める手法については、図12を用いて説明した隣接積ベクトルを求める手法と同じであるため、ここでは詳細な説明を省略する。
 次に、下段の計算セル122,1~122,pに関しては、計算セル別得点ベクトル、前方シフトベクトル及び後方シフトベクトルの各要素の和をとり、どれか1つでも得点があれば、その計算セル122,1~122,pの得点を1点とする。そして、これらの得点を配列したものを下段隣接和ベクトルとする。次に、上段隣接積ベクトルと下段隣接和ベクトルとの各要素を掛け合わせたものを上下隣接積ベクトルとする。そして、最終的に、上下隣接積ベクトルの要素のどれかに得点(第2のスコア)として1があれば、隣接性が成立すると判定する。
 図13に示される例では、下段の計算セル122,1~122,pのうち、計算セル122,3の逸脱度の絶対値が閾値Xを超えた場合であり、下段隣接和ベクトルは(0,1,1,1,0,0,・・・,0,0,0)である。そして、上下隣接積ベクトルは(0,0,0,1,0,0,・・・,0,0,0)であり、第2のスコアとして1点を得点している要素があるため、隣接性が成立していると判定することができる。
 この隣接性の判定により、鋳型5において焼き付きが発生した位置を判断することができる。また、鋳込方向Aの温度計8の段数を増やすことにより、ブレークアウトにつながる焼き付きが発生した場合において、破断部11が鋳込方向Aに縦伝播する状況を、隣接性の判定が鋳込方向Aに伝播する現象によって把握することも可能となる。
 よって、図13を用いて説明した隣接性の判定方法においては、上下隣接積ベクトルの何れかの要素が1となれば、ブレークアウトにつながる焼き付きなどの予兆が発生していることを判定することができる。
 なお、上記した本実施形態の説明では、計算セル121,1~12k,pの鋳型5における配置位置について考慮しなかったが、鋳型5の長辺冷却プレート5aと短辺冷却プレート5b、及び、鋳型5のおもて面側と裏面側、に配置される温度計81,1~8m,nで、それぞれ別々に内挿処理を実行し、面ごとに計算セル121,1~12k,pの隣接状況に基づいて第2のスコアを演算することにより、より高精度な判別を実施することができる。また、隣接積ベクトル及び隣接和ベクトルを求めるための隣接点数は3点に限らず変えてもよい。
 また、連続鋳造プロセスにおける鋳型5内のブレークアウトの現象は、横方向への伝播だけでなく、鋳込方向Aの上流側から下流側(鋳型5の上から下)への温度挙動変化にも表れる。すなわち、何らかの要因で鋳型5と溶鋼2とが接触して焼付きが発生し、凝固シェル12が鋳型5に拘束され、さらに溶鋼2が鋳型5の下部より引き抜かれるために焼付きの直下に生じた凝固シェル12の破断部11で、鋳型5と溶鋼2が接触してさらなる焼付きが発生する、という現象を繰り返しながら凝固シェル12の破断部11が下方へ移動する。また、上下2段の計算セル12について、各段の隣接和ベクトルの論理積をとることで、上下の隣接性(隣接した場所での同一現象の発生状況)を判断している。そのため、複数の温度計8や複数の計算セル12の全てが、鋳込方向Aで鋳型5の上端から同じ距離に配置される必要はない。
 図14は、本発明の実施形態に係るブレークアウト予知方法(本発明の方法)によって、ブレークアウトを予知した事例の時系列検出データのグラフである。なお、図14において、時刻t1は、本発明の実施形態に係るブレークアウト予知方法によってブレークアウトを予知した瞬間である。また、図14において、時刻tは、従来のブレークアウト予知方法によってブレークアウトを予知した瞬間である。なお、従来のブレークアウト予知方法は、2段構成の温度計8における上段の温度計8の検出温度が、下段の温度計8の検出温度を一定時間下回ることによって、ブレークアウトを予知する手法である。また、時刻tでは、ブレークアウトが予知されたことにより、鋳込速度を所定の値まで低下させる制御を開始している。
 図14に示されるように、本発明の実施形態に係るブレークアウト予知方法を用いることによって、検出温度の時系列データに対して温度変化量を求める従来のブレークアウト予知方法よりも早いタイミングで、ブレークアウトを予知することができる。
 また、下記表1は、本発明の実施形態に係るブレークアウト予知方法(本発明の方法)を、過去のブレークアウト予知事例に適用した場合の結果を示している。なお、下記表1において、事例1及び事例5はブレークアウトが発生した事例であり、事例2~事例4はブレークアウトが発生していない事例である。そして、下記表1において、「正検知」は、ブレークアウトが発生した事例で、ブレークアウトにつながる予兆の発生を正しく検知、ひいては、ブレークアウトの発生を正しく予知した場合である。また、下記表1において、「過検知」は、ブレークアウトが発生していない事例で、ブレークアウトにつながる予兆の発生を過剰検知(誤検知)、ひいては、ブレークアウトの発生を誤って予知した場合である。また、下記表1において、「未検知」は、ブレークアウトが発生していない事例で、ブレークアウトにつながる予兆の発生を未検知、ひいては、ブレークアウトの発生を予知していない場合である。
Figure JPOXMLDOC01-appb-T000001
 上記表1からわかるように、本発明の実施形態に係るブレークアウト予知方法によれば、ブレークアウトが発生した過去の事例について、ブレークアウトにつながる予兆の発生を全て正しく検知し、ブレークアウトの発生を正しく予知することができ、且つ、ブレークアウトが発生していない過去の事例について、従来方法で発生していた過検知(誤検知)が全く発生しなくなった。
 本発明は、精度よくブレークアウトを予知することができるブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置を提供することができる。
1 連続鋳造機
2 溶鋼
3 タンディッシュ
4 浸漬ノズル
5 鋳型
6 鋳片
7 鋳片支持ロール
8 温度計
10 凝固シェル
11 破断部
20 判定部

