WO2021248508A1 - 一种燃料电池双极板及其制备方法 - Google Patents

一种燃料电池双极板及其制备方法 Download PDF

Info

Publication number
WO2021248508A1
WO2021248508A1 PCT/CN2020/096021 CN2020096021W WO2021248508A1 WO 2021248508 A1 WO2021248508 A1 WO 2021248508A1 CN 2020096021 W CN2020096021 W CN 2020096021W WO 2021248508 A1 WO2021248508 A1 WO 2021248508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
bipolar plate
cell bipolar
graphite
parts
Prior art date
Application number
PCT/CN2020/096021
Other languages
English (en)
French (fr)
Inventor
高鹏然
张华农
Original Assignee
深圳市雄韬电源科技股份有限公司
深圳市氢雄燃料电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市雄韬电源科技股份有限公司, 深圳市氢雄燃料电池有限公司 filed Critical 深圳市雄韬电源科技股份有限公司
Publication of WO2021248508A1 publication Critical patent/WO2021248508A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fuel cells, and particularly relates to a fuel cell bipolar plate and a preparation method thereof.
  • the fuel cell bipolar plate (Bipolar Plate, BP), also known as the flow field plate, is the "skeleton" in the stack. It is stacked with membrane electrodes to form a stack, which supports the fuel cell, collects current, and provides cooling liquid. Channels, separating oxidants and reducing agents, etc.
  • Graphite bipolar plates have very good chemical stability in the environment of fuel cells, and at the same time have high electrical conductivity. It is currently the most widely used material in the research and application of proton exchange membrane fuel cells. Graphite bipolar plates are widely used in commercial vehicles because of their long durability. However, the graphite bipolar plate has the disadvantages of heavier quality, greater brittleness, and expensive processing cost. The processing cost of the graphite bipolar plate is more than 80% of the cost of the bipolar plate.
  • 3D printing technology also known as additive manufacturing technology, has the advantages of low manufacturing cost and short production cycle. It is known as "the most iconic production tool of the third industrial revolution.”
  • 3D printing technology is based on digital model files, using powdered metal or plastic and other bondable materials to construct objects through layer-by-layer printing. It is currently mainly used in product prototypes, mold manufacturing, artistic creation, and jewelry production. It is also gradually used in the fields of medicine, bioengineering, construction, clothing, aviation and so on.
  • 3D printing technology includes solidification technology, layered solid manufacturing technology, selective laser burning technology and fused deposition molding technology. Among them, selective laser sintering technology has the advantages of wide applicability and simple manufacturing process, but selective laser sintering technology is available Sintered polymer materials are very limited.
  • the purpose of the present invention is to solve the deficiencies in the prior art and provide a fuel cell bipolar plate and a preparation method thereof.
  • the preparation method of the invention has simple process and low production cost, and the prepared bipolar plate has good flexibility and excellent mechanical and electrical properties, and can meet the requirements of the fuel cell bipolar plate.
  • an embodiment of the present invention provides a method for preparing a fuel cell bipolar plate, which includes the following steps:
  • Step S01 Mix graphite and resin powder under vacuum and stir evenly at 40°C-50°C to obtain a semi-finished product; based on the mass parts of the semi-finished product being 100 parts, the mass parts of the graphite is 97-98 parts , The mass parts of the resin powder is 2 to 3 parts;
  • Step S02 heating the semi-finished product in step S01 to 80-150°C, and continue to react for 5-10 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 30-90° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • step S01
  • the graphite is preferably one or a mixture of at least two of expanded graphite, microcrystalline graphite, flake graphite, natural graphite, artificial graphite or mesocarbon microspheres.
  • the resin is preferably phenolic resin, epoxy resin, polyimide, polyvinylidene fluoride, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, phenolic resin, benzoxazine, liquid crystal resin, pitch , Polyphenylene sulfide, polyether ether ketone, epoxy resin or polyether sulfone or a mixture of at least two.
  • the resin powder is preferably a powder obtained by mixing phenolic resin and epoxy resin at a ratio of parts by mass of 1:1.
  • the resin powder is preferably a mixture of phenolic resin, epoxy resin and polyvinylidene fluoride in a ratio of parts by mass of 1:1:1.
  • the mixing is preferably mixed in a vacuum pressure of 0.1 MPa and an inert gas
  • the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • the stirring time is preferably 30 min.
  • the heating temperature is preferably 100°C to 110°C.
  • the temperature of the 3D printing is preferably 45°C.
  • the density of the fuel cell bipolar plate is 1.5g/cm 3 ⁇ 1.6g/cm 3
  • the contact resistance is 7m ⁇ cm 2 ⁇ 8m ⁇ cm 2
  • the electrical conductivity is 180S/cm ⁇ 190S/cm
  • the rate is 1.2 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s)
  • the bending strength is 60MPa ⁇ 65Mpa
  • the tensile strength is 40MPa ⁇ 48MPa
  • the contact angle is 110° ⁇ 118°. It can be seen that the prepared fuel cell bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • the embodiment of the present invention also provides a fuel cell bipolar plate obtained by the above preparation method.
