WO2021248649A1 - 一种高铁枕梁工艺孔自动焊接方法 - Google Patents

一种高铁枕梁工艺孔自动焊接方法 Download PDF

Info

Publication number
WO2021248649A1
WO2021248649A1 PCT/CN2020/104925 CN2020104925W WO2021248649A1 WO 2021248649 A1 WO2021248649 A1 WO 2021248649A1 CN 2020104925 W CN2020104925 W CN 2020104925W WO 2021248649 A1 WO2021248649 A1 WO 2021248649A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
height
layer
weld
corbel
Prior art date
Application number
PCT/CN2020/104925
Other languages
English (en)
French (fr)
Inventor
李鹏一
程远
胡冬双
唐凯
董巍
徐龙
吴晓
Original Assignee
南京英尼格玛工业自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京英尼格玛工业自动化技术有限公司 filed Critical 南京英尼格玛工业自动化技术有限公司
Publication of WO2021248649A1 publication Critical patent/WO2021248649A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding

Definitions

  • the invention relates to the field of arc additive materials, in particular to an automatic welding method for process holes of high-speed rail bolsters.
  • additive manufacturing technology is also known as “physical free manufacturing”, “3D printing technology”, etc., compared to the traditional subtractive manufacturing (cutting) technology, it is a “bottom-up”
  • the material accumulation manufacturing method is based on mathematical modeling, based on the discrete-stacking principle, a new manufacturing technology that stacks materials layer by layer to produce solid parts.
  • additive manufacturing technology has realized the rapid manufacturing of organic materials, inorganic non-metallic materials, and metal materials.
  • the additive manufacturing technology is classified by heat source, which can be divided into: laser additive manufacturing, arc additive manufacturing, electron beam additive manufacturing and other technologies.
  • the raw materials generally have two forms of welding wire and metal powder.
  • Designing a set of workstations for the process holes of high-speed rail corbels has significant advantages compared with traditional manual welding.
  • automated equipment for processing process holes usually uses a single welding gun robot to perform welding according to a preset trajectory, and transfers to subsequent cleaning and other processes after the welding is completed. This way of working has limited efficiency improvements and cannot adapt to the actual defects of the workpiece to automatically make up for it.
  • the purpose of the invention to provide an automatic welding method for process holes of high-speed rail bolsters to solve the above-mentioned problems in the prior art.
  • An automatic welding method for process holes of high-speed rail bolsters including: a transplanting workstation, and an arc additive workstation arranged on one side of the middle section of the transplanting workstation;
  • the transplanting workstation includes a A two-way feed transplanting track, the transplanting track is provided with a corbel fixing seat, and the head and tail of the corbel are positioned and clamped on the fixing seat at a predetermined interval;
  • Step 1 Manually hoist the bolster to the transplanting station, position and clamp the bolster on the fixed seat, and press the bolster by multiple lower pressure plates;
  • Step 2 After the corbel is clamped, the transplanting workstation is started, and the transplanting track transfers the positioned and fixed corbel to the work area;
  • Step 3 Set the current workpiece coordinates.
  • the industrial robot is first driven to the robot tool quick changer, and then accurately driven to the 3D camera when it is in place.
  • the robot arm of the industrial robot is directly above the 3D camera, it continues to descend slowly until The two quick-change locks are engaged.
  • the rotating cylinder drives the rotating part to rotate away from the movable part.
  • the industrial robot continues to start, so that the 3D camera is separated from its fixed part and continues to drive to the top of the corbel;
  • Step 4 The 3D camera starts to visually scan the part, analyzes the contour data and compensates for defects, then reconstructs the model in reverse, and then the computer sets the slicing parameters and generates the robot trajectory path, and sets the printing welding process parameters at the same time;
  • Step 5 The industrial robot drives the 3D camera back to the robot tool quick changer, repeats the content of step 3 to place the 3D camera back on the fixed part, switch to the welding torch head, and continue to return to the top of the corbel;
  • Step 6 Start the laser welding. After the welding is completed, repeat the content of step 3 to place the welding torch head back on the fixed part, switch to the laser cleaning head, and continue to return to the top of the corbel for interlayer laser cleaning;
  • Step 7 After the welding is completed, the workpiece is manually hoisted out of the workstation for heat treatment, and at the same time, steps 1 to 6 are repeated to complete other industrial processing.
  • the arc additive workstation integrates the three processes of reverse reconstruction, arc welding, and laser cleaning; each corbel is pressed together by a plurality of lower pressing plates, and the lower pressing plates are pressed together on the pillows. The head, tail, and middle sections of the beam avoiding the corbel craft hole.
  • the arc additive workstation includes a safety protection room enclosing a designated work area, the safety protection room is located on both sides of the transplanting track with rolling shutter doors, and the transplanting track passes through the rolling door
  • a position close to the rolling door is respectively provided with a robot tool quick change device, the robot tool quick change device is located on one side of the transplanting track, and the robot tool quick change device is arranged between the robot tool quick change devices.
  • the robot tool quick change device includes a support frame, a quick change plate fixed on the upper side of the support frame, and a fixing seat respectively provided on the quick change plate; the fixing seat Rotating cylinders are respectively fixed on both sides of the rotary cylinder, the output end of the rotary cylinder is fixed with an extended rotating part, and the end of the rotating part is fixed with a contact part that directly contacts the corresponding quick change tool.
  • the welding torch head, laser cleaning head, and 3D camera are respectively arranged on the fixing seats, and one side of the welding torch head, laser cleaning head and 3D camera is fixed with a section
  • the movable seat adapted to the fixed seat is not exchanged, the welding torch head, the laser cleaning head, and the 3D camera are clamped on the fixed seat by the movable seat, and the rotating part of the rotating cylinder is laterally Compression; the movable seat is fixed with a quick-change lock, and the end of the mechanical arm of the industrial robot is also fixed with a quick-change lock.
  • step 6 in laser welding, a welding machine is used as a heat source and a metal wire is used as a forming material, and a continuous spirally ascending slice path is planned for cladding printing.
  • a welding machine is used as a heat source and a metal wire is used as a forming material, and a continuous spirally ascending slice path is planned for cladding printing.
  • Step 6-1 Determine the process parameters required for forming specific metal structural parts, including welding procedure, wire feeding speed, printing speed, slice layer height, shielding gas type and flow rate.
  • the relationship between the parameters is as follows:
  • V represents the welding speed
  • F represents the cross-sectional area of the welding seam
  • v represents the wire feeding speed
  • f represents the cross-sectional area of the welding wire
  • Step 6-2 the weld cross section of the workpiece is equivalent to a rectangle, and the following relationship is satisfied at this time:
  • l represents the equivalent rectangular weld width
  • d represents the weld height, that is, the layer height
  • Step 6-3 According to the two formulas of step 6-2 and step 6-3, the relationship between wire feeding speed and layer height is obtained:
  • V represents the welding speed
  • l represents the equivalent rectangular weld width
  • d represents the weld height, that is, the layer height
  • f represents the cross-sectional area of the welding wire
  • Step 6-4 Read the current and voltage values through the wire feeding speed, and then calculate the heat input per 1mm of welding wire consumed at the wire feeding speed:
  • U is the arc voltage
  • I is the welding current
  • V is the welding speed
  • k is the relative thermal conductivity
  • step 4 the computer sets the slicing parameters and generates the continuous spirally ascending slicing path, and the process is as follows:
  • Step 4-1 Perform slicing processing on the model of the printed workpiece, and divide the model into several planes along the Z-axis direction;
