WO2017071316A1 - 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备 - Google Patents

基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备 Download PDF

Info

Publication number
WO2017071316A1
WO2017071316A1 PCT/CN2016/090799 CN2016090799W WO2017071316A1 WO 2017071316 A1 WO2017071316 A1 WO 2017071316A1 CN 2016090799 W CN2016090799 W CN 2016090799W WO 2017071316 A1 WO2017071316 A1 WO 2017071316A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
axis milling
turntable
signal transmission
control system
Prior art date
Application number
PCT/CN2016/090799
Other languages
English (en)
French (fr)
Inventor
冯坚
Original Assignee
冯坚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冯坚 filed Critical 冯坚
Publication of WO2017071316A1 publication Critical patent/WO2017071316A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations

Definitions

  • the utility model relates to the technical field of 3D printing equipment, in particular to a plasma melting and multi-axis milling processing composite 3D printing device based on internet signal transmission.
  • 3D printing technology is an emerging molding method.
  • the core of the process is to convert the complex 3D shape of the desired workpiece into a simple 2D cross-section by slicing, so it is not necessary to use traditional machining tools and machining dies.
  • a three-dimensional computer-aided design model in which a material is deposited layer by layer along a height direction on a computer-controlled rapid prototyping machine to form a series of 2D cross-section sheets of the workpiece, and the layers and sheets are bonded to each other and finally stacked into three dimensions. Workpiece.
  • the 3D printing technology can form parts that reach the casting strength level, the shape of the formed parts has large shape error and the surface finish is not high.
  • the formed parts need to be subjected to secondary processing by conventional machining methods.
  • Most parts of the aerospace industry, such as engine nozzles, blades, honeycomb combustion chambers, etc., are generally complex thin-walled or lattice sandwich structures, or larger-sized shapes, or free-form surfaces, etc., when using 3D
  • the parts processed by the printing technology are placed in the machine for secondary processing, the following problems exist:
  • the 3D printer is operated by the operator to import the 3D image data into the 3D printer.
  • the customer needs it, it needs to be docked with the operator in real time, and the operator can import it again. Subsequent operations are also not conducive to the efficient operation of 3D printers.
  • the technical solution adopted by the utility model is: a plasma melting and multi-axis milling processing composite 3D printing device based on internet signal transmission, including a worktable, a numerical control turntable, a plasma surfacing machine, and a multi-axis a milling mechanism and a control system, the worktable is moved in a horizontal direction, the workbench is provided with a countertop, the numerical control turntable is disposed on the countertop; the plasma surfacing machine comprises a plasma surfacing power supply control a box and a plasma surfacing head mechanical mechanism, the plasma surfacing power supply control box is disposed outside the working table, the plasma surfacing head mechanical mechanism is disposed above the working table; the multi-axis milling mechanism is disposed at the Above the countertop, the control system is externally connected to the Internet, and the control system is electrically connected with the numerical control turntable, the plasma surfacing machine and the multi-axis milling mechanism.
  • the numerical control turntable is provided with a turntable and a processing platform, the turntable is fixedly disposed on the workbench, and a turntable is disposed on one side of the turntable, and the processing platform is fixedly disposed in the Said on the side of the turntable.
  • the processing platform is provided with a processing plate.
  • the plasma build-up head mechanism is provided with a plasma surfacing spray gun.
  • the multi-axis milling mechanism is provided with a high speed milling head.
  • the utility model is based on plasma melting and multi-axis milling of internet signal transmission.
  • the composite 3D printing device sends the 3D image data of the customer's required product to the control system via the Internet, and the control system controls the CNC rotary table, the plasma surfacing machine and the multi-axis milling mechanism, and the plasma welding machine is used to inject the same.
  • the metal powder is melted to form an approximate shape, and then the single-layer or multi-layered approximate body is milled by the milling head of the multi-axis milling mechanism, and the cycle is repeated until the part is finished.
  • the 3D printing apparatus removes the conventional multi-axis milling removal precision.
  • the processing is integrated with the incremental stack manufacturing process based on plasma powder melting 3D printing, which can overcome the defects of the traditional 3D printing technology in terms of size and shape accuracy, and can also overcome the complexity of the cutting process on the parts.
  • the restriction in this way, does not require secondary processing of the processed parts, avoiding the current difficulties of clamping, large processing errors, deformation of parts during processing, and difficulty in processing, opening up a broader application space for 3D printing technology.