  • the preparation method of the present application is simple in operation, low in production cost, and short in preparation time.
  • the paste of the present application can be applied to selective laser sintering technology for 3D printing, and can be based on actual conditions. It is necessary to quickly prepare the required fuel cell bipolar plates.
  • the prepared bipolar plate has good flexibility, excellent mechanical properties and electrical properties, and can meet the requirements of a fuel cell bipolar plate.
  • the directional indication is only used to explain that it is in a specific posture ( As shown in the figure), if the relative positional relationship and movement conditions of the various components underneath, if the specific posture changes, the directional indication will also change accordingly.
  • the preparation method of the present invention has simple process and low production cost, and the prepared paste can be suitable for 3D printing using selective laser sintering technology.
  • the prepared bipolar plate has good flexibility, excellent mechanical properties and electrical properties, and can meet the requirements of a fuel cell bipolar plate.
  • the embodiment of the present invention provides a method for preparing a fuel cell bipolar plate, which includes the following steps:
  • Step S01 Mix graphite and resin powder under vacuum and stir evenly at 40°C-50°C to obtain a semi-finished product; based on the mass parts of the semi-finished product being 100 parts, the mass parts of the graphite is 97-98 parts , The mass parts of the resin powder is 2 to 3 parts;
  • Step S02 heating the semi-finished product in step S01 to 80-150°C, and continue to react for 5-10 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 30-90°C according to the drawing of the fuel cell bipolar plate (the examples of this application all use selective laser sintering technology Perform 3D printing) to obtain a fuel cell bipolar plate.
  • the ratio of graphite to resin powder that is, taking the mass parts of the semi-finished product as 100 parts, the mass parts of the graphite is 97-98 parts, and the mass parts of the resin powder is 2 to 3 parts, It can well improve the existing graphite-based bipolar plates that are heavier in quality and have greater brittleness defects, and the prepared paste can be suitable for 3D printing using selective laser sintering technology, and it also makes the prepared The bipolar plate has good flexibility and excellent mechanical and electrical properties.
  • the paste prepared is not suitable for 3D printing using selective laser sintering technology, and the electrical performance of the prepared bipolar plate is poor, which does not conform to the fuel cell bipolar
  • the requirements of the board If the mass of graphite is higher than 98 parts, due to its brittleness and heavy mass, if the prepared paste is 3D printed with selective laser sintering technology, the loss of material will be low, and the production rate will be low.
  • the resulting bipolar plate is relatively brittle, has poor flexibility and mechanical properties, and does not meet the requirements of a fuel cell bipolar plate.
  • step S01
  • the graphite is preferably one or a mixture of at least two of expanded graphite, microcrystalline graphite, flake graphite, natural graphite, artificial graphite or mesocarbon microspheres.
  • the graphite is expanded graphite; in another embodiment, the graphite may also be natural graphite.
  • the graphite may be a mixture of expanded graphite and natural graphite.
  • the bipolar plate made of graphite has very good chemical stability in the fuel cell environment, and at the same time has a high electrical conductivity and long durability.
  • the resin is preferably phenolic resin, epoxy resin, polyimide, polyvinylidene fluoride, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, phenolic resin, benzoxazine, liquid crystal resin, pitch , Polyphenylene sulfide, polyether ether ketone, epoxy resin or polyether sulfone or a mixture of at least two.
  • the resin powder is a powder of phenolic resin and epoxy resin mixed at a mass ratio of 1:1.
  • the fuel cell bipolar plate is made of phenolic resin and epoxy resin at a mass ratio of 1:1 as the resin powder, which can improve the brittleness of graphite, and the prepared paste can be suitable for selective use Laser sintering technology for 3D printing also improves the flexibility and mechanical properties of the bipolar plate.
  • the resin powder may also be a mixture of phenolic resin, epoxy resin, and polyvinylidene fluoride in a ratio of parts by mass of 1:1:1.
  • the fuel cell bipolar plate is made of phenolic resin, epoxy resin and polyvinylidene fluoride at a mass ratio of 1:1:1 to make the fuel cell bipolar plate, which can improve the brittleness of graphite, and the prepared paste can be applied It uses selective laser sintering technology for 3D printing, while also improving the flexibility and mechanical properties of the bipolar plate.
  • the mixing is preferably mixed in a vacuum pressure of 0.1 MPa and an inert gas; in this way, oxygen can be well insulated and the material powder can be mixed uniformly.
  • the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%, which can effectively reduce the cost while isolating oxygen well.
  • the stirring time is preferably 30 min.
  • the main purpose of stirring is to mix graphite and resin powder uniformly, so that the resin powder can be inserted into the graphite layer at an appropriate temperature to block the porous structure of graphite.
  • the heating temperature is preferably 100°C to 110°C.
  • the resin powder and graphite can be fully mixed uniformly, so that the resin powder can be inserted into the graphite layer, and the porous structure of the graphite can be blocked well, so that the obtained paste can be suitable for the selective laser sintering technology. 3D printing. If the heating temperature is too high, it will easily affect the performance of the resin, thereby affecting the flexibility and mechanical properties of the prepared bipolar plate; if the heating temperature is too low, the resin will be difficult to insert into the graphite layer, making the prepared bipolar plate The board is brittle and has poor flexibility and mechanical properties.
