WO2021249124A1 - 传感器的制造方法 - Google Patents

传感器的制造方法 Download PDF

Info

Publication number
WO2021249124A1
WO2021249124A1 PCT/CN2021/094168 CN2021094168W WO2021249124A1 WO 2021249124 A1 WO2021249124 A1 WO 2021249124A1 CN 2021094168 W CN2021094168 W CN 2021094168W WO 2021249124 A1 WO2021249124 A1 WO 2021249124A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb board
sensor
board
manufacturing
unit
Prior art date
Application number
PCT/CN2021/094168
Other languages
English (en)
French (fr)
Inventor
党茂强
解士翔
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021249124A1 publication Critical patent/WO2021249124A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0064Packages or encapsulation for protecting against electromagnetic or electrostatic interferences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers

Definitions

  • This application relates to the technical field of sensor production, and in particular to a method for manufacturing a sensor.
  • MEMS Micro Electro Mechanical System
  • sensor is a device that converts external signals (such as vibration, light, or pressure, etc.) into electrical signals through a sensor chip. In this device, it is necessary to protect fragile chips and reduce external interference. Set up the package shell.
  • a three-layer PCB board is used to form a packaging shell, that is, the packaging shell includes a surrounding plate, and a bottom plate and a top plate respectively arranged at both ends of the surrounding plate.
  • the bottom plate and the top plate respectively seal the openings at both ends of the surrounding plate.
  • the board, bottom board and top board are all PCB boards.
  • the above-mentioned package shell is not easy to achieve mass production. Therefore, in order to realize the mass production of MEMS sensors, another package structure has been designed in this field, which includes a metal shell with an opening at one end and an opening for sealing the metal shell. In this way, the metal shell can be mass produced by stamping and forming, so as to realize the mass production of MEMS sensors.
  • the use of a metal shell as the encapsulation shell of the sensor is not conducive to improving the performance of the MEMS sensor. For example, the sensor chip and the sound hole can only be arranged on the bottom plate.
  • the main purpose of this application is to propose a method for manufacturing a sensor, aiming to realize the mass production of a MEMS sensor using a three-layer PCB board as a package shell.
  • the sensor includes an enclosure, the enclosure includes an enclosure, and a top plate and a bottom plate respectively provided at both ends of the enclosure.
  • the ends are respectively provided with a first connection structure and a second connection structure, the first connection structure connects one end of the enclosure plate and the top plate, and the second connection structure connects the other end of the enclosure plate and the bottom plate ,
  • the widths of the first connection structure and the second connection structure are both greater than or equal to 0.1 mm and less than or equal to 0.3 mm;
  • the manufacturing method of the sensor includes:
  • a first PCB board, a second PCB board, and a third PCB board are provided, the first PCB board includes a plurality of top board units, the second PCB board includes a plurality of enclosure units, and the third PCB board includes A plurality of bottom plate units, and the second PCB board is provided with a first connection structure and a second connection structure, and each of the enclosure units is provided with a first connection structure on both sides of the second PCB board.
  • FIG. 1 is a schematic block diagram of the flow of an embodiment of a method for manufacturing a sensor according to the present application
  • FIG. 2 is a schematic diagram of the assembly process of the manufacturing method of the sensor in FIG. 1;
  • FIG. 3 is a schematic diagram of the assembly process of the first embodiment of the manufacturing method of the sensor according to the present application.
  • FIG. 4 is a schematic diagram of the assembly process of the third embodiment of the manufacturing method of the sensor according to the present application.
  • FIG. 5 is a schematic diagram of the front structure of the second PCB board in FIG. 1;
  • FIG. 6 is a schematic diagram of the reverse structure of the second PCB board in FIG. 5;
  • FIG. 7 is a schematic diagram of the structure of the sensor in FIG. 1;
  • Figure 8 is a schematic diagram of the front structure of the enclosure in Figure 7;
  • Figure 9 is a schematic view of the reverse structure of the enclosure in Figure 8.
  • Fig. 10 is a schematic cross-sectional structure diagram of the enclosure plate in Fig. 7.
  • This application proposes a method for manufacturing a sensor.
  • the sensor 100 includes a packaging shell and a MEMS sensor chip and an ASIC chip arranged in the packaging shell.
  • the top board 10, the surrounding board 20 and the bottom board 30 are all PCB boards.
  • the senor is a MEMS sensor, which may specifically be a MEMS microphone, or a MEMS pressure sensor, etc.; correspondingly, the MEMS sensor chip may specifically be a MEMS microphone chip, or a MEMS pressure sensor chip, or the like.
  • the sensor is a MEMS microphone as an example for description.
  • both ends of the enclosure panel 20 are respectively provided with a first connection structure and a second connection structure, the first connection structure connects one end of the enclosure panel 20 with the top panel 10, and the second connection structure connects the enclosure panel 20 The other end is connected to the bottom plate 30.
  • the connecting structure (the first connecting structure, the second connecting structure) can facilitate the connection of the enclosure panel 20 and the top panel 10 or the enclosure panel 20 and the bottom panel 30.
  • the first connection structure can be configured as a welding ring, so that the enclosure plate 20 and the top plate 10 can be welded by solder paste.
  • the first connection structure may also be a plurality of soldering pieces/section structures distributed on one end of the enclosure plate in a ring shape. In this way, the enclosure plate 20 and the top plate 10 can also be welded by solder paste.
  • the first connection structure can also be configured as a ring-shaped electrical connector, so that the enclosure board 20 and the top board 10 can be connected by conductive glue.
  • the structural form of the second connecting structure is the same as the structural form of the first connecting structure, and it is not necessary to repeat them here.
  • the following will explain the application by taking the first connection structure and the second connection structure as welding rings as an example, but it is not used to limit the application.
  • the widths of the first connection structure and the second connection structure are both greater than or equal to 0.1 mm and less than or equal to 0.3 mm.
  • the width of the first connection structure refers to the length of the first connection structure in the thickness direction of the wall of the enclosure.
  • the width of the first connection structure refers to the width of the welding ring
  • the width of the first connection structure refers to the width of the annular structure formed by the plurality of welding pieces/parts
  • the width of the first connection structure refers to the annular electrical connection The width of the piece; etc.
  • the width of the second connection structure also refers to the length of the first connection structure in the thickness direction of the wall of the enclosure.
  • first connection structure and the second connection structure are too narrow, the processing of the first connection structure and the second connection structure will be difficult, and the firmness after the connection will be poor. If the width of the first connection structure and the second connection structure are too wide, the size of the sensor 100 will be affected; and for the soldering ring, the amount of solder paste will be large when scribing the solder paste, which will affect the flatness of the product .
  • the widths of the first connection structure and the second connection structure are both greater than or equal to 0.12 mm and less than or equal to 0.28 mm, such as 0.15, 0.18, 0.2, 0.22, 0.22, 0.25, 0.27 mm, etc.
  • the manufacturing method of the sensor 100 includes:
  • Step S100 providing a first PCB board 200, a second PCB board 300, and a third PCB board 400
  • the first PCB board includes a plurality of top board units 10a
  • the second PCB board 300 includes a plurality of enclosure units 20a
  • the third PCB board 400 includes a plurality of bottom plate units 30a.
  • the second PCB board is provided with a first connection structure and a second connection structure
  • each of the enclosure units 20a is provided with a first connection structure on both sides of the second PCB board 300 respectively And a said second connection structure.
  • each top plate unit 10a is used to form a top plate 10 of a sensor
  • each surrounding plate unit 20a is used to form a surrounding plate 20 of a sensor
  • each bottom plate unit 30a is used to form a sensor.
  • each top plate unit 10a is a top plate 10 of a sensor 100
  • each enclosure plate unit 20a is a enclosure plate 20 of a sensor 100
  • each base plate unit 30a is a sensor 100
  • the bottom plate 30 is used to connect with an external circuit board.
  • the multiple top plate units 10a are arranged in an array
  • the multiple enclosure units 20a are also arranged in an array
  • the multiple bottom plate units 30a are also arranged in an array; and the three arrays are arranged in the same manner.
  • each top plate unit 10a is provided with a sound hole 11 (if the sensor is a MEMS pressure sensor, the sound hole 11 is correspondingly a pressure transmission hole).
  • the top board unit 10a may be round or square (square or rectangular), etc., which is not limited here, and the shapes of the enclosure unit 20a and the bottom board unit 30a are adapted to that of the top board unit 10a.
  • Step S200 Mount the first PCB board 200 and the third PCB board 400 on both sides of the second PCB board 300 respectively to form a sensor assembly 500; and each enclosure unit 20a is One side of the second PCB board 300 is connected to the top board unit 10a through the first connection structure, and the other side of the second PCB board 300 is connected to the top board unit 10a through the second connection structure.
  • One of the bottom plate unit 30a is to respectively seal the openings at both ends of the enclosure unit 20a to form a plurality of sensor units on the sensor assembly 500.
  • each sensor unit is a sensor 100, which includes an enclosure unit 20a, and a top board unit 10a and a bottom board unit 30a respectively provided at both ends of the enclosure unit 20a.
  • step S300 the sensor unit is separated from the sensor assembly 500 to obtain a plurality of sensors 100.
  • a sensor assembly 500 with a plurality of sensor units can be formed, which can be separated from the sensor assembly 500 A number of sensors 100 are shown. In this way, the mass production of the sensor 100 using a three-layer PCB board as the packaging case can be realized.
  • connection structures first connection structure, second connection structure
  • the solution of the invention may be: Install the hoarding assembly to the top plate assembly and then to the bottom plate assembly together; alternatively, install the hoarding assembly to the bottom plate assembly first, and then install the hoarding assembly to the top plate assembly together; the following are examples for description.
  • step S200 the first PCB board 200 and the third PCB board 400 are respectively mounted on both sides of the second PCB board 300 to
  • the sensor assembly 500 is formed, including:
  • Step S210 Mount the second PCB board 300 on the first PCB board 200, and connect one end of each enclosure unit 20a to a top board unit 10a through a first connection structure.
  • step S240 the first PCB board 200 and the second PCB board 300 are mounted on the third PCB board 400 together, and the other end of each enclosure unit 20a is connected to a bottom plate through a second connection structure Unit 30a.
  • the first PCB board 200 and the third PCB board 400 are distributed on both sides of the second PCB board 300, and each enclosure unit 20a is correspondingly connected with one top board unit 10a and one
  • the bottom plate unit 30a is used to form a plurality of sensor units on the sensor assembly 500.
  • first connection structure and the second connection structure are usually solder rings
  • first PCB board 200 is usually mounted on the second PCB board 300 by solder paste
  • the third PCB board is connected by solder paste. 400 is mounted on the second PCB board 300, and the specific mounting steps will be described in detail below in conjunction with the structure of the sensor 100.
  • the solder paste can be effectively prevented from flowing into the enclosure The inner wall surface of the unit 20a.
  • the first connection structure is a first welding ring 25.
  • the width of the first welding ring 25 is greater than or equal to 0.1 mm and less than or equal to 0.3 mm.