  • using the Internet for signal transmission directly importing 3D image data into the control system Operation step to the next step, so that the parts shortened manufacturing time, improve production efficiency, consistent with industry trends 4.0.
  • FIG. 1 is a structural schematic diagram of a composite 3D printing device for plasma melting and multi-axis milling based on Internet signal transmission of the present invention.
  • the composite 3D printing device based on plasma signal melting and multi-axis milling of the present invention includes a table 10, a numerical control turntable 20, a plasma surfacing machine 30, a multi-axis milling mechanism 40 and a control system 50,
  • the workbench 10 serves as a basis for the entire 3D printing device, and the workbench 10 moves in the horizontal direction of x/y.
  • the workbench 10 has a table top 11 that moves horizontally, and the numerical control turntable 20 is set at the stage.
  • the numerical control turntable 20 moves with the movement of the table top 11; the numerical control turntable 20 is provided with a turntable base 21 and a processing platform 22,
  • the turntable base 21 is fixedly disposed on the table top 11, and the turntable base 21 is provided with a turntable 23 on one side thereof.
  • the processing platform 22 is fixedly disposed on the side of the turntable 23, and is turned over with the rotation of the turntable 23; the processing platform 22 is provided with processing.
  • the rotating plate 221 is processed to transfer the metal blank formed by layer-by-layer stacking.
  • the plasma surfacing machine 30 includes a plasma surfacing power control box 31 and a plasma surfacing head mechanical mechanism 32.
  • the plasma surfacing power control box 31 is disposed outside the table 10, and the plasma surfacing head mechanism 32 is disposed above the table 10. And can run up and down along the Z axis, the plasma surfacing power supply control box 31 is used to provide the power supply, the metal powder, the cooling water device, the inert gas supply device and the like required for the plasma surfacing head 32, and the plasma surfacing head mechanical mechanism 32 is provided with
  • the plasma surfacing torch 321 instantaneously melts and condenses the introduced metal powder by a high temperature plasma arc generated by the plasma surfacing torch 321 to form a single layer or a plurality of layers.
  • the multi-axis milling mechanism 40 is disposed above the table top 11, and the multi-axis milling mechanism 40 is vertically movable in the vertical direction.
  • the multi-axis milling mechanism 40 is provided with a high-speed milling head 41 which can drive the cutter to melt on the processing plate 221 The formed single or multi-layer approximation is milled.
  • the control system 50 is externally connected to the Internet 60 to receive 3D image data transmitted through the Internet 60.
  • the control system 50 is electrically connected to the CNC turntable 20, the plasma surfacing machine 30 and the multi-axis milling mechanism 40, and the control system 50 is used to control The numerical control turret 20, the plasma surfacing machine 30, and the multi-axis milling mechanism 40 perform five-axis simultaneous processing on the approximate body on the processing platform 22.
  • the specific operation process is as follows: 1) The customer can transmit the 3D image data of the product he needs to the control system 50 through the Internet 60, and the control system 50 generates a corresponding 3D printing program, and selects the corresponding
  • the metal powder adjusts the temperature and speed required for plasma melting, and melts the introduced metal powder through the plasma surfacing torch 321 to form a single layer or a plurality of layers in a row by layer; 2) using a multi-axis milling mechanism The tool of 40 mills a single or multi-layered approximate body member formed on the processing platform 22 to achieve the required size and surface accuracy of the member; 3) repeat steps 1) and 2) above, until the final part
  • the utility model is based on plasma melting and multi-axis milling of internet signal transmission.
  • the composite 3D printing device transmits the 3D image data of the customer's desired product to the control system 50 via the Internet 60, and the control system 50 controls the numerical control rotary table 20, the plasma surfacing machine 30, and the multi-axis milling mechanism 40, using the plasma reactor.
  • the welder 30 melts the introduced metal powder to form an approximate shape, and then mills the approximate shape of the single layer or the plurality of layers by using the milling cutter of the multi-axis milling mechanism 40, and repeats the cycle until the parts are processed, and the 3D printing apparatus will be conventionally
  • the multi-axis milling-based demolition precision machining is integrated with the incremental lamination manufacturing process based on plasma-melting 3D printing, which can overcome the defects of the traditional 3D printing technology in terms of size and shape accuracy, and can also overcome the cutting.
  • the processing imposes constraints on the complexity of the components, so that it is not necessary to perform secondary processing on the processed parts, avoiding the problems of current clamping difficulties, large machining errors, deformation of parts during processing, and difficulty in processing, for 3D printing.
  • Technology opens up a broader application space, while using the Internet 60 for signal transmission, directly importing 3D image data
  • the control system 50 for operation of the next step, so that the parts shortened manufacturing time, improve production efficiency, consistent with industry trends