  • the temperature of the 3D printing is preferably 45°C.
  • the density of the fuel cell bipolar plate is 1.5g/cm 3 ⁇ 1.6g/cm 3
  • the contact resistance is 7m ⁇ cm 2 ⁇ 8m ⁇ cm 2
  • the electrical conductivity is 180S/cm ⁇ 190S/cm
  • the rate is 1.2 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s)
  • the bending strength is 60MPa ⁇ 65Mpa
  • the tensile strength is 40MPa ⁇ 48MPa
  • the contact angle is 110° ⁇ 118°. It can be seen that the prepared fuel cell bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • the preparation method of the present application has simple operation, low production cost, and short preparation time, so that the prepared paste can be suitable for 3D printing using selective laser sintering technology, and the required fuel cell bipolar can be quickly prepared according to actual needs.
  • the prepared bipolar plate has good flexibility and excellent mechanical and electrical properties, which can meet the requirements of fuel cell bipolar plates.
  • a method for preparing a bipolar plate of a fuel cell includes the following steps:
  • Step S01 Mix the expanded graphite with the resin powder under vacuum, and stir at 40°C for 30 minutes until uniform to obtain a semi-finished product; taking the mass parts of the semi-finished product as 100 parts, the mass parts of the expanded graphite is 98 parts, The number of parts by mass of the resin powder is 2 parts;
  • Step S02 heating the semi-finished product in step S01 to 100°C, and continuing to react for 5 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 45° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • the density of the fuel cell bipolar plate is 1.5g/cm 3 , the contact resistance is 8m ⁇ cm 2 , the conductivity is 180S/cm; the air permeability is 1.2 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s), bending
  • the strength is 60MPa, the tensile strength is 40MPa; the contact angle is 118°. It can be seen that the prepared fuel cell bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • step S01
  • the resin powder is a mixture of phenolic resin and epoxy resin at a ratio of parts by mass of 1:1.
  • the mixing is mixed in an inert gas with a vacuum pressure of 0.1 MPa; the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • a method for preparing a bipolar plate of a fuel cell includes the following steps:
  • Step S01 Mix natural graphite and resin powder under vacuum, and stir at 50°C for 30 minutes until uniform to obtain a semi-finished product; taking the mass parts of the semi-finished product as 100 parts, the mass parts of the natural graphite is 97 parts, The number of parts by mass of the resin powder is 3 parts;
  • Step S02 heating the semi-finished product in step S01 to 110°C, and continue to react for 10 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 30-90° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • the density of the fuel cell bipolar plate is 1.6g/cm 3 , the contact resistance is 7m ⁇ cm 2 , the electrical conductivity is 190S/cm; the air permeability is 1.2 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s), bending
  • the strength is 65Mpa, the tensile strength is 48MPa; the contact angle is 110°. It can be seen that the prepared fuel cell bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • step S01
  • the resin powder is a mixture of phenolic resin, epoxy resin and polyvinylidene fluoride in a ratio of parts by mass of 1:1:1.
  • the mixing is mixed in an inert gas with a vacuum pressure of 0.1 MPa; the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • a method for preparing a bipolar plate of a fuel cell includes the following steps:
  • Step S01 Mix graphite and resin powder under vacuum, stir at 45° C. for 30 minutes until uniform, to obtain a semi-finished product; taking the mass parts of the semi-finished product as 100 parts, the mass parts of the graphite is 98 parts, The mass parts of the resin powder is 2 parts;
  • Step S02 heating the semi-finished product in step S01 to 105°C, and continue to react for 7 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 45° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • the density of the fuel cell bipolar plate is 1.5g/cm 3 , the contact resistance is 7m ⁇ cm 2 , the conductivity is 185S/cm; the air permeability is 1.2 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s), bending
  • the strength is 60MPa, the tensile strength is 40MPa; the contact angle is 115°. It can be seen that the prepared fuel cell bipolar plate meets the relevant requirements of the fuel cell bipolar plate.
  • step S01
  • the graphite is a mixture of expanded graphite and natural graphite at a mass ratio of 1:1.
  • the resin powder is a mixture of polyimide and polytetrafluoroethylene in a ratio of parts by mass of 1:1.
  • the mixing is mixed in an inert gas with a vacuum pressure of 0.1 MPa; the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • a method for preparing a bipolar plate of a fuel cell includes the following steps:
  • Step S01 Mix the expanded graphite with the resin powder under vacuum, and stir at 40°C for 30 minutes until uniform to obtain a semi-finished product; taking the mass parts of the semi-finished product as 100 parts, the mass parts of the expanded graphite is 95 parts, The mass parts of the resin powder is 5 parts;
  • Step S02 heating the semi-finished product in step S01 to 100°C, and continue to react for 5 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 45° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • the density of the fuel cell bipolar plate is 1.2g/cm 3 , the contact resistance is 10m ⁇ cm 2 , the electrical conductivity is 150S/cm; the air permeability is 0.9 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s), bending
  • the strength is 70MPa, the tensile strength is 50MPa; the contact angle is 105°.
