WO2021251362A1 - 繊維分散樹脂複合材、成形体、及び複合部材 - Google Patents

繊維分散樹脂複合材、成形体、及び複合部材 Download PDF

Info

Publication number
WO2021251362A1
WO2021251362A1 PCT/JP2021/021688 JP2021021688W WO2021251362A1 WO 2021251362 A1 WO2021251362 A1 WO 2021251362A1 JP 2021021688 W JP2021021688 W JP 2021021688W WO 2021251362 A1 WO2021251362 A1 WO 2021251362A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite material
resin
dispersed
mass
Prior art date
Application number
PCT/JP2021/021688
Other languages
English (en)
French (fr)
Inventor
英和 原
宰慶 金
二郎 坂戸
治郎 廣石
俊宏 鈴木
雅巳 太附
正人 池内
京介 山崎
健太郎 薮中
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP21821105.0A priority Critical patent/EP4166299A1/en
Priority to CN202180003946.1A priority patent/CN114126732A/zh
Publication of WO2021251362A1 publication Critical patent/WO2021251362A1/ja
Priority to US17/670,845 priority patent/US20220162431A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2201/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/067Wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • B32B2264/1052Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a fiber-dispersed resin composite material, a molded body, and a composite member.
  • fiber-reinforced resins in which reinforcing fibers such as glass fibers, ceramics fibers, synthetic resin fibers, carbon fibers and plant fibers are blended with the resin are known.
  • plant fiber is lightweight, has a small amount of combustion residue in thermal recycling and the like, and is relatively inexpensive, so that it is advantageous in terms of weight reduction, recyclability, cost and the like.
  • Techniques related to fiber reinforced plastics using plant fibers have been reported. For example, in Patent Document 1, a composite material obtained by kneading a composite material in which wax is attached to a dried waste paper pulp fiber that has been defibrated with a matrix resin is obtained, and the defibrated waste paper pulp is obtained.
  • Patent Document 2 proposes a resin composition composed of a highly fluid polyolefin resin having a specific melt index and plant fibers in order to improve the processability of a material obtained by mixing plant fibers with a polyolefin resin. ing. Patent Document 2 proposes a wood fiber substance-containing resin composition containing a specific amount of each of a thermoplastic resin, a wood fiber substance, and a (meth) acrylate-based polymer. It has been shown that the bending strength of the material is also high.
  • the fiber and the resin are incompatible with each other, and there are restrictions on improving the dispersibility of the fiber in the resin. As a result, it cannot be said that the existing fiber-reinforced resin sufficiently brings out the reinforcing action of the resin by the fiber.
  • the fiber length measurement method according to the pulp-optical automatic analysis method specified in ISO 16065 2001 is used for the dissolution residue obtained by immersing the fiber-dispersed resin composite material in the resin in the composite material in a soluble solvent.
  • the resins are polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyamide resin, polyvinyl chloride resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polystyrene resin, 3-hydroxybutyrate.
  • the resin contains a polyolefin resin, and the dissolution residue obtained by immersing the resin in the fiber-dispersed resin composite material in a soluble solvent under the measurement conditions of LL and LN is the thermal xylene dissolution residue.
  • the fiber-dispersed resin composite material according to any one of [1] to [10] wherein the fiber-dispersed resin composite material contains one or more compounds of any one or more of an organic acid metal salt, an organic acid, and a silicone.
  • the fiber-dispersed resin composite material of the present invention, and the molded body and composite member using this composite material are excellent in mechanical properties such as tensile strength and bending strength because the reinforcing action of the resin by the fiber is sufficiently brought out.
  • the fiber-dispersed resin composite material of the present invention (hereinafter, also simply referred to as “composite material of the present invention”) has fibers dispersed in the resin and contains the fibers in the composite material (100% by mass) of the present invention.
  • the amount is 1% by mass or more and less than 70% by mass.
  • the composite material of the present invention may be in the form of containing an inorganic substance such as aluminum, various additives and the like, depending on the type of raw material used.
  • the length-weighted average fiber length of the fiber measured under the following conditions is LL and the number average fiber length is LN
  • LL and LN satisfy the following [Equation 1-1]. preferable.
  • [Equation 1-1] 1.01 ⁇ LL / LN ⁇ 1.30
  • the LL and LN are defined in ISO 16065 2001 (JIS P8226 2006) for the dissolution residue (insoluble matter) obtained by immersing the fiber-dispersed resin mixture in a soluble solvent of the resin in the composite material. Pulp-determined by fiber length measurement method by optical automatic analysis. The solvent that dissolves the resin in the composite material is appropriately selected depending on the type of the resin in the composite material.
  • the resin is polyolefin, hot xylene (130 to 150 ° C.) and the like can be mentioned, but the present invention is not limited to this.
  • the resin in the composite material may be soluble and the fiber may be insoluble.
  • LL is the average fiber length weighted by the fiber length.
  • LL ( ⁇ n i l i 2 ) / ( ⁇ n i l i )
  • LN ( ⁇ n i l i ) / ( ⁇ n i )
  • n i is the number of fibers in the i-th length range
  • l i is the center value of the i-th length range.
  • LL / LN is an index showing the spread of the fiber length distribution. If the LL / LN is large, the spread of the fiber length distribution is large, and conversely, if the LL / LN is small, the fiber length distribution is narrow.
  • the composite material of the present invention can sufficiently bring out the reinforcing action of the fibers and can effectively increase the mechanical strength of the composite material.
  • the LL / LN is large, the distribution of fiber lengths is widened, and the ratio of short fibers to the average fiber length increases. Further, when the LL / LN is small, the distribution of fiber lengths is narrow and the ratio of long fibers is relatively low.
  • the composite material of the present invention has a configuration in which the relationship between LL and LN satisfies the above [Equation 1-1]. From the viewpoint of further increasing the mechanical strength, the LL / LN is preferably larger than 1.02, preferably larger than 1.03, and preferably larger than 1.04.
  • the LL / LN is preferably smaller than 1.25, preferably smaller than 1.20, preferably smaller than 1.15, and preferably 1.10 or less.
  • the LL / LN preferably satisfies the following [Equation 1-2], and more preferably [Equation 1-3].
  • the fiber length of the fibers in the composite material can be measured to some extent by observing the surface of the composite material and the thin film made by slicing or pressing the composite material.
  • the observation surface is limited to a specific surface, it is not possible to accurately measure all the fiber lengths of the individual fibers dispersed in the resin. This is because, in the composite material, there are not a few fibers in which the fibers are overlapped in the thickness direction of the thin film or the fibers are arranged at an angle from the observation surface.
  • the weight-weighted (length-length-weighted) average fiber length of the fiber is LW
  • LW and the above LN satisfy the following [Equation 2-1].
  • [Equation 2-1] 1.01 ⁇ LW / LN ⁇ 3.0
  • the above LW also has ISO 16065 2001 (JIS) for the dissolution residue (insoluble matter) obtained by immersing the fiber-dispersed resin composite material in a soluble solvent of the resin in the composite material. It is determined by the fiber length measuring method by the pulp-optical automatic analysis method specified in P8226 2006). More specifically, the above LW is derived by the following equation.
  • LW is the average fiber length weighted by the square of the fiber length.
  • LW ( ⁇ n i l i 3 ) / ( ⁇ n i l i 2 )
  • n i is the number of fibers in the i-th length range
  • l i is the center value of the i-th length range.
  • LW / LN is an index showing the spread of the fiber length distribution. If the LW / LN is large, the spread of the fiber length distribution is large, and conversely, if the LW / LN is small, the fiber length distribution is narrow.
  • LW / LN When many fibers have long fibers, the value of LW / LN increases sharply as compared with LL / LN, which is an index indicating the degree of spread of the distribution on the long fiber length side. ..
  • the LW / LN preferably satisfies the following [Equation 2-2], and preferably [Equation 2-3]. [Equation 2-2] 1.02 ⁇ LW / LN ⁇ 2.5 [Equation 2-3] 1.05 ⁇ LW / LN ⁇ 2.0
  • the composite material of the present invention has a fiber content of 1% by mass or more and less than 70% by mass in the composite material (100% by mass). From the viewpoint of improving mechanical properties, the fiber content in the composite material is more preferably 3% by mass or more, further preferably 5% by mass or more, still more preferably 10% by mass or more, still more preferably 15% by mass. That is all. Further, considering the point of further improving the bending strength, the content of the fiber in the composite material is preferably 25% by mass or more.
  • the composite material of the present invention preferably has a fiber content of less than 60% by mass, and may be less than 50% by mass, from the viewpoint of increasing fluidity and further suppressing water absorption. It is preferable, more preferably less than 40% by mass, and preferably less than 35% by mass.
  • the composite material of the present invention preferably has a fiber content of 5% by mass or more and less than 50% by mass, preferably 10% by mass or more and less than 40% by mass, and 15% by mass or more and less than 35% by mass. It is
  • the composite material of the present invention is suitable as a constituent material of a molded product (resin product) that requires a certain level of mechanical strength or higher.
  • the fibers in the composite material satisfy the above-mentioned relationship of [Equation 1-1] and are excellent in mechanical strength. The reason for this is not clear, but the reinforcing action of the fiber against gradual deformation and high-speed deformation depends on the specific length of the fiber, and the fiber length is limited to the specific range of the fiber length. It is presumed that the mechanical strength can be improved by giving an appropriate variation to the fibers.
  • the fibers dispersed in the composite material of the present invention preferably contain fibers having a fiber length of 0.25 mm (250 ⁇ m) or more.
  • fibers having a fiber length of 0.25 mm or more mechanical strength such as bending strength can be further improved. From this viewpoint, it is more preferable to contain fibers having a fiber length of 0.3 mm or more.
  • the composite material of the present invention preferably has a fiber length-weighted average fiber length of 0.25 mm (250 ⁇ m) or more in the composite material.
  • the length-weighted average fiber length is 0.25 mm or more, mechanical strength such as bending strength can be further improved. From this point of view, it is more preferable that the length-weighted average fiber length of the fiber is 0.3 mm or more.
  • the length-weighted average fiber length of the fibers in the composite material is preferably 1.0 mm or less, more preferably 0.8 mm or less, further preferably 0.6 mm or less, and further preferably 0.5 mm. It is preferably less than or equal to, and preferably 0.4 mm or less.
  • Examples of the fiber constituting the composite material of the present invention include plant fiber, synthetic resin fiber, glass fiber, ceramic fiber, carbon fiber and the like. From the viewpoint of effective utilization of natural resources, plant fiber is preferable.
  • Examples of plant fibers include wood fibers and cellulose fibers. Cellulose fiber and synthetic resin fiber are preferable from the viewpoint of stability of mechanical strength. From the viewpoint of effective utilization of waste wood, wood fiber and cellulose fiber are preferable, and wood fiber is more preferable.
  • Wood fibers usually contain cellulose, hemicellulose (a water-free polysaccharide other than cellulose), and lignin. Further, the fiber contained in the composite material of the present invention may be one kind or a plurality of kinds.
  • Examples of the wood fiber material include wood, wood, modified wood, and processed wood products such as fiber board, MDF (medium density fiberboard), and particle board using crushed or crushed wood.
  • the crushed material of the above can be used.
  • Examples of the cellulose fiber material include those mainly composed of cellulose, and more specifically, pulp, paper, used paper, paper powder, recycled pulp, paper sludge, laminated paper, waste paper of laminated paper, and laminating processing. A packaging pack using paper or the like can be used.
  • the content (% by mass) of the plant fiber in the composite material is determined by adopting a value obtained by thermogravimetric analysis as described below. can do.
  • the plant fibers are substantially thermally decomposed and disappear.
  • the mass% calculated by the above [Formula I] is regarded as the content of the plant fiber contained in the composite material. However, some of the plant fibers remain in this temperature range without disappearing (in some cases), but if the temperature range is exceeded, for example, the resin component disappears or a high temperature decomposable compound coexists. It is difficult to measure the amount of plant fiber because it cannot be distinguished from the weight loss due to heat decomposition and the residual components. Therefore, in the present invention, the mass% calculated by [Equation I] is used for grasping the amount of plant fiber.
  • the relationship between the amount of plant fiber thus obtained and the mechanical properties of the composite material is highly relevant. That is, if the fibers contained in the composite material of the present invention are cellulose fibers, the content of the cellulose fibers can be determined by [Formula I]. Further, if the fiber contained in the composite material of the present invention is a wood fiber, the content of the wood fiber can be determined by [Formula I].
  • the ratio of the plant fibers to the fibers in the composite material is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more. It is more preferably 90% by mass. It is also preferable that all the fibers in the composite material are plant fibers.
  • the resin constituting the composite material of the present invention examples include various thermoplastic resins and thermosetting resins, and it is preferable to include the thermoplastic resin from the viewpoint of moldability.
  • thermoplastic resins such as polyethylene resin and polypropylene resin, polyvinyl chloride resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile-styrene copolymer resin (AS resin), and polyamide resin.
  • the resin of the composite material preferably contains a polyolefin resin, and 50% by mass or more (preferably 70% by mass or more) of the resin constituting the composite material is preferably a polyolefin resin.
  • polyethylene resin or a polypropylene resin is preferable, or a mixture (blended resin) of a polyethylene resin and a polypropylene resin is also preferable.
  • the polyolefin resin constituting the composite material of the present invention is preferably a polyethylene resin and / or a polypropylene resin, and more preferably a polyethylene resin.
  • the polyethylene include low density polyethylene (LDPE) and high density polyethylene (HDPE).
  • the resin constituting the composite material of the present invention is preferably a polyolefin resin, and the polyolefin of this polyolefin resin preferably contains polyethylene, and more preferably high-density polyethylene or low-density polyethylene.
  • the low density polyethylene has a density means the polyethylene of less than 880 kg / m 3 or more 940 kg / m 3.
  • the high-density polyethylene means polyethylene having a higher density than the density of the low-density polyethylene.
  • the low-density polyethylene may be a so-called "low-density polyethylene” or “ultra-low-density polyethylene” having a long-chain branch, and is a linear low-density polyethylene obtained by copolymerizing ethylene with a small amount of ⁇ -olefin monomer.
  • LLDPE may be used, and further, it may be an “ethylene- ⁇ -olefin copolymer elastomer” included in the above density range.
  • the resin constituting the composite material of the present invention is a polyolefin resin
  • polypropylene it is preferable that polypropylene is contained, and it is also preferable that the polyolefin resin is polypropylene.
  • At least a part of the polyolefin resin may be a modified resin.
  • the modified resin include acid-modified resins such as maleic acid-modified resins.
  • the composite material of the present invention may contain a plurality of types of resins as described above.
  • the polyolefin resin may be used in combination with polyethylene terephthalate and / or nylon.
  • the total amount of polyethylene terephthalate and / or nylon is preferably 10 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the content of the resin in the composite material of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more. Further, the content of the resin in the composite material of the present invention is usually less than 99% by mass, preferably less than 95% by mass, more preferably less than 90% by mass, and preferably less than 85% by mass. If the total content of the fibers and the resin in the composite material is less than 100% by mass, the balance should contain, for example, the components described below as appropriate according to the purpose and the raw materials used. Can be done.
  • the composite material of the present invention is in the form of aluminum dispersed in the resin in addition to the fibers.
  • the inclusion of aluminum improves the thermal conductivity, visual recognition, light shielding, and slipperiness of the composite material.
  • the content of aluminum is preferably 1% by mass or more and 30% by mass or less in the composite material. By setting the aluminum content within this range, the workability of the composite material can be further improved, and lumps of aluminum are less likely to occur during the processing of the composite material.
  • This aluminum can be derived from the aluminum thin film layer of the polyethylene laminated paper as a raw material.
  • the aluminum thin layer of the polyethylene-laminated paper does not melt during melt-kneading, but is gradually sheared and made finer by the shearing force during kneading.
  • the composite material of the present invention preferably has an aluminum content of 5% by mass or more and 20% by mass or less in consideration of thermal conductivity, flame retardancy and the like.
  • the aluminum dispersed in the composite material of the present invention preferably has an average maximum XY length of 0.02 to 2 mm, more preferably 0.04 to 1 mm. The maximum XY length is determined by observing the surface of the composite material.
  • a straight line is drawn with respect to the aluminum dispersoid in a specific direction (X-axis direction), and the distance (X-axis) that connects the two intersections where the straight line and the outer periphery of the aluminum dispersoid intersect is the maximum.
  • Maximum length is measured, and a straight line is drawn in the direction perpendicular to the specific direction (Y-axis direction), and the distance between the two intersections where this straight line and the outer circumference of the aluminum dispersoid intersect is the maximum.
  • the distance (maximum length of Y-axis) is measured, and the longer of the maximum length of X-axis and the maximum length of Y-axis is defined as the maximum length of XY.
  • the maximum XY length can be determined using image analysis software.
  • the aluminum contains an aluminum dispersoid having an XY maximum length of 0.005 mm or more.
  • the ratio of the number of aluminum dispersoids having a maximum XY length of 1 mm or more to the number of aluminum dispersoids having a maximum XY length of 0.005 mm or more is preferably less than 1%. By setting this ratio to less than 1%, the workability of the composite material can be further improved, and lumps of aluminum are less likely to occur during the processing of the composite material. Further, the slipperiness can be improved by containing aluminum.
  • the aluminum has a scaly structure in the composite material, and further, at least a part of the aluminum has a bent structure of the scaly. Further, by containing aluminum, the slipperiness between the molded bodies of the composite material at room temperature is improved, and at the same time, the adhesiveness when the composite material is heat-sealed to the metal is improved.
  • the aluminum-containing composite material can exhibit a peel strength of, for example, 1.0 N / 10 mm or more between the aluminum foil and the aluminum foil when heat-sealed.
  • the peel strength is that a sheet of composite material and aluminum foil with a thickness of 0.1 mm are heat-sealed by a heat press at 170 ° C. for 5 minutes at 1 kg / cm 2 and cut into strips with a width of 25 mm. According to the average peel strength observed when the aluminum foil is peeled in the 90 ° direction at a speed of 50 mm / min at 23 ° C.
  • the composite material of the present invention can be in the form of a polyolefin resin in which resin particles different from those of the polyolefin resin are further dispersed.
