WO2023236235A1 - 一种燃料电池复合极板及其制备方法 - Google Patents

一种燃料电池复合极板及其制备方法 Download PDF

Info

Publication number
WO2023236235A1
WO2023236235A1 PCT/CN2022/099070 CN2022099070W WO2023236235A1 WO 2023236235 A1 WO2023236235 A1 WO 2023236235A1 CN 2022099070 W CN2022099070 W CN 2022099070W WO 2023236235 A1 WO2023236235 A1 WO 2023236235A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell composite
rolling
composite plate
preparing
Prior art date
Application number
PCT/CN2022/099070
Other languages
English (en)
French (fr)
Inventor
张华农
高鹏然
王猛
Original Assignee
深圳市氢瑞燃料电池科技有限公司
深圳市雄韬电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市氢瑞燃料电池科技有限公司, 深圳市雄韬电源科技股份有限公司 filed Critical 深圳市氢瑞燃料电池科技有限公司
Publication of WO2023236235A1 publication Critical patent/WO2023236235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/18Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using profiled rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of fuel cells, and in particular to a fuel cell composite plate and a preparation method thereof.
  • Fuel cells use the chemical conversion of fuel and oxygen to generate electrical energy, and their core components include membrane electrode units.
  • the membrane electrode unit is a combination composed of a proton-conducting membrane and electrodes (anode and cathode) respectively arranged on both sides of the membrane.
  • a fuel cell is generally composed of a large number of stacked membrane electrode units, and the electrical power of these membrane electrode units is superimposed on each other.
  • the fuel cell stack is assembled from multiple bipolar plates and membrane electrodes.
  • the structure is bipolar plate, membrane electrode, bipolar plate, membrane electrode...
  • the bipolar plate is the main component of the fuel cell stack, occupying the battery More than 40% of the overall cost of the stack.
  • the bipolar plate plays an important role in separating the anode reactants and cathode reactants and supporting the entire battery system.
  • the slightly acidic environment inside the fuel cell has relatively high performance requirements for bipolar plate materials.
  • Currently, only pure graphite materials can fully meet the performance requirements of bipolar plate materials.
  • the manufacturing and processing costs of pure graphite materials are very high, and they are difficult to process, easy to break, and difficult to mass produce.
  • metal bipolar plates are also used to prepare fuel cells.
  • the processing cost of metal bipolar plates is high and their lifespan is short. They are easily corroded when used in an acidic environment for a long time.
  • graphite-based composite bipolar plates have huge application potential due to their advantages in processing conditions and cost.
  • the graphite-based composite bipolar plate has low molding strength and cannot press thinner bipolar plates.
  • the overall volume of the stack prepared from the graphite-based composite bipolar plate is large and the power density is low, which is difficult to meet the fuel cell requirements. Heap usage is required.
  • the present invention provides a fuel cell composite plate and a preparation method thereof, aiming to solve the problem that the existing graphite-based composite bipolar plates have low molding strength and cannot press thinner bipolar plates.
  • the graphite-based composite bipolar plates The overall volume of the stack prepared by the electrode plate is large and the power density is low, which makes it difficult to meet the needs of the fuel cell stack.
  • This application can improve the problem that the thinnest part of the electrode plate is difficult to form.
  • the prepared fuel cell composite electrode plate has better molding strength and can obtain a thinner electrode plate.
  • the entire stack made by using the fuel cell composite electrode plate of this application It has a small size and high power density, which can meet the needs of fuel cell stacks.
  • embodiments of the present invention provide a method for preparing a fuel cell composite plate, which includes the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 150°C-450°C for 1 min-15 min, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with a pattern ;
  • step S01 In step S01,
  • the graphite matrix is preferably one of expanded graphite, flake graphite and microcrystalline graphite or a mixture of at least two.
  • the resin is preferably polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), phenolic resin (PF), polyimide (PI), polyethersulfone (PES) and One or a mixture of at least two polyetherimides (PEI).
  • PPS polyphenylene sulfide
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PF phenolic resin
  • PI polyimide
  • PES polyethersulfone
  • PEI polyetherimides
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the mixing is preferably carried out in a mixer, ball mill, sand mill, jet mill or paddle mixer.
  • the rolling is preferably carried out in a roller press.
  • the rolling process preferably adopts 3-5 press rollers.
  • the gap of the first press roller is set to 15mm-20mm, and the gap setting of the press rollers after the first press roller is gradually reduced by 1mm-4mm.
  • the density of the prefabricated board is 0.05g/cm 3 -0.5g/cm 3 and the thickness is 3mm-20mm.
  • step S01 by arranging multiple bumps on the first rolling roller, exhaust can be achieved during the roll forming of prefabricated panels with raw material powders, and the physical cross-linking between raw material powders can be effectively enhanced to ensure prefabrication.
  • the performance of the board meets the requirements of this application.
  • a winding roller can be added to wind up the prefabricated panels.
  • step S02 In step S02,
  • the conductive substrate is preferably carbon paper, carbon fiber cloth, graphite paper or metal foil.
  • the thickness of the conductive substrate is 0.05mm-0.3mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the flexural strength of the fuel cell composite electrode plate is preferably 20MPa-80MPa, and the electrical conductivity is preferably 100S/cm-600S/cm.
  • the thickness of the thinnest part of the fuel cell composite electrode plate is preferably 0.20mm-0.25mm.