Claims (9)

  1.  連続鋳造機における鋳型から引き抜かれる鋳片の寸法が入力されるステップと、
     前記鋳型に埋設された複数の温度計によって、前記鋳型の温度を検出するステップと、
     前記複数の温度計が検出した検出温度に対して、前記鋳片の寸法に応じて内挿処理を実行するステップと、
     前記内挿処理を実行して算出した温度を基に、主成分分析から得られる影響係数ベクトルと直交する方向の成分を、ブレークアウトが発生していない正常な操業時からの逸脱度として算出するステップと、
     前記逸脱度に基づいてブレークアウトを予知するステップと、
     を有することを特徴とするブレークアウト予知方法。
  2.  前記内挿処理を実行するステップでは、
     前記複数の温度計の各々の検出温度に対して、前記鋳片の寸法に応じて等分割した複数の計算セルの各々の中心点で内挿処理を実行して温度を算出することを特徴とする請求項1に記載のブレークアウト予知方法。
  3.  前記計算セルの個数は、前記鋳片の寸法が変更されても一定に保つことを特徴とする請求項2に記載のブレークアウト予知方法。
  4.  前記逸脱度として算出するステップでは、
     前記鋳型に対する溶鋼の鋳込方向で前記鋳型の上端からの距離が同じ位置にある前記複数の計算セルの各々の温度の平均値を求め、前記複数の計算セルの各々の温度に対して前記平均値との差分を求め、求めた前記差分から、前記影響係数ベクトルを用いて前記逸脱度を算出することを特徴とする請求項2または3に記載のブレークアウト予知方法。
  5.  前記ブレークアウトを予知するステップでは、
     前記逸脱度の時間変化率が予め設定された第1の閾値を超えた場合に、前記逸脱度の絶対値が予め設定された第2の閾値を超えた前記計算セルの隣接性に基づいて、ブレークアウトを予知することを特徴とする請求項4に記載のブレークアウト予知方法。
  6.  前記ブレークアウトを予知するステップは、
     前記逸脱度が前記第2の閾値を超えた前記計算セルに対して第1のスコアを与えるステップと、
     前記第1のスコアを与えた前記計算セルの隣接性に基づいて、前記第1のスコアから第2のスコアを演算するステップと、
     前記第2のスコアに基づいてブレークアウトを予知するステップと、
     を有することを特徴とする請求項5に記載のブレークアウト予知方法。
  7.  前記影響係数ベクトルは、前記複数の温度計の各々の感度係数を成分とする感度係数ベクトルであることを特徴とする請求項1乃至6のいずれか1項に記載のブレークアウト予知方法。
  8.  請求項1乃至7のいずれか1項に記載のブレークアウト予知方法に基づいてブレークアウトを予知した場合に、前記鋳型に溶鋼を注入する鋳込速度を低下させることを特徴とする連続鋳造機の操業方法。
  9.  連続鋳造機における鋳型から引き抜かれる鋳片の寸法を入力する入力手段と、
     前記鋳型に埋設されており、前記鋳型の温度を検出する複数の温度計と、
     前記複数の温度計が検出した検出温度に対して、前記鋳片の寸法に応じて内挿処理を実行する内挿処理実行手段と、
     前記内挿処理を実行して算出した温度を基に、主成分分析から得られる影響係数ベクトルと直交する方向の成分を、ブレークアウトが発生していない正常な操業時からの逸脱度として算出する逸脱度算出手段と、
     前記逸脱度に基づいてブレークアウトを予知するブレークアウト予知手段と、
     を備えることを特徴とするブレークアウト予知装置。
PCT/JP2021/015092 2020-06-18 2021-04-09 ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置 WO2021256063A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/009,909 US11925974B2 (en) 2020-06-18 2021-04-09 Breakout prediction method, operation method of continuous casting machine, and breakout prediction device
EP21826706.0A EP4151335A4 (en) 2020-06-18 2021-04-09 BREAKAGE PREDICTION METHOD, METHOD OF OPERATING CONTINUOUS CASTER AND BREAKAGE PREDICTION DEVICE
KR1020227043790A KR20230010724A (ko) 2020-06-18 2021-04-09 브레이크 아웃 예지 방법, 연속 주조기의 조업 방법 및, 브레이크 아웃 예지 장치
CN202180042296.1A CN115715239A (zh) 2020-06-18 2021-04-09 漏钢预知方法、连续铸造机的操作方法及漏钢预知装置
JP2021537031A JP6950860B1 (ja) 2020-06-18 2021-04-09 ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置
BR112022025427A BR112022025427A2 (pt) 2020-06-18 2021-04-09 Método de previsão de breakout, método de operação de máquina de lingotamento contínuo e dispositivo de previsão de breakout