  • a composite material having further enhanced mechanical strength can be obtained by having a form in which resin particles different from the polyolefin resin are dispersed.
  • the maximum diameter of the resin particles is preferably 10 ⁇ m or more, and more preferably 50 ⁇ m or more. It is also preferable that the maximum diameter is 10 ⁇ m or more and the aspect ratio is 5 or more. In particular, it is preferably scaly, has a maximum diameter of 10 ⁇ m or more, and has an aspect ratio of 5 or more.
  • the content of the resin particles in the composite material is preferably 0.1% by mass or more and 30% by mass or less.
  • the resin particles preferably contain a resin having a melting point that is 10 ° C. or higher higher than the melting point of the polyofin resin as the matrix. Further, it is also preferable that the resin particles include a resin having a melting point of 170 ° C. or higher and / or a resin showing an endothermic peak at 170 ° C. or higher and 350 ° C. or lower by differential scanning calorimetry. Resin particles can be left when the molded product is molded from the composite material, and the strength of the resin composite material can be further improved. Examples of the resin particles include those containing at least one of polyethylene terephthalate, polybutylene terephthalate and polyamide, and polyethylene terephthalate is preferable. Similarly, when a resin other than the polyolefin resin is used as the matrix resin, the resin particles different from the matrix resin can be dispersed.
  • At least a part of the above-mentioned resin and fiber constituting the composite material of the present invention can be derived from a recycled material. Further, at least a part of aluminum, polypropylene, polyethylene terephthalate and nylon which can be contained in the composite material of the present invention can be derived from the recycled material. By using recycled materials, it is possible to reduce the manufacturing cost of composite materials.
  • a source of fiber wood, modified wood, fiberboard, MDF (medium density fiberboard), particle board, furniture and structures using these, recovered materials, cutting waste, waste during manufacturing, etc. are preferable. can give.
  • used paper, waste paper of laminated paper, packaging packs using laminated paper, paper sludge and the like can be mentioned.
  • Recycled resin or the like can also be used as the resin supply source.
  • various molded products such as polyethylene bottles and PET bottles, containers, plastic furniture pipes, sheets, films, packaging containers, their collected products, and waste plastics discharged during the manufacture of molded products. And so on.
  • a laminated sheet having a resin layer can also be mentioned.
  • a polyolefin resin sheet, a sheet having a resin different from the polyolefin resin, a laminate having a polyolefin resin sheet and a sheet having a resin different from the polyolefin resin, and the like can be used as the recycled material.
  • a laminate having a structure in which an aluminum thin film sheet is laminated on this laminate can also be used as a recycled material.
  • crushed products and the like can also be used.
  • a packaging material (food pack or the like) having a laminated structure having a polyolefin resin sheet and a resin sheet different from the polyolefin resin can also be used as a recycled material.
  • the recycled material examples include polyethylene laminated paper having a paper and a polyethylene thin film layer, polyethylene laminated paper having a paper and a polyethylene thin film layer and an aluminum thin film layer, and a beverage pack and / or a food pack made of these processed papers.
  • used paper, recycled resin, etc. can be mentioned. The use of a plurality of these may be used.
  • a polyethylene thin film piece to which cellulose fibers are attached (hereinafter, "cellulose fiber-attached polyethylene") obtained by treating the above-mentioned laminated paper and / or beverage / food pack with a pulper and stripping off the paper portion to remove the paper portion. Also referred to as "thin film piece") can be used as a recycled material.
  • the laminated paper or the beverage / food pack has an aluminum thin film layer
  • aluminum is also attached to the above-mentioned cellulose fiber-attached polyethylene thin film piece.
  • the composite material of the present invention can be obtained, for example, by melt-kneading described later.
  • the composite material of the present invention preferably has a water content of less than 1% by mass.
  • the water content is the mass reduction rate when thermogravimetric analysis (TGA) is performed from 23 ° C to 120 ° C at a heating rate of + 10 ° C / min within 6 hours after the production of the composite material in a nitrogen atmosphere. Calculated from% by mass).
  • the composite material of the present invention may contain cellulose, hemicellulose (a polysaccharide other than water-free cellulose), and lignin. These cellulose, hemicellulose, and lignin may be derived from wood fiber (for example, wood flour used as a raw material).
  • the composite material of the present invention may contain one or more compounds of any one or more of a metal salt of an organic acid, an organic acid, and a silicone. The composite material containing these compounds has improved fluidity during heating and is less likely to cause molding defects during molding.
  • Preferred examples of the above compounds include metal salts of fatty acids such as zinc stearate and sodium stearate, fatty acids such as oleic acid and stearic acid, and the like.
  • the composite material of the present invention may contain an inorganic material. Bending elasticity, impact resistance, and flame retardancy can be improved by containing an inorganic material.
  • the inorganic material include calcium carbonate, talc, clay, magnesium oxide, aluminum hydroxide, magnesium hydroxide, titanium oxide and the like.
  • the composite material of the present invention may contain a flame retardant, an antioxidant, a stabilizer, a weather resistant agent, a compatibilizer, an impact improver, a modifier, and the like, depending on the purpose. Further, in order to improve workability, an oil component and various additives can be contained. Examples thereof include paraffin, modified polyethylene wax, stearate, hydroxystearate, vinylidene fluoride-based copolymer such as vinylidene fluoride-hexafluoropropylene copolymer, and organically modified siloxane.
  • the composite material of the present invention can contain carbon black, various pigments, and dyes.
  • the composite material of the present invention may also contain a metallic luster-based coloring material.
  • a conductive component such as conductive carbon black can be contained.
  • the composite material of the present invention can contain a heat conductive imparting component.
  • the composite material of the present invention may be crosslinked.
  • the cross-linking agent include organic peroxides, and specific examples thereof include dicumyl peroxide.
  • the composite material of the present invention may be in a form crosslinked by a silane crosslinking method.
  • the shape of the composite material of the present invention is not particularly limited.
  • the composite material of the present invention may be in the form of pellets, or the composite material of the present invention may be molded into a desired shape.
  • the composite material of the present invention is in the form of pellets, the pellets are suitable as a constituent material of a molded product (resin product).
  • the use of the composite material of the present invention is not particularly limited, and it can be widely used as various members and raw materials thereof.
  • the composite material of the present invention can be made into a form containing a desired fiber length distribution by adjusting the kneading conditions at the time of kneading, adding additives, or selecting and blending the fiber material to be used. ..
  • the fiber length distribution of the fibers in the obtained composite material can be adjusted by adjusting the kneading time, the kneading speed, the kneading temperature, the amount of the polar additive such as water added, the timing of the addition, and the like. At this time, the average fiber length of the fibers tends to fluctuate due to kneading, so it is important to adjust based on this.
  • the fiber material may be classified in advance and fibers in a specific fiber length size range may be used, or fibers in different fiber length size ranges may be used in combination to obtain a composite material.
  • the fiber length distribution of the fiber can be adjusted.
  • the amount of energy input during kneading is increased by lengthening the kneading time or increasing the kneading speed, the dispersibility of the fibers is increased to some extent, but the fiber length tends to be shortened.
  • This shortening of fibers is disadvantageous in improving the mechanical strength of the composite material. That is, since an increase in the amount of energy input during kneading often results in a decrease in fiber length and a narrow fiber length distribution at the same time, it is necessary to control these within a desired range.
  • a normal kneading device such as a kneader or a twin-screw extruder can be applied to the above melt kneading.
  • a batch type kneading device such as a kneader can be applied.
  • kneading becomes excessive, the fiber length is short, and the distribution of the fiber length becomes too narrow, and the mechanical strength of the composite material tends not to be sufficiently increased.
  • a batch type kneader such as a kneader can easily control the distribution of the cellulose fiber length and the fiber length within a desired range.
  • the fiber length distribution can be set within a desirable range by adding water.
  • adding a large amount of water (water larger than the amount of the resin compounded) during the melt-kneading is effective in realizing the desired fiber length distribution.
  • water is added from the beginning during kneading, the fiber length distribution in the obtained composite material tends to be narrowed, and the mechanical strength of the composite material tends to be inferior. It is considered that this is because the fiber comes into contact with water for a long time without melting the resin, and the action of water on the fiber becomes excessive.
  • melt kneading means kneading at a temperature at which the resin (thermoplastic resin) in the raw material melts.
  • the fibers are melt-kneaded at a temperature and treatment time at which the fibers do not deteriorate.
  • "Fibers do not deteriorate” means that the fibers do not undergo significant discoloration, burning or carbonization.
  • the temperature in the melt-kneading (the temperature of the melt-kneaded product) is preferably 110 to 280 ° C., more preferably 130 to 220 ° C., and 150 to 220 ° C., for example, when a polyethylene resin is used.
  • the temperature is preferably 170 to 210 ° C.
  • the melt-kneading time can be, for example, about 5 minutes to 1 hour, preferably 7 to 30 minutes, and preferably 10 to 25 minutes.
  • the melt-kneading time in the presence of water is preferably 3 minutes or longer, more preferably 5 minutes or longer, and preferably 10 minutes or longer.
  • a wood fiber material such as wood flour
  • a composite material having a desired fiber length distribution can be obtained with high efficiency by the above-mentioned melt kneading in the presence of water.
  • the molded product of the present invention is a molded product formed into a desired shape using the composite material of the present invention.
  • the molded body of the present invention include a sheet-shaped, plate-shaped, tubular, and molded body having various structures.
  • the tubular molded body include a straight tube having a substantially circular cross section and a quadrangular cross section, a curved tube, and a corrugated tube with corrugation.
  • a multi-divided body obtained by dividing a tubular molded body such as a straight tube having a substantially circular cross section, a straight tube having a quadrangular cross section, a curved tube, and a corrugated tube to which a corrugated tube is provided by half-splitting or the like can be mentioned.
  • the molded body of the present invention can be used as a member for civil engineering, building materials, automobiles, or electric wire protection.
  • the molded product of the present invention can be obtained by subjecting the composite material of the present invention to ordinary molding means such as injection molding, extrusion molding, press molding, and blow molding.
  • a composite member can be obtained by combining the molded product of the present invention with another material (member).
  • the form of this composite member is not particularly limited.
  • it can be a composite member having a laminated structure in which a layer made of a molded product of the present invention and a layer made of another material are combined. It is also preferable that this composite member has a tubular structure.
  • other materials constituting the composite member in combination with the molded body of the present invention for example, a thermoplastic resin material, a metal material and the like can be mentioned.
  • the composite material of the present invention can be used to join with a metal to form a composite.
  • This composite can be a laminate containing a layer of the composite material of the present invention and a layer of metal. Further, it is also preferable that the composite is a coated metal tube having a coating layer using the composite material of the present invention on the outer periphery and / or the inner circumference of the metal tube. This coated metal tube can be used, for example, as an electromagnetic wave shield tube.
  • the bonding between the composite material of the present invention and the metal is preferably in the form of directly bonding the two. This joining can be performed by a conventional method such as heat fusion. Further, the composite material of the present invention can also be used as an adhesive sheet.
  • the composite material of the present invention can be used as an adhesive resin layer by interposing it between the metal and the polyolefin resin material.
  • the composite material of the present invention can also be used as a hot melt adhesive.
  • the composite member of the present invention can be suitably used as a member for civil engineering, a building material, a member for an automobile, or a raw material thereof.
  • the type of the metal is not particularly limited.
  • the metal preferably contains at least one of aluminum, copper, steel, aluminum alloys, copper alloys, stainless steels, magnesium alloys, lead alloys, silver, gold and platinum.
  • the metal preferably contains at least one of aluminum, an aluminum alloy, copper, and a copper alloy, and more preferably at least one of aluminum, an aluminum alloy, copper, and a copper alloy. Further, the metal preferably contains aluminum and / or an aluminum alloy, and is preferably aluminum and / or an aluminum alloy.
  • ⁇ Fiber content in composite material> A composite sample (10 mg) previously dried in an air atmosphere at 80 ° C. for 1 hour is subjected to thermogravimetric analysis (TGA) from 23 ° C. to 400 ° C. at a heating rate of + 10 ° C./min under a nitrogen atmosphere. , The fiber content (% by mass) was calculated by the following [Formula I]. Five identical composite material samples were prepared, the average value of the fiber content (mass%) of the five composite material samples was obtained, and the average value was taken as the fiber content (mass%) of the composite material. .. In the composite materials of this example and the comparative example, the fiber derived from the raw material is a plant fiber.
  • the length-weighted average fiber length and number average fiber length are determined by the fiber length measurement method by the pulp-optical automatic analysis method specified in ISO 16065 2001 (JIS P8226 2006) for the thermal xylene dissolution residue (insoluble content) of the composite material. It was measured. Specifically, 0.1 to 1 g of a molded sheet of a composite material was cut out as a sample, and this sample was wrapped in a 400 mesh stainless mesh and immersed in 100 ml of xylene at 138 ° C. for 24 hours. The sample was then pulled up and then dried in vacuum at 80 ° C. for 24 hours.
  • the length-weighted average fiber length, number average fiber length, and weight-weighted average fiber length are measured by the fiber length measurement method by pulp-optical automatic analysis method. It was determined. MORFI COMPACT manufactured by TECHPAP was used for this measurement.
  • Bending strength and flexural modulus were measured at a sample thickness of 4 mm and a bending speed of 2 mm / min according to JIS K7171 2016. Specifically, a test piece (thickness 4 mm, width 10 mm, length 80 mm) is prepared by injection molding, and a load is applied at a distance between fulcrums of 64 mm, a radius of curvature of the fulcrum and the point of action of 5 mm, and a test speed of 2 mm / min. The bending test was performed in accordance with JIS-K7171 2016, and the bending strength (MPa) and the bending elastic modulus (MPa) were measured.
  • MPa bending strength
  • MPa bending elastic modulus
  • the flexural modulus Ef is Bending stress ⁇ f1 measured in the amount of deflection at strain 0.0005 ( ⁇ f1) Bending stress ⁇ f2 measured at the amount of deflection at strain 0.0025 ( ⁇ f2) And divide these differences by the difference in the corresponding strain amount, That is, it was calculated by the following formula.
  • Ef ( ⁇ f2- ⁇ f1) / ( ⁇ f2- ⁇ f1)
  • the amount of deflection S for obtaining the bending stress at this time is It can be calculated by the following formula.
  • S ( ⁇ ⁇ L 2 ) / (6 ⁇ h)
  • L Distance between fulcrums h: Thickness
  • MFR Melt flow rate
  • the following composite materials were prepared using a kneader, which is a batch type kneader, as a melt kneading device, with a kneading temperature of 180 to 200 ° C. and a kneading time of 10 to 20 minutes.
  • the kneading temperature was set to 160 to 180 ° C. The method for preparing the composite material of each Example and Comparative Example will be described below.
  • Example 1 Polypropylene 1 (J108M, prime polymer) and fiber material 1 (wood flour 1, average major axis 1.8 mm, water content 15%) are mixed at the blending ratio (unit: parts by mass) shown in the upper part of Table 1 to obtain a kneader. It was melt-kneaded using the mixture to obtain a composite material in which each component was uniformly mixed. In this melt kneading, 120 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Example 1 was obtained. In addition, in this Example 1 and each subsequent Example and Comparative Example, the water content of the obtained composite material was less than 1% by mass.
  • Example 2 Table 1 shows polypropylene 1 (J108M, prime polymer), fiber material 1 (wood flour 1, average major axis 1.8 mm, water content 15%), and maleic acid-modified polypropylene 1 (M-PP1) (Rrotede, Riken Vitamin).
  • the mixture was mixed at the compounding ratio (unit: parts by mass) shown in the upper row and melt-kneaded using a kneader to obtain a composite material in which each component was uniformly mixed. In this melt kneading, 120 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Example 2 was obtained.
  • Example 3 The same amount of water as the fiber material 1 (wood flour 1, average major axis 1.8 mm, moisture 15%) is put into a crusher having a rotary blade and crushed, and then this crushed product and polypropylene 1 (J108M, prime) are added. Polymer) and maleic acid-modified polypropylene 1 (M-PP1) (Rrotede, RIKEN Vitamin) are added so as to have the blending ratio (unit: parts by mass) shown in the upper part of Table 1, mixed, and melted using a kneader. Kneading was performed to obtain a composite material in which each component was uniformly mixed. In this melt kneading, 120 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Example 3 was obtained.
  • M-PP1 maleic acid-modified polypropylene 1
  • Example 4 Polypropylene 1 (J108M, prime polymer) and fiber material 3 (wood flour 2, average major axis 3 mm, moisture 15%) are mixed at the blending ratio (unit: parts by mass) shown in the upper part of Table 1 and used with a kneader.
  • melt-kneading a composite material in which each component was uniformly mixed was obtained.
  • 120 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Example 4 was obtained.
  • Examples 5 to 7 Polypropylene 1 (J108M, prime polymer) and fiber material 1 (wood flour 1, average major axis 1.8 mm, water content 15%) are mixed at the blending ratio (unit: parts by mass) shown in the upper part of Table 2, and the kneader is added. It was melt-kneaded using the mixture to obtain a composite material in which each component was uniformly mixed. In this melt kneading, 120 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Examples 5 to 7 was obtained.
  • J108M prime polymer
  • fiber material 1 wood flour 1, average major axis 1.8 mm, water content 15%
  • the mixture was mixed at the blending ratio (unit: parts by mass) shown in the upper part of No. 3 and melt-kneaded using a kneader to obtain a composite material in which each component was uniformly mixed.
  • 150 parts by mass of water was added when 1/2 of the kneading time had elapsed. In this way, the fiber-dispersed resin composite material of Examples 8 to 10 was obtained.
  • the mixture was mixed at the compounding ratio (unit: parts by mass) shown in the upper part, and melt-kneaded in the absence of water using a kneader to obtain a composite material in which each component was uniformly mixed. In this way, the fiber-dispersed resin composite materials of Comparative Examples 6 to 8 were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