  • Step 4-2. Find the adjacent layer, use the layer with the higher relative position to subtract the layer with the lower relative position to get the layer height; then randomly select a point on the first layer slice as the starting point (that is, the welding arc point), and then use The following formula finds the offset height in the Z direction between two adjacent points:
  • d is the vertical height between the starting point and the end point in the same layer
  • X is the number of slice points in each layer
  • z is the offset height between each point in the Z direction
  • Step 4-3 Find the starting point of the next layer. It is required that the distance between this point and the end point of the previous layer is the closest, and the end point of the previous layer is connected with the starting point of this layer;
  • Step 4-4 Repeat step 4-1 to step 4-3 in sequence until all the path points of the entire workpiece are connected to generate a continuous spiral path.
  • step 4-1 further includes:
  • Step 4-1a Divide the model into several triangles along the Z axis to obtain the maximum and minimum values of the three-dimensional model in the Z axis. Consider the reserved machining allowance, and calculate the total number of layers:
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • k is the adjustment coefficient
  • ⁇ z+k is the preset value
  • the adjustment factor is added on the basis of the layering height to ensure the machining allowance
  • Step 4-1b Store each triangle face of each layer in the n layer in a dynamic array, and query the information of each triangle face Value if Then store the current triangle patch in the j-th group of the dynamic array; if Store the current triangle face in the j-1th group of the dynamic array; if Then store the current triangle patch in the j+1th group of the dynamic array;
  • h j represents the height of the j-th group
  • h j+1 represents the height of the j+1-th group.
  • the height is taken from the middle value of the minimum and maximum values of the three-dimensional model in the Z-axis direction plus the layer height
  • the product of the number of groups gives:
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • j represents the number of groups
  • Step 4-4 further includes the optimization of the trajectory of the continuous spiral path:
  • Step 4-4a Set the linear velocity v c of the spiral path:
  • represents the angular velocity of the torch rotation
  • L represents the distance between the interpolation starting point and the origin
  • v 0 represents the radial velocity
  • Lv 0 t obtains the real-time radius of the workpiece
  • t represents the welding time
  • the angular velocity ⁇ of the torch rotation satisfies the following relationship:
  • D represents the distance between the weld beads that the welding gun moves radially when the heat source cooperates with the platform to complete a weld forming process, Means the radial velocity of the welding torch is averaged;
  • Step 4-4b Calculate the welding torch's deposition speed v r :
  • v c represents the linear velocity of the spiral ascending path
  • v 0 represents the radial velocity
  • Step 4-4c Calculate the weld bead spacing.
  • the welding gun moves radially by one weld bead spacing, and the heat source cooperates with the platform to complete a weld formation.
  • the expression for the weld bead spacing D is as follows:
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • t represents the welding time
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • the compensation height d is determined by the interpolation accuracy and satisfies the following relationship:
  • Step 4-4d calculate the modified welding speed v r repair :
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • It represents the average value of the radial velocity of the welding torch
  • D represents the distance of the weld bead that the welding torch moves in the radial direction when the heat source cooperates with the platform to complete the formation of a weld seam.
  • the present invention relates to an automatic welding method for process holes of high-speed rail bolsters.
  • the method integrates three processes of reverse reconstruction, arc welding, and laser cleaning, and the three processes correspond to 3D cameras, welding torch heads, laser cleaning heads, and robots.
  • the tool quick change device can automatically switch the welding torch, laser cleaning head, and 3D camera in conjunction with the additive manufacturing process, and protect the welding torch, laser cleaning head, and 3D camera from being taken out at the wrong time through the locking structure, ensuring process reliability.
  • the transplanting track controls the bolster to advance according to the preset rhythm of the warp.
  • After completing a complete reverse reconstruction, arc welding, and laser cleaning, the processed bolster will be processed.
  • the corbel is sent out of the arc additive workstation, and the next corbel to be processed is sent to the arc additive workstation to optimize execution efficiency.
  • Figure 1 is a perspective view of a three-dimensional view of a workstation in the present invention.
  • Figure 2 is another perspective view of the three-dimensional view of the workstation of the present invention.
  • Figure 3 is a top view of the workstation in the present invention.
  • Figure 4 is a three-dimensional view of the arc additive workstation in the present invention.
  • Fig. 5 is a perspective view of the industrial robot and the robot tool quick change device in the present invention.
  • Fig. 6 is a partial enlarged view of the robot tool quick change device in the present invention.
  • Fig. 7 is a schematic diagram of the structure of the processed workpiece corbel in the present invention.
  • Fig. 8 is a working flow chart of the present invention.
  • Fig. 9 is a point cloud diagram of the model reconstructed in the reverse direction in the present invention.
  • transplanting workstation 1 corbel 101, lower pressing plate 102, rolling door 2, safety protection room 3, welding 4, robot tool quick change device 5, support frame 501, quick change plate 502, fixed seat 503, rotating cylinder 504, rotating part 505, master control cabinet 6, robot control cabinet 7, industrial robot 8, quick-change lock 801, welding gun head 9, laser cleaning head 10, and 3D camera 11.
  • the invention relates to an automatic welding method for process holes of high-speed rail bolsters.
  • the method is based on a transferable dual-robot arc 3D printing workstation.
  • the workstation includes a transplanting workstation 1 and an arc additive workstation.
  • the arc additive workstation integrates reverse reconstruction and arc Welding 4. Three processes of laser cleaning.
  • the transplanting workstation 1 includes a transplanting track capable of bidirectional feed.
  • the transplanting track is provided with a corbel 101 fixing seat 503, and the head and tail of the corbel 101 are positioned and clamped on the fixing seat 503 at a predetermined interval. superior.
  • Each corbel 101 is pressed together by a plurality of lower pressing plates 102, which are pressed together at the head and tail of the corbel 101, and at multiple sections avoiding the process hole of the corbel 101.
  • the transplanting track controls the corbel 101 to advance according to the preset warp rhythm. After completing a complete reverse reconstruction, arc welding 4, and laser cleaning, the processed corbel 101 will be sent out of the arc additive workstation. The next corbel 101 to be processed is sent to the arc additive workstation.
  • the arc additive workstation includes a safety protection room 3 that encloses a designated working area.
  • the safety protection room 3 is located on both sides of the transplanting track and is provided with rolling shutter doors 2, and the transplanting track passes through the rolling door 2, and the safety protection
  • a robot tool quick change device 5 is respectively arranged in the interior of the room 3 near the rolling shutter door 2.
  • the robot tool quick change device 5 is located on one side of the transplanting track, and the robot tool quick change device 5 is provided between There are multiple industrial robots8.
  • the robot tool quick change device 5 includes a support frame 501, a quick change plate 502 fixed on the upper side of the support frame 501, and a fixing seat 503 respectively arranged on the quick change plate 502; two of the fixing seat 503 Rotating cylinders 504 are respectively fixed on the sides.
  • An extended rotating part 505 is fixed at the output end of the rotating cylinder 504, and a contact part that directly contacts the corresponding quick change tool is fixed at the end of the rotating part 505.
  • the robot tool quick change device 5 can make the welding gun, the laser cleaning head 10, and the 3D camera 11 cooperate with the additive manufacturing process to realize automatic switching.
  • There are three fixing bases 503, the welding torch head 9, the laser cleaning head 10, and the 3D camera 11 are respectively arranged on the fixing base 503.