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,包括工作台(10)、数控转台(20)、等离子堆焊机(30)、多轴铣削机构(40)及控制系统(50),工作台(10)设置有台面板(11),数控转台(20)设置在台面板(11)上;等离子堆焊机(30)包括等离子堆焊电源控制箱(31)及等离子堆焊头机械机构(32);多轴铣削机构(40)设置在工作台(10)上方,控制系统(50)外部接连互联网,通过互联网将客户所需产品的3D图档数据发送到控制系统(50)内,控制系统(50)对数控转台(20)、等离子堆焊机(30)及多轴铣削机构(40)进行控制,利用等离子堆焊机(30)将金属粉末熔融形成近似形体,再利用多轴铣削机构(40)的刀具对单层或多层的近似形体进行铣削,循环重复直至零件加工完毕。

Description

基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备 技术领域
本实用新型涉及3D打印设备技术领域,尤其是涉及一种基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备。
背景技术
3D打印技术是一种新兴的成型方法,其核心是将所需成形工件的复杂3D形体通过切片化处理转化为简单的2D截面的组合,因此不必采用传统的加工机床和加工模具,依据工件的三维计算机辅助设计模型,在计算机控制的快速成形机上,沿着高度方向逐层沉积材料,形成工件的一系列2D截面薄片层,并使片层与片层之间相互粘接,最终堆积成三维工件。
3D打印技术虽然可以成型出达到铸造强度级别的零件,但是成型出的零件的形状误差大、表面光洁度不高,这样,成型后的零件还需要采用传统的机械加工方式对此进行二次加工,才能得到精密机械制造工业所要求的形状及表面精度。航空航天行业大部分零件,如发动机喷嘴、叶片、蜂窝结构的燃烧室等,一般是复杂薄壁或点阵夹芯结构,或是尺寸较大的形状,或是自由曲面等形状,当采用3D打印技术加工出来的零件,再放入机床进行二次加工时,则存在以下问题:
1)、装夹困难,或装夹后,由于坐标变换无法精确定位零件加工参考点,导致加工误差大;
2)、对于薄壁结构的零件,加工时,由于无支撑零件的面,导致零件应力变形;
3)、部分零件由于内部结构复杂,刀具无法伸入其内部,导致难以加工。
另外,3D打印机都是通过操作者实地将3D图档数据导入3D打印机后进行操作,当客户有需求时,需实时和操作者进行对接,由操作者自行导入再 进行后续操作,同样不利于3D打印机的高效运作。
实用新型内容
基于此,有必要针对现有技术的不足,提供一种基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,能够通过网络将3D图档数据直接导入到3D打印设备,同时,利用等离子熔融复合技术对单层或多层近似形体进行铣削加工,循环重复至零件加工完毕,这样,不需要对加工后的零件进行二次加工,避免现时装夹困难、加工误差大、加工时零件出现变形及难以加工的问题。
为解决上述技术问题,本实用新型所采用的技术方案是:一种基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其包括工作台、数控转台、等离子堆焊机、多轴铣削机构及控制系统,所述工作台在水平方向上进行移动,所述工作台设置有台面板,所述数控转台设置在所述台面板上;所述等离子堆焊机包括等离子堆焊电源控制箱及等离子堆焊头机械机构,所述等离子堆焊电源控制箱设置在所述工作台外侧,所述等离子堆焊头机械机构设置在所述工作台上方;所述多轴铣削机构设置在所述台面板上方,所述控制系统外接连通互联网,所述控制系统与数控转台、等离子堆焊机及多轴铣削机构电性连接。