  • first welding ring 25 is too narrow, it will be difficult to process the first welding ring 25, and the firmness after the connection will be poor. If the first solder ring 25 is too wide, the size of the sensor 100 will be affected; and when the solder paste is scratched, the amount of solder paste will be large, which will affect the flatness of the product.
  • the width of the first welding ring 25 is greater than or equal to 0.12 mm and less than or equal to 0.28 mm, such as 0.15, 0.18, 0.2, 0.22, 0.25, 0.27 mm, etc.
  • the first welding ring 25 includes a copper layer provided on the side surface of the second PCB board 300, a nickel layer provided on the surface of the copper layer, and a gold layer provided on the surface of the nickel layer.
  • the nickel layer is provided on the surface of the nickel layer. Between the copper layer and the gold layer. In this way, the weldability of the first welding ring 25 can be improved.
  • the copper layer is formed by a surface copper coating process.
  • the nickel layer is an electroplated layer
  • the gold layer is an electroplated layer
  • the thickness of the copper layer is greater than or equal to 20 microns. It can be understood that if the thickness of the copper layer is thin, the processing of the copper layer will be more difficult, and the firmness after welding will also be poor.
  • the thickness of the nickel layer is greater than or equal to 2 micrometers and less than or equal to 10 micrometers. It can be understood that if the thickness of the nickel layer is thin, it is not conducive to improving the weldability of the first welding ring 25; if the thickness of the nickel layer is thick, the cost will increase.
  • the thickness of the nickel layer is greater than or equal to 3 micrometers and less than or equal to 8 micrometers.
  • the thickness of the nickel layer may be 4 micrometers, 5 micrometers, 6 micrometers, 7 micrometers, etc.
  • the thickness of the gold layer is greater than or equal to 0.05 micrometers and less than or equal to 15 micrometers. It can be understood that if the thickness of the gold layer is thin, it is not conducive to improving the weldability of the first welding ring 25; if the thickness of the gold layer is thick, the cost will be increased.
  • the thickness of the gold layer is greater than or equal to 0.08 micrometers and less than or equal to 12 micrometers.
  • the thickness of the gold layer may be 0.09 micrometers, 1 micrometer, 2 micrometers, 3 micrometers, 4 micrometers, 5 micrometers, 6 micrometers, 7 micrometers, 8 micrometers, 9 micrometers, 10 micrometers, 11 micrometers, etc.
  • the second connection structure is a second welding ring 27.
  • the structure of the second welding ring 27 is (basically) the same as the structure of the first welding ring 25, which also includes a copper layer provided on the side of the second PCB board 300 and a nickel layer provided on the surface of the copper layer.
  • the specific structure of the layer and the gold layer provided on the surface of the nickel layer are limited here and it is not necessary to repeat them one by one.
  • an electrical connector 24 is further provided on the second PCB board 300, and an electrical connector 24 is embedded in each enclosure unit 20a.
  • the electrical connection member 24 has a circular columnar structure.
  • step S210 mounting the second PCB board 300 on the first PCB board 200 includes:
  • Step S212 applying tin paste to each of the top board units 10a on the first PCB board 200.
  • each of the top plate units 10a on the first PCB board 200 is provided with a first annular coating area, and in step S212, tin paste is applied to the first annular coating area.
  • the solder paste is coated all over the first annular coating area to ensure the connection strength.
  • a first pad is provided in the first annular coating area.
  • step S213 the second PCB board 300 is mounted on the first PCB board 200, and the solder paste on each of the top board units 10a is connected to the top board unit 10a and the enclosure unit corresponding to the top board unit 10a The first welding ring 25 of 20a.
  • step S212 the solder paste is drawn on each of the top plate units 10a.
  • step S213 specifically, the solder paste solders the first soldering ring 25 and the first pad together at the soldering temperature.
  • the first soldering ring 25 and the first pad are soldered by solder paste to connect the top plate unit 10a and the corresponding enclosure unit 20a, which not only realizes the fixed connection of the top plate unit 10a and the enclosure unit 20a, but also realizes the top plate The electrical connection between the unit 10a and the enclosure unit 20a.
  • the first PCB board 200 is arranged flat, and the second PCB board 300 is removed from the The upper part of the first PCB board 200 is mounted on the upper surface of the first PCB board 200. In this way, the solder paste can be prevented from flowing around on the first PCB board 200.
  • the first PCB board 200 is provided with a first positioning hole
  • the second PCB board 300 is provided with a second positioning hole.
  • mounting the second PCB board 300 on the first PCB board 200 further includes:
  • Step S211 Fix the first PCB board 200 on the mounting table, and the positioning pins on the mounting table are inserted into the first positioning holes.
  • the first PCB board 200 is placed above the mounting table, and the first positioning hole is aligned with the positioning pin of the mounting table, and then the first PCB board 200 is moved downward, so that the positioning pin is inserted into the first positioning Inside the hole, to guide the first PCB board 200 to move to the mounting table, so that the first PCB board 200 is fixed on the mounting table.
  • step S213 is: placing the second PCB board 300 above the first PCB board 200, and aligning the second positioning holes with the positioning pins of the mounting table, and then making the second PCB board 300
  • the second PCB board 300 moves downwards, so that the positioning pins are inserted into the second positioning holes to guide the second PCB board 300 to move to the first PCB board 200, so that the second PCB board 300 is mounted on the first PCB board.
  • One PCB board 200 is: placing the second PCB board 300 above the first PCB board 200, and aligning the second positioning holes with the positioning pins of the mounting table, and then making the second PCB board 300
  • the second PCB board 300 moves downwards, so that the positioning pins are inserted into the second positioning holes to guide the second PCB board 300 to move to the first PCB board 200, so that the second PCB board 300 is mounted on the first PCB board.
  • One PCB board 200 is: placing the second PCB board 300 above the first PCB board 200, and aligning the second positioning holes with the positioning pin
  • first positioning hole and the second positioning hole can be arranged correspondingly, so that each top board unit 10a can correspond to a surrounding board unit 20a, so as to achieve precise positioning.
  • a first annular blocking wall is provided on the periphery of each top plate unit 10a, and the first annular blocking wall is located on the inner side of the inner wall surface of the surrounding plate unit.
  • the first annular baffle wall can be used to form a first annular coating zone. It can be understood that the first annular blocking wall may form a first coating groove between adjacent top plate units 10a.
  • the solder paste can be coated in the first coating tank. In this way, by adjusting the width of the first coating tank, it is not only beneficial to ensure the connection strength and prevent the dispersion of the solder paste, but also can reduce as much as possible.
  • the amount of solder paste can also take into account the separation of the sensor unit.
  • the first annular blocking wall can also block solder (such as solder) during soldering to prevent the solder from splashing into the package shell and contaminating the internal chip.
  • the first annular blocking wall can be integrally formed with the top plate unit 10a, or can be separately connected and formed on the surface of the top plate unit 10a.
  • a metal shielding layer 21 is further provided on the inner wall surface of each enclosure unit 20a, and the metal shielding layer 21 is grounded.
  • the metal shielding layer 21 is a copper foil layer.
  • the thickness of the metal shielding layer 21 is greater than or equal to 10 microns. In this way, to ensure/improve the shielding effect.
  • an insulating layer 22 is provided on the inner wall surface of each enclosure unit 20a to block solder during soldering.
  • the metal shielding layer 21 is provided between the insulating layer 22 and the inner wall surface of the enclosure unit 20 a, that is, the insulating layer 22 is provided on the inner side of the metal shielding layer 21.
  • the insulating layer 22 may be an electrophoretic layer.
  • the thickness of the insulating layer 22 is greater than or equal to 6 micrometers and less than or equal to 20 micrometers, such as 7 micrometers, 8 micrometers, 9 micrometers, 10 micrometers, 11 micrometers, 12 micrometers, 13 micrometers, 14 micrometers, 15 micrometers. Micron, 16 microns, 17 microns, 18 microns, 19 microns, etc.
  • the manufacturing process of the second PCB board 300 roughly includes:
  • each enclosure unit 20a is provided with an inner cavity through hole and a metalized through hole opened on the side wall of the enclosure unit 20a.
  • a metal shielding layer 21 is formed on the inner wall surface of each enclosure unit 20a (that is, the inner wall surface of the inner cavity through hole).
  • the electrical connector 24 is formed in the metalized through hole.
  • the electrical connector 24 is in the shape of a circular column, and a resin isolation layer 26 can be filled in the metalized through hole, that is, a resin plug hole structure is formed, so that no air bubbles remain in the metalized through hole.
  • the thickness of the sidewall of the electrical connector 24 is greater than or equal to 12 microns.
  • An insulating layer 22 is formed in the metal shielding layer 21.
  • the first welding ring 25 and the second welding ring 27 are respectively formed on both sides of the PCB board.
  • a solder mask isolation layer 23 is formed on the surface of the plate, such as a green oil layer.
  • step S240 mounting the first PCB board 200 and the second PCB board 300 on the third PCB board 400 together includes:
  • Step S243 applying solder paste to each bottom plate unit 30a on the third PCB board 400.
  • each of the bottom plate units 30a on the third PCB board 400 is provided with a second annular coating area, and in step S243, tin paste is applied to the second annular coating area.
  • the solder paste is coated all over the second annular coating area to ensure the connection strength.
  • a second pad is provided in the second annular coating area.
  • step S244 the first PCB board 200 and the second PCB board 300 are mounted together on the third PCB board 400, and the solder paste on each of the bottom plate units 30a connects the bottom plate unit 30a and the bottom plate unit The second welding ring 27 of the enclosure unit 20a corresponding to 30a.
  • step S243 the solder paste is drawn on each of the bottom plate units 30a.
  • step S244 specifically, the solder paste solders the second soldering ring 27 and the second pad together at the soldering temperature.
  • a second annular blocking wall is provided on the periphery of each bottom plate unit 30a, and the second annular blocking wall is located on the inner side of the inner wall surface of the surrounding plate unit.
  • the second annular baffle wall can be used to form a second annular coating zone. It can be understood that the second annular blocking wall may form a second coating groove between adjacent bottom plate units 30a.
  • the solder paste can be coated in the second coating tank.
  • the second annular blocking wall can also block solder (such as solder, etc.) during soldering, so as to prevent the solder from splashing into the package shell and contaminating the internal chip.
  • the second annular blocking wall can be integrally formed with the bottom plate unit 30a, or can be separately connected and formed on the surface of the bottom plate unit 30a.
  • the third PCB board 400 is laid flat, and the first PCB board The PCB board 200 and the second PCB board 300 are mounted on the upper surface of the third PCB board 400 from above the third PCB board 400.
  • the third PCB board 400 is provided with a third positioning hole.
  • step S240 mounting the first PCB board 200 and the second PCB board 300 on the third PCB board 400 together, further includes:
  • Step S241 Remove the first PCB board 200 and the second PCB board 300 from the mounting table together.
  • Step S242 Fix the third PCB board 400 on the mounting table, and the positioning pins on the mounting table are inserted into the third positioning holes.
  • the third PCB board 400 is placed above the mounting table, and the third positioning hole is aligned with the positioning pin of the mounting table, and then the third PCB board 400 is moved downward, so that the positioning pin is inserted into the third positioning In the hole, the third PCB board 400 is guided to move to the mounting table, so that the third PCB board 400 is fixed on the mounting table.