  • One side of the welding torch head 9, the laser cleaning head 10, and the 3D camera 11 is fixed with a section and
  • the welding torch head 9, the laser cleaning head 10, and the 3D camera 11 are clamped on the fixed seat 503 by the movable seat, and are fixed on the fixed seat 503 by the movable seat.
  • the rotating part 505 of the rotating cylinder 504 is pressed laterally; a quick-change lock 801 is fixed on the movable seat, and a quick-change lock 801 is also fixed at the end of the mechanical arm of the industrial robot 8.
  • the above locking structure can protect the welding gun, the laser cleaning head 10, and the 3D camera 11 from being taken out at the wrong time, ensuring process reliability.
  • the rolling shutter door 2 When the work area is being processed, the rolling shutter door 2 is closed. After the processing is completed, the rolling shutter door 2 is opened, and the bolster 101 is sent out through the transplanting track.
  • a welding machine, a laser cleaning power supply, a master control cabinet 6 and a robot control cabinet 7 connected to the industrial robot 8 are arranged on one side of the arc additive workstation.
  • the specific working process of the present invention is as follows: first, the bolster 101 is manually hoisted to the transplanting workstation 1, the bolster 101 is positioned and clamped on the fixed seat 503, and the bolster 101 is pressed by a plurality of lower pressing plates 102.
  • the transplanting workstation 1 After the corbel 101 is clamped, the transplanting workstation 1 is started, and the transplanting track transfers the positioned and fixed corbel 101 to the work area;
  • the industrial robot 8 is first driven to the robot tool quick changer 5, and then accurately driven to the 3D camera 11 when it is in place.
  • the robot arm of the industrial robot 8 is directly above the 3D camera 11, continue Slowly descend until the two quick-change lock heads 801 are engaged.
  • the rotating cylinder 504 drives the rotating part 505 to rotate away from the movable part.
  • the industrial robot 8 continues to start, so that the 3D camera 11 is separated from its fixed part and continues to drive to the top of the corbel 101 .
  • the 3D camera 11 starts to visually scan the part, analyzes the contour data and compensates for defects, and then reconstructs the model in reverse, and then the computer sets the slice parameters and generates the robot trajectory path. At the same time, the printing and welding 4 process parameters are set.
  • the industrial robot 8 drives the 3D camera 11 back to the robot tool quick changer 5, places the 3D camera 11 back on the fixed part, and switches to the welding torch head 9, and continues to return to the top of the bolster 101.
  • the laser welding 4 is started. After the welding 4 is completed, the welding torch head 9 is placed back on the fixed part, and the laser cleaning head 10 is switched to continue to return to the top of the bolster 101 for interlayer laser cleaning.
  • the workpiece is manually hoisted out of the workstation for heat treatment, and the other industrial processing is completed at the same time.
  • laser welding uses a welding machine as a heat source and a metal wire as a forming material to plan a continuous spirally ascending slice path for cladding printing.
  • the process is as follows:
  • the welding speed is proportional to the wire feeding speed, which can be expressed by the relation (1)
  • the weld section of the workpiece is equivalent to a rectangle
  • l equivalent rectangular weld width
  • the current and voltage values can be read on the control panel, and then the heat input of each 1mm welding wire consumed at the wire feeding speed can be calculated:
  • U arc voltage
  • the control of heat input is extremely important. If the heat is too low, the weld will not be formed, the workpiece will not be fused, and the heat will cause the workpiece to collapse. Therefore, combining various wire properties with the printing process
  • the relationship of temperature can be inferred suitable for the heat input of the wire, and then the process parameters, such as wire feeding speed, welding speed and layer height can be determined.
  • the STL model of the workpiece to be printed is sliced.
  • STL model slicing algorithms There are many existing STL model slicing algorithms. We use the STL slicing algorithm based on the geometric characteristics of the triangle to process the STL model, and divide the model into several planes along the Z axis;
  • d is the vertical height between the starting point and the end point in the same layer
  • X is the number of points per slice
  • z is the offset height in the Z direction between each point.
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • k is the adjustment coefficient
  • ⁇ z+k is the preset value
  • the adjustment factor is added on the basis of the layering height to ensure the machining allowance
  • h j represents the height of the j-th group
  • h j+1 represents the height of the j+1-th group.
  • the height is taken from the middle value of the minimum and maximum values of the three-dimensional model in the Z-axis direction plus the layer height
  • the product of the number of groups gives:
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • j represents the number of groups.
  • This method is used in turn to connect all path points of the entire workpiece to generate a continuous spiral path to realize continuous arc additive manufacturing of the workpiece.
  • the welding gun is driven by the robot to move according to the generated continuous spiral path.
  • the process parameters are determined according to the method of step 1), and a single weld seam is printed on the substrate.
  • the height of the welding gun from the substrate during the printing process according to the continuous spiral path is gradually Elevated.
  • the combination of the continuous spiral path and the process parameters calculated according to the heat input in 1) can ensure that the dry elongation of the welding wire remains unchanged during the printing process, and the arc will not be extinguished during the entire printing process, and finally a metal structure with good structural performance is formed.
  • the central control unit also optimizes the trajectory of the continuous spiral path:
  • represents the angular velocity of the torch rotation
  • L represents the distance between the interpolation starting point and the origin
  • v 0 represents the radial velocity
  • Lv 0 t obtains the real-time radius of the workpiece
  • t represents the welding time
  • the angular velocity ⁇ of the torch rotation satisfies the following relationship:
  • D represents the distance between the weld beads that the welding gun moves radially when the heat source cooperates with the platform to complete a weld forming process, Means the radial velocity of the welding torch is averaged;
  • v c represents the linear velocity of the spiral ascending path
  • v 0 represents the radial velocity
  • weld bead spacing D is as follows:
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • t represents the welding time
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • the compensation height d is determined by the interpolation accuracy and satisfies the following relationship:
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • It represents the average value of the radial velocity of the welding torch
  • D represents the distance of the weld bead that the welding torch moves in the radial direction when the heat source cooperates with the platform to complete the formation of a weld seam.
  • the minimum diameter of the original welding torch nozzle is 22mm. Due to the narrow space at the bottom of the workpiece, the welding torch nozzle is specially made from 22mm to the current 13mm; this measure avoids the problem of inaccessibility of the root torch, because the workpiece is multi-layer and multi-pass welding , When welding to the upper layers, there will be collisions and arc deviations. Therefore, the welding torch needs to monitor the welding torch collision radius where its trajectory goes.
  • the welding torch trajectory avoidance is avoided by adding eight avoidance surfaces, divided by the outer contour, and the virtual surface is controlled by software.
  • the principle is to detect the collision radius of the welding torch, and the reference is the center line of the gun head.
  • the virtual surface is created, and the virtual surface is created in different positions.
  • the avoidance angle can be set for avoidance, and the automatic avoidance angle is based on the distance to the outer edge of the workpiece.
  • the welding torch change angle is 5-15°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种高铁枕梁(101)工艺孔自动焊接方法,该方法集成逆向重构、电弧焊接、激光清洗三个工序,且三个工序对应于3D相机(11)、焊枪头(9)、激光清洗头(10),机器人工具快换装置(5)能够使得焊枪头(9)、激光清洗头(10)、3D相机(11)配合增材制造过程实现自动切换。将枕梁(101)定位并固定在固定座(503)上,由移栽轨道控制枕梁(101)前进,当完成逆向重构、电弧焊接、激光清洗三个工序后再将已加工枕梁(101)送出电弧增材工作站,并将下一个待加工枕梁(101)送入电弧增材工作站。