  • step S02 by arranging patterns on the rolling rollers, the exhaust gas can be realized during the process of rolling the prefabricated plate to form the fuel cell composite plate, and the physical cross-linking between the raw materials of the fuel cell composite plate can be effectively enhanced to ensure The performance of the fuel cell composite plate meets the requirements of this application.
  • embodiments of the present application also provide fuel cell composite electrode plates obtained by the above preparation method.
  • the present invention prepares prefabricated boards by mixing 40%-90% graphite matrix, 5%-50% resin and 0-40% conductive fillers, and effectively enhances the molding of the prefabricated boards by utilizing the resin and conductive fillers and controlling the rolling conditions.
  • Strength, the conductive base material further ensures the molding strength of the fuel cell composite plate; it can solve the problem of difficulty in molding at the thinnest part of the plate.
  • the prepared fuel cell composite plate has good molding strength and can obtain a thinner fuel cell Composite electrode plate; the stack produced by using the fuel cell composite electrode plate of the present application has a smaller overall volume and a larger power density, which can meet the use needs of the fuel cell stack. Since the addition of solvent is avoided during the mixing process of raw materials, the method of the present application is more environmentally friendly and consumes less energy.
  • the preparation method of the invention is simple, the production cost is low, the production efficiency is high, and it is easy to be batched or mass-produced.
  • Figure 1 is a schematic diagram of a rolling method (pressure rollers are provided on both the upper and lower sides) of the preparation method of the fuel cell composite plate according to the embodiment of the present invention
  • Figure 2 is a schematic diagram of another rolling method (upper pressing roller, lower conveyor belt transportation) of the method for preparing fuel cell composite electrode plates according to the embodiment of the present invention.
  • the directional indication is only used to explain the position of a certain posture ( As shown in the accompanying drawings), the relative positional relationship, movement conditions, etc. between the components, if the specific posture changes, the directional indication will also change accordingly.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the slightly acidic environment inside the fuel cell has relatively high performance requirements for bipolar plate materials.
  • the manufacturing and processing costs of pure graphite materials are very high, and they are difficult to process, easy to break, and difficult to mass produce.
  • metal bipolar plates are also used to prepare fuel cells.
  • the processing cost of metal bipolar plates is high and their lifespan is short. They are easily corroded when used in an acidic environment for a long time.
  • Graphite-based composite bipolar plates have huge application potential due to their advantages in processing conditions and cost.
  • the graphite-based composite bipolar plate has low molding strength and cannot press thinner bipolar plates.
  • the overall volume of the stack prepared from the graphite-based composite bipolar plate is large and the power density is low, which is difficult to meet the fuel cell requirements. Heap usage is required. Based on this, it is necessary to provide a fuel cell composite plate and a preparation method thereof to solve the above technical problems.
  • embodiments of the present invention provide a method for preparing a fuel cell composite plate, which includes the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 150°C-450°C for 1 min-15 min, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with a pattern ;
  • graphite provides the main conductive network
  • resin increases mechanical strength
  • conductive fillers are mainly filled inside the resin to reduce contact resistance.
  • the dosage ratio of each component is controlled to prepare the prefabricated board.
  • the resin is in the prefabricated board. Distributed in the form of spherulites or irregular granules, the resin can be melted or cross-linked after heating.
  • the graphite particles can directly form a sintering neck similar to that after powder metallurgy sintering, greatly improving the strength and thus solving the problem of difficulty in forming the thinnest part of the electrode plate. question.
  • Simple prefabricated plates have poor toughness and are prone to breakage when the thickness is thin; this application uses prefabricated plates and conductive substrates to prepare electrode plates, which can greatly increase the toughness of the electrode plates and ensure that thinner bipolar plates can be used more efficiently. Well formed.
  • step S01 In step S01,
  • the graphite matrix is preferably one of expanded graphite, flake graphite and microcrystalline graphite or a mixture of at least two.
  • the resin is preferably polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), phenolic resin (PF), polyimide (PI), polyethersulfone (PES) and One or a mixture of at least two polyetherimides (PEI).
  • PPS polyphenylene sulfide
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PF phenolic resin
  • PI polyimide
  • PES polyethersulfone
  • PEI polyetherimides
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the added conductive fillers are controlled to be point-shaped, flake-shaped and line-shaped.
  • the shaped nano conductive material can form a certain conductive network in the resin (dispersed reinforcement phase), thereby effectively ensuring the conductive performance of the bipolar plate structure of the present application.
  • the mixing is preferably carried out in a mixer, ball mill, sand mill, jet mill or paddle mixer.
  • the rolling is preferably carried out in a roller press.
  • the rolling process preferably adopts 3-5 press rollers.
  • the gap of the first press roller is set to 15mm-20mm, and the gap setting of the press rollers after the first press roller is gradually reduced by 1mm-4mm. In this way, the physical cross-linking of each material is achieved by gradually reducing the gap between the pressure rollers, thereby effectively improving the strength of the prefabricated plate and ensuring that the thinner bipolar plate can be better formed.