樹脂中に繊維を分散してなる繊維分散樹脂複合材であって、前記繊維の含有量が1質量%以上70質量%未満であり、下記条件で決定される前記繊維の長さ加重平均繊維長をLL、数平均繊維長をLNとしたとき、LLとLNが下記[式1-1]を満たす繊維分散樹脂複合材。 <条件> 前記繊維分散樹脂複合材を、該複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さについて、ISO 16065 2001で規定されたパルプ-光学的自動分析法による繊維長測定方法によりLLとLNを求める。 [式1-1] 1.01<(LL/LN)<1.30

Description

繊維分散樹脂複合材、成形体、及び複合部材
 本発明は、繊維分散樹脂複合材、成形体、及び複合部材に関する。
 樹脂製品の機械的物性を高めるために、樹脂にガラス繊維、セラミックス繊維、合成樹脂繊維、炭素繊維、植物繊維等の強化繊維を配合した繊維強化樹脂が知られている。なかでも植物繊維は軽量であり、サーマルリサイクル等における燃焼残渣も少なく、また比較的安価であるため、軽量化、リサイクル性、コスト面等において有利である。植物繊維を用いた繊維強化樹脂に関する技術が報告されている。
 例えば、特許文献1には、解繊処理を施した乾燥状態の古紙パルプ繊維にワックスを付着させた複合材料をマトリックス樹脂と混練することにより複合材を得ること、また、解繊された古紙パルプ繊維の長さ加重平均繊維長が0.1~5.0mmであることが記載されている。
 特許文献2には、ポリオレフィン樹脂に植物繊維を混合した材料の加工性を高めるために、特定のメルトインデックスを有する高流動性のポリオレフィン樹脂と植物繊維とからなる樹脂組成物とすることが提案されている。
 特許文献2には、熱可塑性樹脂、木質繊維物質、及び(メタ)アクリレート系重合物を各特定量含有する木質繊維物質含有樹脂組成物が提案され、押し出し時の吐出量が増加し、成形品の曲げ強度も高くなることが示されている。
国際公開第2012/070616号 特開昭61-225234号公報 特開2003-277621号公報
 繊維強化樹脂は、繊維と樹脂とが非相溶性であり、樹脂中への繊維の分散性向上には制約がある。その結果、既存の繊維強化樹脂では、繊維による樹脂の強化作用が十分に引き出されているとはいえない。
 本発明は、繊維による樹脂の強化作用を十分に引き出し、引張強度、曲げ強度などの機械的物性に優れた繊維分散樹脂複合材を提供することを課題とする。また本発明は、この複合材を用いた成形体ないし複合部材を提供することを課題とする。
 本発明の上記課題は下記の手段により解決される。
〔1〕
 樹脂中に繊維を分散してなる繊維分散樹脂複合材であって、前記繊維の含有量が1質量%以上70質量%未満であり、下記条件で決定される前記繊維の長さ加重平均繊維長をLL、数平均繊維長をLNとしたとき、LLとLNが下記[式1-1]を満たす繊維分散樹脂複合材。
<条件>
 前記繊維分散樹脂複合材を、該複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さについて、ISO 16065 2001で規定されたパルプ-光学的自動分析法による繊維長測定方法によりLLとLNを求める。
 
[式1-1] 1.01<LL/LN<1.30
 
〔2〕
 前記LLと前記LNが下記[式1-3]を満たす、〔1〕に記載の繊維分散樹脂複合材。
 
[式1-3] 1.02<LL/LN≦1.10
 
〔3〕
 前記繊維の長さ加重平均繊維長が0.25mm以上である、〔1〕又は〔2〕に記載の繊維分散樹脂複合材。
〔4〕
 前記繊維分散樹脂複合材中の前記繊維の含有量が5質量%以上50質量%未満である、〔1〕~〔3〕のいずれか1項に記載の繊維分散樹脂複合材。
〔5〕
 前記繊維が植物繊維を含む、〔1〕~〔4〕のいずれか1項に記載の繊維分散樹脂複合材。
〔6〕
 前記繊維が木質繊維を含む、〔1〕~〔5〕のいずれか1項に記載の繊維分散樹脂複合材。
〔7〕
 前記木質繊維が、セルロース、ヘミセルロース、及びリグニンを含む、〔6〕に記載の繊維分散樹脂複合材。
〔8〕
 前記樹脂が、ポリオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂、アクリロニトリル-スチレン共重合体樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリスチレン樹脂、3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート重合体樹脂、ポリブチレンサクシネート樹脂、及びポリ乳酸樹脂の1種又は2種以上を含む、〔1〕~〔7〕のいずれか1項に記載の繊維分散樹脂複合材。
〔9〕
 前記樹脂がポリオレフィン樹脂を含み、前記LL及びLNの測定条件において、前記繊維分散樹脂複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さが、熱キシレン溶解残さである、〔1〕~〔8〕のいずれか1項に記載の繊維分散樹脂複合材。
〔10〕
 前記繊維分散樹脂複合材が前記樹脂中にアルミニウムを分散してなる、〔1〕~〔9〕のいずれか1項に記載の繊維分散樹脂複合材。
〔11〕
 前記繊維分散樹脂複合材が、有機酸の金属塩、有機酸、シリコーンのいずれか1種以上の化合物を含む、〔1〕~〔10〕のいずれか1項に記載の繊維分散樹脂複合材。
〔12〕
 前記繊維分散樹脂複合材が、前記樹脂中に前記樹脂とは異なる樹脂からなる樹脂粒子を分散してなる、〔1〕~〔11〕のいずれか1項に記載の繊維分散樹脂複合材。
〔13〕
 前記樹脂の少なくとも一部及び/又は前記繊維の少なくとも一部が、リサイクル材に由来する、〔1〕~〔12〕のいずれか1項に記載の繊維分散樹脂複合材。
〔14〕
 〔1〕~〔13〕のいずれか1項に記載の繊維分散樹脂複合材を用いた成形体。
〔15〕
 〔14〕に記載の成形体と他の材料とを組合せてなる複合部材。
 本発明の繊維分散樹脂複合材、ならびにこの複合材用いた成形体及び複合部材は、繊維による樹脂の強化作用が十分に引き出され、引張強度、曲げ強度などの機械的物性に優れる。
 本発明の好ましい実施の形態について説明する。
〔繊維分散樹脂複合材〕
 本発明の繊維分散樹脂複合材(以下、単に「本発明の複合材」とも称す。)は、樹脂中に繊維が分散しており、本発明の複合材(100質量%)中の繊維の含有量は1質量%以上70質量%未満である。繊維の含有量をこの範囲内とすることにより、後述する溶融混練条件によって繊維の繊維長分布を制御でき、また繊維を高度な均一性で分散させることが可能となり、繊維による樹脂の強化作用を十分に引き出すことができる。本発明の複合材は、使用する原料の種類に応じてアルミニウム等の無機物、各種添加剤等を含有する形態とすることができる。
 本発明の複合材は、下記条件で測定される前記繊維の長さ加重平均繊維長をLL、数平均繊維長をLNとしたとき、LLとLNが下記[式1-1]を満たすことが好ましい。
 
[式1-1] 1.01<LL/LN<1.30
 
 上記LLとLNは、繊維分散樹脂合材を、該複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さ(不溶分)について、ISO 16065 2001(JIS P8226 2006)で規定されたパルプ-光学的自動分析法による繊維長測定方法により決定される。
 複合材中の樹脂を可溶な溶媒は、複合材中の樹脂の種類により適宜選択され、例えば、樹脂がポリオレフィンであれば熱キシレン(130~150℃)等があげられるが、これに限らず、複合材中の樹脂を可溶であり繊維を不可溶であるものであればよい。
 より詳細には、上記LL及びLNは下記式により導出される。LLは繊維の長さにより重み付けられた平均繊維長である。
  LL=(Σn )/(Σn
  LN=(Σn)/(Σn
 ここで、nは、i番目の長さ範囲にある繊維の本数であり、lは、i番目の長さ範囲の中心値である。
 LL/LNは、繊維長の分布の広がりを示す指標となる。LL/LNが大きければ繊維長の分布の広がりが大きく、逆にLL/LNが小さければ繊維長の分布が狭いことを示す。
 本発明の複合材は、1.01<LL/LN<1.30を満たすことにより、繊維による強化作用を十分に引き出すことができ、複合材の機械強度を効果的に高めることができる。LL/LNが大きいと、繊維長の分布が広がり、平均繊維長に対して短繊維の割合が増加する。また、LL/LNが小さいと、繊維長の分布が狭く、長繊維の割合が相対的に低下する。本発明の複合材は、LLとLNの関係が上記[式1-1]を満たす構成とする。
 機械強度をより高める観点から、LL/LNは1.02より大きいことが好ましく、1.03より大きいことも好ましく、1.04より大きいことも好ましい。したがって、1.02<LL/LN<1.30を満たすことが好ましく、1.03<LL/LN<1.30を満たすことも好ましく、1.04<LL/LN<1.30を満たすことも好ましい。
 また、LL/LNが大きすぎると、平均繊維長に対して長繊維の割合が増加する一方で、上記のように短繊維の割合も増加し、機械強度がバラついたり、低下したりしやすく、流動性も低下しやすくなる。この点から、LL/LNは1.25より小さいことが好ましく、1.20より小さいことも好ましく、1.15より小さいことも好ましく、1.10以下であることも好ましい。したがって、1.01<LL/LN<1.25を満たすことが好ましく、1.01<LL/LN<1.2を満たすことも好ましく、1.02<LL/LN<1.15を満たすことも好ましく、1.01<LL/LN≦1.10を満たすことも好ましい。
 機械強度と流動性の両特性の向上を考慮すると、LL/LNは、下記[式1-2]を満たすことが好ましく、[式1-3]を満たすことがより好ましい。
 
[式1-2] 1.01<LL/LN<1.20
 
[式1-3] 1.02<LL/LN≦1.10
 
 複合材中の繊維の繊維長等は、複合材の表面やそれをスライスやプレス等で薄膜としたものを観察することによりある程度は測定できる。しかしこのような2次元的な観察面からの測定方法では、観察面が特定の面に限られるため、樹脂中に分散する個々の繊維の繊維長の全てを正確に測定することはできない。なぜなら、複合材中において繊維は、繊維が薄膜の厚さ方向において重なりをもって存在していたり、繊維が観察面から傾いて配されていたりするものが少なからず存在するからである。X線CT等の透過断層画像の解析により繊維長を測定することも考えられるが、実際には複合材中の繊維のコントラストが必ずしも明瞭でなく、やはり繊維長の正確な測定は困難である。本発明者らは、複合材中のセルロース繊維の繊維長分布を正確に測定し、当該測定値と複合材の機械的物性との間に、従来知られていなかった技術的関係を見い出し、かかる知見に基づき本発明を完成させるに至った。
 本発明の複合材は、繊維の重さ加重(長さ長さ加重)平均繊維長をLWとしたとき、LWと上記LNが下記[式2-1]を満たすことが好ましい。
 