Description

一种高铁枕梁工艺孔自动焊接方法 技术领域
本发明涉及电弧增材领域,具体涉及一种高铁枕梁工艺孔自动焊接方法。
背景技术
增材制造技术(Additive Manufacturing,AM)也被称为“实体自由制造”、“3D打印技术”等,相对于传统的减材制造(切削加工)技术,它是一种“自下而上”材料累加的制造方法,是以数学建模为基础,基于离散-堆积原理,将材料逐层堆积制造出实体零件的新兴制造技术。经过近一个世纪的发展,增材制造技术实现了有机材料、无机非金属材料、金属材料产品的快速制造。针对金属材料,将增材制造技术按热源分类,可分为:激光增材制造、电弧增材制造、电子束增材制造等技术,原材料一般有焊丝和金属粉末两种形式。
针对高铁枕梁工艺孔设计一套工作站,相比于传统的人工焊接具有显著优势。
现有技术中用于加工工艺孔的自动化设备通常是采用单一的焊枪机器人根据预设好的轨迹来进行焊接,在完成焊接后转入后续的清洗等工序。这种工作方式对效率的提升有限、且无法自适应工件的实际缺陷来进行自动弥补。
发明内容
发明目的:提供一种高铁枕梁工艺孔自动焊接方法,以解决现有技术存在的上述问题。
技术方案:一种高铁枕梁工艺孔自动焊接方法,基于以下设备,包括:移栽工作站,以及设置在所述移栽工作站中间段一侧的电弧增材工作站;所述移栽工作站包括一条可双向进给的移栽轨道,所述移栽轨道上设有枕梁固定座,枕梁的首尾以预定间隔定位夹紧在所述固定座上;
包括如下工序:
步骤1、人工吊装枕梁到移栽工作站,将枕梁定位夹紧在固定座上,并通过多个下压板压合住枕梁;
步骤2、枕梁装夹完毕后,移栽工作站启动,移栽轨道将定位固定好的枕梁传输至工作区域;
步骤3、设定好当前的工件坐标,工业机器人首先驱动至机器人工具快换装置处,到位后再精确驱动至3D相机处,当工业机器人的机械臂位于3D相机正上方时,继续 缓慢下降直至两个快换锁头接合,接合完毕后旋转气缸带动转动部转动脱离活动部,工业机器人继续启动,使得3D相机脱离其固定部,并继续驱动至枕梁上方;
步骤4、3D相机启动视觉扫描零件,分析轮廓数据并对缺陷进行补偿修正,接着逆向重构模型,接着由计算机进行切片参数设置并生成机器人轨迹路径,同时设定好打印焊接工艺参数;
步骤5、工业机器人驱动3D相机返回机器人工具快换装置处,重复步骤3的内容将3D相机放置回固定部上,并切换为焊枪头,继续返回枕梁上方;
步骤6、启动激光焊接,焊接完成后重复步骤3的内容将焊枪头放置回固定部上,并切换为激光清洗头,继续返回枕梁上方进行层间激光清洗;
步骤7、焊接完成后的工件人工吊装工件出工作站进行热处理,同时重复步骤1至步骤6完成其余工业的加工。
在进一步的实施例中,所述电弧增材工作站集成逆向重构、电弧焊接、激光清洗三个工序;每一块枕梁都由多个下压板压合,所述下压板压合在所述枕梁的首、尾、以及避开枕梁工艺孔的中部多段。
在进一步的实施例中,所述电弧增材工作站包括围定指定工作区域的安全防护房,所述安全防护房位于移栽轨道的两侧开设有卷帘门,所述移栽轨道穿过所述卷帘门,所述安全防护房内位靠近所述卷帘门的位置分别设有机器人工具快换装置,所述机器人工具快换装置位于所述移栽轨道的一侧,所述机器人工具快换装置之间设有多个工业机器人。
在进一步的实施例中,所述机器人工具快换装置包括支撑架,固定在所述支撑架上部一侧的快换板,以及分别设置在所述快换板上的固定座;所述固定座的两侧分别固定有旋转气缸,所述旋转气缸的输出端固定有延伸出来的转动部,所述转动部的末端固定有直接与对应的快换工具接触的接触部。
在进一步的实施例中,所述固定座为三个,焊枪头、激光清洗头、3D相机分别设置在固定座上,所述焊枪头、激光清洗头、3D相机的一侧固定有一段与所述固定座适配的活动座,在未进行换取时,所述焊枪头、激光清洗头、3D相机由所述活动座卡设在所述固定座上、且由所述旋转气缸的转动部横向压紧;所述活动座上固定有快换锁头,所述工业机器人的机械臂末端同样固定有快换锁头。
在进一步的实施例中,步骤6中激光焊接以焊机作为热源、金属丝材作为成形材料, 规划出连续螺旋上升切片路径进行熔覆打印,过程如下:
步骤6-1、确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
V×F=v×f
式中,V表示焊接速度,F表示焊缝截面积,v表示送丝速度,f表示焊丝截面积;
步骤6-2、将工件焊缝截面等效为长方形,此时满足如下关系式:
F=ld
式中,l表示等效长方形焊缝宽度,d表示焊缝高度即层高;
步骤6-3、根据步骤6-2和步骤6-3的两式得到式送丝速度与层高之间的关系式:
Figure PCTCN2020104925-appb-000001
式中,V表示焊接速度,l表示等效长方形焊缝宽度,d表示焊缝高度即层高,f表示焊丝截面积;
步骤6-4、通过送丝速度读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
Figure PCTCN2020104925-appb-000002
式中,U表示电弧电压、I表示焊接电流,V表示焊接速度,k表示相对热传导率。
在进一步的实施例中,步骤4中由计算机进行切片参数设置并生成连续螺旋上升切片路径,过程如下:
步骤4-1、对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;
步骤4-2、寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
Figure PCTCN2020104925-appb-000003
其中,d是同一层中起始点与末端点之间的竖直高度;X是每层切片的点数;z是各点之间Z方向的偏移高度;
步骤4-3、寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;
步骤4-4、依次重复步骤4-1至步骤4-3,直至连接整个工件的所有路径点,生成 连续的螺旋上升路径。
在进一步的实施例中,步骤4-1进一步包括:
步骤4-1a、将模型沿Z轴方向分成若干三角面片,得到三维模型在Z轴方向上的最大值和最小值,考虑预留加工余量,计算出总层数:
Figure PCTCN2020104925-appb-000004
式中,Z max表示三维模型在Z轴方向上的最大值,Z min表示三维模型在Z轴方向上的最小值,Δz表示分层高度,k为调节系数,Δz+k为在预设的分层高度的基础之上加上调节系数以保证加工余量;
步骤4-1b、将n层中每一层的每一块三角面片存储在动态数组中,查询每一块三角面片的
Figure PCTCN2020104925-appb-000005
值,若
Figure PCTCN2020104925-appb-000006
则将当前的三角面片存储在动态数组的第j个分组中;若
Figure PCTCN2020104925-appb-000007
则将当前的三角面片存储在动态数组的第j-1个分组中;若
Figure PCTCN2020104925-appb-000008
则将当前的三角面片存储在动态数组的第j+1个分组中;
其中,h j表示第j个分组的高度,h j+1表示第j+1个分组高度,该高度由三维模型在Z轴方向上的最小值和最大值取中间值之后加上分层高度与分组数的乘积得出:
h j=(Z min+Z max)/2+Δz×j