  • step S01
  • the resin powder is a mixture of phenolic resin and epoxy resin at a ratio of parts by mass of 1:1.
  • the mixing is mixed in an inert gas with a vacuum pressure of 0.1 MPa; the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • a method for preparing a bipolar plate of a fuel cell includes the following steps:
  • Step S01 Mix the expanded graphite with the resin powder under vacuum, and stir at 40°C for 30 minutes until uniform to obtain a semi-finished product; taking the mass parts of the semi-finished product as 100 parts, the mass parts of the expanded graphite is 99 parts, The mass part of the resin powder is 1 part;
  • Step S02 heating the semi-finished product in step S01 to 100°C, and continue to react for 5 minutes to obtain a paste;
  • Step S03 Lower the paste of step S02 to room temperature, and then 3D print the paste at 45° C. according to the drawing of the fuel cell bipolar plate to obtain the fuel cell bipolar plate.
  • the density of the fuel cell bipolar plate is 1.7g/cm 3 , the contact resistance is 7m ⁇ cm 2 , the conductivity is 180S/cm; the air permeability is 1.3 ⁇ 10 -8 cm 3 /(cm 2 ⁇ s), bending
  • the strength is 45MPa, the tensile strength is 30MPa; the contact angle is 95°.
  • step S01
  • the resin powder is a mixture of phenolic resin and epoxy resin at a ratio of parts by mass of 1:1.
  • the mixing is mixed in an inert gas with a vacuum pressure of 0.1 MPa; the inert gas is a mixed gas of N 2 and CO 2 , and the volume fraction of CO 2 in the mixed gas is preferably 15%.
  • the preparation method of the present application has simple operation, low production cost, and short preparation time, so that the prepared paste can be suitable for 3D printing using selective laser sintering technology, and the required fuel cell bipolar can be quickly prepared according to actual needs.
  • the prepared bipolar plate has good flexibility and excellent mechanical and electrical properties, which can meet the requirements of fuel cell bipolar plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池双极板及其制备方法,属于燃料电池技术领域。该制备方法包括如下步骤:步骤S01:于真空下将石墨与树脂粉末混合,于40~50℃搅拌均匀,得到半成品;以所述半成品的质量份数为100份计,所述石墨的质量份数为97~98份,所述树脂粉末的质量份数为2~3份;步骤S02:将步骤S01中的半成品加热至80~150℃,继续反应5~10min,得到膏状物;步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于30~90℃将所述膏状物进行3D打印,得到燃料电池双极板。该方法操作简单、制作成本低,制备时间短;制得的燃料电池双极板可以满足燃料电池双极板的要求。

Description

一种燃料电池双极板及其制备方法 技术领域
本发明属于燃料电池技术领域,尤其涉及一种燃料电池双极板及其制备方法。
背景技术
燃料电池双极板(Bipolar Plate,BP)又称流场板,是电堆中的“骨架”,与膜电极层叠装配成电堆,在燃料电池中起到支撑、收集电流、为冷却液提供通道、分隔氧化剂和还原剂等作用。
一般地,功能性方面要求双极板材料是电与热的良导体,具有一定的强度以及气体致密性等;稳定性方面要求双极板在燃料电池酸性(pH=2~3)、电位(E=~1.1V)、湿热(气水两相流,~80℃)环境下具有耐腐蚀性且对燃料电池其他部件与材料的相容无污染性;产品化方面要求双极板材料要易于加工、成本低廉。
石墨双极板在燃料电池的环境中具有非常良好的化学稳定性,同时具有很高的导电率,是目前质子交换膜燃料电池研究和应用中最为广泛的材料。石墨双极板因为耐久性长,广泛应用于商用车。但是,石墨双极板质量较重、具有较大的脆性、以及加工成本昂贵等缺陷,石墨双极板加工费为双极板费用的80%以上。
3D打印技术又称增材制造技术,具有制造成本低、生产周期短等优势,被誉为“第三次工业革命最具标志性的生产工具”。3D打印技术是以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体,目前主要被应用于产品原型、模具制造以及艺术创作、珠宝制作等领域,也逐渐应用于医学、生物工程、建筑、服装、航空等领域。3D打印技术包括固化型技术、分层实体制造技术、选择性激光烧技术和熔融沉积 成型技术,其中选择性激光烧结技术具有适用性广、制造工艺简单等优点,但是选择性激光烧结工艺可供烧结的聚合物材料十分有限。
基于此,有必要提供一种燃料电池双极板及其制备方法以解决上述技术问题。