[式2-1] 1.01<LW/LN<3.0
 
 上記LWもまた、LLやLNと同様に、繊維分散樹脂複合材を、該複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さ(不溶分)について、ISO 16065 2001(JIS P8226 2006)で規定されたパルプ-光学的自動分析法による繊維長測定方法により決定される。
 より詳細には、上記LWは下記式により導出される。LWは繊維の長さの2乗により重み付けられた平均繊維長である。
  LW=(Σn )/(Σn
 ここで、nは、i番目の長さ範囲にある繊維の本数であり、lは、i番目の長さ範囲の中心値である。
 LW/LNは、繊維長の分布の広がりを示す指標となる。LW/LNが大きければ繊維長の分布の広がりが大きく、逆にLW/LNが小さければ繊維長の分布が狭いことを示す。繊維長が長いものが多い場合には、LW/LNは、LL/LNと比較して、急激にその値が大きくなることから、繊維長の長い側の分布の広がりの程度を示す指標となる。LW/LNは下記[式2-2]を満たすことが好ましく、[式2-3]を満たすことも好ましい。
 
[式2-2] 1.02<LW/LN<2.5
 
[式2-3] 1.05<LW/LN<2.0
 
 本発明の複合材は、複合材(100質量%)中の繊維の含有量が1質量%以上70質量%未満である。機械特性を向上の観点から、複合材中の繊維の含有量は3質量%以上であることがさらに好ましく、さらに好ましくは5質量%以上、さらに好ましくは10質量%以上、さらに好ましくは15質量%以上である。また、曲げ強度をより向上させる点も考慮すれば、複合材中の繊維の含有量は25質量%以上であることが好ましい。
 本発明の複合材は、流動性を高めたり、吸水性をより抑えたりする観点から、複合材中の繊維の含有量を60質量%未満とすることが好ましく、50質量%未満とすることも好ましく、さらに好ましくは40質量%未満であり、35質量%未満とすることも好ましい。
 本発明の複合材は、繊維の含有量が5質量%以上50質量%未満であることが好ましく、10質量%以上40質量%未満であることも好ましく、15質量%以上35質量%未満であることも好ましい。
 本発明の複合材は、一定以上の機械強度が必要とされる成形品(樹脂製品)の構成材料として好適である。本発明の複合材は、複合材中の繊維が上記[式1-1]の関係を満たし、機械強度に優れる。この理由は定かではないが、緩やかな変形と、高速の変形に対する繊維による補強作用が、それぞれ繊維の特定の長さに依存しており、繊維の繊維長分布を特定範囲としながらも、繊維長に適度なばらつきをもたせることにより、機械強度の向上が実現されるものと推定される。
 本発明の複合材中に分散している繊維は繊維長が0.25mm(250μm)以上の繊維を含むことが好ましい。繊維長0.25mm以上の繊維を含むことにより、曲げ強度等の機械強度をより向上させることができる。この観点から、繊維長0.3mm以上の繊維を含むことがさらに好ましい。
 本発明の複合材は、複合材中の繊維の長さ加重平均繊維長が0.25mm(250μm)以上であることが好ましい。長さ加重平均繊維長が0.25mm以上であることにより曲げ強度等の機械強度をより向上させることができる。この観点から、繊維の長さ加重平均繊維長は0.3mm以上であることがさらに好ましい。高い流動性を得る観点などを考慮すると、複合材中の繊維の長さ加重平均繊維長は1.0mm以下が好ましく、0.8mm以下がさらに好ましく、0.6mm以下がさらに好ましく、0.5mm以下とすることも好ましく、0.4mm以下とすることも好ましい。
 本発明の複合材を構成する繊維としては植物繊維、合成樹脂繊維、ガラス繊維、セラミックス繊維、炭素繊維等があげられる。天然資源の有効活用の点からは植物繊維が好ましい。植物繊維としては、木質繊維やセルロース繊維があげられる。機械強度の安定性からはセルロース繊維や合成樹脂繊維が好ましい。廃材の有効利用の点からは、木質繊維やセルロース繊維が好ましく、木質繊維がより好ましい。木質繊維は、通常はセルロース、ヘミセルロース(水不要性のセルロース以外の多糖類)、及びリグニンを含む。また、本発明の複合材に含まれる繊維は、一種であっても複数種でもよい。
 木質繊維材としては、木、木材、修正木材、あるいは、木材の破砕物や粉砕物を使用した、ファイバーボード、MDF(中密度繊維板)、パーティクルボード等の木材加工品等があげられ、これらの粉砕物等を使用することができる。セルロース繊維材としては、セルロースを主体とするものがあげられ、より具体的には、パルプ、紙、古紙、紙粉、再生パルプ、ペーパースラッジ、ラミネート加工紙、ラミネート加工紙の損紙、ラミネート加工紙を使用した包装パック等を使用することができる。
 本発明の複合材中に含まれる繊維が、植物繊維である場合、複合材中の植物繊維の含有量(質量%)は、下記のようにして熱重量分析により求められる値を採用して決定することができる。
<植物繊維の含有量の決定方法>
 事前に大気雰囲気にて80℃で1時間乾燥した複合材試料(10mg)を、窒素雰囲気下において+10℃/分の昇温速度で、23℃から400℃までの熱重量分析(TGA)に付し、下記[式I]により植物繊維の含有量(質量%)を算出する。
 
[式I]
(植物繊維の含有量[質量%])=(200~380℃の間における複合材試料の質量減少量[mg])×100/(熱重量分析に付す前の乾燥状態の複合材試料の質量[mg])
 