  • step S244 is: placing the first PCB board 200 and the second PCB board 300 together on the third PCB board 400, and the first PCB board 200 is located on the second PCB board.
  • the upper side of the PCB board 300 and align the first positioning hole and the second positioning hole with the positioning pins of the mounting table; then move the first PCB board 200 and the second PCB board 300 downward together to make the The positioning pin is inserted into the first positioning hole and the second positioning hole to guide the first PCB board 200 and the second PCB board 300 to move downward together, so that the first PCB board 200 and the second PCB board 300 are together Mounted on the third PCB board 400.
  • each enclosure unit 20a can correspond to a top board unit 10a and a bottom board unit 30a.
  • the first PCB board 200 and the third PCB board 400 are respectively mounted on both sides of the second PCB board 300, which can effectively prevent the solder paste from being scattered.
  • the first PCB board 200 and the second PCB board 300 from the mounting table together, and directly mount the third PCB board 400 on top of the mounting table.
  • the second PCB can be.
  • the MEMS sensor chip is usually arranged on the top plate 10 to form a pseudo TOP structure, thereby improving the performance of the MEMS sensor chip.
  • the method further includes:
  • step S20a the MEMS sensor chip is mounted on the first PCB board 200, and each of the top board units 10a is mounted with a MEMS sensor chip.
  • the MEMS sensor chip is mounted on the first PCB board 200, and the MEMS sensor chip can be mounted on the first PCB board 200 using surface mount technology. On a PCB board 200, this can reduce the difficulty of the mounting process of the MEMS sensor chip and reduce the cost.
  • the MEMS sensor chip can be mounted on the first PCB board 200, that is, after the second PCB board 300 is mounted After the step S210 of mounting on the first PCB board 200, and before the step S240 of mounting the first PCB board 200 and the second PCB board 300 on the third PCB board 400 together, the sensor The manufacturing method also includes:
  • step S22a the MEMS sensor chip is mounted on the first PCB board 200, and each of the top board units 10a is mounted with a MEMS sensor chip.
  • the solder such as solder, etc.
  • the ASIC chip is also provided on the top plate 10.
  • the manufacturing method of the sensor 100 further includes the following steps, namely Before the step S210 of mounting the second PCB board 300 on the first PCB board 200, the method further includes:
  • step S20b the ASIC chip is mounted on the first PCB board 200, and each top board unit 10a is mounted with an ASIC chip.
  • step S20a can be made first, or step S20b can be made first.
  • the ASIC chip can be mounted on the first PCB board 200, that is, after the second PCB board 300 is mounted After the step S210 of mounting on the first PCB board 200, and before the step S240 of mounting the first PCB board 200 and the second PCB board 300 on the third PCB board 400 together, the sensor The manufacturing method also includes:
  • step S22b the ASIC chip is mounted on the first PCB board 200, and each of the top board units 10a is mounted with an ASIC chip.
  • the solder such as solder, etc.
  • the solder splashes and pollutes the ASIC chip.
  • step S22a can be made first, or step S22b can be made first.
  • step S20a and step S20b the optional steps for mounting the MEMS sensor chip and the ASIC chip are: step S20a and step S20b, step S20a and step S22b, step S20b and step S22a, and step S22a And step S22b.
  • the ASIC chip is disposed on the bottom plate 30.
  • the method for manufacturing the sensor 100 further includes the following steps. Before step S240 of mounting the second PCB board 300 on the third PCB board 400 together, it further includes:
  • step S300 the ASIC chip is mounted on the third PCB board 400, and each of the bottom plate units 30a is mounted with an ASIC chip.
  • step S20a and step S300 are: step S20a and step S300 (in no particular order), step S22a and step S300 (In no particular order).
  • the first PCB board 200 and the third PCB board 400 may be mounted on both sides of the second PCB board 300 in other ways to form a sensor assembly. 500.
  • the first PCB board 200 and the third PCB board 400 are respectively mounted on both sides of the second PCB board 300 to
  • the step S200 of forming the sensor assembly 500 includes:
  • Step S250 Mount the second PCB board 300 on the third PCB board 400, and connect one end of each enclosure unit 20a to a bottom board unit 30a through a second connection structure;
  • step S260 the third PCB board 400 and the second PCB board 300 are mounted on the first PCB board 200 together, and the other end of each enclosure unit 10a is connected to each other through a first connection structure.
  • One roof unit 10a One roof unit 10a.
  • the step S250 includes:
  • Step S251 Fix the third PCB board 400 on the mounting table, and the positioning pins on the mounting table are inserted into the third positioning holes.
  • the third PCB board 400 is placed above the mounting table, and the third positioning hole is aligned with the positioning pin of the mounting table, and then the third PCB board 400 is moved downward, so that the positioning pin is inserted into the third positioning In the hole, the third PCB board 400 is guided to move to the mounting table, so that the third PCB board 400 is fixed on the mounting table.
  • Step S252 applying tin paste to each of the bottom plate units 30a on the third PCB board 400.
  • solder paste can be coated on the second annular coating area.
  • Step S253. Mount the second PCB board 300 on the third PCB board 400, and the solder paste on each of the bottom plate units 30a connects the bottom plate unit 30a to the enclosure unit 20a corresponding to the bottom plate unit 30a.
  • the second PCB board 300 is placed above the third PCB board 400, and the second positioning holes are aligned with the positioning pins of the mounting table, and then the second PCB board 300 is moved downward to make The positioning pin is inserted into the second positioning hole to guide the second PCB board 300 to move to the third PCB board 400 so that the second PCB board 300 is mounted on the third PCB board 400.
  • the step S260 includes:
  • Step S261 Remove the third PCB board 400 and the second PCB board 300 from the mounting table together.
  • Step S262 Fix the first PCB board 200 on the mounting table, and the positioning pins on the mounting table are inserted into the first positioning holes.
  • step S263 the solder paste is applied to each top board unit 10a on the first PCB board 200.
  • solder paste can be coated on the first annular coating area.
  • Step S264 Place the third PCB board 400 and the second PCB board 300 together on the top of the first PCB board 200, and the third PCB board 400 is located on the upper side of the second PCB board 300, and The third positioning hole and the second positioning hole are aligned with the positioning pins of the mounting table; then the third PCB board 400 and the second PCB board 300 are moved downward together, so that the positioning pins are inserted into the third positioning holes and the second positioning pins.
  • the ASIC chip can be mounted on the third PCB board 400 before step S250, and each base plate unit 30a is mounted with an ASIC chip; or After step S250 and before step S260, the ASIC chip is mounted on the third PCB board 400, and each backplane unit 30a is mounted with an ASIC chip; or, before step S260, the ASIC chip is mounted On the first PCB board 200, an ASIC chip is attached to each top board unit 10a.
  • the MEMS sensor chip can be mounted on the first PCB board 200, and each top board unit 10a is mounted with a MEMS sensor chip.
  • the sensor unit may be separated from the sensor assembly 500 by cutting to obtain a plurality of sensors 100.
  • step S300 includes: separating the sensor unit from the sensor assembly 500 by cutting to obtain a plurality of sensors 100.
  • the sensor assembly 500 can be cut by a dicing machine to separate the sensor units.
  • step S300 specifically includes:
  • Step S310 use positioning pins to fix the sensor assembly 500 and the steel ring, and the sensor assembly 500 is located inside the steel ring, and then lay a UV film on one side of the sensor assembly 500 and the steel ring to connect the sensor assembly through the UV film 500 is fixed on the steel ring.
  • Step S320 dicing and cutting the sensor assembly 500 on the steel ring to separate the sensor units from the sensor assembly 500 to obtain a plurality of sensors 100.
  • Step S330 Tear off the UV film on the sensor 100.
  • the sensor assembly 500 is provided with a knife alignment mark to improve cutting accuracy.
  • the first PCB board 200, the second PCB board 300, and the third PCB board 400 are respectively provided with a first pair of knife marks, a second pair of knife marks 310, and a third pair of knife marks at the same position on the sensor A knife mark is formed on the assembly 500.
  • a plurality of the sensor units are arranged in a rectangle or a square, wherein there are a plurality of tool setting marks, some of which are located at the four corners of the rectangle or square where the plurality of sensor units are arranged, and some are located at the four corners of the rectangle or square where the sensor units are arranged.
  • the sensor units are arranged on the sides of the rectangle or square.
  • a plurality of the enclosure units 20a are arranged in a rectangle or a square, wherein there are a plurality of second pair of knife marks 310, some of which are located in the The four corners of the rectangle or square where the enclosure units 20a are arranged are partially located on the sides of the rectangle or the square where the enclosure units 20a are arranged.
  • the knife mark can be selected as a cross mark.
  • a UV film is usually laid on the surface of the first PCB board 200 so that the UV film can also protect the sound hole 11.
  • a protective film needs to be pasted on the surface of the first PCB board 200 to protect the sound holes 11; or only on the surface of each top board unit 10a. A protective film is attached to the 11 sound holes.
  • the distance between two adjacent sensor units is greater than or equal to 0.2 mm. It can be understood that if the distance between two adjacent sensor units is too small, it is not conducive to cutting.
  • the distance between two adjacent sensor units is less than or equal to 0.6 mm. It can be understood that if the distance between two adjacent sensor units is too large, the sensor units will be arranged too sparsely, which is not conducive to improving production efficiency and causing waste.
  • the distance between two adjacent sensor units is greater than or equal to 0.28 mm and less than or equal to 0.5 mm.
  • the distance between two adjacent sensor units is greater than or equal to 0.32 mm and less than or equal to 0.4 mm.
  • the distance between two adjacent sensor units may be 0.34 mm, 0.35 mm, 0.36 mm, 0.38 mm, 0.4 mm, etc.
  • the width of the sensor assembly 500 is greater than or equal to 50 mm and less than or equal to 200 mm.
  • the length of the sensor assembly 500 is greater than or equal to 50 mm and less than or equal to 200 mm.
  • the width of the second PCB board 300 is greater than or equal to 50 mm and less than or equal to 200 mm.
  • the length of the second PCB board 300 is greater than or equal to 50 mm and less than or equal to 200 mm.
  • the number of the sensor units is greater than or equal to 150 and less than or equal to 2,400. That is, the number of top board units 10a on the first PCB board 200 is greater than or equal to 150 and less than or equal to 2400, and the number of enclosure units 20a on the second PCB board 300 is greater than or equal to 150 and less than or equal to 2400, and the third The number of bottom plate units 30 a on the PCB board 400 is greater than or equal to 150 and less than or equal to 2,400.
  • the number of the sensor units is greater than or equal to 300 and less than or equal to 2,000.
  • the number of the sensor units may be 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1500, 1600, 1800, etc.
  • the amount of solder paste is greater than or equal to 0.06 grams and less than or equal to 2 grams. It can be understood that if the amount of solder paste is too large, it will not only cause waste, but also easily splash during soldering; if the amount of solder paste is too small, the soldering strength cannot be guaranteed. It can be understood that the amount of solder paste is also affected by the size of the sensor assembly 500 and the arrangement density of the sensor units.
  • the amount of solder paste is greater than or equal to 0.1 g and less than or equal to 1.2 g, such as 0.2 g, 0.3 g, 0.4 g, 0.5 g, 0.6 g, 0.7 g, 0.8 g, 0.9 g, 1 g, 1.1 grams and so on.
  • the overall thickness of the sensor assembly 500 is less than or equal to 1.5 mm. It can be understood that if the overall thickness of the sensor assembly 500 is too thick, it is not conducive to the miniaturization of the sensor design.
  • the overall thickness of the sensor assembly 500 is less than or equal to 1.2 mm.
  • the thickness of the second PCB board is 0.65 ⁇ 0.03mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