  • the density of the prefabricated board is 0.05g/cm 3 -0.5g/cm 3 and the thickness is 3mm-20mm.
  • step S01 by arranging multiple bumps on the first rolling roller, exhaust can be achieved during the roll forming of prefabricated panels with raw material powders, and the physical cross-linking between raw material powders can be effectively enhanced to ensure prefabrication.
  • the performance of the board meets the requirements of this application.
  • a winding roller can be added at the end of the last rolling process to wind up the prefabricated panels.
  • step S02 In step S02,
  • the conductive substrate is preferably carbon paper, carbon fiber cloth, graphite paper or metal foil.
  • the conductive substrate can effectively improve the toughness of the bipolar plate and effectively ensure the conductive performance of the bipolar plate.
  • the thickness of the conductive substrate is 0.05mm-0.3mm. Since the compressibility of the conductive base material is not high, in this application, the thickness of the conductive base material is controlled to make the conductive base material thinner than the prefabricated plate and thinner than the final plate thickness to ensure a thinner thickness. Bipolar plates can be formed better.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the flow channel structure of the fuel cell composite plate can be set according to actual needs.
  • the flexural strength of the fuel cell composite electrode plate is preferably 20MPa-80MPa, and the electrical conductivity is preferably 100S/cm-600S/cm.
  • the thickness of the thinnest part of the fuel cell composite electrode plate is preferably 0.20mm-0.25mm.
  • step S02 by setting patterns on the rolling rollers (the shape of the patterns can be set according to actual use needs), the exhaust during the process of rolling the prefabricated plate to form the fuel cell composite plate can be realized, and the fuel cell composite can be effectively enhanced.
  • the physical cross-linking between the raw materials of the electrode plate ensures that the performance of the fuel cell composite electrode plate meets the needs of this application.
  • the prefabricated panels can be disposed on one or both surfaces of the conductive substrate.
  • rolling can be performed in different ways according to actual needs.
  • the rolling method is a method of processing with pressure rollers on the upper and lower sides; in Figure 2, the rolling method is a method of upper pressure rollers and lower conveyor belt transportation. No matter which rolling method is used, as long as the rolling conditions are well controlled, the solution of this application can be realized.
  • embodiments of the present application also provide fuel cell composite electrode plates obtained by the above preparation method.
  • the present invention prepares prefabricated boards by mixing 40%-90% graphite matrix, 5%-50% resin and 0-40% conductive fillers, and effectively enhances the molding of the prefabricated boards by utilizing the resin and conductive fillers and controlling the rolling conditions.
  • Strength, the conductive base material further ensures the molding strength of the fuel cell composite plate; it can solve the problem of difficulty in molding at the thinnest part of the plate, and the prepared fuel cell composite plate has good molding strength and can obtain thinner thickness (this application
  • the thinnest part of the bipolar plate has a thickness of 0.20mm-0.25mm, which is thinner than the current graphite bipolar plate (the thinnest part of the graphite bipolar plate has a thickness of 0.40mm).
  • the stack is made by using the fuel cell composite plate of this application.
  • the overall volume is small and the power density is high, which can meet the needs of fuel cell stacks. Since the addition of solvent is avoided during the mixing process of raw materials, the method of the present application is more environmentally friendly and consumes less energy.
  • the preparation method of the invention is simple, the production cost is low, the production efficiency is high, and it is easy to be batched or mass-produced.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 150°C for 15 minutes, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is polyphenylene sulfide (PPS).
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap of the first pressure roller is set to 15mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 1mm.
  • the density of the prefabricated board is 0.05g/cm 3 and the thickness is 3mm.
  • step S02
  • the conductive substrate is a metal sheet.
  • the thickness of the conductive substrate is 0.05mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 80MPa and a conductivity of 500S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.20mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 250°C for 6 minutes, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is microcrystalline graphite.
  • the resin is phenolic resin (PF).
  • the conductive filler is graphene.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses four pressure rollers.
  • the gap of the first pressure roller is set to 17mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 2mm.
  • the density of the prefabricated board is 0.2g/cm 3 and the thickness is 10mm.
  • step S02
  • the conductive substrate is graphite paper.
  • the thickness of the conductive substrate is 0.1mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 70MPa and a conductivity of 600S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.21mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 450°C for 1 minute, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is flake graphite.
  • the resin is polytetrafluoroethylene (PTFE).
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses five pressure rollers.
  • the gap of the first pressure roller is set to 20 mm.
  • the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 4 mm.
  • the density of the prefabricated board is 0.5g/cm 3 and the thickness is 20mm.
  • step S02
  • the conductive substrate is carbon paper.