式中,Z min表示三维模型在Z轴方向上的最小值,Z max表示三维模型在Z轴方向上的最大值,Δz表示分层高度,j表示分组数;
步骤4-4进一步包括对连续螺旋上升路径的轨迹优化:
步骤4-4a、设定螺旋上升路径的线速度v c
v c=ω(L-v 0t)
式中,ω表示焊枪旋转的角速度,L表示插补起点距原点的距离,v 0表示径向速度,L-v 0t得出的是工件的实时半径,t表示焊接时间;
其中,焊枪旋转的角速度ω满足如下关系式:
Figure PCTCN2020104925-appb-000009
式中,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距,
Figure PCTCN2020104925-appb-000010
表示对焊枪的径向速度取均值;
步骤4-4b、计算焊枪的熔敷速度v r
Figure PCTCN2020104925-appb-000011
式中,v c表示螺旋上升路径的线速度,v 0表示径向速度;
步骤4-4c、计算焊道间距,焊枪径向移动一个焊道间距,热源配合平台完成一条焊缝成形,其中焊道间距D的表达式如下:
Figure PCTCN2020104925-appb-000012
式中,n表示焊枪数量,v 0表示径向速度,t表示焊接时间,ω表示焊枪旋转的角速度,d表示补偿高度;
其中补偿高度d由插补精度决定,满足如下关系式:
Figure PCTCN2020104925-appb-000013
式中,
Figure PCTCN2020104925-appb-000014
表示对焊枪的径向速度取均值,t′表示在插补区间内的运动时间;
步骤4-4d、计算出修正后的熔敷速度v r修
Figure PCTCN2020104925-appb-000015
式中,n表示焊枪数量,v 0表示径向速度,ω表示焊枪旋转的角速度,d表示补偿高度,
Figure PCTCN2020104925-appb-000016
表示对焊枪的径向速度取均值,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距。
有益效果:本发明涉及一种高铁枕梁工艺孔自动焊接方法,该方法集成逆向重构、电弧焊接、激光清洗三个工序,且三个工序对应于3D相机、焊枪头、激光清洗头,机器人工具快换装置能够使得焊枪、激光清洗头、3D相机配合增材制造过程实现自动切换,并通过锁紧结构保护焊枪、激光清洗头、3D相机不在错误的时间取出,确保工序可靠性。通过将枕梁定位并固定在固定座上,由移栽轨道根据预设的经给节奏控制枕梁前进,当完成一次完整的逆向重构、电弧焊接、激光清洗三个工序后再将已加工枕梁送出电弧增材工作站,并将下一个待加工枕梁送入电弧增材工作站,优化执行效率。
附图说明
图1为本发明中工作站的立体图其中一个视角。
图2为本发明中工作站的立体图另一视角。
图3为本发明中工作站的俯视图。
图4为本发明中电弧增材工作站的立体图。
图5为本发明中工业机器人及机器人工具快换装置的立体图。
图6为本发明中机器人工具快换装置的局部放大图。
图7为本发明中加工工件枕梁的结构示意图。
图8为本发明的工作流程图。
图9为本发明中逆向重构出的模型点云图。
图中各附图标记为:移栽工作站1、枕梁101、下压板102、卷帘门2、安全防护房3、焊接4、机器人工具快换装置5、支撑架501、快换板502、固定座503、旋转气缸504、转动部505、总控柜6、机器人控制柜7、工业机器人8、快换锁头801、焊枪头9、激光清洗头10、3D相机11。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
本发明涉及一种高铁枕梁工艺孔自动焊接方法,此方法基于移载式双机器人电弧3D打印工作站,该工作站包括移栽工作站1和电弧增材工作站,电弧增材工作站集成逆向重构、电弧焊接4、激光清洗三个工序。
具体的,移栽工作站1包括一条可双向进给的移栽轨道,所述移栽轨道上设有枕梁101固定座503,枕梁101的首尾以预定间隔定位夹紧在所述固定座503上。每一块枕梁101都由多个下压板102压合,所述下压板102压合在所述枕梁101的首、尾、以及避开枕梁101工艺孔的中部多段。移栽轨道根据预设的经给节奏控制枕梁101前进,当完成一次完整的逆向重构、电弧焊接4、激光清洗三个工序后再将已加工枕梁101送出电弧增材工作站,并将下一个待加工枕梁101送入电弧增材工作站。
电弧增材工作站包括围定指定工作区域的安全防护房3,所述安全防护房3位于移栽轨道的两侧开设有卷帘门2,所述移栽轨道穿过所述卷帘门2,所述安全防护房3内位靠近所述卷帘门2的位置分别设有机器人工具快换装置5,所述机器人工具快换装置5位于所述移栽轨道的一侧,所述机器人工具快换装置5之间设有多个工业机器人8。
机器人工具快换装置5包括支撑架501,固定在所述支撑架501上部一侧的快换板502,以及分别设置在所述快换板502上的固定座503;所述固定座503的两侧分别固定有旋转气缸504,所述旋转气缸504的输出端固定有延伸出来的转动部505,所述转动部505的末端固定有直接与对应的快换工具接触的接触部。机器人工具快换装置5能够使得焊枪、激光清洗头10、3D相机11配合增材制造过程,实现自动切换。所述固定座503为三个,焊枪头9、激光清洗头10、3D相机11分别设置在固定座503上,所述焊枪头9、激光清洗头10、3D相机11的一侧固定有一段与所述固定座503适配的活动座,在未进行换取时,所述焊枪头9、激光清洗头10、3D相机11由所述活动座卡设在所述固定座503上、且由所述旋转气缸504的转动部505横向压紧;所述活动座上固定有快换锁头801,所述工业机器人8的机械臂末端同样固定有快换锁头801。通过上述锁紧结构能够保护焊枪、激光清洗头10、3D相机11不在错误的时间取出,确保工序可靠性。
当工作区域内正在加工时,卷帘门2是关闭状态,加工完成后开启卷帘门2,通过移栽轨道将枕梁101送出。所述电弧增材工作站的一侧安置有与工业机器人8连接的焊机、激光清洗电源、总控柜6、机器人控制柜7。
本发明具体的工作过程如下:首先人工吊装枕梁101到移栽工作站1,将枕梁101定位夹紧在固定座503上,并通过多个下压板102压合住枕梁101。
枕梁101装夹完毕后,移栽工作站1启动,移栽轨道将定位固定好的枕梁101传输至工作区域;
接着设定好当前的工件坐标,工业机器人8首先驱动至机器人工具快换装置5处,到位后再精确驱动至3D相机11处,当工业机器人8的机械臂位于3D相机11正上方时,继续缓慢下降直至两个快换锁头801接合,接合完毕后旋转气缸504带动转动部505转动脱离活动部,工业机器人8继续启动,使得3D相机11脱离其固定部,并继续驱动至枕梁101上方。
随后3D相机11启动视觉扫描零件,分析轮廓数据并对缺陷进行补偿修正,接着逆向重构模型,接着由计算机进行切片参数设置并生成机器人轨迹路径,同时设定好打印焊接4工艺参数。
接着,工业机器人8驱动3D相机11返回机器人工具快换装置5处,将3D相机11放置回固定部上,并切换为焊枪头9,继续返回枕梁101上方。
当返回枕梁101上方后启动激光焊接4,焊接4完成后将焊枪头9放置回固定部上, 并切换为激光清洗头10,继续返回枕梁101上方进行层间激光清洗。