一种传感器(100)的制造方法,包括:提供第一PCB板(200)、第二PCB板(300)和第三PCB板(400),第一PCB板(200)包括多个顶板单元(10a),第二PCB板(300)包括多个围板单元(20a),第三PCB板(400)包括多个底板单元(30a);将第一PCB板(200)和第三PCB板(400)分别安装于第二PCB板(300)的两侧,以形成传感器集合体(500);且每一个围板单元(20a)均对应连接有一个顶板单元(10a)和一个底板单元(30a),以在传感器集合体(500)上形成多个传感器单元;以及从传感器集合体(500)上分离出传感器单元,以获得多个传感器(100)。

Description

传感器的制造方法
本申请要求2020年6月11日申请的,申请号为202010527133.X,名称为“传感器的制造方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及传感器生产技术领域,特别涉及一种传感器的制造方法。
背景技术
MEMS(微机电系统)传感器是通过传感器芯片将外界信号(如振动、光、或压力等)转换成电信号的装置,在该装置中,为了保护易碎的芯片及减小外界干扰等,需要设置封装壳。
在一相关设计中,采用三层PCB板形成封装壳,即该封装壳包括围板、及分别设于围板的两端的底板和顶板,底板和顶板分别密封围板的两端的开口,该围板、底板和顶板均为PCB板。如此,通过采用三层PCB板作为封装壳,可有利用提高MEMS传感器的性能,且便于其与外界电路连接。
但是,上述封装壳并不易于实现批量生产,所以本领域为了实现MEMS传感器的批量生产,设计出了另一种封装壳结构,即包括一端开口的金属壳体、及密封该金属壳体的开口的底板,如此可采用冲压成型的方式实现批量生产金属壳体,从而实现MEMS传感器的批量生产。然而,采用金属壳体作为传感器的封装壳,不利于提高MEMS传感器的性能,如传感器芯片和声孔只能设置在底板上等。
所以,亟待提出一种采用三层PCB板作为封装壳的MEMS传感器的批量生产的方法。
技术问题
本申请的主要目的是提出一种传感器的制造方法,旨在实现采用三层PCB板作为封装壳的MEMS传感器的批量生产。
技术解决方案
为实现上述目的,本申请提出一种传感器的制造方法,所述传感器包括封装壳,所述封装壳包括围板、及分别设于所述围板两端的顶板和底板,所述围板的两端分别设有第一连接结构和第二连接结构,所述第一连接结构连接所述围板的一端与所述顶板,所述第二连接结构连接所述围板的另一端与所述底板,且所述第一连接结构与所述第二连接结构的宽度均大于或等于0.1毫米,且小于或等于0.3毫米;
所述传感器的制造方法包括:
S100、提供第一PCB板、第二PCB板和第三PCB板,所述第一PCB板包括多个顶板单元,所述第二PCB板包括多个围板单元,所述第三PCB板包括多个底板单元,且所述第二PCB板上设有第一连接结构和第二连接结构,且每一所述围板单元在所述第二PCB板的两侧面均分别设有一所述第一连接结构和一所述第二连接结构;
S200、将所述第一PCB板和所述第三PCB板分别安装于所述第二PCB板的两侧,以形成传感器集合体;且每一个所述围板单元在所述第二PCB板的一侧均通过所述第一连接结构对应连接有一个所述顶板单元,并在所述第二PCB板的另一侧均通过所述第二连接结构对应连接有一个所述底板单元,以在所述传感器集合体上形成多个传感器单元;以及
S300、从所述传感器集合体上分离出所述传感器单元,以获得多个传感器。。
有益效果
本申请通过将第一PCB板和第三PCB板分别安装于第二PCB板的两侧,可形成具有多个传感器单元的传感器集合体,再从该传感器集合体中分离出多个传感器。如此,可实现采用三层PCB板作为封装壳的MEMS传感器的批量生产。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请传感器的制造方法一实施例的流程示意框图;
图2为图1中的传感器的制造方法的装配流程示意图;
图3为本申请传感器的制造方法第一实施例的装配流程示意图;
图4为本申请传感器的制造方法第三实施例的装配流程示意图;
图5为图1中第二PCB板的正面结构示意图;
图6为图5中第二PCB板的反面结构示意图;
图7为图1中传感器的结构示意图;
图8为图7中围板的正面结构示意图;
图9为图8中围板的反面结构示意图;
图10为图7中围板的剖面结构示意图。
附图标号说明:
标号 名称 标号 名称
100 传感器 27 第二焊接环
10 顶板 30 底板
11 声孔 200 第一PCB板
20 围板 10a 顶板单元
21 金属屏蔽层 300 第二PCB板
22 绝缘层 310 第二对刀标记
23 阻焊隔离层 20a 围板单元
24 电连接件 400 第三PCB板
25 第一焊接环 30a 底板单元
26 树脂隔离层 500 传感器集合体
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
本申请提出一种传感器的制造方法。
其中,如图1-10所示,所述传感器100包括封装壳及设于封装壳内的MEMS传感器芯片和ASIC芯片,所述封装壳包括围板20、及分别设于所述围板20两端的顶板10和底板30,其中,所述围板20的两端分别具有一开口,顶板10和底板30分别用于密封围板20的两端的开口。具体的,所述顶板10、围板20和底板30均为PCB板。
其中,所述传感器为MEMS传感器,具体可为MEMS麦克风、或MEMS压力传感器等;相应地,所述MEMS传感器芯片具体可为MEMS麦克风芯片、或MEMS压力传感器芯片等。下文以传感器为MEMS麦克风为例进行说明。
具体的,所述围板20的两端分别设有第一连接结构和第二连接结构,所述第一连接结构连接围板20的一端与顶板10,所述第二连接结构连接围板20的另一端与底板30。如此,通过连接结构(第一连接结构、第二连接结构)可便于连接围板20与顶板10、或围板20与底板30。
在具体实施例中,可使第一连接结构设置为焊接环,如此,可通过锡膏来焊接围板20与顶板10。当然,所述第一连接结构也可为呈环形分布在围板的一端的多个焊接片/部结构,如此,也可通过锡膏来焊接围板20与顶板10。当然,所述第一连接结构还可设置为环形电连接件,如此可通过导电胶来连接围板20与顶板10。可以理解,所述第二连接结构的结构形式与第一连接结构的结构形式相同,在此不必一一赘述。且,下文将以第一连接结构和第二连接结构均为焊接环为例来解释本申请,但并不用于限缩本申请。
进一步地,所述第一连接结构与第二连接结构的宽度均大于或等于0.1毫米,且小于或等于0.3毫米。
可以理解的是,第一连接结构的宽度即是指第一连接结构在围板的板壁厚度方向上的长度。如:当第一连接结构为焊接环时,第一连接结构的宽度即是指该焊接环的宽度;当第一连接结构为呈环形分布在围板的一端的多个焊接片/部结构时,第一连接结构的宽度即是指该多个焊接片/部所形成的环形结构的宽度;当第一连接结构为环形电连接件时,第一连接结构的宽度即是指该环形电连接件的宽度;等等。同理,所述第二连接结构的宽度也是指第一连接结构在围板的板壁厚度方向上的长度。
可以理解,若第一连接结构和第二连接结构过窄,则会使第一连接结构和第二连接结构的加工难度大,且在连接后牢固度也会差。若第一连接结构和第二连接结构的宽度过宽,则会影响传感器100的尺寸大小;且对于焊接环来说,在划锡膏时,锡膏量会多,从而会影响产品的平整度。
可选地,所述第一连接结构与第二连接结构的宽度均大于或等于0.12毫米,且小于或等于0.28毫米,如可取0.15、0.18、0.2、0.22、0.25、0.27毫米等。
基于以上传感器100的结构,在本申请一实施例中,如图1-3所示,所述传感器100的制造方法包括:
步骤S100、提供第一PCB板200、第二PCB板300和第三PCB板400,所述第一PCB板包括多个顶板单元10a,所述第二PCB板300包括多个围板单元20a,所述第三PCB板400包括多个底板单元30a。且所述第二PCB板上设有第一连接结构和第二连接结构,且每一所述围板单元20a在所述第二PCB板300的两侧面均分别设有一所述第一连接结构和一所述第二连接结构。
其中,可以理解的是,每一个顶板单元10a均用于形成一个传感器的顶板10,每一个围板单元20a均用于形成一个传感器的围板20,每一个底板单元30a均用于形成一个传感器的底板30;换而言之,每一个顶板单元10a均为一个传感器100的顶板10,每一围板单元20a均为一个传感器100的围板20,每一个底板单元30a均为一个传感器100的底板30,所述底板30用于与外部电路板连接。
具体的,多个顶板单元10a呈阵列排布,多个围板单元20a也呈阵列排布,多个底板单元30a也呈阵列排布;且三者的阵列排布方式相同。
其中,每一个顶板单元10a上均设有声孔11(若传感器为MEMS压力传感器,则该声孔11即相应为压力传递孔)。
具体的,所述顶板单元10a可以为圆形或方形(正方形或长方形)等,在此不作限定,所述围板单元20a、底板单元30a的形状与顶板单元10a的相适配。
步骤S200、将所述第一PCB板200和所述第三PCB板400分别安装于所述第二PCB板300的两侧,以形成传感器集合体500;且每一个所述围板单元20a在所述第二PCB板300的一侧均通过所述第一连接结构对应连接有一个所述顶板单元10a,并在所述第二PCB板300的另一侧均通过第二连接结构对应连接有一个所述底板单元30a,以分别密封该围板单元20a的两端的开口,以在所述传感器集合体500上形成多个传感器单元。
其中,可以理解的是,每一个传感器单元均为一个传感器100,其均包括一个围板单元20a、及分别设于该围板单元20a的两端的一个顶板单元10a和一个底板单元30a。
以及,步骤S300、从所述传感器集合体500上分离出所述传感器单元,以获得多个传感器100。
本申请通过将第一PCB板200和第三PCB板400分别安装于第二PCB板300的两侧,可形成具有多个传感器单元的传感器集合体500,如此可从该传感器集合体500中分离出多个传感器100。如此,可实现采用三层PCB板作为封装壳的传感器100的批量生产。
而且,通过在围板的两端均设置连接结构(第一连接结构、第二连接结构),可便于连接围板20与顶板10、或围板20与底板30,且有利于提高连接强度。
在具体实施例中,将所述第一PCB板200和所述第三PCB板400分别安装于所述第二PCB板300的两侧以形成传感器集合体500的方式有多种,具体来说,可以理解的是,本申请中,第二PCB板300为围板集合体、第一PCB板200为顶板集合体,第三PCB板400为底板集合体;所以发明的方案可以是:先将围板集合体安装到顶板集合体上,然后一同安装到底板集合体上;或者,先将围板集合体安装到底板集合体上,然后一同安装到顶板集合体上;以下分别举例进行说明。
在本申请的第一实施例中,如图3所示,步骤S200、将所述第一PCB板200和所述第三PCB板400分别安装于所述第二PCB板300的两侧,以形成传感器集合体500,包括:
步骤S210、将所述第二PCB板300贴装于所述第一PCB板200,并使每个所述围板单元20a的一端均通过第一连接结构连接有一个顶板单元10a。
以及,步骤S240、将所述第一PCB板200与第二PCB板300一同贴装于第三PCB板400,并使每个围板单元20a的另一端均通过第二连接结构连接有一个底板单元30a。
这样,所述第一PCB板200和第三PCB板400分布位于第二PCB板300的两侧,并使每一个所述围板单元20a均对应连接有一个所述顶板单元10a和一个所述底板单元30a,以在所述传感器集合体500上形成多个传感器单元。