发明内容
本发明的目的在于解决现有技术中存在的不足,提供一种燃料电池双极板及其制备方法。本发明的制备方法工艺简单、制作成本低,制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
一方面,本发明实施例提供一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将石墨与树脂粉末混合,于40℃~50℃搅拌均匀,得到半成品;以所述半成品的质量份数为100份计,所述石墨的质量份数为97~98份,所述树脂粉末的质量份数为2~3份;
步骤S02:将步骤S01中的半成品加热至80~150℃,继续反应5~10min,得到膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于30~90℃将所述膏状物进行3D打印,得到燃料电池双极板。
进一步地,步骤S01中,
所述石墨优选为膨胀石墨、微晶石墨、鳞片石墨、天然石墨、人造石墨或中间相碳微球中的一种或至少两种的混合物。
所述树脂优选为酚醛树脂、环氧树脂、聚酰亚胺、聚偏氟乙烯、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯、酚醛树脂、苯并噁嗪、液晶树脂、沥青、聚苯硫醚、聚醚醚酮、环氧树脂或聚醚砜中的一种或至少两种的混合物。
所述树脂粉末优选为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。
所述树脂粉末优选为酚醛树脂、环氧树脂和聚偏氟乙烯按质量份数比1:1:1混合的粉末。
所述混合优选在真空压力为0.1MPa、惰性气体中混合;
所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
所述搅拌的时间优选为30min。
进一步地,步骤S02中,所述加热的温度优选为100℃~110℃。
进一步地,步骤S03中,所述3D打印的温度优选为45℃。
进一步地,所述燃料电池双极板的密度为1.5g/cm 3~1.6g/cm 3,接触电阻为7mΩ·cm 2~8mΩ·cm 2,电导率为180S/cm~190S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为60MPa~65Mpa,拉伸强度为40MPa~48MPa;接触角为110°~118°。可见,制备得到的燃料电池双极板符合燃料电池双极板的相关要求。
另一方面,本发明实施例还提供由上述制备方法得到的燃料电池双极板。
本发明与现有技术相比具有以下有益效果:本申请的制备方法操作简单、制作成本低,制备时间短,本申请的膏状物可以适用于选择性激光烧结技术进行3D打印,可以根据实际需要快速制备所需的燃料电池双极板。制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
本发明目的的实现、功能特点及优点将结合实施例,做进一步说明。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后、顶、底……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生 改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
针对现有的石墨双极板质量较重、具有较大的脆性、以及加工成本昂贵(石墨双极板加工费为双极板费用的80%以上)、加工工艺复杂等缺陷,有必要提供一种燃料电池双极板及其制备方法以解决上述技术问题。本发明的制备方法工艺简单、制作成本低,其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印。制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
具体的,本发明实施例提供一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将石墨与树脂粉末混合,于40℃~50℃搅拌均匀,得到半成品;以所述半成品的质量份数为100份计,所述石墨的质量份数为97~98份,所述树脂粉末的质量份数为2~3份;
步骤S02:将步骤S01中的半成品加热至80~150℃,继续反应5~10min,得到膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于30~90℃将所述膏状物进行3D打印(本申请实施例均采用选择性激光烧结技术进行3D打印),得到燃料电池双极板。
通过控制石墨与树脂粉末的比例,即以所述半成品的质量份数为100份计,所述石墨的质量份数为97~98份,所述树脂粉末的质量份数为2~3份,能够很好的改善现有石墨基双极板质量较重、具有较大的脆性的缺陷,其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印,同时也使得制 备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能。如果石墨的质量份数低于97份,其制得的膏状物不适用于采用选择性激光烧结技术进行3D打印,且制得的双极板的电学性能较差,不符合燃料电池双极板的要求;如果石墨的质量份数高于98份,因脆性大、质量重,其制得的膏状物若采用选择性激光烧结技术进行3D打印易损耗材料,成品率较低,且制得的双极板脆性较大,柔韧性和力学性能欠佳,不符合燃料电池双极板的要求。
进一步地,步骤S01中,
所述石墨优选为膨胀石墨、微晶石墨、鳞片石墨、天然石墨、人造石墨或中间相碳微球中的一种或至少两种的混合物。具体的,在一实施例中,所述石墨为膨胀石墨;在另一实施例中,所述石墨也可以为天然石墨。或者,所述石墨可以为膨胀石墨与天然石墨的混合物。以石墨制作的双极板在燃料电池的环境中具有非常良好的化学稳定性,同时具有很高的导电率,耐久性长。
所述树脂优选为酚醛树脂、环氧树脂、聚酰亚胺、聚偏氟乙烯、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯、酚醛树脂、苯并噁嗪、液晶树脂、沥青、聚苯硫醚、聚醚醚酮、环氧树脂或聚醚砜中的一种或至少两种的混合物。
具体的,在本申请的一实施例中,所述树脂粉末为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。以酚醛树脂和环氧树脂按质量份数比1:1混合的粉末作为树脂粉末制作燃料电池双极板,可以很好的改善石墨的脆性,其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印,同时也提高双极板的柔韧性和力学性能。
可以理解的是,在本申请的另一实施例中,所述树脂粉末也可以为酚醛树脂、环氧树脂和聚偏氟乙烯按质量份数比1:1:1混合的粉末。以酚醛树脂、环氧树脂和聚偏氟乙烯按质量份数比1:1:1混合的粉末制作燃料电池双极板,可以很好的改善石墨的脆性,其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印,同时也提高双极板的柔韧性和力学性能。
所述混合优选在真空压力为0.1MPa、惰性气体中混合;这样可以很好的隔离氧气,使得物料粉末混合均匀。