  • the thickness of the conductive substrate is 0.3mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 80MPa and a conductivity of 570S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.25mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 350°C for 5 minutes, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is a mixture of 25% expanded graphite and 30% microcrystalline graphite.
  • the resin is polyethersulfone (PES).
  • the conductive filler is a mixture of 15% carbon fiber and 10% carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses four pressure rollers.
  • the gap of the first pressure roller is set to 18mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 3mm.
  • the density of the prefabricated board is 0.3g/cm 3 and the thickness is 9mm.
  • step S02
  • the conductive substrate is a metal sheet.
  • the thickness of the conductive substrate is 0.2mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 80MPa and a conductivity of 590S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.20mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 300°C for 3 minutes, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is microcrystalline graphite.
  • the resin is polyetherimide (PEI).
  • the conductive filler is carbon fiber.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses five pressure rollers.
  • the gap of the first pressure roller is set to 16 mm.
  • the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 2 mm.
  • the density of the prefabricated board is 0.2g/cm 3 and the thickness is 7mm.
  • step S02
  • the conductive substrate is carbon paper.
  • the thickness of the conductive substrate is 0.3mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 78MPa and a conductivity of 600S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.21mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the two prefabricated plates in step S01 on both surfaces of the conductive substrate respectively, roll them at 150°C for 15 minutes, and cool to room temperature to obtain a fuel cell composite plate; the rolling rollers are provided with patterns;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is polyphenylene sulfide (PPS).
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap of the first pressure roller is set to 15mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 1mm.
  • the density of the prefabricated board is 0.05g/cm 3 and the thickness is 3mm.
  • step S02
  • the conductive substrate is a metal sheet.
  • the thickness of the conductive substrate is 0.05mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 75MPa and a conductivity of 570S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.25mm.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Roll the prefabricated plate in step S01 at 150°C for 15 minutes and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is polyphenylene sulfide (PPS).
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap of the first pressure roller is set to 15mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 1mm.
  • the density of the prefabricated board is 0.05g/cm 3 and the thickness is 3mm.
  • step S02
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate.
  • the fuel cell composite plate has a bending strength of 30MPa and a conductivity of 200S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.15mm. Since the fuel cell bipolar plate has low toughness, poor bending strength, and a thin thickness at its thinnest point, the fuel cell bipolar plate in this embodiment has a low yield and is difficult to form.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Stack the two prefabricated plates in step S01, roll them at 150°C for 15 minutes, and cool to room temperature to obtain a fuel cell composite plate; the rolling rollers are provided with patterns;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is polyphenylene sulfide (PPS).
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap of the first pressure roller is set to 15mm, and the gap setting of the pressure rollers after the first pressure roller is gradually reduced by 1mm.
  • the density of the prefabricated board is 0.05g/cm 3 and the thickness is 3mm.
  • step S02
  • the two prefabricated panels have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate.
  • the fuel cell composite plate has a bending strength of 35MPa and a conductivity of 200S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.30mm.
  • the flexural strength and electrical conductivity of the produced electrode plate are poor.
  • the fuel cell bipolar plate of this embodiment has a low yield and is difficult to shape.
  • a method for preparing a fuel cell composite plate including the following steps:
  • step S01 Place the prefabricated plate in step S01 on the surface of the conductive substrate, roll it at 150°C for 15 minutes, and cool it to room temperature to obtain a fuel cell composite plate; the rolling roller is provided with patterns;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is polyphenylene sulfide (PPS).
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses one pressing roller, and the gap between the pressing rollers is set to 15mm.
  • the density of the prefabricated board is 0.02g/cm 3 and the thickness is 30mm.
  • step S02
  • the conductive substrate is a metal sheet.
  • the thickness of the conductive substrate is 0.05mm.
  • the prefabricated panel and the conductive substrate have the same shape and area.
  • the flow channel of the fuel cell composite plate is disposed on the surface of the prefabricated plate away from the conductive substrate.
  • the fuel cell composite plate has a bending strength of 30MPa and a conductivity of 200S/cm.
  • the thickness of the thinnest part of the fuel cell composite plate is 0.35mm.
  • the fuel cell bipolar plate Since the fuel cell bipolar plate has poor bending strength and is thick at its thinnest point, the overall volume of the stack produced by the fuel cell bipolar plate of this embodiment is larger and the power density is smaller, making it difficult to meet the needs of use. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开了一种燃料电池复合极板及其制备方法,该制备方法包括如下步骤:S01、将40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;S02、将步骤S01中的预制板置于导电基材的表面,于150℃-450℃辊压1min-15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;所述百分比为重量百分比。本申请能够解决极板最薄处难以成型的问题,制备得到的复合极板成型强度较好,可以满足燃料电池的使用需要。本发明方法简单,生产成本较低,生产效率较高,易于大规模生产。