在具体实施例中,第一连接结构和第二连接结构通常均为焊接环,且通常通过锡膏使第一PCB板200贴装于第二PCB板300,并通过锡膏使第三PCB板400贴装于第二PCB板300,具体贴装步骤下文将结合传感器100的结构进行详细描述。
如此,通过先将第二PCB板300贴装于第一PCB板200,再将第一PCB板200与第二PCB板300一同贴装于第三PCB板400,可有效避免锡膏流入围板单元20a的内壁面。
具体的,如图8所示,所述第一连接结构为第一焊接环25。
其中,所述第一焊接环25的宽度大于或等于0.1毫米,且小于或等于0.3毫米。
可以理解,若第一焊接环25过窄,则会使第一焊接环25的加工难度大,且在连接后牢固度也会差。若第一焊接环25过宽,则会影响传感器100的尺寸大小;且在划锡膏时,锡膏量会多,从而会影响产品的平整度。
可选地,所述第一焊接环25的宽度大于或等于0.12毫米,且小于或等于0.28毫米,如可取0.15、0.18、0.2、0.22、0.25、0.27毫米等。
进一步地,所述第一焊接环25包括设于第二PCB板300的侧面的铜层、及设于铜层表面的镍层、及设于镍层表面的金层,所述镍层设于铜层与金层之间。如此,可提高第一焊接环25的可焊性。
具体的,所述铜层采用表面敷铜的工艺形成。
具体的,所述镍层为电镀层,所述金层为电镀层。
进一步地,所述铜层的厚度大于或等于20微米。可以理解,若铜层的厚度较薄,则会使铜层的加工难度大,且在焊接后牢固度也会差。
进一步地,所述镍层的厚度大于或等于2微米,且小于或等于10微米。可以理解,若镍层的厚度较薄,则不利于提高第一焊接环25的可焊性;若镍层的厚度较厚,则会增大成本。
具体的,所述镍层的厚度大于或等于3微米,且小于或等于8微米。如,所述镍层的厚度可选为4微米、5微米、6微米、7微米等。
进一步地,所述金层的厚度大于或等于0.05微米,且小于或等于15微米。可以理解,若金层的厚度较薄,则不利于提高第一焊接环25的可焊性;若金层的厚度较厚,则会增大成本。
具体的,所述金层的厚度大于或等于0.08微米,且小于或等于12微米。如,所述金层的厚度可选为0.09微米、1微米、2微米、3微米、4微米、5微米、6微米、7微米、8微米、9微米、10微米、11微米等。
具体的,如图9所示,所述第二连接结构为第二焊接环27。其中,所述第二焊接环27的结构与第一焊接环25的结构(基本)相同,其也包括设于所述第二PCB板300的侧面的铜层、及设于铜层表面的镍层、及设于镍层表面的金层,其具体结构限定在此不必一一赘述。
具体的,所述第二PCB板300上还设有电连接件24,且每一所述围板单元20a内均埋设有电连接件24。可选地,所述电连接件24为环形柱状结构。
进一步地,步骤S210、将所述第二PCB板300贴装于所述第一PCB板200包括:
步骤S212、将锡膏涂覆到所述第一PCB板200上的每一个所述顶板单元10a上。
其中,所述第一PCB板200上的每一个所述顶板单元10a上均设有第一环形涂覆区,步骤S212中,将锡膏涂覆到第一环形涂覆区。可选地,将锡膏涂覆满第一环形涂覆区,以保证连接强度。
其中,所述第一环形涂覆区内设有第一焊盘。
以及步骤S213、将所述第二PCB板300贴装于第一PCB板200,且每一个所述顶板单元10a上的锡膏连接该顶板单元10a与该顶板单元10a应的所述围板单元20a的第一焊接环25。
在本实施例中,具体的,在步骤S212中,将锡膏划到每一个所述顶板单元10a上。在步骤S213,具体的,锡膏在焊接温度下将第一焊接环25与第一焊盘焊接在一起。
如此,通过锡膏焊接第一焊接环25与第一焊盘,以连接顶板单元10a与对应的围板单元20a,不仅可实现顶板单元10a与围板单元20a的固定连接,而且还可实现顶板单元10a与围板单元20a的电连接。
进一步地,在所述将所述第二PCB板300贴装于所述第一PCB板200的步骤S210中,所述第一PCB板200平放设置,且所述第二PCB板300从所述第一PCB板200的上方贴装于第一PCB板200的上表面。如此,可防止锡膏在第一PCB板200上四处流动。
具体的,所述第一PCB板200上设有第一定位孔,所述第二PCB板300上设有第二定位孔。
具体的,在步骤S212之前,步骤S210、将所述第二PCB板300贴装于所述第一PCB板200还包括:
步骤S211、将所述第一PCB板200固定在贴装台上,且所述贴装台上的定位销插接于第一定位孔内。
具体的,将第一PCB板200置于贴装台的上方,并使第一定位孔对准贴装台的定位销,然后使第一PCB板200向下移动,使定位销插入第一定位孔内,以引导第一PCB板200移向贴装台,以使所述第一PCB板200固定在贴装台上。
具体的,所述步骤S213的具体过程为:将所述第二PCB板300置于第一PCB板200的上方,并使第二定位孔对准贴装台的定位销,然后使所述第二PCB板300向下移动,使所述定位销插入第二定位孔内,以引导所述第二PCB板300移向第一PCB板200,以使所述第二PCB板300贴装于第一PCB板200。
如此,可使第一定位孔和第二定位孔对应设置,从而可使每一顶板单元10a均对应于一围板单元20a,以实现精准定位。
在部分实施例中,为了防止锡膏分散、并提高连接效果,在每一顶板单元10a的周缘设有第一环形挡壁,该第一环形挡壁位于围板单元的内壁面的内侧,该第一环形挡壁可用于形成第一环形涂覆区。可以理解,第一环形挡壁可在相邻的顶板单元10a之间形成第一涂覆槽。在步骤S212中,可将锡膏涂覆在第一涂覆槽内,如此,通过调整第一涂覆槽的宽度,既可有利于保证连接强度、防止锡膏分散,又可尽可能地减少锡膏的用量,还可兼顾传感器单元的分离。且,第一环形挡壁还可在焊接时阻挡焊料(如焊锡等),以避免焊料飞溅入封装壳内而污染内部芯片。在该在部分实施例中,第一环形挡壁既可以与顶板单元10a一体成型,也可在顶板单元10a的表面分体连接成型。
具体的,为了提高封装壳的屏蔽效果,每一所述围板单元20a的内壁面还设有一层金属屏蔽层21,该金属屏蔽层21接地。
可选地,所述金属屏蔽层21为铜箔层。
具体的,所述金属屏蔽层21的厚度大于或等于10微米。如此,以保证/提高屏蔽效果。
在进一步的设计中,为了避免焊接时,焊料进入封装壳内,每一所述围板单元20a的内壁面均设有一层绝缘层22,以实现在焊接时阻挡焊锡。
具体的,所述金属屏蔽层21设于绝缘层22与围板单元20a的内壁面之间,即所述绝缘层22设于金属屏蔽层21的内侧面。
其中,所述绝缘层22可选为电泳层。
具体的,所述绝缘层22的厚度大于或等于6微米,且小于或等于20微米,如其可取7微米、8微米、9微米、10微米、11微米、12微米、13微米、14微米、15微米、16微米、17微米、18微米、19微米等。
具体的,所述第二PCB板300的制造过程大致包括:
1)在PCB板材上开孔,且每一围板单元20a均开有内腔通孔、及开设于该围板单元20a的侧壁上的金属化通孔。
2)在每一围板单元20a的内壁面(即内腔通孔的内壁面)上成形金属屏蔽层21。
3)在金属化通孔内成形电连接件24。其中,在部分实施例中,所述电连接件24为环形柱状,还可在金属化通孔内填充树脂隔离层26,即形成树脂塞孔结构,以使金属化通孔的内部无气泡残留。可选地,所述电连接件24的侧壁厚度大于或等于12微米。
4)在金属屏蔽层21内成形绝缘层22。
5)PCB板材的两侧面分别形成第一焊接环25和第二焊接环27。
6)在板材表面成形阻焊隔离层23,如绿油层。
进一步地,如图3所示,步骤S240、将所述第一PCB板200与第二PCB板300一同贴装于第三PCB板400包括:
步骤S243、将锡膏涂覆到第三PCB板400上的每一个底板单元30a上。
其中,所述第三PCB板400上的每一个所述底板单元30a上均设有第二环形涂覆区,步骤S243中,将锡膏涂覆到第二环形涂覆区。可选地,将锡膏涂覆满第二环形涂覆区,以保证连接强度。
其中,所述第二环形涂覆区内设有第二焊盘。
以及,步骤S244、将所述第一PCB板200与第二PCB板300一同贴装于第三PCB板400,且每一个所述底板单元30a上的锡膏连接该底板单元30a与该底板单元30a所对应的围板单元20a的第二焊接环27。
具体的,在步骤S243中,将锡膏划到每一个所述底板单元30a上。在步骤S244,具体的,锡膏在焊接温度下将第二焊接环27与第二焊盘焊接在一起。
在部分实施例中,为了防止锡膏分散、并提高连接效果,在每一底板单元30a的周缘设有第二环形挡壁,该第二环形挡壁位于围板单元的内壁面的内侧,该第二环形挡壁可用于形成第二环形涂覆区。可以理解,第二环形挡壁可在相邻的底板单元30a之间形成第二涂覆槽。在步骤S243中,可将锡膏涂覆在第二涂覆槽内,如此,通过调整第二涂覆槽的宽度,既可有利于保证连接强度、防止锡膏分散,又可尽可能地减少锡膏的用量,还可兼顾传感器单元的分离。且,第二环形挡壁还可在焊接时阻挡焊料(如焊锡等),以避免焊料飞溅入封装壳内而污染内部芯片。在该在部分实施例中,第二环形挡壁既可以与底板单元30a一体成型,也可在底板单元30a的表面分体连接成型。
进一步地,在将所述第一PCB板200与所述第二PCB板300一同贴装于第三PCB板400的步骤S240中,所述第三PCB板400平放设置,且所述第一PCB板200与第二PCB板300从所述第三PCB板400的上方贴装于第三PCB板400的上表面。
具体的,所述第三PCB板400上设有第三定位孔。
具体的,在步骤S243之前,步骤S240、将所述第一PCB板200与第二PCB板300一同贴装于第三PCB板400还包括:
步骤S241、将所述第一PCB板200与所述第二PCB板300一同从贴装台上取下。
步骤S242、将第三PCB板400固定在贴装台上,且所述贴装台上的定位销插接于所述第三定位孔内。
具体的,将第三PCB板400置于贴装台的上方,并使第三定位孔对准贴装台的定位销,然后使第三PCB板400向下移动,使定位销插入第三定位孔内,以引导第三PCB板400移向贴装台,以使所述第三PCB板400固定在贴装台上。
具体的,所述步骤S244的具体过程为:将所述第一PCB板200与所述第二PCB板300一同置于第三PCB板400的上方,且所述第一PCB板200位于第二PCB板300的上侧,并使第一定位孔和第二定位孔对准贴装台的定位销;然后将所述第一PCB板200与第二PCB板300一同向下移动,使所述定位销插入第一定位孔和第二定位孔内,以引导所述第一PCB板200与第二PCB板300一同向下移动,以使所述第一PCB板200与第二PCB板300一同贴装于第三PCB板400。
如此,可使第一定位孔、第二定位孔及第三定位孔三者对应设置,从而可使每一围板单元20a均对应一顶板单元10a和一底板单元30a。
而且,通过这种方式使所述第一PCB板200和第三PCB板400分别安装于第二PCB板300的两侧,可有效防止锡膏分散。
当然,于其他实施例中,也可不必将所述第一PCB板200与所述第二PCB板300一同从贴装台上取下,而直接将第三PCB板400其上方贴装到第二PCB上即可。
在具体实施例中,所述MEMS传感器芯片通常设于顶板10,以形成假TOP结构,从而提高MEMS传感器芯片的性能。
在所述将所述第二PCB板300贴装于第一PCB板200的步骤S210之前,还包括:
步骤S20a、将MEMS传感器芯片贴装到第一PCB板200上,且每一个所述顶板单元10a均贴装有一个MEMS传感器芯片。