所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%,在很好隔离氧气的同时,能够有效降低成本。
所述搅拌的时间优选为30min。搅拌的目的主要是使石墨与树脂粉末混合均匀,为后面树脂粉末在适宜的温度能够插入石墨层而堵住石墨的多孔结构做准备。
进一步地,步骤S02中,所述加热的温度优选为100℃~110℃。这样可以把树脂粉末和石墨能够充分的混合均匀,使树脂粉末能够插入到石墨层,可以很好的堵住石墨的多孔结构,使其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印。如果加热的温度过高,则容易影响树脂的性能,从而影响制备得到的双极板的柔韧性和力学性能;如果加热温度过低,则树脂很难插入至石墨层,使得制备得到的双极板脆性较大,柔韧性和力学性能欠佳。
进一步地,步骤S03中,所述3D打印的温度优选为45℃。
进一步地,所述燃料电池双极板的密度为1.5g/cm 3~1.6g/cm 3,接触电阻为7mΩ·cm 2~8mΩ·cm 2,电导率为180S/cm~190S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为60MPa~65Mpa,拉伸强度为40MPa~48MPa;接触角为110°~118°。可见,制备得到的燃料电池双极板符合燃料电池双极板的相关要求。
本申请的制备方法操作简单、制作成本低,制备时间短,使其制得的膏状物可以适用于采用选择性激光烧结技术进行3D打印,可以根据实际需要快速制备所需的燃料电池双极板;制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
实施例1
一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将膨胀石墨与树脂粉末混合,于40℃搅拌30min至均匀,得到半成品;以所述半成品的质量份数为100份计,所述膨胀石墨的质量份数为98份,所述树脂粉末的质量份数为2份;
步骤S02:将步骤S01中的半成品加热至100℃,继续反应5min,得到 膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于45℃将所述膏状物进行3D打印,得到燃料电池双极板。
所述燃料电池双极板的密度为1.5g/cm 3,接触电阻为8mΩ·cm 2,电导率为180S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为60MPa,拉伸强度为40MPa;接触角为118°。可见,制备得到的燃料电池双极板符合燃料电池双极板的相关要求。
进一步地,步骤S01中,
所述树脂粉末为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。
所述混合在真空压力为0.1MPa、惰性气体中混合;所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
实施例2
一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将天然石墨与树脂粉末混合,于50℃搅拌30min至均匀,得到半成品;以所述半成品的质量份数为100份计,所述天然石墨的质量份数为97份,所述树脂粉末的质量份数为3份;
步骤S02:将步骤S01中的半成品加热至110℃,继续反应10min,得到膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于30~90℃将所述膏状物进行3D打印,得到燃料电池双极板。
所述燃料电池双极板的密度为1.6g/cm 3,接触电阻为7mΩ·cm 2,电导率为190S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为65Mpa,拉伸强度为48MPa;接触角为110°。可见,制备得到的燃料电池双极板符合燃料电池双极板的相关要求。
进一步地,步骤S01中,
所述树脂粉末为酚醛树脂、环氧树脂和聚偏氟乙烯按质量份数比1:1:1混合的粉末。
所述混合在真空压力为0.1MPa、惰性气体中混合;所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
实施例3
一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将石墨与树脂粉末混合,于45℃搅拌30min至均匀,得到半成品;以所述半成品的质量份数为100份计,所述石墨的质量份数为98份,所述树脂粉末的质量份数为2份;
步骤S02:将步骤S01中的半成品加热至105℃,继续反应7min,得到膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于45℃将所述膏状物进行3D打印,得到燃料电池双极板。
所述燃料电池双极板的密度为1.5g/cm 3,接触电阻为7mΩ·cm 2,电导率为185S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为60MPa,拉伸强度为40MPa;接触角为115°。可见,制备得到的燃料电池双极板符合燃料电池双极板的相关要求。
进一步地,步骤S01中,
所述石墨为膨胀石墨和天然石墨按质量份数比1:1混合的混合物。
所述树脂粉末为聚酰亚胺和聚四氟乙烯按质量份数比1:1混合的粉末。
所述混合在真空压力为0.1MPa、惰性气体中混合;所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
对比实施例1
一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将膨胀石墨与树脂粉末混合,于40℃搅拌30min至均匀,得到半成品;以所述半成品的质量份数为100份计,所述膨胀石墨的质量份数为95份,所述树脂粉末的质量份数为5份;
步骤S02:将步骤S01中的半成品加热至100℃,继续反应5min,得到 膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于45℃将所述膏状物进行3D打印,得到燃料电池双极板。
所述燃料电池双极板的密度为1.2g/cm 3,接触电阻为10mΩ·cm 2,电导率为150S/cm;透气率为0.9×10 -8cm 3/(cm 2·s),弯曲强度为70MPa,拉伸强度为50MPa;接触角为105°。
进一步地,步骤S01中,
所述树脂粉末为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。
所述混合在真空压力为0.1MPa、惰性气体中混合;所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
对比实施例2
一种燃料电池双极板的制备方法,包括如下步骤:
步骤S01:于真空下将膨胀石墨与树脂粉末混合,于40℃搅拌30min至均匀,得到半成品;以所述半成品的质量份数为100份计,所述膨胀石墨的质量份数为99份,所述树脂粉末的质量份数为1份;
步骤S02:将步骤S01中的半成品加热至100℃,继续反应5min,得到膏状物;