在其中一个实施例中,所述数控转台设置有转台座及加工平台,所述转台座固定设置在所述工作台上,所述转台座一侧设置有转盘,所述加工平台固定设置在所述转盘一侧。
在其中一个实施例中,所述加工平台上设置有加工转板。
在其中一个实施例中,所述等离子堆焊头机械机构设置有等离子堆焊喷枪。
在其中一个实施例中,所述多轴铣削机构设置有高速铣削头。
综上所述,本实用新型基于互联网信号传递的等离子熔融及多轴铣削加 工复合3D打印设备通过互联网将客户所需产品的3D图档数据发送到控制系统内,控制系统对数控转台、等离子堆焊机及多轴铣削机构进行控制,利用等离子堆焊机将喷入的金属粉末熔融形成近似形体,再利用多轴铣削机构的铣头对单层或多层的近似形体进行铣削,循环重复直至零件加工完毕,该3D打印设备将传统的以多轴铣削的去除式精密加工与以等离子粉末熔融3D打印为主的增量叠层制造工艺集成为一体,既能克服传统3D打印技术在尺寸和形状精度等方面的缺陷,也可以克服切削加工对零部件复杂程度等方面的制约,这样,则不需要对加工后的零件进行二次加工,避免现时装夹困难、加工误差大、加工时零件出现变形以及难以加工的问题,为3D打印技术开辟更加广阔的应用空间,同时,利用互联网进行信号传送,直接将3D图档数据导入到控制系统内进行下一步工序操作,使得零件的制造时间缩短,提升生产效率,符合工业4.0的发展趋势。
附图说明
图1为本实用新型基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备的结构原理图。
具体实施方式
为能进一步了解本实用新型的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本实用新型作进一步详细描述。
如图1所示,本实用新型基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备包括工作台10、数控转台20、等离子堆焊机30、多轴铣削机构40及控制系统50,工作台10作为整个3D打印设备的基础,起到承载作用,工作台10在x/y水平方向上进行移动,具体地,工作台10具有水平方向移动的台面板11,数控转台20设置在台面板11上,数控转台20随着台面板11的移动而进行移动;数控转台20设置有转台座21及加工平台22, 转台座21固定设置在台面板11上,转台座21一侧设置有转盘23,加工平台22固定设置在转盘23一侧,并随着转盘23的转动而进行翻转;加工平台22上设置有加工转板221,加工转板221用以放置逐层堆叠形成的金属胚料。
等离子堆焊机30包括等离子堆焊电源控制箱31及等离子堆焊头机械机构32,等离子堆焊电源控制箱31设置在工作台10外侧,等离子堆焊头机械机构32设置在工作台10上方,并可沿Z轴上下运行,等离子堆焊电源控制箱31用以提供等离子堆焊头32所需的电源、金属粉末、冷却水装置、惰性气体供给装置等,等离子堆焊头机械机构32设置有等离子堆焊喷枪321,通过等离子堆焊喷枪321产生的高温等离子弧将导入的金属粉末瞬间熔化并冷凝形成单层或多层近似形体。
多轴铣削机构40设置在台面板11上方,多轴铣削机构40可沿垂直方向上下移动,多轴铣削机构40设置有高速铣削头41,高速铣削头41可以驱动刀具对加工转板221上熔融成型的单层或多层近似形体进行铣削加工。
控制系统50外接连通互联网60,以接收通过互联网60传送过来的3D图档数据,控制系统50与数控转台20、等离子堆焊机30及多轴铣削机构40电性连接,控制系统50用以控制数控转台20、等离子堆焊机30、多轴铣削机构40对加工平台22上的近似形体进行五轴联动加工。