如此,在将所述第二PCB板300贴装于第一PCB板200之前,将MEMS传感器芯片贴装到第一PCB板200上,可采用表面贴装的技术将MEMS传感器芯片贴装到第一PCB板200上,如此可降低MEMS传感器芯片的贴装工艺难度,降低成本。
当然,也可在将所述第二PCB板300贴装于第一PCB板200之后,再将MEMS传感器芯片贴装到第一PCB板200上,即在所述将所述第二PCB板300贴装于第一PCB板200的步骤S210之后,且在所述将所述第一PCB板200与所述第二PCB板300一同贴装于第三PCB板400的步骤S240之前,所述传感器的制造方法还包括:
步骤S22a、将MEMS传感器芯片贴装到第一PCB板200上,且每一个所述顶板单元10a均贴装有一个MEMS传感器芯片。
如此,可避免在将所述第二PCB板300贴装于第一PCB板200时,焊料(如焊锡等)飞溅而污染MEMS传感器芯片。
具体的,在所述传感器100的一实施例中,所述ASIC芯片也设于顶板10,基于此,在本申请的第一实施例中,所述传感器100的制造方法还包括以下步骤,即在所述将所述第二PCB板300贴装于第一PCB板200的步骤S210之前,还包括:
步骤S20b、将ASIC芯片贴装到第一PCB板200上,且每一个顶板单元10a均贴装有一个ASIC芯片。
其中,本申请对步骤S20a与步骤S20b的顺序不作限定,即既可使步骤S20a在先,也可使步骤S20b在先。
当然,也可在将所述第二PCB板300贴装于第一PCB板200之后,再将ASIC芯片贴装到第一PCB板200上,即在所述将所述第二PCB板300贴装于第一PCB板200的步骤S210之后,且在所述将所述第一PCB板200与所述第二PCB板300一同贴装于第三PCB板400的步骤S240之前,所述传感器的制造方法还包括:
步骤S22b、将ASIC芯片贴装到第一PCB板200上,且每一个所述顶板单元10a均贴装有一个ASIC芯片。
如此,可避免在将所述第二PCB板300贴装于第一PCB板200时,焊料(如焊锡等)飞溅而污染ASIC芯片。
其中,本申请对步骤S22a与步骤S22b的顺序不作限定,即既可使步骤S22a在先,也可使步骤S22b在先。
需要指出的是,基于以上的示例可知,对于MEMS传感器芯片和所述ASIC芯片的贴装可选用的步骤组合有:步骤S20a与步骤S20b、步骤S20a与步骤S22b、步骤S20b与步骤S22a、步骤S22a与步骤S22b。
具体的,在所述传感器100的另一实施例中,所述ASIC芯片设于底板30。基于此,在本申请还给出了第二实施例,在本申请的第二实施例中,所述传感器100的制造方法还包括以下步骤,即在所述将所述第一PCB板200与所述第二PCB板300一同贴装于所述第三PCB板400的步骤S240之前,还包括:
步骤S300、将ASIC芯片贴装到第三PCB板400上,且每一个所述底板单元30a均贴装有一个ASIC芯片。
需要指出的是,在本申请的第二实施例中,对于MEMS传感器芯片和所述ASIC芯片的贴装可选用的步骤组合有:步骤S20a与步骤S300(不分先后)、步骤S22a与步骤S300(不分先后)。
在本申请的其他实施例中,也可通过其他方式使将所述第一PCB板200和所述第三PCB板400分别安装于所述第二PCB板300的两侧,以形成传感器集合体500。
如在本申请的第三实施例中,如图4所示,所述将所述第一PCB板200和所述第三PCB板400分别安装于所述第二PCB板300的两侧,以形成传感器集合体500的步骤S200包括:
步骤S250、将所述第二PCB板300贴装于第三PCB板400,并使每个所述围板单元20a的一端均通过第二连接结构连接有一个底板单元30a;以及
步骤S260、将所述第三PCB板400与第二PCB板300一同贴装于所述第一PCB板200,并使每个所述围板单元10a的另一端均通过第一连接结构连接有一个顶板单元10a。
在本申请的第三实施例中,具体的,所述步骤S250包括:
步骤S251、将所述第三PCB板400固定在贴装台上,且所述贴装台上的定位销插接于第三定位孔内。
具体的,将第三PCB板400置于贴装台的上方,并使第三定位孔对准贴装台的定位销,然后使第三PCB板400向下移动,使定位销插入第三定位孔内,以引导第三PCB板400移向贴装台,以使所述第三PCB板400固定在贴装台上。
步骤S252、将锡膏涂覆到所述第三PCB板400上的每一个所述底板单元30a上。
具体的,可将锡膏涂覆在第二环形涂覆区。
步骤S253、将所述第二PCB板300贴装于第三PCB板400,且每一个所述底板单元30a上的锡膏连接该底板单元30a与该底板单元30a应的所述围板单元20a的第二焊接环27。
具体的,将所述第二PCB板300置于第三PCB板400的上方,并使第二定位孔对准贴装台的定位销,然后使所述第二PCB板300向下移动,使所述定位销插入第二定位孔内,以引导所述第二PCB板300移向第三PCB板400,以使所述第二PCB板300贴装于第三PCB板400。
在本申请的第三实施例中,具体的,所述步骤S260包括:
步骤S261、将所述第三PCB板400与所述第二PCB板300一同从贴装台上取下。
步骤S262、将第一PCB板200固定在贴装台上,且所述贴装台上的定位销插接于所述第一定位孔内。
步骤S263、将锡膏涂覆到第一PCB板200上的每一个顶板单元10a上。
具体的,可将锡膏涂覆在第一环形涂覆区。
步骤S264、将所述第三PCB板400与所述第二PCB板300一同置于第一PCB板200的上方,且所述第三PCB板400位于第二PCB板300的上侧,并使第三定位孔和第二定位孔对准贴装台的定位销;然后将所述第三PCB板400与第二PCB板300一同向下移动,使所述定位销插入第三定位孔和第二定位孔内,以引导所述第三PCB板400与第二PCB板300一同向下移动,以使所述第三PCB板400与第二PCB板300一同贴装于第一PCB板200,且每一个所述顶板单元10a上的锡膏连接该顶板单元10a与该顶板单元10a所对应的围板单元20a的第一焊接环25。
具体的,关于MEMS传感器芯片和所述ASIC芯片的贴装,可在步骤S250之前,将ASIC芯片贴装到第三PCB板400上,且每一个底板单元30a均贴装有一个ASIC芯片;或者,在步骤S250之后,且步骤S260之前,将ASIC芯片贴装到第三PCB板400上,且每一个底板单元30a均贴装有一个ASIC芯片;或者,在步骤S260之前,将ASIC芯片贴装到第一PCB板200上,且每一个顶板单元10a均贴装有一个ASIC芯片。
可在在步骤S260之前,将MEMS传感器芯片贴装到第一PCB板200上,且每一个顶板单元10a均贴装有一个MEMS传感器芯片。
其中,对于本申请的第三实施例中的其他细节部分可参阅本申请的第一、二实施例,在此不必一一赘述。
在具体实施例中,可通过切割的方式从所述传感器集合体500上分离出所述传感器单元,以获得多个传感器100。
具体来说,步骤S300包括:通过切割的方式从所述传感器集合体500上分离出所述传感器单元,以获得多个传感器100。具体的,可通过划片机切割传感器集合体500,以分离出所述传感器单元。
具体的,所述步骤S300具体包括:
步骤S310、使用定位销固定传感器集合体500和钢圈,且传感器集合体500位于钢圈的内侧,然后在传感器集合体500和钢圈的一侧铺设UV膜,以通过UV膜将传感器集合体500固定在钢圈上。
步骤S320、划片切割钢圈上的传感器集合体500,以从所述传感器集合体500上分离出所述传感器单元,以获得多个传感器100。
步骤S330、撕掉传感器100上的UV膜。
其中,所述传感器集合体500上设有对刀标记,以提高切割精度。具体来说,在第一PCB板200、第二PCB板300以及第三PCB板400的相同位置分别设有第一对刀标记、第二对刀标记310以及第三对刀标记,以在传感器集合体500上形成对刀标记。
在本实施例中,多个所述传感器单元排布成矩形或正方形,其中,对刀标记设有多个,其中部分位于多个传感器单元排布的矩形或正方形的四角处、部分位于多个传感器单元排布的矩形或正方形侧边上。
其中,如图5和6所示,对于第二PCB板来说,多个所述围板单元20a排布成矩形或正方形,其中,第二对刀标记310设有多个,其中部分位于多个围板单元20a排布的矩形或正方形的四角处、部分位于多个围板单元20a排布的矩形或正方形侧边上。
其中,对刀标记可选为十字标记。
其中,在步骤S310中,UV膜通常铺设于第一PCB板200的表面,以使UV膜还可对声孔11进行防护。但是,若UV膜铺设于第三PCB板400的表面时,则还需在第一PCB板200的表面贴一层防护膜,以对声孔11进行防护;或仅在每一顶板单元10a的声孔11处贴一层防护膜。
进一步地,相邻两个所述传感器单元之间的间距大于或等于0.2毫米。可以理解,若相邻两个所述传感器单元之间的间距过小,则不利于切割。
进一步地,相邻两个所述传感器单元之间的间距小于或等于0.6毫米。可以理解,若相邻两个所述传感器单元之间的间距过大,则会使传感器单元排布过稀,从而不利于提高生产效率,造成浪费。
可选地,相邻两个所述传感器单元之间的间距大于或等于0.28毫米,且小于或等于0.5毫米。
可选地,相邻两个所述传感器单元之间的间距大于或等于0.32毫米,且小于或等于0.4毫米。
在具体实施例中,相邻两个所述传感器单元之间的间距可取0.34毫米、0.35毫米、0.36毫米、0.38毫米、0.4毫米等。
具体的,所述传感器集合体500的宽度大于或等于50毫米,且小于或等于200毫米。所述传感器集合体500的长度大于或等于50毫米,且小于或等于200毫米。相应地,其中,所述第二PCB板300的宽度大于或等于50毫米,且小于或等于200毫米。所述第二PCB板300的长度大于或等于50毫米,且小于或等于200毫米。
进一步地,所述传感器单元的数量大于或等于150,且小于或等于2400。即第一PCB板200上顶板单元10a的数量大于或等于150,且小于或等于2400,且第二PCB板300上围板单元20a的数量大于或等于150,且小于或等于2400,且第三PCB板400上底板单元30a的数量大于或等于150,且小于或等于2400。
可以理解,若每一传感器集合体500上的传感器单元的数量过小,则会使排版太小,从而会影响效率及成本;若每一传感器集合体500上的传感器单元的数量过大,则会使排版太大,则会影响PCB板的平整度及位置度,造成工艺良率低,且不易于PCB板的搬运。
可选地,所述传感器单元的数量大于或等于300,且小于或等于2000。其中,所述传感器单元的数量可取400、500、600、700、800、900、1000、1200、1400、1500、1600、1800等。
进一步地,在每一所述传感器100制造过程中,锡膏用量大于或等于0.06克,且小于或等于2克。可以理解,若锡膏用量的用量过大,则不仅会造成浪费,而且在焊接时也易飞溅;若锡膏用量的用量过小,则无法保证焊接强度。可以理解的是,锡膏用量的大小还受传感器集合体500的尺寸大小、及传感器单元的排布密度大小的影响。
可选地,锡膏用量大于或等于0.1克,且小于或等于1.2克,如可为0.2克、0.3克、0.4克、0.5克、0.6克、0.7克、0.8克、0.9克、1克、1.1克等。
进一步地,所述传感器集合体500的整体厚度小于或等于1.5毫米。可以理解,若传感器集合体500的整体厚度过厚,则不利于传感器的小型化设计。
可选地,所述传感器集合体500的整体厚度小于或等于1.2毫米。
其中,所述第二PCB板的厚度为0.65±0.03mm。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (18)