焊接4完成后的工件人工吊装工件出工作站进行热处理,同时完成其余工业的加工。
其中,激光焊接以焊机作为热源、金属丝材作为成形材料,规划出连续螺旋上升切片路径进行熔覆打印,过程如下:
1)选择成形特定金属结构件所需要的焊丝和基板,确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
焊接速度与送丝速度成正比,可以用关系式(1)表示
V×F=v×f………………………………(1)
V:焊接速度;
F:焊缝截面积
v:送丝速度
f:焊丝截面积
将工件焊缝截面等效为长方形,那么
F=ld....................................(2)
其中,l:等效长方形焊缝宽度;
d:焊缝高度(即层高)
由式(1)与(2)得到式送丝速度与层高之间的关系,如式(3)所示:
Figure PCTCN2020104925-appb-000017
通过送丝速度,可在控制面板上读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
Figure PCTCN2020104925-appb-000018
其中,U:电弧电压;
I:焊接电流;
V:焊接速度;
K:相对热传导率;
电弧增材制造过程,热输入量的控制极其重要,热量太低会导致焊缝不成形,工件存在未熔合,热量过高会导致工件塌陷,因此,结合各种丝材性能与打印过程层间温度的关系,可以推断适合该丝材的热量输入,进而确定工艺参数,如送丝速度、焊接速度 与层高等。
2)将打磨平整的基板用无水乙醇或丙酮擦拭干净后固定在工作台上,保证其水平;
3)连续螺旋上升切片路径的生成,具体如下:
首先对待打印工件的STL模型进行切片处理,现有的STL模型切片算法有很多,我们采用基于三角面片几何特征的STL切片算法来处理STL模型,将模型沿Z轴方向分成若干平面;
其次,寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;
然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
Figure PCTCN2020104925-appb-000019
其中,d是同一层中起始点与末端点之间的竖直高度;
X是每层切片的点数;
z是各点之间Z方向的偏移高度。
更为具体的,切片过程如下:
将模型沿Z轴方向分成若干三角面片,得到三维模型在Z轴方向上的最大值和最小值,考虑预留加工余量,计算出总层数:
Figure PCTCN2020104925-appb-000020
式中,Z max表示三维模型在Z轴方向上的最大值,Z min表示三维模型在Z轴方向上的最小值,Δz表示分层高度,k为调节系数,Δz+k为在预设的分层高度的基础之上加上调节系数以保证加工余量;
接着将n层中每一层的每一块三角面片存储在动态数组中,查询每一块三角面片的
Figure PCTCN2020104925-appb-000021
值,若
Figure PCTCN2020104925-appb-000022
则将当前的三角面片存储在动态数组的第j个分组中;若
Figure PCTCN2020104925-appb-000023
则将当前的三角面片存储在动态数组的第j-1个分组中;若
Figure PCTCN2020104925-appb-000024
则将当前的三角面片存储在动态数组的第j+1个分组中;
其中,h j表示第j个分组的高度,h j+1表示第j+1个分组高度,该高度由三维模型在Z轴方向上的最小值和最大值取中间值之后加上分层高度与分组数的乘积得出:
h j=(Z min+Z max)/2+Δz×j
式中,Z min表示三维模型在Z轴方向上的最小值,Z max表示三维模型在Z轴方向上的最大值,Δz表示分层高度,j表示分组数。
然后寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来,即实现了两层之间轨迹的连续,打印过程不会熄弧。
依次利用该方法连接整个工件的所有路径点,生成连续的螺旋上升路径,实现工件的连续电弧增材制造。
4)焊枪在机器人驱动下按生成的连续螺旋路径运动,同时根据步骤1)的方法确定工艺参数,在基板上开始打印单道焊缝,焊枪根据连续螺旋路径在打印过程中距离基板的高度逐渐升高。连续的螺旋路径与1)中根据热输入量计算的工艺参数相结合,可以保证打印过程焊丝干伸长不变,整个打印过程不会熄弧,最终成形结构性能良好的金属结构件。
作为一个优选方案,中控机还对连续螺旋上升路径的轨迹进行优化:
首先设定螺旋上升路径的线速度v c
v c=ω(L-v 0t)
式中,ω表示焊枪旋转的角速度,L表示插补起点距原点的距离,v 0表示径向速度,L-v 0t得出的是工件的实时半径,t表示焊接时间;
其中,焊枪旋转的角速度ω满足如下关系式:
Figure PCTCN2020104925-appb-000025
式中,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距,
Figure PCTCN2020104925-appb-000026
表示对焊枪的径向速度取均值;
接着计算焊枪的熔敷速度v r
Figure PCTCN2020104925-appb-000027
式中,v c表示螺旋上升路径的线速度,v 0表示径向速度;
接着计算焊道间距,焊枪径向移动一个焊道间距,热源配合平台完成一条焊缝成形,其中焊道间距D的表达式如下:
Figure PCTCN2020104925-appb-000028
式中,n表示焊枪数量,v 0表示径向速度,t表示焊接时间,ω表示焊枪旋转的角速 度,d表示补偿高度;
其中补偿高度d由插补精度决定,满足如下关系式:
Figure PCTCN2020104925-appb-000029
式中,
Figure PCTCN2020104925-appb-000030
表示对焊枪的径向速度取均值,t′表示在插补区间内的运动时间;
随后计算出修正后的熔敷速度v r修
Figure PCTCN2020104925-appb-000031
式中,n表示焊枪数量,v 0表示径向速度,ω表示焊枪旋转的角速度,d表示补偿高度,
Figure PCTCN2020104925-appb-000032
表示对焊枪的径向速度取均值,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距。
在焊接工作的时候,需要提前计算好避让面,防止焊枪的焊枪喷嘴和焊枪根部碰撞到工件侧壁。原焊枪喷嘴最小直径为22mm,由于工件底部空间狭小,将焊枪喷嘴进行特制,由原来直径22mm改为现在的13mm;此措施避免了根部焊枪不可达的问题,由于此工件是多层多道焊接,焊接到上面几层的时候会碰撞和出现偏弧现象,所以需要焊枪随时监测自身轨迹所到之处的焊枪碰撞半径。
焊枪轨迹避让是通过增加八个避让面进行避让的,以外围轮廓进行划分,虚拟面通过软件进行控制,其原理为检测焊枪碰撞半径,参照为枪头中心线,虚拟面创建完成,在不同位置可设置避让角度进行避让,根据靠工件外部边缘的远近来自动规避角度,焊枪变换角度为5-15°。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (8)