在实际加工过程中,其具体操作过程为:1)客户可将自己所需的产品的3D图档数据通过互联网60传送到控制系统50内,控制系统50生成对应的3D打印程序,选好对应的金属粉末,调整等离子熔融所需温度、速度,通过等离子堆焊喷枪321将导入的金属粉末进行熔融加工,逐行逐层堆积形成单层或多层的近似形体;2)利用多轴铣削机构40的刀具对加工平台22上形成的单层或多层的近似形体构件进行铣削,以达到构件所需的尺寸及表面精度;3)重复上述步骤1)及2),一直到最后的零件的形状加工完毕,就能制造出一般机器不能制造的复杂腔体或如啤酒瓶状开口小而内腔大的精密件。
综上所述,本实用新型基于互联网信号传递的等离子熔融及多轴铣削加 工复合3D打印设备通过互联网60将客户所需产品的3D图档数据发送到控制系统50内,控制系统50对数控转台20、等离子堆焊机30及多轴铣削机构40进行控制,利用等离子堆焊机30将导入的金属粉末熔融形成近似形体,再利用多轴铣削机构40的铣刀对单层或多层的近似形体进行铣削,循环重复直至零件加工完毕,该3D打印设备将传统的以多轴铣削为主的去除式精密加工与以等离子熔融3D打印为主的增量叠层制造工艺集成为一体,既能克服传统3D打印技术在尺寸和形状精度等方面的缺陷,也可以克服切削加工对零部件复杂程度等方面的制约,这样,则不需要对加工后的零件进行二次加工,避免现时装夹困难、加工误差大、加工时零件出现变形以及难以加工的问题,为3D打印技术开辟更加广阔的应用空间,同时,利用互联网60进行信号传送,直接将3D图档数据导入到控制系统50内进行下一步工序操作,使得零件的制造时间缩短,提升生产效率,符合工业4.0的发展趋势。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本实用新型范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其特征在于:包括工作台、数控转台、等离子堆焊机、多轴铣削机构及控制系统,所述工作台在水平方向上进行移动,所述工作台设置有台面板,所述数控转台设置在所述台面板上;所述等离子堆焊机包括等离子堆焊电源控制箱及等离子堆焊头机械机构,所述等离子堆焊电源控制箱设置在所述工作台外侧,所述等离子堆焊头机械机构设置在所述工作台上方;所述多轴铣削机构设置在所述台面板上方,所述控制系统外接连通互联网,所述控制系统与数控转台、等离子堆焊机及多轴铣削机构电性连接。
  2. 根据权利要求1所述的基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其特征在于:所述数控转台设置有转台座及加工平台,所述转台座固定设置在所述工作台上,所述转台座一侧设置有转盘,所述加工平台固定设置在所述转盘一侧。
  3. 根据权利要求2所述的基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其特征在于:所述加工平台上设置有加工转板。
  4. 根据权利要求1或2所述的基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其特征在于:所述等离子堆焊头机械机构设置有等离子堆焊喷枪。
  5. 根据权利要求1或2所述的基于互联网信号传递的等离子熔融及多轴铣削加工复合3D打印设备,其特征在于:所述多轴铣削机构设置有高速铣削头。
PCT/CN2016/090799 2015-10-30 2016-07-21 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备 WO2017071316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520864562.0 2015-10-30
CN201520864562.0U CN205129373U (zh) 2015-10-30 2015-10-30 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备