 窒素雰囲気下において+10℃/minの昇温速度で200~380℃まで昇温させた場合、植物繊維はほぼ熱分解して消失する。本発明では、上記[式I]により算出される質量%を、複合材中に含まれる植物繊維の含有量とみなす。ただし、植物繊維の一部はこの温度範囲内で消失せずに残る(場合がある)が、この温度範囲を超えると、例えば樹脂成分の消失や、高温分解性の化合物が共存する場合にその加熱分解減量や残存成分と区別することができず、植物繊維量の測定が困難になる。そのため、本発明においては、[式I]により算出される質量%を、植物繊維量の把握に用いる。このようにして求めた植物繊維量と複合材の機械的特性の関係は、関連性が高いものである。
 すなわち、本発明の複合材に含まれる繊維がセルロース繊維であれば、[式I]によりセルロース繊維の含有量を決定することができる。また、本発明の複合材に含まれる繊維が木質繊維であれば、[式I]により木質繊維の含有量を決定することができる。
 本発明の複合材が植物繊維を含む場合、複合材中の繊維に占める植物繊維の割合は50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上であることがさらに好ましく、90質量%であることがさらに好ましい。また、複合材中の繊維のすべてが植物繊維であることも好ましい。
 本発明の複合材を構成する樹脂としては、各種の熱可塑樹脂、熱硬化性樹脂があげられ、成形性からは熱可塑性樹脂を含むことが好ましい。具体的には、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂の他、ポリ塩化ビニル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS樹脂)、アクリロニトリル-スチレン共重合体樹脂(AS樹脂)、ポリアミド樹脂(ナイロン)、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリスチレン樹脂等の熱可塑性樹脂、3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート重合体樹脂(PHBH)、ポリブチレンサクシネート樹脂、ポリ乳酸樹脂等の熱可塑性の生分解性の樹脂等があげられる。本発明の複合材には、これらの樹脂の1種又は2種以上を用いることができる。なかでも複合材の樹脂がポリオレフィン樹脂を含むことが好ましく、複合材を構成する樹脂の50質量%以上(好ましくは70質量%以上)がポリオレフィン樹脂であることが好ましい。
 ポリオレフィン樹脂としては、ポリエチレン樹脂やポリプロピレン樹脂が好ましく、あるいはポリエチレン樹脂とポリプロピレン樹脂との混合物(ブレンド樹脂)も好ましい。また、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-メチルメタクリレート共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-グリシジルメタクリレート共重合体、エチレン-プロピレン共重合体等のエチレン系共重合体(エチレンを構成成分として含む共重合体)や、ポリブテン等の樹脂も、本発明の複合材に用いるポリオレフィン樹脂として好ましい。ポリオレフィン樹脂は1種を単独で用いても2種以上を併用してもよい。本発明の複合材を構成するポリオレフィン樹脂はポリエチレン樹脂及び/又はポリプロピレン樹脂であることが好ましく、ポリエチレン樹脂であることがより好ましい。
 上記ポリエチレンとしては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)があげられる。
 本発明の複合材を構成する樹脂はポリオレフィン樹脂であることが好ましく、このポリオレフィン樹脂のポリオレフィンはポリエチレンを含むことが好ましく、高密度ポリエチレン又は低密度ポリエチレンであることがさらに好ましい。
 上記低密度ポリエチレンは、密度が880kg/m以上940kg/m未満のポリエチレンを意味する。上記高密度ポリエチレンは、上記低密度ポリエチレンの密度より密度が大きいポリエチレンを意味する。
 低密度ポリエチレンは、長鎖分岐を有する、いわゆる「低密度ポリエチレン」及び「超低密度ポリエチレン」といわれるものでもよく、エチレンと少量のα-オレフィンモノマーを共重合させた直鎖状低密度ポリエチレン(LLDPE)でもよく、さらには上記密度範囲に包含される「エチレン-α-オレフィン共重合体エラストマー」であってもよい。
 本発明の複合材を構成する樹脂がポリオレフィン樹脂の場合、ポリプロピレンを含むことも好ましく、当該ポリオレフィン樹脂がポリプロピレンであることも好ましい。
 ポリオレフィン樹脂の少なくとも一部は、変性樹脂であってもよい。変性樹脂としてはマレイン酸変性樹脂等の酸変性樹脂があげられる。酸変性樹脂を含むことにより、樹脂と繊維との密着性向上し、複合材の機械強度が高くなる。従って、少ない繊維量の配合で、複合材の機械強度が高められ、結果として複合材の機械強度と流動性を同時に高いものとすることができる。
 本発明の複合材は、上記の通り複数種の樹脂を含有してもよい。また、例えば、ポリオレフィン樹脂と、ポリエチレンテレフタレート及び/又はナイロンとを併用してもよい。この場合、ポリオレフィン樹脂100質量部に対し、ポリエチレンテレフタレート及び/又はナイロンの総量が10質量部以下であることが好ましい。
 本発明の複合材中の樹脂の含有量は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。また、本発明の複合材中の樹脂の含有量は通常は99質量%未満であり、95質量%未満が好ましく、90質量%未満がさらに好ましく、85質量%未満であることも好ましい。
 なお、複合材中の繊維と樹脂の各含有量の合計が100質量%に満たない場合、残部には、例えば、後述する成分を目的に応じて、また使用する原料に応じて適宜に含むことができる。
 本発明の複合材は、樹脂中に、繊維に加え、アルミニウムが分散してなる形態であることも好ましい。アルミニウムを含有することにより、複合材の熱伝導性や目視認識性、光遮蔽性、滑り性が向上する。本発明の複合材が樹脂中にアルミニウムが分散されてなる形態である場合、アルミニウムの含有量は、複合材中、1質量%以上30質量%以下が好ましい。アルミニウムの含有量をこの範囲内とすることにより、複合材の加工性をより高めることができ、複合材の加工時にアルミニウムの塊まりが、より生じにくくなる。このアルミニウムは、原料とするポリエチレンラミネート加工紙のアルミニウム薄膜層に由来し得る。ポリエチレンラミネート加工紙のアルミニウム薄膜層は溶融混練時に、アルミニウムが溶融することはないが、混練時の剪断力により、徐々に剪断され微細化する。
 上記加工性の観点に加え、熱伝導性、難燃性等をも考慮した場合、本発明の複合材は、アルミニウムの含有量が好ましくは5質量%以上20質量%以下である。
 本発明の複合材中に分散しているアルミニウムは、個々のアルミニウムのX-Y最大長の平均が0.02~2mmであることが好ましく、0.04~1mmであることがより好ましい。上記X-Y最大長は、複合材の表面を観察して決定されるものである。この観察面において、アルミニウム分散質に対し、特定方向(X軸方向)に直線を引き、当該直線とアルミニウム分散質の外周とが交わる2つの交点間を結ぶ距離が最大となる当該距離(X軸最大長)を測定し、また、当該特定方向に対して垂直方向(Y軸方向)に直線を引き、この直線とアルミニウム分散質の外周とが交わる2つの交点間を結ぶ距離が最大となる当該距離(Y軸最大長)を測定し、X軸最大長とY軸最大長のうち長い方の長さをX-Y最大長とする。X-Y最大長は画像解析ソフトを用いて決定することができる。
 上記複合材がアルミニウムを含有する場合、このアルミニウムにはX-Y最大長が0.005mm以上のアルミニウム分散質が含まれることが好ましい。X-Y最大長が0.005mm以上のアルミニウム分散質の数に占めるX-Y最大長が1mm以上のアルミニウム分散質の数の割合は1%未満であることが好ましい。この割合を1%未満とすることにより、複合材の加工性をより高めることができ、また、複合材の加工時にアルミニウムの塊まりがより生じにくくなる。
 また、アルミニウムを含有することにより滑り性を向上させることができ、例えば、複合材を成形して得られる複合材の成形シートを重ね置きしても、成形シート同士が密着しにくく剥がしやすい。このようなアルミニウムの作用を効果的に発現させる観点から、複合材中においてアルミニウムは、鱗片状の構造、さらにはアルミニウムの少なくとも一部が鱗片の折曲がり構造をとることが好ましい。
 また、アルミニウムを含有することにより複合材の成形体同士の常温での滑り性を向上させる一方、複合材を金属との熱融着性した時の接着性が向上する。アルミニウムを含有する複合材は、アルミニウム箔と熱融着した場合に該アルミニウム箔との間で、例えば、1.0N/10mm以上の剥離強度を示すことができる。この剥離強度は、複合材のシートと厚さ0.1mmのアルミ箔とを、170℃、5分、1kg/cmで加熱プレスにより熱融着したものを、幅25mmの短冊に切り出したものについて、23℃で、アルミ箔を90°方向に、速度50mm/分で剥離したきに、観測される剥離強度の平均による。
 本発明の複合材は、ポリオレフィン樹脂中に、さらに、ポリオレフィン樹脂とは異なる樹脂粒子を分散させた形態とすることができる。ポリオレフィン樹脂とは異なる樹脂粒子を分散させた形態とすることにより機械強度がさらに高められた複合材とすることができる。樹脂粒子は、最大直径が10μm以上であることが好ましく、さらに好ましくは最大直径が50μm以上である。最大直径10μm以上、アスペクト比5以上であることも好ましい。特に、鱗片状で最大直径10μm以上、アスペクト比5以上であることが好ましい。複合材中、樹脂粒子の含有量は0.1質量%以上30質量%以下が好ましい。樹脂粒子は、マトリックスとなるポリオフィン樹脂の融点より10℃以上高い融点を有する樹脂を含むことが好ましい。また、樹脂粒子は、170℃以上に融点を有する樹脂及び/又は示差走査熱量分析により170℃以上350℃以下に吸熱ピークを示す樹脂を含むことも好ましい。複合材から成形体を成形する際に樹脂粒子を残すことができ、樹脂複合材の強度をさらに向上させることが可能となる。樹脂粒子としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリアミドの少なくとも1種を含むものがあげられ、なかでもポリエチレンテレフタレートが好ましい。
 マトリックス樹脂としてポリオレフィン樹脂以外の樹脂を用いた場合も同様に、マトリックス樹脂とは異なる樹脂粒子を分散させた形態とすることができる。
 本発明の複合材を構成する上記の樹脂と繊維は、これらの少なくとも一部をリサイクル材に由来するものとすることができる。また、本発明の複合材に含まれ得るアルミニウム、ポリプロピレン、ポリエチレンテレフタレート及びナイロンも、これらの少なくとも一部がリサイクル材に由来することができる。リサイクル材を利用することにより、複合材の製造コストを抑えることができる。
 繊維の供給源として木材、修正木材、ファイバーボード、MDF(中密度繊維板)、パーティクルボード等やこれらを使用した家具や構築物、あるいはこれらの回収物、切断屑、製造時の廃棄物等が好ましくあげられる。また、古紙、ラミネート加工紙の損紙、ラミネート加工紙を使用した包装パック、ペーパースラッジ等もあげられる。
 樹脂の供給源として再生樹脂等を用いることもできる。具体的には、ポリエチレンのボトルやPETボトルなのボトル、容器、プラスチック製の家具パイプ、シート、フィルム、包装容器等の各種成形品やこれらの回収物や、成形品の製造時に排出される廃プラスチック等があげられる。また、樹脂層を有する積層シートもあげられる。
 ポリオレフィン樹脂シート、ポリオレフィン樹脂とは異なる樹脂のシートや、ポリオレフィン樹脂シートとポリオレフィン樹脂とは異なる樹脂のシートとを有する積層物等を、リサイクル材として用いることができる。さらに、この積層物にアルミニウム薄膜シートを積層した構造の積層物をリサイクル材として用いることもできる。また、これらの粉砕物等を用いることもできる。また、ポリオレフィン樹脂シートとポリオレフィン樹脂とは異なる樹脂のシートとを有する積層構造の包装材(食品パック等)をリサイクル材として用いることもできる。