Description

一种燃料电池复合极板及其制备方法 技术领域
本发明涉及燃料电池技术领域,特别是涉及一种燃料电池复合极板及其制备方法。
背景技术
燃料电池利用燃料与氧气的化学转化产生电能,其核心组件包括膜电极单元。膜电极单元是由可传导质子的膜和分别设置在膜两侧的电极(阳极和阴极)构成的联合体。燃料电池一般由大量堆叠设置的膜电极单元构成,这些膜电极单元的电功率相互叠加。
燃料电池电堆是由多片双极板与膜电极组装而成,结构为双极板、膜电极、双极板、膜电极……其中双极板是燃料电池电堆的主要部件,占据电池电堆整体成本的40%以上。双极板起着分隔阳极反应物和阴极反应物、支撑整个电池系统的重要作用。燃料电池内部的微酸性环境对双极板材料的性能要求比较高,目前只有纯石墨材料能够完全满足双极板材料性能上的要求。但是,纯石墨材料的制造及加工成本都很高,而且加工困难,易于破碎,很难批量生产。目前,也有采用金属双极板制备燃料电池的,但是,金属双极板的加工成本很高,且寿命较短,长期在酸性环境下使用很容易被腐蚀。
目前,石墨基复合双极板因其加工条件及成本上的优势,应用潜力巨大。但是,石墨基复合双极板成型强度较低,无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料电池电堆的使用需要。
发明内容
基于此,本发明提供一种燃料电池复合极板及其制备方法,旨在解决现有的石墨基复合双极板成型强度较低、无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料 电池电堆的使用需要等问题。本申请能够改善极板最薄处难以成型的问题,制备得到的燃料电池复合极板成型强度较好,能够得到厚度较薄的极板;采用本申请燃料电池复合极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。
为实现上述目的,一方面,本发明实施例提供一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于150℃-450℃辊压1min-15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
作为优选的实施方式,步骤S01中,
所述石墨基体优选为膨胀石墨、鳞片石墨和微晶石墨中的一种或者至少两种的混合物。
所述树脂优选为聚苯硫醚(PPS)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、酚醛树脂(PF)、聚酰亚胺(PI)、聚醚砜(PES)和聚醚酰亚胺(PEI)中的一种或者至少两种的混合物。
所述导电填充物优选为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。
所述混合优选在混炼机、球磨机、砂磨机、气流粉碎机或者桨式搅拌机中进行混合。
所述辊压优选在辊压机中进行。
所述辊压优选采用3-5道压辊,第一道压辊的间隙设置为15mm-20mm,第一道压辊之后的压辊的间隙设置逐级递减1mm-4mm。
所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。
步骤S01中,通过在第一道辊压的辊子上设置多个凸点,能够实现原料粉末辊压成型预制板过程中的排气,并有效增强各原料粉末之间的物理交联,保证预制板的性能满足本申请需要。在最后一道辊压的末端可以增加收卷滚 轴进行预制板的收卷。
作为优选的实施方式,步骤S02中,
所述导电基材优选为碳纸、碳纤维布、石墨纸或者金属薄片。
所述导电基材的厚度为0.05mm-0.3mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度优选为20MPa-80MPa,导电率优选为100S/cm-600S/cm。
所述燃料电池复合极板的最薄处厚度优选为0.20mm-0.25mm。
步骤S02中,通过在辊压的辊子上设置花纹,能够实现预制板辊压成型燃料电池复合极板过程中的排气,并有效增强燃料电池复合极板各原料之间的物理交联,保证燃料电池复合极板的性能满足本申请需要。
另一方面,本申请实施例还提供由上述制备方法得到的燃料电池复合极板。
本发明通过以40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合制备预制板,利用树脂和导电填充物、并控制辊压的条件有效增强预制板的成型强度,通过导电基材进一步保证燃料电池复合极板的成型强度;能够解决极板最薄处难以成型的问题,制备得到的燃料电池复合极板成型强度较好,能够得到厚度较薄的燃料电池复合极板;采用本申请燃料电池复合极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。由于原料混合过程中避免了溶剂的加入,因而本申请方法对环境更友好,能耗也更低。本发明的制备方法简单,生产成本较低,生产效率较高,易于批量化或大规模生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的 附图。
图1为本发明实施例的燃料电池复合极板的制备方法的一种辊压方式(上下均有压辊加工)的示意图;
图2为本发明实施例的燃料电池复合极板的制备方法的另一种辊压方式(上压辊、下用传送带运输)的示意图。
本发明目的的实现、功能特点及优点将结合实施例做进一步说明。
具体实施方式
下面将结合本发明实施例中对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后、顶、底……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第 二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
燃料电池内部的微酸性环境对双极板材料的性能要求比较高,目前只有纯石墨材料能够完全满足双极板材料性能上的要求。但是,纯石墨材料的制造及加工成本都很高,而且加工困难,易于破碎,很难批量生产。目前,也有采用金属双极板制备燃料电池的,但是,金属双极板的加工成本很高,且寿命较短,长期在酸性环境下使用很容易被腐蚀。石墨基复合双极板因其加工条件及成本上的优势,应用潜力巨大。但是,石墨基复合双极板成型强度较低,无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料电池电堆的使用需要。基于此,有必要提供一种燃料电池复合极板及其制备方法以解决上述技术问题。
为实现上述目的,一方面,本发明实施例提供一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于150℃-450℃辊压1min-15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
在本申请中,通过石墨提供主要的导电网络、树脂增加机械强度、导电填充物主要是填充在树脂内部来降低接触电阻,同时控制各组分的用量比例来制备预制板,树脂在预制板中以球晶或者不规则颗粒状分布,加热之后可以使树脂熔融或交联,同时使石墨颗粒直接形成类似粉末冶金烧结后的烧结颈,大幅度提高强度,从而解决极板最薄处难以成型的问题。
单纯预制板韧性较差,在厚度较薄的情况下容易发生折断;本申请以预制板和导电基材制备极板,可以大幅度增加极板的韧性,保证厚度较薄的双极板能够较好成型。
作为优选的实施方式,步骤S01中,
所述石墨基体优选为膨胀石墨、鳞片石墨和微晶石墨中的一种或者至少两种的混合物。
所述树脂优选为聚苯硫醚(PPS)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、酚醛树脂(PF)、聚酰亚胺(PI)、聚醚砜(PES)和聚醚酰亚胺(PEI)中的一种或者至少两种的混合物。
所述导电填充物优选为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。本申请的双极板结构中,存在以石墨为主体的连续导电网络以及以树脂为主体的分散式增强相,通过加入导电填充物,且控制加入的导电填充物为点状、片状以及线状的纳米导电材料,可以在树脂(分散式增强相)内形成一定的导电网络,从而有效保证本申请双极板结构的导电性能。
所述混合优选在混炼机、球磨机、砂磨机、气流粉碎机或者桨式搅拌机中进行混合。
所述辊压优选在辊压机中进行。