  1. 一种传感器的制造方法,其中,所述传感器包括封装壳,所述封装壳包括围板、及分别设于所述围板两端的顶板和底板,所述围板的两端分别设有第一连接结构和第二连接结构,所述第一连接结构连接所述围板的一端与所述顶板,所述第二连接结构连接所述围板的另一端与所述底板,且所述第一连接结构与所述第二连接结构的宽度均大于或等于0.1毫米,且小于或等于0.3毫米;
    所述传感器的制造方法包括:
    S100、提供第一PCB板、第二PCB板和第三PCB板,所述第一PCB板包括多个顶板单元,所述第二PCB板包括多个围板单元,所述第三PCB板包括多个底板单元,且所述第二PCB板上设有第一连接结构和第二连接结构,且每一所述围板单元在所述第二PCB板的两侧面均分别设有一所述第一连接结构和一所述第二连接结构;
    S200、将所述第一PCB板和所述第三PCB板分别安装于所述第二PCB板的两侧,以形成传感器集合体;且每一个所述围板单元在所述第二PCB板的一侧均通过所述第一连接结构对应连接有一个所述顶板单元,并在所述第二PCB板的另一侧均通过所述第二连接结构对应连接有一个所述底板单元,以在所述传感器集合体上形成多个传感器单元;以及
    S300、从所述传感器集合体上分离出所述传感器单元,以获得多个传感器。
  2. 如权利要求1所述的传感器的制造方法,其中,所述将所述第一PCB板和所述第三PCB板分别安装于所述第二PCB板的两侧,以形成传感器集合体的步骤S200包括:
    S210、将所述第二PCB板贴装于所述第一PCB板,并使每个所述围板单元的一端均通过所述第一连接结构连接有一个所述顶板单元;以及
    S240、将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板,并使每个所述围板单元的另一端均通过所述第二连接结构连接有一个所述底板单元。
  3. 如权利要求2所述的传感器的制造方法,其中,所述第一连接结构为第一焊接环;
    所述将所述第二PCB板贴装于所述第一PCB板的步骤S210包括:
    S212、将锡膏涂覆到所述第一PCB板上的每一个所述顶板单元上;以及
    S213、将所述第二PCB板贴装于所述第一PCB板,且每一个所述顶板单元上的锡膏连接该顶板单元与该顶板单元所对应的所述围板单元的第一焊接环。
  4. 如权利要求3所述的传感器的制造方法,其中,在所述将所述第二PCB板贴装于所述第一PCB板的步骤S210中,所述第一PCB板平放设置,且所述第二PCB板从所述第一PCB板的上方贴装于所述第一PCB板的上表面。
  5. 如权利要求2所述的传感器的制造方法,其中,所述第二连接结构为第二焊接环;
    所述将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板的步骤S240包括:
    S243、将锡膏涂覆到所述第三PCB板上的每一个所述底板单元上;以及
    S244、将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板,且每一个所述底板单元上的锡膏连接该底板单元与该底板单元所对应的所述围板单元的第二焊接环。
  6. 如权利要求3所述的传感器的制造方法,其中,所述第一焊接环包括设于所述第二PCB板侧面的铜层、及设于所述铜层表面的镍层、及设于该镍层表面的金层,所述镍层设于所述铜层与所述金层之间。
  7. 如权利要求6所述的传感器的制造方法,其中,所述第一焊接环的厚度大于或等于20微米;和/或,
    所述镍层的厚度大于或等于3微米,且小于或等于8微米;和/或,
    所述金层的厚度大于或等于0.08微米,且小于或等于12微米。
  8. 如权利要求2所述的传感器的制造方法,其中,在所述将所述第二PCB板贴装于所述第一PCB板的步骤S210之前,所述传感器的制造方法还包括:
    S20a、将MEMS传感器芯片贴装到所述第一PCB板上,且每一个所述顶板单元均贴装有一个所述MEMS传感器芯片;
    或者,
    在所述将所述第二PCB板贴装于所述第一PCB板的步骤S210之后,且在所述将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板的步骤S240之前,所述传感器的制造方法还包括:
    S22a、将MEMS传感器芯片贴装到所述第一PCB板上,且每一个所述顶板单元均贴装有一个所述MEMS传感器芯片。
  9. 如权利要求8所述的传感器的制造方法,其中,在所述将所述第二PCB板贴装于所述第一PCB板的步骤S210之前,所述传感器的制造方法还包括:
    S20b、将ASIC芯片贴装到所述第一PCB板上,且每一个所述顶板单元均贴装有一个所述ASIC芯片;
    或者,
    在所述将所述第二PCB板贴装于所述第一PCB板的步骤S210之后,且在所述将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板的步骤S240之前,所述传感器的制造方法还包括:
    S22b、将ASIC芯片贴装到所述第一PCB板上,且每一个所述顶板单元均贴装有一个所述ASIC芯片;
    或者,
    在所述将所述第一PCB板与所述第二PCB板一同贴装于所述第三PCB板的步骤S240之前,所述传感器的制造方法还包括:
    S300、将ASIC芯片贴装到所述第三PCB板上,且每一个所述底板单元均贴装有一个所述ASIC芯片。
  10. 如权利要求1所述的传感器的制造方法,其中,所述将所述第一PCB板和所述第三PCB板分别安装于所述第二PCB板的两侧,以形成传感器集合体的步骤S200包括:
    S250、将所述第二PCB板贴装于所述第三PCB板,并使每个所述围板单元的一端均通过所述第二连接结构连接有一个所述底板单元;以及
    将所述第三PCB板与所述第二PCB板一同贴装于所述第一PCB板,并使每个所述围板单元的另一端均通过所述第一连接结构连接有一个所述顶板单元。
  11. 如权利要求1至10中任意一项所述的传感器的制造方法,其中,通过切割的方式从所述传感器集合体上分离出所述传感器单元。
  12. 如权利要求1至10中任意一项所述的传感器的制造方法,其中,所述围板单元的内壁面上设有金属屏蔽层。
  13. 如权利要求12所述的传感器的制造方法,其中,所述金属屏蔽层的内侧面设有绝缘层。
  14. 如权利要求13所述的传感器的制造方法,其中,所述绝缘层的厚度大于或等于6微米,且小于或等于20微米;和/或,
    所述金属屏蔽层21的厚度大于或等于10微米。
  15. 如权利要求1至10中任意一项所述的传感器的制造方法,其中,相邻两个所述传感器单元之间的间距大于或等于0.2毫米,且小于或等于0.6毫米。
  16. 如权利要求2至10中任意一项所述的传感器的制造方法,其中,所述传感器单元的数量大于或等于150,且小于或等于1000。
  17. 如权利要求16所述的传感器的制造方法,其中,在每一所述传感器制造过程中,锡膏的用量大于或等于0.06克,且小于或等于2克。
  18. 如权利要求1至10中任意一项所述的传感器的制造方法,其中,所述传感器集合体的整体厚度小于或等于1.5毫米。
PCT/CN2021/094168 2020-06-11 2021-05-17 传感器的制造方法 WO2021249124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010527133.XA CN111422826B (zh) 2020-06-11 2020-06-11 传感器的制造方法
CN202010527133.X 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021249124A1 true WO2021249124A1 (zh) 2021-12-16