 リサイクル材としては、例えば、紙とポリエチレン薄膜層とを有するポリエチレンラミネート加工紙、紙とポリエチレン薄膜層とアルミニウム薄膜層とを有するポリエチレンラミネート加工紙、これらの加工紙からなる飲料パック及び/又は食品パック、あるいは、古紙、再生樹脂等があげられる。これらの複数種の使用であってもよい。また、上記のラミネート加工紙及び/又は飲料・食品パックをパルパーで処理して紙部分を剥ぎ取り除去して得られた、セルロース繊維が付着してなるポリエチレン薄膜片(以下、「セルロース繊維付着ポリエチレン薄膜片」とも称す。)をリサイクル材として用いることができる。ラミネート加工紙や飲料・食品パックがアルミニウム薄膜層を有する場合には、上記のセルロース繊維付着ポリエチレン薄膜片にはアルミニウムも付着した状態にある。
 このようなリサイクル材を原料とした場合にも、例えば、後述の溶融混練により本発明の複合材を得ることができる。
 本発明の複合材は、含水率が1質量%未満であることが好ましい。上記含水率は、複合材の製造後6時間以内に窒素雰囲気下において、23℃から120℃まで、+10℃/minの昇温速度で熱重量分析(TGA)を行った際の質量減少率(質量%)から求める。
 本発明の複合材は、セルロース、ヘミセルロース(水不要性のセルロース以外の多糖類)、及びリグニンを含むものであってもよい。これらのセルロース、ヘミセルロース、リグニンは、木質繊維(例えば原料として用いた木粉)に由来するものであってもよい。
 本発明の複合材は、有機酸の金属塩、有機酸、シリコーンのいずれか1種以上の化合物を含有してもよい。これらの化合物を含有する複合材は加熱時の流動性が向上し、成形時の成形不良を生じにくくする。上記化合物の好ましい例として、ステアリン酸亜鉛、ステアリン酸ナトリウム等の脂肪酸の金属塩、オレイン酸、ステアリン酸等の脂肪酸などがあげられる。
 本発明の複合材は、無機質材を含有してもよい。無機質材を含有することにより曲げ弾性、耐衝撃性、難燃性が向上し得る。無機質材としては、炭酸カルシウム、タルク、クレー、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン等があげられる。
 本発明の複合材は、目的に応じて、難燃剤、酸化防止剤、安定剤、耐候剤、相溶化剤衝撃改良剤、改質剤等を含んでもよい。また、加工性向上のため、オイル成分や各種の添加剤を含むことができる。パラフィン、変性ポリエチレンワックス、ステアリン酸塩、ヒドロキシステアリン酸塩、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ化ビニリデン系共重合体、有機変性シロキサン等があげられる。
 本発明の複合材は、カーボンブラック、各種の顔料、染料を含有することができる。本発明の複合材は、金属光沢系の着色材を含有することもできる。また、導電性カーボンブラック等の、導電性付与成分を含むことができる。さらに、本発明の複合材は熱伝導性付与成分を含むことができる。
 本発明の複合材は、架橋されていてもよい。架橋剤としては、有機過酸化物等が挙げられ、具体例としてジクミルパーオキサイドがあげられる。本発明の複合材はシラン架橋法により架橋された形態であってもよい。
 本発明の複合材の形状に特に制限はない。例えば、本発明の複合材をペレット状とすることもできるし、本発明の複合材は所望の形状に成形されたものでもよい。本発明の複合材がペレット状の場合、このペレットは、成形品(樹脂製品)の構成材料として好適である。
 本発明の複合材の用途は特に制限されず、種々の部材やその原料として広く用いることができる。
〔繊維分散樹脂複合材の調製〕
 続いて本発明の複合材の製造方法について、好ましい実施形態を以下に説明する。本発明の複合材は、本発明の規定を満たす限り、下記方法により得られたものに限定されるものではない。
 本発明の複合材は、混練する際の混練条件の調整や添加剤の添加、あるいは使用する繊維材の選定と配合を調整することにより、所望の繊維長分布を含有する形態とすることができる。例えば、混練時間、混練速度、混練温度、水等の極性添加剤の添加量、添加のタイミング等により、得られる複合材中の繊維の繊維長分布を調整することができる。この際、混練により繊維の平均繊維長も変動する傾向があるのでこれを踏まえて調整することが重要である。あるいは、例えば、繊維材を予め分級しておき、特定の繊維長サイズ範囲にある繊維を使用したり、異なる繊維長サイズ範囲にある繊維を組み合わせて使用したりして、得られる複合材中の繊維の繊維長分布を調整することができる。
 混練時間を長くしたり混練速度を高めたりして混練時のエネルギー投入量を高めると、繊維の分散性がある程度高まるが、繊維長は短くなる傾向にある。この短繊維化は複合材の機械強度の向上において不利に働く。つまり、混練時のエネルギー投入量の増大は繊維長の低下と狭い繊維長分布を同時にもたらすことが多いので、これらを所望の範囲へとコントロールする必要がある。
 上記の溶融混練には、ニーダや二軸押出機等、通常の混練装置を適用することができる。好ましくはニーダ等のバッチ式の混練装置が適用できる。二軸押出機は、混練が過剰となり、繊維長が短く、かつ繊維長の分布が狭くなりすぎ、複合材の機械強度が十分に高められない傾向がある。
 ニーダ等のバッチ式混練機は、セルロース繊維長と繊維長の分布を所望の範囲にコントロールしやすい。例えば、バッチ式の混練機であるニーダを使用する場合は、水を添加することにより、繊維長分布を望ましい範囲とすることができる。特に多量の水(樹脂の配合量よりも多い水)を溶融混練の途中で添加することが、目的の繊維長分布の実現において有効である。
 他方、混練する際、水を最初から添加すると、得られる複合材中の繊維長分布が狭くなり、複合材の機械強度に劣る傾向がある。これは樹脂が溶融しない状態で繊維が水と接触する時間が長くなり、繊維に対する水の作用が過剰となるためとみられる。一方、使用する繊維材の種類にもよるが、例えば木粉を用いたときには、水を添加しなくても、せん断力が繊維に過剰に伝わりやすいためか、複合材中の繊維長分布が狭くなる傾向にある。
 水等の添加は、例えば、溶融混練時間全体の1/3~1/2が経過した時点で行うことができる。また、水の添加量はある程度多い方が良く、質量基準で、樹脂の配合量の1~3倍程度とすることができる。
 ここで「溶融混練」とは、原料中の樹脂(熱可塑性樹脂)が溶融する温度で混練することを意味する。好ましくは、繊維が変質しない温度と処理時間で溶融混練する。「繊維が変質しない」とは、繊維が著しい変色や燃焼、炭化を生じないことを意味する。
 上記溶融混練における温度(溶融混練物の温度)は、例えばポリエチレン樹脂を用いる場合を例にとると、110~280℃とすることが好ましく、130~220℃とすることがより好ましく、150~220℃とすることも好ましく、170~210℃とすることも好ましい。また、溶融混練時間は、例えば5分間~1時間程度とすることでき、7~30分間とすることも好ましく、10~25分間とすることも好ましい。また、水の存在下の溶融混練時間は、3分間以上とすることが好ましく、5分間以上とすることがより好ましく、10分間以上とすることも好ましい。
 特に繊維源として木粉等の木質繊維材を用いた場合に、上記の水の存在下の溶融混錬によって、目的の繊維長分布の複合材を高効率で得ることができる。
〔成形体〕
 本発明の成形体は、本発明の複合材を用いて所望の形状に成形してなる成形体である。本発明の成形体として、シート状、板状、管状、各種構造の成形体があげられる。管状の成形体としては、断面略円形、四角形状の直管、曲がり管、波付けが付与された波付管等があげられる。また、断面略円形、四角形状の直管、曲がり管、波付けが付与された波付管等の管状成形体を半割れ等により分割した多分割体があげられる。また、管の接手部材の他、土木用、建材用、自動車用又は電線保護用の部材として本発明の成形体を用いることができる。本発明の成形体は、本発明の複合材を射出成形、押出成形、プレス成型、ブロー成形等の通常の成形手段に付して得ることができる。
〔複合部材〕
 本発明の成形体を他の材料(部材)と組合せて複合部材を得ることができる。この複合部材の形態に特に制限はない。例えば、本発明の成形体からなる層と、他の材料からなる層とを組み合わせた積層構造の複合部材とすることができる。この複合部材は管状構造とすることも好ましい。また、本発明の成形体と組合せて複合部材を構成する上記の他の材料として、例えば、熱可塑性樹脂材料、金属材料等を挙げることができる。
 例えば、本発明の複合材は、金属と接合して複合体を形成するために用いることができる。この複合体は、本発明の複合材の層と金属の層とを含む積層体とすることができる。また、この複合体は、金属管の外周及び/又は内周に本発明の複合材を用いた被覆層を有する被覆金属管であることも好ましい。この被覆金属管は、例えば電磁波シールド管として用いることができる。本発明の複合材と金属との接合は、両者が直接結合した形態であることが好ましい。この接合は、熱融着等の常法により行うことができる。また、本発明の複合材は接着シートとして用いることもできる。例えば、金属とポリオレフィン樹脂材料とを接着するために、本発明の複合材を、金属とポリオレフィン樹脂材料との間に介在させて、接着性樹脂層として使用することができる。また、本発明の複合材は、ホットメルト接着剤として用いることもできる。
 本発明の複合部材は、土木用、建材用、又は自動車用の部材又はその原料として好適に用いることができる。
 本発明の複合材を金属と接合して複合体とする場合、当該金属の種類に特に制限はない。当該金属は、アルミニウム、銅、鋼、アルミニウム合金、銅合金、ステンレス鋼、マグネシウム合金、鉛合金、銀、金、及び白金の少なくとも1種を含むことが好ましい。なかでも、当該金属はアルミニウム、アルミニウム合金、銅、及び銅合金の少なくとも1種を含むことが好ましく、アルミニウム、アルミニウム合金、銅、及び銅合金の少なくとも1種であることがより好ましい。また、当該金属はアルミニウム及び/又はアルミニウム合金を含むことが好ましく、アルミニウム及び/又はアルミニウム合金であることも好ましい。
 本発明を実施例に基づきさらに説明するが、本発明はこれらの形態に限定されるものではない。
〔測定方法・評価方法〕
<複合材中の繊維含有量>
 事前に大気雰囲気にて80℃×1時間乾燥した複合材試料(10mg)を、窒素雰囲気下において+10℃/minの昇温速度で、23℃から400℃まで熱重量分析(TGA)に付し、下記[式I]により繊維の含有量(質量%)を算出した。同一の複合材試料を5つ調製し、5つの複合材試料の繊維の含有量(質量%)の平均値を求めて、当該平均値を当該複合材の繊維の含有量(質量%)とした。本実施例及び比較例の複合材において、原料由来の繊維は植物繊維である。
[式I]
(植物繊維の含有量[質量%])=(200~380℃の間における複合材試料の質量減少量[mg])×100/(熱重量分析に付す前の乾燥状態の複合材試料の質量[mg])
<長さ加重平均繊維長、数平均繊維長>
 長さ加重平均繊維長、数平均繊維長は、複合材の熱キシレン溶解残さ(不溶分)についてISO 16065 2001(JIS P8226 2006)で規定されるパルプ-光学的自動分析法による繊維長測定方法により測定した。具体的には、複合材の成形シートから0.1~1gを切だし試料とし、この試料を400メッシュのステンレスメッシュで包み、138℃のキシレン100mlに24時間浸漬した。次いで試料を引き上げ、その後試料を80℃の真空中で24時間乾燥させた。こうして得られた複合材の熱キシレン溶解残さ(不溶分)を用いて、パルプ-光学的自動分析法による繊維長測定方法により長さ加重平均繊維長、数平均繊維長、重さ加重平均繊維長を決定した。この測定にはTECHPAP社製MORFI COMPACTを使用した。
<引張強度>
 複合材を射出成形により試験片を作製し、JIS K7113 1995に準拠して、2号試験片について引張強度を測定した。単位は「MPa」である。
<曲げ強度、曲げ弾性率>
 JIS K7171 2016に準拠し、サンプル厚さ4mm、曲げ速度2mm/minにて、曲げ強度と曲げ弾性率を測定した。詳細には、射出成形で試験片(厚さ4mm、幅10mm、長さ80mm)を作製し、支点間距離64mm、支点及び作用点の曲率半径5mm、試験速度2mm/minにて荷重の負荷を行い、JIS-K7171 2016に準拠して曲げ試験を行ない、曲げ強度(MPa)と曲げ弾性率(MPa)を測定した。
 ここで、曲げ弾性率 Efは、
歪み0.0005(εf1)におけるたわみ量において測定した曲げ応力σf1
歪み0.0025(εf2)におけるたわみ量において測定した曲げ応力σf2
を求めて、これらの差を、それぞれの対応する歪み量の差で割ること、
すなわち、下記の式で求めた。
 