  1. 一种高铁枕梁工艺孔自动焊接方法,其特征是:
    基于以下设备,包括:移栽工作站,以及设置在所述移栽工作站中间段一侧的电弧增材工作站;所述移栽工作站包括一条可双向进给的移栽轨道,所述移栽轨道上设有枕梁固定座,枕梁的首尾以预定间隔定位夹紧在所述固定座上;
    包括如下工序:
    步骤1、人工吊装枕梁到移栽工作站,将枕梁定位夹紧在固定座上,并通过多个下压板压合住枕梁;
    步骤2、枕梁装夹完毕后,移栽工作站启动,移栽轨道将定位固定好的枕梁传输至工作区域;
    步骤3、设定好当前的工件坐标,工业机器人首先驱动至机器人工具快换装置处,到位后再精确驱动至3D相机处,当工业机器人的机械臂位于3D相机正上方时,继续缓慢下降直至两个快换锁头接合,接合完毕后旋转气缸带动转动部转动脱离活动部,工业机器人继续启动,使得3D相机脱离其固定部,并继续驱动至枕梁上方;
    步骤4、3D相机启动视觉扫描零件,分析轮廓数据并对缺陷进行补偿修正,接着逆向重构模型,接着由计算机进行切片参数设置并生成机器人轨迹路径,同时设定好打印焊接工艺参数;
    步骤5、工业机器人驱动3D相机返回机器人工具快换装置处,重复步骤3的内容将3D相机放置回固定部上,并切换为焊枪头,继续返回枕梁上方;
    步骤6、启动激光焊接,焊接完成后重复步骤3的内容将焊枪头放置回固定部上,并切换为激光清洗头,继续返回枕梁上方进行层间激光清洗;
    步骤7、焊接完成后的工件人工吊装工件出工作站进行热处理,同时重复步骤1至步骤6完成其余工业的加工。
  2. 根据权利要求1所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:所述电弧增材工作站集成逆向重构、电弧焊接、激光清洗三个工序;每一块枕梁都由多个下压板压合,所述下压板压合在所述枕梁的首、尾、以及避开枕梁工艺孔的中部多段。
  3. 根据权利要求1所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:所述电弧增材工作站包括围定指定工作区域的安全防护房,所述安全防护房位于移栽轨道的两侧开设有卷帘门,所述移栽轨道穿过所述卷帘门,所述安全防护房内位靠近所述卷帘门的位置分别设有机器人工具快换装置,所述机器人工具快换装置位于所述移栽轨道的一 侧,所述机器人工具快换装置之间设有多个工业机器人。
  4. 根据权利要求3所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:所述机器人工具快换装置包括支撑架,固定在所述支撑架上部一侧的快换板,以及分别设置在所述快换板上的固定座;所述固定座的两侧分别固定有旋转气缸,所述旋转气缸的输出端固定有延伸出来的转动部,所述转动部的末端固定有直接与对应的快换工具接触的接触部。
  5. 根据权利要求4所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:所述固定座为三个,焊枪头、激光清洗头、3D相机分别设置在固定座上,所述焊枪头、激光清洗头、3D相机的一侧固定有一段与所述固定座适配的活动座,在未进行换取时,所述焊枪头、激光清洗头、3D相机由所述活动座卡设在所述固定座上、且由所述旋转气缸的转动部横向压紧;所述活动座上固定有快换锁头,所述工业机器人的机械臂末端同样固定有快换锁头。
  6. 根据权利要求1所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:步骤6中激光焊接以焊机作为热源、金属丝材作为成形材料,规划出连续螺旋上升切片路径进行熔覆打印,过程如下:
    步骤6-1、确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
    V×F=v×f
    式中,V表示焊接速度,F表示焊缝截面积,v表示送丝速度,f表示焊丝截面积;
    步骤6-2、将工件焊缝截面等效为长方形,此时满足如下关系式:
    F=ld
    式中,l表示等效长方形焊缝宽度,d表示焊缝高度即层高;
    步骤6-3、根据步骤6-2和步骤6-3的两式得到式送丝速度与层高之间的关系式:
    Figure PCTCN2020104925-appb-100001
    式中,V表示焊接速度,l表示等效长方形焊缝宽度,d表示焊缝高度即层高,f表示焊丝截面积;
    步骤6-4、通过送丝速度读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
    Figure PCTCN2020104925-appb-100002
    式中,U表示电弧电压、I表示焊接电流,V表示焊接速度,k表示相对热传导率。
  7. 根据权利要求1所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:步骤4中由计算机进行切片参数设置并生成连续螺旋上升切片路径,过程如下:
    步骤4-1、对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;
    步骤4-2、寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
    Figure PCTCN2020104925-appb-100003
    其中,d是同一层中起始点与末端点之间的竖直高度;X是每层切片的点数;z是各点之间Z方向的偏移高度;
    步骤4-3、寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;
    步骤4-4、依次重复步骤4-1至步骤4-3,直至连接整个工件的所有路径点,生成连续的螺旋上升路径。
  8. 根据权利要求7所述的一种高铁枕梁工艺孔自动焊接方法,其特征在于:步骤4-1进一步包括:
    步骤4-1a、将模型沿Z轴方向分成若干三角面片,得到三维模型在Z轴方向上的最大值和最小值,考虑预留加工余量,计算出总层数:
    Figure PCTCN2020104925-appb-100004
    式中,Z max表示三维模型在Z轴方向上的最大值,Z min表示三维模型在Z轴方向上的最小值,Δz表示分层高度,k为调节系数,Δz+k为在预设的分层高度的基础之上加上调节系数以保证加工余量;
    步骤4-1b、将n层中每一层的每一块三角面片存储在动态数组中,查询每一块三角面片的
    Figure PCTCN2020104925-appb-100005
    值,若
    Figure PCTCN2020104925-appb-100006
    则将当前的三角面片存储在动态数组的第j个分组中;若
    Figure PCTCN2020104925-appb-100007
    则将当前的三角面片存储在动态数组的第j-1个分组中;若
    Figure PCTCN2020104925-appb-100008
    则将当前的三角面片存储在动态数组的第j+1个分组中;
    其中,h j表示第j个分组的高度,h j+1表示第j+1个分组高度,该高度由三维模型在Z轴方向上的最小值和最大值取中间值之后加上分层高度与分组数的乘积得出:
    h j=(Z min+Z max)/2+Δz×j
    式中,Z min表示三维模型在Z轴方向上的最小值,Z max表示三维模型在Z轴方向上的最大值,Δz表示分层高度,j表示分组数;
    步骤4-4进一步包括对连续螺旋上升路径的轨迹优化:
    步骤4-4a、设定螺旋上升路径的线速度v c
    v c=ω(L-v 0t)
    式中,ω表示焊枪旋转的角速度,L表示插补起点距原点的距离,v 0表示径向速度,L-v 0t得出的是工件的实时半径,t表示焊接时间;
    其中,焊枪旋转的角速度ω满足如下关系式:
    Figure PCTCN2020104925-appb-100009
    式中,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距,
    Figure PCTCN2020104925-appb-100010
    表示对焊枪的径向速度取均值;
    步骤4-4b、计算焊枪的熔敷速度v r
    Figure PCTCN2020104925-appb-100011
    式中,v c表示螺旋上升路径的线速度,v 0表示径向速度;
    步骤4-4c、计算焊道间距,焊枪径向移动一个焊道间距,热源配合平台完成一条焊缝成形,其中焊道间距D的表达式如下:
    Figure PCTCN2020104925-appb-100012
    式中,n表示焊枪数量,v 0表示径向速度,t表示焊接时间,ω表示焊枪旋转的角速度,d表示补偿高度;
    其中补偿高度d由插补精度决定,满足如下关系式:
    Figure PCTCN2020104925-appb-100013
    式中,
    Figure PCTCN2020104925-appb-100014
    表示对焊枪的径向速度取均值,t′表示在插补区间内的运动时间;
    步骤4-4d、计算出修正后的熔敷速度v r修
    Figure PCTCN2020104925-appb-100015
    式中,n表示焊枪数量,v 0表示径向速度,ω表示焊枪旋转的角速度,d表示补偿高度,
    Figure PCTCN2020104925-appb-100016
    表示对焊枪的径向速度取均值,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距。
PCT/CN2020/104925 2020-06-10 2020-07-27 一种高铁枕梁工艺孔自动焊接方法 WO2021248649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010523652.9 2020-06-10
CN202010523652.9A CN111702416A (zh) 2020-06-10 2020-06-10 一种高铁枕梁工艺孔自动焊接方法