所述辊压优选采用3-5道压辊,第一道压辊的间隙设置为15mm-20mm,第一道压辊之后的压辊的间隙设置逐级递减1mm-4mm。这样,通过一步步缩小压辊的间隙来实现各物料的物理交联,从而有效提高预制板的强度,保证厚度较薄的双极板能够较好成型。
所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。通过控制预制板的密度在比较低的范围,能够有效提高后续带流道的极板的压制成型的可压缩性,保证厚度较薄的双极板能够较好成型。
步骤S01中,通过在第一道辊压的辊子上设置多个凸点,能够实现原料粉末辊压成型预制板过程中的排气,并有效增强各原料粉末之间的物理交联,保证预制板的性能满足本申请需要。在最后一道辊压的末端可以增加收卷滚轴进行预制板的收卷。
作为优选的实施方式,步骤S02中,
所述导电基材优选为碳纸、碳纤维布、石墨纸或者金属薄片。导电基材能够有效提高双极板的韧性,同时有效保证双极板的导电性能。
所述导电基材的厚度为0.05mm-0.3mm。由于导电基材的可压缩性不高, 在本申请中,通过控制导电基材的厚度,使得导电基材要比预制板薄,并且比最终的极板成型厚度薄,以保证厚度较薄的双极板能够较好成型。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。燃料电池复合极板的流道结构可以根据实际需要进行设置。
所述燃料电池复合极板的抗弯强度优选为20MPa-80MPa,导电率优选为100S/cm-600S/cm。
所述燃料电池复合极板的最薄处厚度优选为0.20mm-0.25mm。
步骤S02中,通过在辊压的辊子上设置花纹(花纹的形状可以根据实际使用需要进行设置),能够实现预制板辊压成型燃料电池复合极板过程中的排气,并有效增强燃料电池复合极板各原料之间的物理交联,保证燃料电池复合极板的性能满足本申请需要。根据实际使用需要,预制板可以在设置于导电基材的其中一表面或者两表面。
如图1和图2所示,在本申请的实施例中,辊压可以根据实际使用需要采用不同的方式进行。如图1所示,其辊压方式为上下均有压辊加工的方式;在图2中,其辊压方式为上压辊、下用传送带运输的方式。无论采用哪种辊压方式,只要控制好辊压条件都可以实现本申请方案。
另一方面,本申请实施例还提供由上述制备方法得到的燃料电池复合极板。
本发明通过以40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合制备预制板,利用树脂和导电填充物、并控制辊压的条件有效增强预制板的成型强度,通过导电基材进一步保证燃料电池复合极板的成型强度;能够解决极板最薄处难以成型的问题,制备得到的燃料电池复合极板成型强度较好,能够得到厚度较薄(本申请的双极板最薄处厚度为0.20mm-0.25mm,比目前石墨双极板最薄处厚度0.40mm更薄)的燃料电池复合极板;采用本申请燃料电池复合极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。由于原料混合过程中避免了溶剂的加入,因而本申请方法对环境更友好,能耗也更低。本发明的制备方法简单,生产成本较低,生产效率较高,易于批量化或大规模生产。
实施例1
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%石墨基体、20%树脂和40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于150℃辊压15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。
所述树脂为聚苯硫醚(PPS)。
所述导电填充物为纳米碳管。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的间隙设置为15mm,第一道压辊之后的压辊的间隙设置逐级递减1mm。
所述预制板的密度为0.05g/cm 3,厚度为3mm。
步骤S02中,
所述导电基材为金属薄片。
所述导电基材的厚度为0.05mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为80MPa,导电率为500S/cm。
所述燃料电池复合极板的最薄处厚度为0.20mm。
实施例2
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将90%石墨基体、5%树脂和5%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于250℃辊压6min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为微晶石墨。
所述树脂为酚醛树脂(PF)。
所述导电填充物为石墨烯。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用4道压辊,第一道压辊的间隙设置为17mm,第一道压辊之后的压辊的间隙设置逐级递减2mm。
所述预制板的密度为0.2g/cm 3,厚度为10mm。
步骤S02中,
所述导电基材为石墨纸。
所述导电基材的厚度为0.1mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为70MPa,导电率为600S/cm。
所述燃料电池复合极板的最薄处厚度为0.21mm。
实施例3
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将50%石墨基体和50%树脂物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于450℃辊压1min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为鳞片石墨。
所述树脂为聚四氟乙烯(PTFE)。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用5道压辊,第一道压辊的间隙设置为20mm,第一道压辊之后的压辊的间隙设置逐级递减4mm。
所述预制板的密度为0.5g/cm 3,厚度为20mm。
步骤S02中,
所述导电基材为碳纸。
所述导电基材的厚度为0.3mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为80MPa,导电率为570S/cm。
所述燃料电池复合极板的最薄处厚度为0.25mm。
实施例4
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将55%石墨基体、20%树脂和25%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于350℃辊压5min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为25%膨胀石墨和30%微晶石墨中的混合物。
所述树脂为聚醚砜(PES)。
所述导电填充物为15%碳纤维和10%纳米碳管的混合物。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用4道压辊,第一道压辊的间隙设置为18mm,第一道压辊之后的压辊的间隙设置逐级递减3mm。
所述预制板的密度为0.3g/cm 3,厚度为9mm。
步骤S02中,
所述导电基材为金属薄片。
所述导电基材的厚度为0.2mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为80MPa,导电率为590S/cm。
所述燃料电池复合极板的最薄处厚度为0.20mm。
实施例5
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将45%石墨基体、45%树脂和10%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于300℃辊压3min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为微晶石墨。
所述树脂为聚醚酰亚胺(PEI)。
所述导电填充物为碳纤维。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用5道压辊,第一道压辊的间隙设置为16mm,第一道压辊之后的压辊的间隙设置逐级递减2mm。