 Ef=(σf2―σf1)/(εf2―εf1)
 
 このときの曲げ応力を求めるための、たわみ量Sは、
 下記の式により求めることができる。
 S=(ε・L)/(6・h)
   S:たわみ
   ε:曲げ歪み
   L:支点間距離
   h:厚さ
<メルトフローレート(MFR)>
 温度=230℃、荷重=5kgの条件で、JIS-K7210に準拠して測定した。MFRの単位は「g/10min」である。
 下記の各複合材の調製は、溶融混練装置としてバッチ式混練機であるニーダを用いて、混練温度を、180~200℃とし、混練時間を10~20分間として行った。ただし、実施例8~10、比較例6~8については、混練温度を160~180℃とした。各実施例及び比較例の複合材の調製方法を以下に説明する。
<実施例1>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材1(木粉1、平均長径1.8mm、水分15%)とを、表1の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水120質量部を添加した。こうして実施例1の繊維分散樹脂複合材を得た。
 なお、本実施例1、ならびに、以降の各実施例及び比較例において、得られた複合材の含水率はいずれも1質量%未満であった。
<実施例2>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材1(木粉1、平均長径1.8mm、水分15%)と、マレイン酸変性ポリプロピレン1(M-PP1)(リケエイド、理研ビタミン)を、表1の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水120質量部を添加した。こうして実施例2の繊維分散樹脂複合材を得た。
<実施例3>
 繊維材1(木粉1、平均長径1.8mm、水分15%)と同量の水を、回転羽根を有する粉砕機に投入し、粉砕した後、この粉砕物と、ポリプロピレン1(J108M、プライムポリマー)と、マレイン酸変性ポリプロピレン1(M-PP1)(リケエイド、理研ビタミン)とを、表1の上段に示す配合比(単位:質量部)となるよう加え、混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水120質量部を添加した。こうして実施例3の繊維分散樹脂複合材を得た。
<実施例4>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材3(木粉2、平均長径3mm、水分15%)とを、表1の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水120質量部を添加した。こうして実施例4の繊維分散樹脂複合材を得た。
<比較例1>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材1(木粉1、平均長径1.8mm、水分15%)とを、表1の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて、水の非存在下で溶融混練して、各成分が均質に混合された複合材を得た。こうして比較例1の繊維分散樹脂複合材を得た。
<比較例2>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材2(紙1、オフィスペーパーをメッシュ径φ5mmの粉砕機で粉砕したもの)とを、表1の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて、水の非存在下で溶融混練して、各成分が均質に混合された複合材を得た。こうして比較例2の繊維分散樹脂複合材を得た。
 各実施例及び比較例の結果を下表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、LL/LNが1.01よりも大きい本発明の複合材において、引張強度、曲げ強度のいずれにおいても高い値を示した(特に実施例1と比較例1との比較)。またLL/LNが1.30よりも小さい本発明の複合材において機械強度が高く、MFRが大きく高められ、実用的な流動性を示す複合材が得られることがわかる。この流動性は、LL/LNを1.10以下とすることにより、より高められることもわかる。
<実施例5~7>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材1(木粉1、平均長径 1.8mm、水分15%)とを、表2の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水120質量部を添加した。こうして実施例5~7の繊維分散樹脂複合材を得た。
<比較例3~5>
 ポリプロピレン1(J108M、プライムポリマー)と繊維材1(木粉1、平均長径1.8mm、水分15%)とを、表2の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて、水の非存在下で溶融混練して、各成分が均質に混合された複合材を得た。こうして比較例3~5の繊維分散樹脂複合材を得た。
 各比較例の結果を下表に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、LL/LNが1.01よりも大きい本発明の複合材において、引張強度、曲げ強度、曲げ弾性率のいずれにおいても高い値を示した(実施例5と比較例3との比較、実施例6と比較例4との比較、実施例7と比較例5との比較)。
<実施例8~10>
 積層フィルム(LDPE:ナイロン=95:5)からなる包装容器のフィルム粉砕物1(粉砕機メッシュ径φ10mm)と繊維材1(木粉1、平均長径 1.8mm、水分15%)とを、表3の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて溶融混練して、各成分が均質に混合された複合材を得た。この溶融混練では、混練時間の1/2を経過した時点で水150質量部を添加した。こうして実施例8~10の繊維分散樹脂複合材を得た。
<比較例6~8>
 積層フィルム(LDPE:ナイロン=95:5)からなる包装容器の粉砕物1(粉砕機メッシュ径φ10mm)と繊維材1(木粉1、平均長径1.8mm、水分15%)とを、表3の上段に示す配合比(単位:質量部)で混合し、ニーダを用いて、水の非存在下で溶融混練して、各成分が均質に混合された複合材を得た。こうして比較例6~8の繊維分散樹脂複合材を得た。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、LL/LNが1.01よりも大きい本発明の複合材において、引張強度、曲げ強度、曲げ弾性率のいずれにおいても高い値を示した(実施例8と比較例6との比較、実施例9と比較例7との比較、実施例10と比較例8との比較)。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2020年6月10日に日本国で特許出願された特願2020-100884に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 