步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于45℃将所述膏状物进行3D打印,得到燃料电池双极板。
所述燃料电池双极板的密度为1.7g/cm 3,接触电阻为7mΩ·cm 2,电导率为180S/cm;透气率为1.3×10 -8cm 3/(cm 2·s),弯曲强度为45MPa,拉伸强度为30MPa;接触角为95°。
进一步地,步骤S01中,
所述树脂粉末为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。
所述混合在真空压力为0.1MPa、惰性气体中混合;所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数优选为15%。
本申请的制备方法操作简单、制作成本低,制备时间短,使其制得的膏 状物可以适用于采用选择性激光烧结技术进行3D打印,可以根据实际需要快速制备所需的燃料电池双极板;制备得到的双极板具有良好的柔韧性和优异的力学性能及电学性能,可以满足燃料电池双极板的要求。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种燃料电池双极板的制备方法,其特征在于,包括如下步骤:
    步骤S01:于真空下将石墨与树脂粉末混合,于40℃~50℃搅拌均匀,得到半成品;以所述半成品的质量份数为100份计,所述石墨的质量份数为97~98份,所述树脂粉末的质量份数为2~3份;
    步骤S02:将步骤S01中的半成品加热至80~150℃,继续反应5~10min,得到膏状物;
    步骤S03:将步骤S02的膏状物降至室温,然后按照燃料电池双极板的图纸、于30~90℃将所述膏状物进行3D打印,得到燃料电池双极板。
  2. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述石墨为膨胀石墨、微晶石墨、鳞片石墨、天然石墨、人造石墨或中间相碳微球中的一种或至少两种的混合物。
  3. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述树脂为酚醛树脂、环氧树脂、聚酰亚胺、聚偏氟乙烯、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯、酚醛树脂、苯并噁嗪、液晶树脂、沥青、聚苯硫醚、聚醚醚酮、环氧树脂或聚醚砜中的一种或至少两种的混合物。
  4. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述树脂粉末为酚醛树脂和环氧树脂按质量份数比1:1混合的粉末。
  5. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述树脂粉末为酚醛树脂、环氧树脂和聚偏氟乙烯按质量份数比1:1:1混合的粉末。
  6. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述混合在真空压力为0.1MPa、惰性气体中混合;所述搅拌的时间为30min。
  7. 根据权利要求6所述的燃料电池双极板的制备方法,其特征在于,所述惰性气体为N 2和CO 2的混合气体,所述混合气体中的CO 2的体积分数为 15%。
  8. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,
    步骤S02中,所述加热的温度为100℃~110℃;
    步骤S03中,所述3D打印的温度为45℃。
  9. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,所述燃料电池双极板的密度为1.5g/cm 3~1.6g/cm 3,接触电阻为7mΩ·cm 2~8mΩ·cm 2,电导率为180S/cm~190S/cm;透气率为1.2×10 -8cm 3/(cm 2·s),弯曲强度为60MPa~65Mpa,拉伸强度为40MPa~48MPa;接触角为110°~118°。
  10. 一种燃料电池双极板,由权利要求1-9任一项所述的制备方法得到。
PCT/CN2020/096021 2020-06-09 2020-06-15 一种燃料电池双极板及其制备方法 WO2021248508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010519911.0 2020-06-09
CN202010519911.0A CN111805899B (zh) 2020-06-09 2020-06-09 一种燃料电池双极板及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248508A1 true WO2021248508A1 (zh) 2021-12-16

Family

ID=72846544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096021 WO2021248508A1 (zh) 2020-06-09 2020-06-15 一种燃料电池双极板及其制备方法

Country Status (2)

Country Link
CN (1) CN111805899B (zh)
WO (1) WO2021248508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236235A1 (zh) * 2022-06-08 2023-12-14 深圳市氢瑞燃料电池科技有限公司 一种燃料电池复合极板及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803054B (zh) * 2021-01-05 2021-12-14 广东省科学院新材料研究所 一种电化学反应装置及其制作方法
CN114784307B (zh) * 2022-03-29 2023-11-17 广东氢发新材料科技有限公司 一种石墨烯增强膨胀石墨/聚酰亚胺-聚醚醚酮复合双极板及其制备方法
CN115000442A (zh) * 2022-06-08 2022-09-02 深圳市氢瑞燃料电池科技有限公司 一种燃料电池双极板及其制备方法
CN116640443B (zh) * 2023-05-26 2024-04-09 上海氢晨新能源科技有限公司 一种用于制备石墨双极板的液体树脂组合物及其制备方法和应用
CN116638697B (zh) * 2023-07-24 2023-11-03 中国机械总院集团北京机电研究所有限公司 高性能石墨基复合材料双极板、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765603A (zh) * 2005-11-11 2006-05-03 浙江大学 质子交换膜燃料电池用高分子树脂复合双极板的制备方法
WO2018108546A2 (de) * 2016-12-12 2018-06-21 Robert Bosch Gmbh Verfahren zur herstellung einer bipolarplatte, bipolarplatte für eine brennstoffzelle und brennstoffzelle