所述预制板的密度为0.2g/cm 3,厚度为7mm。
步骤S02中,
所述导电基材为碳纸。
所述导电基材的厚度为0.3mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为78MPa,导电率为600S/cm。
所述燃料电池复合极板的最薄处厚度为0.21mm。
实施例6
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%石墨基体、20%树脂和40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将两块步骤S01中的预制板分别置于导电基材的两表面,于150℃辊压15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。
所述树脂为聚苯硫醚(PPS)。
所述导电填充物为纳米碳管。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的间隙设置为15mm,第一道压辊之后的压辊的间隙设置逐级递减1mm。
所述预制板的密度为0.05g/cm 3,厚度为3mm。
步骤S02中,
所述导电基材为金属薄片。
所述导电基材的厚度为0.05mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为75MPa,导电率为570S/cm。
所述燃料电池复合极板的最薄处厚度为0.25mm。
对比实施例1
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%石墨基体、20%树脂和40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板于150℃辊压15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。
所述树脂为聚苯硫醚(PPS)。
所述导电填充物为纳米碳管。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的间隙设置为15mm,第一道压辊之后的压辊的间隙设置逐级递减1mm。
所述预制板的密度为0.05g/cm 3,厚度为3mm。
步骤S02中,
所述燃料电池复合极板的流道设置于所述预制板的表面上。
所述燃料电池复合极板的抗弯强度为30MPa,导电率为200S/cm。
所述燃料电池复合极板的最薄处厚度为0.15mm。由于燃料电池双极板的韧性低、抗弯强度较差,最薄处的厚度较薄,本实施例的燃料电池双极板的成品率较低,较难成型。
对比实施例2
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%石墨基体、20%树脂和40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将两块步骤S01中的预制板叠放,于150℃辊压15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。
所述树脂为聚苯硫醚(PPS)。
所述导电填充物为纳米碳管。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的间隙设置为15mm,第一道压辊之后的压辊的间隙设置逐级递减1mm。
所述预制板的密度为0.05g/cm 3,厚度为3mm。
步骤S02中,
两块所述预制板具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板的表面上。
所述燃料电池复合极板的抗弯强度为35MPa,导电率为200S/cm。
所述燃料电池复合极板的最薄处厚度为0.30mm。制得的极板的抗弯强度和导电率均较差,本实施例的燃料电池双极板的成品率较低,较难成型。
对比实施例3
一种燃料电池复合极板的制备方法,包括如下步骤:
S01、将40%石墨基体、20%树脂和40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
S02、将步骤S01中的预制板置于导电基材的表面,于150℃辊压15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。
所述树脂为聚苯硫醚(PPS)。
所述导电填充物为纳米碳管。
所述混合在混炼机中进行混合。
所述辊压在辊压机中进行。
所述辊压采用1道压辊,压辊的间隙设置为15mm。
所述预制板的密度为0.02g/cm 3,厚度为30mm。
步骤S02中,
所述导电基材为金属薄片。
所述导电基材的厚度为0.05mm。
所述预制板和所述导电基材具有相同的形状和面积。
所述燃料电池复合极板的流道设置于所述预制板远离所述导电基材的表面上。
所述燃料电池复合极板的抗弯强度为30MPa,导电率为200S/cm。
所述燃料电池复合极板的最薄处厚度为0.35mm。
由于燃料电池双极板的抗弯强度较差,最薄处的厚度较厚,本实施例的燃料电池双极板制得的电堆整体体积较大、功率密度较小,很难满足使用需要。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种燃料电池复合极板的制备方法,其特征在于,包括如下步骤:
    S01、将40%-90%石墨基体、5%-50%树脂和0-40%导电填充物混合均匀,得到混合物;将所述混合物进行多道辊压,得到预制板;所述多道辊压中的第一道辊压的辊子上设置有多个凸点;
    S02、将步骤S01中的预制板置于导电基材的表面,于150℃-450℃辊压1min-15min,冷却至室温,得到燃料电池复合极板;所述辊压的辊子上设置有花纹;
    所述百分比为重量百分比。
  2. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S01中,所述石墨基体为膨胀石墨、鳞片石墨和微晶石墨中的一种或者至少两种的混合物。
  3. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S01中,所述树脂为聚苯硫醚、聚偏氟乙烯、聚四氟乙烯、酚醛树脂、聚酰亚胺、聚醚砜和聚醚酰亚胺中的一种或者至少两种的混合物。
  4. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S01中,所述导电填充物为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。
  5. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S01中,所述辊压采用3-5道压辊,第一道压辊的间隙设置为15mm-20mm,第一道压辊之后的压辊的间隙设置逐级递减1mm-4mm。
  6. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S01中,所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。
  7. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S02中,所述导电基材为碳纸、碳纤维布、石墨纸或者金属薄片。
  8. 根据权利要求7所述的燃料电池复合极板的制备方法,其特征在于,所述导电基材的厚度为0.05mm-0.3mm。
  9. 根据权利要求1所述的燃料电池复合极板的制备方法,其特征在于,步骤S02中,所述燃料电池复合极板的抗弯强度为20MPa-80MPa,导电率为100 S/cm-600S/cm;所述燃料电池复合极板的最薄处厚度为0.20mm-0.25mm。
  10. 一种燃料电池复合极板,其特征在于,所述燃料电池复合极板由权利要求1至9任一项所述的燃料电池复合极板的制备方法制备得到。
PCT/CN2022/099070 2022-06-08 2022-06-16 一种燃料电池复合极板及其制备方法 WO2023236235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210643889.X 2022-06-08
CN202210643889.XA CN115020733A (zh) 2022-06-08 2022-06-08 一种燃料电池复合极板及其制备方法