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020105070 2020-06-18
JP2020-105070 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021256063A1 true WO2021256063A1 (ja) 2021-12-23

Family

ID=79267736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015092 WO2021256063A1 (ja) 2020-06-18 2021-04-09 ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置

Country Status (2)

Country Link
TW (1) TWI820423B (ja)
WO (1) WO2021256063A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287001A (ja) * 2000-04-05 2001-10-16 Yaskawa Electric Corp 連続鋳造設備におけるブレークアウト予知方法及びブレークアウト予知システム
JP5673100B2 (ja) 2010-12-28 2015-02-18 Jfeスチール株式会社 ブレイクアウト予知方法
JP2017154155A (ja) 2016-03-02 2017-09-07 Jfeスチール株式会社 拘束性ブレークアウトの監視装置およびそれを用いた監視方法
JP2020011255A (ja) * 2018-07-17 2020-01-23 日本製鉄株式会社 鋳造状態判定装置、鋳造状態判定方法、およびプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035688B2 (ja) * 1993-12-24 2000-04-24 トピー工業株式会社 連続鋳造におけるブレークアウト予知システム
JP2001287004A (ja) * 2000-04-11 2001-10-16 Nkk Corp 複合管及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287001A (ja) * 2000-04-05 2001-10-16 Yaskawa Electric Corp 連続鋳造設備におけるブレークアウト予知方法及びブレークアウト予知システム
JP5673100B2 (ja) 2010-12-28 2015-02-18 Jfeスチール株式会社 ブレイクアウト予知方法
JP2017154155A (ja) 2016-03-02 2017-09-07 Jfeスチール株式会社 拘束性ブレークアウトの監視装置およびそれを用いた監視方法
JP2020011255A (ja) * 2018-07-17 2020-01-23 日本製鉄株式会社 鋳造状態判定装置、鋳造状態判定方法、およびプログラム

Also Published As

Publication number Publication date
TW202210190A (zh) 2022-03-16
TWI820423B (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6950860B1 (ja) ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置
JP2609476B2 (ja) 連続鋳造における吹き出し検知方法及びそのための装置
JP5673100B2 (ja) ブレイクアウト予知方法
CN107442749A (zh) 一种结晶器流场的检测方法
JP5092631B2 (ja) 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置
JP4105839B2 (ja) 連続鋳造における鋳型内鋳造異常検出方法
JP5407987B2 (ja) スラブの縦割れ検知方法
WO2021256063A1 (ja) ブレークアウト予知方法、連続鋳造機の操業方法、及び、ブレークアウト予知装置
JP4112783B2 (ja) 連続鋳造設備におけるブレークアウト検出方法
JP7115240B2 (ja) 連続鋳造におけるブレークアウト予知方法
JP6859919B2 (ja) ブレークアウト予知方法
JPH01210160A (ja) 連続鋳造における縦割れ予知方法
JP5906814B2 (ja) 連続鋳造設備における拘束性ブレークアウトの予知方法及び装置
RU2813046C1 (ru) Способ прогнозирования прорыва, способ работы машины непрерывного литья и устройство для прогнозирования прорыва
JPH0775766B2 (ja) 連続鋳造における鋳片縦割れ検出方法
JP3537625B2 (ja) 連続鋳造における凝固シェル厚測定方法およびその装置
JP5482418B2 (ja) ブレークアウト予知方法
JP4828366B2 (ja) 鋳型の熱流束に基づく縦割検知方法及び連続鋳造方法
JP5375622B2 (ja) 連続鋳造のブレークアウト予知方法
JP7014203B2 (ja) 連続鋳造における鋳造鋳片のクレータエンド位置の推定方法およびその装置
JP7384323B1 (ja) 連続鋳造のスタートタイミング判定方法、連続鋳造設備の操業方法、鋳片の製造方法、判定装置、連続鋳造スタート判定システム及び表示端末装置
JPH09108801A (ja) 連続鋳造におけるブレイクアウトの予知および防止方法
JP3093586B2 (ja) 連続鋳造鋳片の縦割れ検知方法
WO2024070088A1 (ja) 鋳型、制御設備及び鋼の連続鋳造方法
JPH07232251A (ja) ブレークアウト予知方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537031

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043790

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021826706

Country of ref document: EP

Effective date: 20221213

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025427

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022025427

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221213