Family

ID=71555240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094168 WO2021249124A1 (zh) 2020-06-11 2021-05-17 传感器的制造方法

Country Status (2)

Country Link
CN (1) CN111422826B (zh)
WO (1) WO2021249124A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422825B (zh) * 2020-06-11 2020-09-22 潍坊歌尔微电子有限公司 传感器的制造方法
CN111422826B (zh) * 2020-06-11 2020-10-20 潍坊歌尔微电子有限公司 传感器的制造方法
CN212727420U (zh) * 2020-08-28 2021-03-16 潍坊歌尔微电子有限公司 Mems麦克风和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144036A (ja) * 1999-11-12 2001-05-25 Miyota Kk Icチップのパッケージ方法
CN101360352A (zh) * 2008-08-27 2009-02-04 歌尔声学股份有限公司 具有屏蔽结构的微型麦克风及其线路板框架的制造方法
JP2009099731A (ja) * 2007-10-16 2009-05-07 Fuji Electric Systems Co Ltd 部品内蔵電子モジュール
CN102556945A (zh) * 2010-12-13 2012-07-11 台湾积体电路制造股份有限公司 微电子装置及其集成电路的制造方法
CN208924521U (zh) * 2018-12-18 2019-05-31 歌尔科技有限公司 封装用电路板及mems麦克风
CN110784813A (zh) * 2019-12-07 2020-02-11 朝阳聚声泰(信丰)科技有限公司 一种mems麦克风及其生产工艺
CN111422826A (zh) * 2020-06-11 2020-07-17 潍坊歌尔微电子有限公司 传感器的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790122B2 (ja) * 1996-05-31 1998-08-27 日本電気株式会社 積層回路基板
JP4166532B2 (ja) * 2002-08-27 2008-10-15 大日本印刷株式会社 プリント配線板の製造方法
CN101026902B (zh) * 2007-03-28 2011-06-15 苏州敏芯微电子技术有限公司 微机电声学传感器的封装结构
CN101935007A (zh) * 2009-06-30 2011-01-05 美律实业股份有限公司 微机电声学传感器封装结构
CN102020232A (zh) * 2009-09-09 2011-04-20 美律实业股份有限公司 微机电声学感测器封装结构
DE102014203881A1 (de) * 2014-03-04 2015-09-10 Robert Bosch Gmbh Bauteil mit Mikrofon- und Mediensensorfunktion
US20170320726A1 (en) * 2014-11-10 2017-11-09 At & S Austria Technologie & Systemtechnik Aktiengesellschaft MEMS Package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144036A (ja) * 1999-11-12 2001-05-25 Miyota Kk Icチップのパッケージ方法
JP2009099731A (ja) * 2007-10-16 2009-05-07 Fuji Electric Systems Co Ltd 部品内蔵電子モジュール
CN101360352A (zh) * 2008-08-27 2009-02-04 歌尔声学股份有限公司 具有屏蔽结构的微型麦克风及其线路板框架的制造方法
CN102556945A (zh) * 2010-12-13 2012-07-11 台湾积体电路制造股份有限公司 微电子装置及其集成电路的制造方法
CN208924521U (zh) * 2018-12-18 2019-05-31 歌尔科技有限公司 封装用电路板及mems麦克风
CN110784813A (zh) * 2019-12-07 2020-02-11 朝阳聚声泰(信丰)科技有限公司 一种mems麦克风及其生产工艺
CN111422826A (zh) * 2020-06-11 2020-07-17 潍坊歌尔微电子有限公司 传感器的制造方法

Also Published As

Publication number Publication date
CN111422826A (zh) 2020-07-17
CN111422826B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2021249124A1 (zh) 传感器的制造方法
CN101582434B (zh) 影像感测器封装结构及其制造方法及相机模组
JP2768650B2 (ja) ソルダーボールの装着溝を有する印刷回路基板とこれを使用したボールグリッドアレイパッケージ
CN102548253A (zh) 多层电路板的制作方法
WO2021249125A1 (zh) 传感器的制造方法
JP5847385B2 (ja) 圧力センサ装置及び該装置を備える電子機器、並びに該装置の実装方法
EP2427040A1 (en) Electronic component mounting device and method for producing the same
TW201943321A (zh) 包括相對電路板的系統級封裝
WO2021004459A1 (zh) 一种埋入式电路板及其制备方法
TW201419957A (zh) 電子裝置、系統級封裝模組及系統級封裝模組的製造方法
KR20030044838A (ko) 반도체장치
TWI647804B (zh) 影像感測器封裝結構及其封裝方法
CN104418292A (zh) Mems器件
CN101499456A (zh) 半导体器件及其制造方法
US20080135939A1 (en) Fabrication method of semiconductor package and structure thereof
EP2333831B1 (en) Method for packaging an electronic device
CN207909913U (zh) 一种led器件的封装结构
US7483276B2 (en) Semiconductor package and method for manufacturing same
WO2022060022A1 (ko) 광원용 기판 어레이 및 그 제조방법
CN213661584U (zh) 声表面波滤波芯片封装结构
CN212660328U (zh) 麦克风组件和经组装的pcb
CN213126636U (zh) 一种印刷线路板和电子器件
KR20000028840A (ko) 필름 기판을 사용한 반도체 장치 제조 방법
CN212115673U (zh) 一种麦克风线路板及麦克风
CN219812292U (zh) 一种6×6排列0.4mmBGA偏盘单盲孔扇出结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822146

Country of ref document: EP

Kind code of ref document: A1