Publications (1)

Publication Number Publication Date
WO2023236235A1 true WO2023236235A1 (zh) 2023-12-14

Family

ID=83072057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099070 WO2023236235A1 (zh) 2022-06-08 2022-06-16 一种燃料电池复合极板及其制备方法

Country Status (2)

Country Link
CN (1) CN115020733A (zh)
WO (1) WO2023236235A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
CN110828841A (zh) * 2019-11-19 2020-02-21 深圳市雄韬电源科技股份有限公司 一种燃料电池双极板及其制备方法、所用设备
CN112103516A (zh) * 2020-09-17 2020-12-18 广东国鸿氢能科技有限公司 一种用于制作石墨双极板的连续辊压成型装置和方法
CN113563008A (zh) * 2021-04-21 2021-10-29 深圳市氢雄燃料电池有限公司 一种石墨基复合双极板的制备方法
WO2021248508A1 (zh) * 2020-06-09 2021-12-16 深圳市雄韬电源科技股份有限公司 一种燃料电池双极板及其制备方法
CN114188560A (zh) * 2021-10-20 2022-03-15 海卓动力(上海)能源科技有限公司 一种燃料电池双极板制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208659A (zh) * 2011-05-11 2011-10-05 同济大学 一种燃料电池用双极板的制造工艺及设备
KR101957345B1 (ko) * 2016-12-27 2019-03-12 한국세라믹기술원 분말과 섬유를 소재로 하는 복합단열재 연속 제조방법
CN107195921A (zh) * 2017-04-06 2017-09-22 上海交通大学 多层复合导电板及其制备方法
CN109638310B (zh) * 2017-10-09 2021-10-26 山东岱擎新能源科技有限公司 燃料电池用超薄复合双极板及包含其的燃料电池
KR102449206B1 (ko) * 2018-12-21 2022-09-28 주식회사 엘지에너지솔루션 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
CN112290040A (zh) * 2020-10-30 2021-01-29 江苏清能新能源技术股份有限公司 一种复合石墨双极板的制备方法
CN112477362A (zh) * 2020-12-05 2021-03-12 东莞市群安塑胶实业有限公司 离子性中间层夹胶玻璃减少气泡的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
CN110828841A (zh) * 2019-11-19 2020-02-21 深圳市雄韬电源科技股份有限公司 一种燃料电池双极板及其制备方法、所用设备
WO2021248508A1 (zh) * 2020-06-09 2021-12-16 深圳市雄韬电源科技股份有限公司 一种燃料电池双极板及其制备方法
CN112103516A (zh) * 2020-09-17 2020-12-18 广东国鸿氢能科技有限公司 一种用于制作石墨双极板的连续辊压成型装置和方法
CN113563008A (zh) * 2021-04-21 2021-10-29 深圳市氢雄燃料电池有限公司 一种石墨基复合双极板的制备方法
CN114188560A (zh) * 2021-10-20 2022-03-15 海卓动力(上海)能源科技有限公司 一种燃料电池双极板制备方法

Also Published As

Publication number Publication date
CN115020733A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Song et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell
US8790846B2 (en) Gas diffusion layer and process for production thereof, and fuel cell
Oh et al. The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system
EP2192644B1 (en) Molding material for fuel cell separator
Kuan et al. Bipolar plate design and fabrication using graphite reinforced composite laminate for proton exchange membrane fuel cells
CN103746122A (zh) 一种新型燃料电池复合材料双极板的制备方法
US20080318114A1 (en) Separator for fuel cell and its manufacturing method and fuel cell stack using the separator
CN1330026C (zh) 一种质子交换膜燃料电池双极板制备工艺
EP2519989B1 (en) Performance enhancing layers for fuel cells
CN114784307B (zh) 一种石墨烯增强膨胀石墨/聚酰亚胺-聚醚醚酮复合双极板及其制备方法
CN102569834A (zh) 一种高强度柔性石墨双极板及其制备方法
Zhang et al. Gradient structured composite bipolar plates for proton exchange membrane fuel cells
WO2023236234A1 (zh) 一种燃料电池双极板及其制备方法
US20080220154A1 (en) Method of forming fluid flow field plates for electrochemical devices
WO2023236235A1 (zh) 一种燃料电池复合极板及其制备方法
CN112993294A (zh) 一种燃料电池用碳塑复合双极板及其制备与应用
JP2005285774A (ja) 燃料電池用セパレータと,その製造方法及びこれを含む燃料電池
JP3561241B2 (ja) 直接型メタノール燃料電池用セパレータ及び直接型メタノール燃料電池
JP5353608B2 (ja) 燃料電池用セパレータの製造方法
KR101698583B1 (ko) 연료전지용 분리판, 이의 제조 방법 및 이를 포함하는 연료전지
CN112531181B (zh) 一种高分子材料基双极板、及包含其的单电池和电堆
KR20190080615A (ko) 초경량 탄소계 분리판 및 그를 포함하는 연료전지 스택과 그 제조방법
JP2011204425A (ja) 燃料電池用セパレータ及びその製造方法
KR102592974B1 (ko) 연료전지용 분리판 및 이의 제조방법
KR100801593B1 (ko) 연료전지용 바이폴라 플레이트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945375

Country of ref document: EP

Kind code of ref document: A1