CN108666593A (zh) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 燃料电池双极板的制作方法
CN207993967U (zh) * 2017-03-28 2018-10-19 北京亿华通科技股份有限公司 一种燃料电池双极板
CN110336053A (zh) * 2019-07-16 2019-10-15 中南大学 一种含流道燃料电池双极板的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597897B1 (ko) * 2004-06-19 2006-07-06 한국타이어 주식회사 연료전지 분리판 성형용 소재, 그의 제조방법과 이로부터제조된 연료전지 분리판 및 연료전지
CN101113239B (zh) * 2007-07-24 2011-06-29 山东大学 一种聚苯硫醚树脂/石墨基导电复合材料及其制备工艺
CN106025297A (zh) * 2016-07-29 2016-10-12 盐城工学院 一种新能源汽车燃料电池的电极制备方法
CN107799784B (zh) * 2017-09-04 2020-03-31 内蒙古中科四维热管理材料有限公司 一种高阻隔性石墨双极板及其制备方法
US11945723B2 (en) * 2018-04-27 2024-04-02 Nippon Shokubai Co., Ltd. Method for producing carbon material complex
CN110204669B (zh) * 2019-06-17 2022-03-08 苏州兴业材料科技股份有限公司 制备石墨双极板的液体树脂及石墨双极板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765603A (zh) * 2005-11-11 2006-05-03 浙江大学 质子交换膜燃料电池用高分子树脂复合双极板的制备方法
WO2018108546A2 (de) * 2016-12-12 2018-06-21 Robert Bosch Gmbh Verfahren zur herstellung einer bipolarplatte, bipolarplatte für eine brennstoffzelle und brennstoffzelle
CN108666593A (zh) * 2017-03-28 2018-10-16 北京亿华通科技股份有限公司 燃料电池双极板的制作方法
CN207993967U (zh) * 2017-03-28 2018-10-19 北京亿华通科技股份有限公司 一种燃料电池双极板
CN110336053A (zh) * 2019-07-16 2019-10-15 中南大学 一种含流道燃料电池双极板的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236235A1 (zh) * 2022-06-08 2023-12-14 深圳市氢瑞燃料电池科技有限公司 一种燃料电池复合极板及其制备方法

Also Published As

Publication number Publication date
CN111805899A (zh) 2020-10-23
CN111805899B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021248508A1 (zh) 一种燃料电池双极板及其制备方法
CN111509293B (zh) 一种降低氧化物电解质晶界阻抗及界面阻抗的方法
Zhao et al. Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method
JP6189920B2 (ja) 燃料電池分離板及びその製造方法
Deng et al. 2D metal chalcogenides incorporated into carbon and their assembly for energy storage applications
CN103236548B (zh) 一种固体氧化物燃料电池的多孔阳极支撑体的制备方法
Hu et al. Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs
CN107959036A (zh) 一种平板型结构的固体氧化物燃料电池的制备方法
CN102569825A (zh) 导电塑料复合电极及其制作方法
CN109546160B (zh) 一种燃料电池用复合双极板及其制备方法与应用
Kim et al. Fabrication of anode support for solid oxide fuel cell using zirconium hydroxide as a pore former
Dong et al. Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting
Yang et al. Study on the mesocarbon microbeads/polyphenylene sulfide composite bipolar plates applied for proton exchange membrane fuel cells
CN110828781B (zh) 一种正极板及其制备方法和用途
JP2000040517A (ja) 固体高分子型燃料電池用炭素質セパレータ部材及びその製造方法
Kanawka et al. Microstructure and performance investigation of a solid oxide fuel cells based on highly asymmetric YSZ microtubular electrolytes
CN104577142B (zh) 一种固体氧化物燃料电池梯度结构阴极膜的制备方法
CN104347884B (zh) 一种适用于燃料电池的电极的制备方法
CN105680074A (zh) 一种浸渍石墨双极板的制作工艺
CN112054226B (zh) 一种燃料电池双极板及其制备方法
CN110556558B (zh) 多层复合质子交换膜及其制备方法
CN112993294A (zh) 一种燃料电池用碳塑复合双极板及其制备与应用
CN108754482A (zh) 一种新型多孔NiCuC合金膜材料及其制备方法
CN105474445A (zh) 固体氧化物燃料电池的阳极支撑体的制造方法和固体氧化物燃料电池的阳极支撑体
Chen et al. Preparation of V doped lanthanum silicate electrolyte ceramics by combustion method and study on conductance mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940239

Country of ref document: EP

Kind code of ref document: A1