Publications (1)

Publication Number Publication Date
WO2017071316A1 true WO2017071316A1 (zh) 2017-05-04

Family

ID=55615197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090799 WO2017071316A1 (zh) 2015-10-30 2016-07-21 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备

Country Status (2)

Country Link
CN (1) CN205129373U (zh)
WO (1) WO2017071316A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390569A (zh) * 2020-06-08 2020-07-10 佛山市南海富大精密机械有限公司 一种综合加工机
CN113909695A (zh) * 2021-10-01 2022-01-11 江苏烁石焊接科技有限公司 一种大型复杂构件的智能协同增减材复合成型装备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205129373U (zh) * 2015-10-30 2016-04-06 东莞市亚美精密机械配件有限公司 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备
CN106271662A (zh) * 2016-10-13 2017-01-04 东莞市亚美精密机械配件有限公司 多轴高能粒子束熔覆及铣削加工复合打印装置
CN106695338B (zh) * 2016-12-28 2019-04-30 东莞市亚美精密机械配件有限公司 横梁移动式多功能3d打印机床
CN106944882A (zh) * 2017-03-30 2017-07-14 苏州亚思科精密数控有限公司 一种具有3d打印功能的数控机床
CN106976067A (zh) * 2017-04-14 2017-07-25 华南理工大学 一种等离子焊和工业机器人增减材复合3d打印设备与方法
CN107745258A (zh) * 2017-11-15 2018-03-02 东北林业大学 一种增减材为一体的数控加工机床
CN108672849B (zh) * 2018-05-23 2020-01-14 哈尔滨工业大学 微束电弧选择性熔凝与电火花分层铣削复合增材制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481972A (zh) * 2003-07-11 2004-03-17 西安交通大学 基于焊接堆积的多金属直接快速成型方法及装置
US7665200B1 (en) * 2009-02-27 2010-02-23 Mike Seiji Shimooka Multiple purpose CNC machine
CN204136438U (zh) * 2014-09-16 2015-02-04 王奉瑾 一种3d打印加工中心
CN104493493A (zh) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 多轴铣削加工及激光熔融复合3d打印设备
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN205129373U (zh) * 2015-10-30 2016-04-06 东莞市亚美精密机械配件有限公司 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481972A (zh) * 2003-07-11 2004-03-17 西安交通大学 基于焊接堆积的多金属直接快速成型方法及装置
US7665200B1 (en) * 2009-02-27 2010-02-23 Mike Seiji Shimooka Multiple purpose CNC machine
CN204136438U (zh) * 2014-09-16 2015-02-04 王奉瑾 一种3d打印加工中心
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN104493493A (zh) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 多轴铣削加工及激光熔融复合3d打印设备
CN205129373U (zh) * 2015-10-30 2016-04-06 东莞市亚美精密机械配件有限公司 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390569A (zh) * 2020-06-08 2020-07-10 佛山市南海富大精密机械有限公司 一种综合加工机
CN113909695A (zh) * 2021-10-01 2022-01-11 江苏烁石焊接科技有限公司 一种大型复杂构件的智能协同增减材复合成型装备

Also Published As

Publication number Publication date
CN205129373U (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2017071316A1 (zh) 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备
CN108746616B (zh) 一种同轴送粉与激光锻打复合增减材制造方法及装置
WO2018068437A1 (zh) 多轴高能粒子束熔覆及铣削加工复合打印装置
CN106312574B (zh) 一种大幅面零部件的增减材复合制造设备
CN107336023B (zh) 一种增减材复合加工中心
US20200238414A1 (en) Multifunctional Integrated Manufacturing System Based On Electrical Arc And Discharge Machining
CN206415882U (zh) 一种大幅面零部件的增减材复合制造设备
KR20200083312A (ko) 적층 제조 중 부품의 변형과 정밀도의 병행 제어 방법
CN107127583A (zh) 将超声切削应用于送粉式增减材复合制造中的设备及加工方法
KR20140109919A (ko) 결합된 재료의 첨가 및 성형에 의한 방법 및 기계가공 디바이스
CN101690993A (zh) 多轴联动数控激光加工系统
CN105414981A (zh) 一种电弧增材和铣削加工装置
AU2020253392B2 (en) Systems and methods for non-continuous deposition of a component
CN104647762A (zh) 切削加工式3d工业打印装置及打印方法
CN105364072A (zh) 一种金属激光3d处理设备
CN104690490A (zh) 一种航空发动机机匣双主轴车铣复合加工方法
CN111168068A (zh) 增减等材加工装置和控制方法
CN108581490A (zh) 一种多机器人协作增等减材复合加工装置及工艺方法
CN106378478B (zh) 一种规则金字塔微结构的微铣削加工方法
CN106976067A (zh) 一种等离子焊和工业机器人增减材复合3d打印设备与方法
CN112621221A (zh) 一种摩擦增减材一体化设备及加工方法
KR101692141B1 (ko) 삼차원 구조물 제조장치 및 방법
Kerschbaumer et al. Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding
CN107443075A (zh) 一种复合激光加工的五轴超振声数控机床
CN201519839U (zh) 多轴联动数控激光加工系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858755

Country of ref document: EP

Kind code of ref document: A1