 

Claims (15)

  1.  樹脂中に繊維を分散してなる繊維分散樹脂複合材であって、前記繊維の含有量が1質量%以上70質量%未満であり、下記条件で決定される前記繊維の長さ加重平均繊維長をLL、数平均繊維長をLNとしたとき、LLとLNが下記[式1-1]を満たす繊維分散樹脂複合材。
    <条件>
     前記繊維分散樹脂複合材を、該複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さについて、ISO 16065 2001で規定されたパルプ-光学的自動分析法による繊維長測定方法によりLLとLNを求める。
     
    [式1-1] 1.01<LL/LN<1.30
     
  2.  前記LLと前記LNが下記[式1-3]を満たす、請求項1に記載の繊維分散樹脂複合材。
     
    [式1-3] 1.02<LL/LN≦1.10
     
  3.  前記繊維の長さ加重平均繊維長が0.25mm以上である、請求項1又は2に記載の繊維分散樹脂複合材。
  4.  前記繊維分散樹脂複合材中の前記繊維の含有量が5質量%以上50質量%未満である、請求項1~3のいずれか1項に記載の繊維分散樹脂複合材。
  5.  前記繊維が植物繊維を含む、請求項1~4のいずれか1項に記載の繊維分散樹脂複合材。
  6.  前記繊維が木質繊維を含む、請求項1~5のいずれか1項に記載の繊維分散樹脂複合材。
  7.  前記木質繊維が、セルロース、ヘミセルロース、及びリグニンを含む、請求項6に記載の繊維分散樹脂複合材。
  8.  前記樹脂が、ポリオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂、アクリロニトリル-スチレン共重合体樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリスチレン樹脂、3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート重合体樹脂、ポリブチレンサクシネート樹脂、及びポリ乳酸樹脂の1種又は2種以上を含む、請求項1~7のいずれか1項に記載の繊維分散樹脂複合材。
  9.  前記樹脂がポリオレフィン樹脂を含み、前記LL及びLNの測定条件において、前記繊維分散樹脂複合材中の樹脂を可溶な溶媒中に浸漬して得られる溶解残さが、熱キシレン溶解残さである、請求項1~8のいずれか1項に記載の繊維分散樹脂複合材。
  10.  前記繊維分散樹脂複合材が前記樹脂中にアルミニウムを分散してなる、請求項1~9のいずれか1項に記載の繊維分散樹脂複合材。
  11.  前記繊維分散樹脂複合材が、有機酸の金属塩、有機酸、シリコーンのいずれか1種以上の化合物を含む、請求項1~10のいずれか1項に記載の繊維分散樹脂複合材。
  12.  前記繊維分散樹脂複合材が、前記樹脂中に前記樹脂とは異なる樹脂からなる樹脂粒子を分散してなる、請求項1~11のいずれか1項に記載の繊維分散樹脂複合材。
  13.  前記樹脂の少なくとも一部及び/又は前記繊維の少なくとも一部が、リサイクル材に由来する、請求項1~12のいずれか1項に記載の繊維分散樹脂複合材。
  14.  請求項1~13のいずれか1項に記載の繊維分散樹脂複合材を用いた成形体。
  15.  請求項14に記載の成形体と他の材料とを組合せてなる複合部材。
PCT/JP2021/021688 2020-06-10 2021-06-08 繊維分散樹脂複合材、成形体、及び複合部材 WO2021251362A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21821105.0A EP4166299A1 (en) 2020-06-10 2021-06-08 Fiber-dispersing resin composite material, molded body, and composite member
CN202180003946.1A CN114126732A (zh) 2020-06-10 2021-06-08 分散有纤维的树脂复合材料、成型体以及复合构件
US17/670,845 US20220162431A1 (en) 2020-06-10 2022-02-14 Fiber-dispersed resin composite material, molding, and composite member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020100884A JP2021194798A (ja) 2020-06-10 2020-06-10 繊維分散樹脂複合材、成形体、及び複合部材
JP2020-100884 2020-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/670,845 Continuation US20220162431A1 (en) 2020-06-10 2022-02-14 Fiber-dispersed resin composite material, molding, and composite member

Publications (1)

Publication Number Publication Date
WO2021251362A1 true WO2021251362A1 (ja) 2021-12-16

Family

ID=78846032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021688 WO2021251362A1 (ja) 2020-06-10 2021-06-08 繊維分散樹脂複合材、成形体、及び複合部材

Country Status (5)

Country Link
US (1) US20220162431A1 (ja)
EP (1) EP4166299A1 (ja)
JP (1) JP2021194798A (ja)
CN (1) CN114126732A (ja)
WO (1) WO2021251362A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062840A1 (ja) * 2022-09-20 2024-03-28 三井化学株式会社 樹脂組成物、成形体および樹脂組成物の製造方法
JP7434657B1 (ja) 2023-03-13 2024-02-20 住友化学株式会社 プロピレン樹脂組成物の製造方法、および、成形体の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225234A (ja) 1985-03-29 1986-10-07 Nippon Denso Co Ltd ポリオレフイン系樹脂組成物
JP2003277621A (ja) 2002-03-25 2003-10-02 Nof Corp 木質繊維物質含有樹脂組成物
WO2012070616A1 (ja) 2010-11-25 2012-05-31 王子製紙株式会社 マトリックス混練用植物繊維複合材料の製造方法
WO2013015323A1 (ja) * 2011-07-25 2013-01-31 王子ホールディングス株式会社 非塗工紙及び塗工紙
JP2015059292A (ja) * 2013-09-20 2015-03-30 王子ホールディングス株式会社 化粧板原紙
JP2016035123A (ja) * 2014-08-04 2016-03-17 王子ホールディングス株式会社 化粧板用薄葉紙
JP2019203137A (ja) * 2016-12-05 2019-11-28 古河電気工業株式会社 セルロース・アルミニウム分散ポリエチレン樹脂複合材、これを用いたペレット及び成形体、並びにこれらの製造方法
JP2019534397A (ja) * 2016-11-29 2019-11-28 センタ・テクニーク・デ・ルインダストリ・デ・パピール・カルトン・エ・セルロースCentre Technique De Lindustrie Des Papiers Cartons Celluloses 植物繊維及び無機フィラーに基づくバインダー組成物、その調製及び使用
JP2019210407A (ja) * 2018-06-06 2019-12-12 古河電気工業株式会社 セルロース・アルミニウム分散ポリエチレン樹脂複合材、これを用いたペレット及び成形体、並びにこれらの製造方法
JP2020100884A (ja) 2018-12-25 2020-07-02 エルジー・ケム・リミテッド 成形装置及び成形体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014709A1 (de) * 2012-09-06 2014-03-06 Sumitomo Chemical Company, Limited Spritzgegossener Gegenstand und Verfahren zur Herstellung eines spritzgegossenen Gegenstands
KR20160115919A (ko) * 2014-02-03 2016-10-06 도레이 카부시키가이샤 섬유 강화 다층 펠릿, 그것을 성형하여 이루어지는 성형품, 및 섬유 강화 다층 펠릿의 제조 방법
FI127904B2 (en) * 2014-08-13 2023-04-14 Upm Kymmene Corp Method for preparing nanofibrillated cellulose
HUE054501T2 (hu) * 2016-12-05 2021-09-28 Furukawa Electric Co Ltd Cellulózt és alumíniumot diszpergálva tartalmazó polietilén gyanta kompozit, ennek alkalmazásával készült pellet és öntött test, továbbá eljárás ezek elõállítására
JP7394072B2 (ja) * 2018-12-05 2023-12-07 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225234A (ja) 1985-03-29 1986-10-07 Nippon Denso Co Ltd ポリオレフイン系樹脂組成物
JP2003277621A (ja) 2002-03-25 2003-10-02 Nof Corp 木質繊維物質含有樹脂組成物
WO2012070616A1 (ja) 2010-11-25 2012-05-31 王子製紙株式会社 マトリックス混練用植物繊維複合材料の製造方法
WO2013015323A1 (ja) * 2011-07-25 2013-01-31 王子ホールディングス株式会社 非塗工紙及び塗工紙
JP2015059292A (ja) * 2013-09-20 2015-03-30 王子ホールディングス株式会社 化粧板原紙
JP2016035123A (ja) * 2014-08-04 2016-03-17 王子ホールディングス株式会社 化粧板用薄葉紙
JP2019534397A (ja) * 2016-11-29 2019-11-28 センタ・テクニーク・デ・ルインダストリ・デ・パピール・カルトン・エ・セルロースCentre Technique De Lindustrie Des Papiers Cartons Celluloses 植物繊維及び無機フィラーに基づくバインダー組成物、その調製及び使用
JP2019203137A (ja) * 2016-12-05 2019-11-28 古河電気工業株式会社 セルロース・アルミニウム分散ポリエチレン樹脂複合材、これを用いたペレット及び成形体、並びにこれらの製造方法
JP2019210407A (ja) * 2018-06-06 2019-12-12 古河電気工業株式会社 セルロース・アルミニウム分散ポリエチレン樹脂複合材、これを用いたペレット及び成形体、並びにこれらの製造方法
JP2020100884A (ja) 2018-12-25 2020-07-02 エルジー・ケム・リミテッド 成形装置及び成形体の製造方法

Also Published As

Publication number Publication date
US20220162431A1 (en) 2022-05-26
JP2021194798A (ja) 2021-12-27
EP4166299A1 (en) 2023-04-19
CN114126732A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP7394072B2 (ja) セルロース繊維分散樹脂複合材、成形体、及び複合部材
CN112739513B (zh) 分散有纤维素纤维的树脂复合材料、成型体以及复合构件
WO2021251362A1 (ja) 繊維分散樹脂複合材、成形体、及び複合部材
Sarifuddin et al. The Effect of Kenaf Core Fibre Loading on Properties of Low Density Polyethylene/Thermoplastic Sago Starch/Kenaf Core Fiber Composites.
JP2020193262A (ja) 樹脂成形体
Zaaba et al. Utilization of polyvinyl alcohol on properties of recycled polypropylene/peanut shell powder composites
US20210309814A1 (en) Resin composite material and formed body
CN108329564A (zh) 一种高阻隔聚乙烯材料及其制备方法
Zimmermann et al. Influence of chemical treatments on cellulose fibers for use as reinforcements in poly (ethylene‐co‐vinyl acetate) composites
JP6870404B2 (ja) 樹脂組成物及びこれよりなる積層体
WO2024093514A1 (zh) 一种聚乙烯组合物及其制备方法和应用
JP2019210406A (ja) ポリエチレン樹脂組成物及びこれを用いた複合体、並びにポリエチレン樹脂組成物の製造方法
WO2021251361A1 (ja) 繊維分散樹脂複合材、成形体、及び複合部材
JP5000016B2 (ja) 樹脂組成物及び成形体
JP2020193263A (ja) 樹脂成形体及び複合部材
CN112154186A (zh) 具有对聚酯反应性粘着的催化剂的树脂
WO2021166914A1 (ja) 樹脂複合材及び樹脂成形体
CN115558208A (zh) 一种pp木塑复合材料及其制备方法和应用
JPWO2020116516A1 (ja) 積層体
Katsoulotos et al. The effect of matrix composition on the properties of cellulosic fibers–polyethylene composites
Sarifuddin et al. Low Density Polyethylene (LDPE)/Thermoplastic Sago Starch (TPSS) Blend Filled with Kenaf Core Fiber (KCF)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821105

Country of ref document: EP

Effective date: 20230110