Publications (1)

Publication Number Publication Date
WO2021248649A1 true WO2021248649A1 (zh) 2021-12-16

Family

ID=72539449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104925 WO2021248649A1 (zh) 2020-06-10 2020-07-27 一种高铁枕梁工艺孔自动焊接方法

Country Status (2)

Country Link
CN (2) CN111702416A (zh)
WO (1) WO2021248649A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888478A (zh) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 一种中组立焊接工艺参数的修正方法及装置
CN115488662A (zh) * 2022-10-29 2022-12-20 中铁工程装备集团盾构制造有限公司 盾构机用螺旋轴叶片自动加工定位工装、设备及方法
CN116532864A (zh) * 2023-07-06 2023-08-04 绵阳师范学院 一种基于视觉成像的环缝焊接型机器人
CN117182411A (zh) * 2023-10-26 2023-12-08 扬州博宏自动化设备有限公司 一种金属管环形焊接装置
CN117900709A (zh) * 2024-03-15 2024-04-19 四平市中保换热设备有限公司 一种螺旋板换热器焊接装置及工艺
CN117961390A (zh) * 2024-04-01 2024-05-03 山东博瑞特智能科技有限公司 一种用于皮带秤秤架制造的焊接加工装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702293A (zh) * 2020-06-10 2020-09-25 南京英尼格玛工业自动化技术有限公司 一种针对高铁枕梁工艺孔的焊枪自动轨迹避让方法
CN113245738A (zh) * 2021-06-04 2021-08-13 贾玉坤 一种钢结构焊接设备及方法
CN114131184A (zh) * 2021-11-10 2022-03-04 深圳泰德激光技术股份有限公司 激光加工设备
CN114240944B (zh) * 2022-02-25 2022-06-10 杭州安脉盛智能技术有限公司 一种基于点云信息的焊接缺陷检测方法
CN115870673B (zh) * 2022-12-26 2024-04-26 河北盛轩农业技术开发有限公司 一种养鸡的栖息架焊接装置
CN117718597B (zh) * 2024-02-18 2024-04-16 广东国玉科技股份有限公司 一种激光焊接机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008114A1 (en) * 2015-07-09 2017-01-12 Lincoln Global, Inc. System and method of controlling attachment and release of additive manufacturing builds using a welding process
CN109849042A (zh) * 2019-03-11 2019-06-07 南京英尼格玛工业自动化技术有限公司 一种机器人末端工具快换装置
CN109967823A (zh) * 2019-04-28 2019-07-05 南京英尼格玛工业自动化技术有限公司 一种电池底托焊接工作站系统
CN210334703U (zh) * 2019-04-17 2020-04-17 南京英尼格玛工业自动化技术有限公司 一种用于3d打印的电弧增材制造系统
CN210334704U (zh) * 2019-05-31 2020-04-17 南京英尼格玛工业自动化技术有限公司 一种全过程控型控性的电弧增材制造系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468395A (zh) * 2007-12-26 2009-07-01 中国科学院沈阳自动化研究所 回转体表面激光快速成形方法及其系统
CN101214582A (zh) * 2008-01-14 2008-07-09 北京紫色光激光技术有限公司 移动式激光修复设备及其修复方法
CN103074625B (zh) * 2013-01-16 2015-01-21 上海交通大学 一种可移动式激光熔覆及修复系统
CN105598450B (zh) * 2016-02-02 2017-11-10 陕西天元智能再制造股份有限公司 一种零部件损伤的激光立体仿形修复方法
CN105929792B (zh) * 2016-05-04 2018-09-28 苏州科技学院 点云模型五轴无局部干涉刀轴偏角范围计算方法
CN106077901A (zh) * 2016-07-01 2016-11-09 南京航空航天大学 基于热作模具失效部位的电弧增材制造方法
CN108763738B (zh) * 2018-05-25 2022-05-20 大连交通大学 一种轨道车辆车体腻子自动化离线喷涂连续路径规划方法
CN109109311B (zh) * 2018-05-28 2021-02-19 共享智能铸造产业创新中心有限公司 一种基于fdm技术的产品成型方法
CN110000793A (zh) * 2019-04-29 2019-07-12 武汉库柏特科技有限公司 一种机器人运动控制方法、装置、存储介质和机器人
CN110328848A (zh) * 2019-06-18 2019-10-15 沈阳精合数控科技开发有限公司 一种激光修复方法及装置
CN111058040A (zh) * 2020-01-16 2020-04-24 南京航空航天大学 一种Invar合金模具不规则曲面的激光熔覆修复设备与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008114A1 (en) * 2015-07-09 2017-01-12 Lincoln Global, Inc. System and method of controlling attachment and release of additive manufacturing builds using a welding process
CN109849042A (zh) * 2019-03-11 2019-06-07 南京英尼格玛工业自动化技术有限公司 一种机器人末端工具快换装置
CN210334703U (zh) * 2019-04-17 2020-04-17 南京英尼格玛工业自动化技术有限公司 一种用于3d打印的电弧增材制造系统
CN109967823A (zh) * 2019-04-28 2019-07-05 南京英尼格玛工业自动化技术有限公司 一种电池底托焊接工作站系统
CN210334704U (zh) * 2019-05-31 2020-04-17 南京英尼格玛工业自动化技术有限公司 一种全过程控型控性的电弧增材制造系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888478A (zh) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 一种中组立焊接工艺参数的修正方法及装置
CN114888478B (zh) * 2022-06-30 2023-12-26 中船黄埔文冲船舶有限公司 一种中组立焊接工艺参数的修正方法及装置
CN115488662A (zh) * 2022-10-29 2022-12-20 中铁工程装备集团盾构制造有限公司 盾构机用螺旋轴叶片自动加工定位工装、设备及方法
CN115488662B (zh) * 2022-10-29 2024-04-30 中铁工程装备集团盾构制造有限公司 盾构机用螺旋轴叶片自动加工定位工装、设备及方法
CN116532864A (zh) * 2023-07-06 2023-08-04 绵阳师范学院 一种基于视觉成像的环缝焊接型机器人
CN116532864B (zh) * 2023-07-06 2023-09-15 绵阳师范学院 一种基于视觉成像的环缝焊接型机器人
CN117182411A (zh) * 2023-10-26 2023-12-08 扬州博宏自动化设备有限公司 一种金属管环形焊接装置
CN117182411B (zh) * 2023-10-26 2024-04-05 扬州博宏自动化设备有限公司 一种金属管环形焊接装置
CN117900709A (zh) * 2024-03-15 2024-04-19 四平市中保换热设备有限公司 一种螺旋板换热器焊接装置及工艺
CN117900709B (zh) * 2024-03-15 2024-05-14 四平市中保换热设备有限公司 一种螺旋板换热器焊接装置及工艺
CN117961390A (zh) * 2024-04-01 2024-05-03 山东博瑞特智能科技有限公司 一种用于皮带秤秤架制造的焊接加工装置

Also Published As

Publication number Publication date
CN111702416A (zh) 2020-09-25
CN113385887A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2021248649A1 (zh) 一种高铁枕梁工艺孔自动焊接方法
WO2021248653A1 (zh) 一种高铁枕梁工艺孔用移载式双机器人电弧3d打印工作站及其工作方法
WO2021248650A1 (zh) 一种针对高铁枕梁工艺孔的逆向重构方法
WO2021248652A1 (zh) 一种针对高铁枕梁工艺孔的焊枪自动轨迹避让方法
US10688581B2 (en) 3D metal printing device and process
WO2021217992A1 (zh) 一种多激光头智能化激光清洗方法及装置
US10599127B2 (en) System and method for manufacturing and control thereof
WO2018068437A1 (zh) 多轴高能粒子束熔覆及铣削加工复合打印装置
CN106312574B (zh) 一种大幅面零部件的增减材复合制造设备
JP7186512B2 (ja) ハイブリッド溶着速度のニアネットシェイプ積層造形のための方法及びシステム
WO2017071316A1 (zh) 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备
Bandari et al. Additive manufacture of large structures: robotic or CNC systems?
CN110744302B (zh) 一种机器手-数控机床增减材复合制造系统及方法
WO2019098097A1 (ja) 造形物の製造方法及び製造装置
CN111702292A (zh) 一种金属结构件多层单道连续电弧增材制造方法及系统
CN114985765B (zh) 钛合金整体叶盘选区激光熔化直接增材方法
WO2016106610A1 (zh) 多轴铣削加工及激光熔融复合3d打印设备
CN113172305A (zh) 一种基于智能化快速建模技术的电弧3d打印机器人
CN112621221A (zh) 一种摩擦增减材一体化设备及加工方法
CA2913288C (en) 3d metal printing device and process
Chernovol et al. Development of low-cost production process for prototype components based on Wire and Arc Additive Manufacturing (WAAM)
US20230321915A1 (en) Repositionable voxel alignment in non-continuous deposition process
CN106271144A (zh) 一种压力容器封头自动化生产线
WO2022019123A1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
US20230321918A1 (en) As-deposited data model for directing machining after additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939839

Country of ref document: EP

Kind code of ref document: A1