WO2023236234A1 - 一种燃料电池双极板及其制备方法 - Google Patents

一种燃料电池双极板及其制备方法 Download PDF

Info

Publication number
WO2023236234A1
WO2023236234A1 PCT/CN2022/099069 CN2022099069W WO2023236234A1 WO 2023236234 A1 WO2023236234 A1 WO 2023236234A1 CN 2022099069 W CN2022099069 W CN 2022099069W WO 2023236234 A1 WO2023236234 A1 WO 2023236234A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
plate
bipolar plate
layer
cell bipolar
Prior art date
Application number
PCT/CN2022/099069
Other languages
English (en)
French (fr)
Inventor
张华农
高鹏然
王猛
Original Assignee
深圳市氢瑞燃料电池科技有限公司
深圳市雄韬电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市氢瑞燃料电池科技有限公司, 深圳市雄韬电源科技股份有限公司 filed Critical 深圳市氢瑞燃料电池科技有限公司
Publication of WO2023236234A1 publication Critical patent/WO2023236234A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of fuel cells, and in particular to a fuel cell bipolar plate and a preparation method thereof.
  • Fuel cells use the chemical conversion of fuel and oxygen to generate electrical energy, and their core components include membrane electrode units.
  • the membrane electrode unit is a combination composed of a proton-conducting membrane and electrodes (anode and cathode) respectively arranged on both sides of the membrane.
  • a fuel cell is generally composed of a large number of stacked membrane electrode units, and the electrical power of these membrane electrode units is superimposed on each other.
  • the fuel cell stack is assembled from multiple bipolar plates and membrane electrodes.
  • the structure is bipolar plate, membrane electrode, bipolar plate, membrane electrode...
  • the bipolar plate is the main component of the fuel cell stack, occupying the battery More than 40% of the overall cost of the stack.
  • the bipolar plate plays an important role in separating the anode reactants and cathode reactants and supporting the entire battery system.
  • the slightly acidic environment inside the fuel cell has relatively high performance requirements for bipolar plate materials.
  • Currently, only pure graphite materials can fully meet the performance requirements of bipolar plate materials.
  • the manufacturing and processing costs of pure graphite materials are very high, and they are difficult to process, easy to break, and difficult to mass produce.
  • metal bipolar plates are also used to prepare fuel cells.
  • the processing cost of metal bipolar plates is high and their lifespan is short. They are easily corroded when used in an acidic environment for a long time.
  • graphite-based composite bipolar plates have huge application potential due to their advantages in processing conditions and cost.
  • the graphite-based composite bipolar plate has low molding strength and cannot press thinner bipolar plates.
  • the overall volume of the stack prepared from the graphite-based composite bipolar plate is large and the power density is low, which is difficult to meet the fuel cell requirements. Heap usage is required.
  • the present invention provides a fuel cell bipolar plate and a preparation method thereof, aiming to solve the problem that the existing graphite-based composite bipolar plates have low molding strength and cannot press thinner bipolar plates.
  • the graphite-based composite bipolar plates The overall volume of the stack prepared by the electrode plate is large and the power density is low, which makes it difficult to meet the needs of the fuel cell stack.
  • This application can improve the problem that the thinnest part of the polar plate is difficult to form.
  • the prepared bipolar plate has better molding strength and can obtain a thinner bipolar plate.
  • the overall volume of the stack produced by using the bipolar plate of this application is smaller. , The power density is large and can meet the needs of fuel cell stacks.
  • embodiments of the present invention provide a method for preparing a fuel cell bipolar plate, which includes the following steps:
  • the body is an intermediate body with a two-layer structure or a three-layer structure.
  • the intermediate body of the two-layer structure includes an upper prefabricated plate and a lower conductive base material.
  • the intermediate body of the three-layer structure includes an upper prefabricated plate and a middle conductive base material. and a lower prefabricated panel, wherein both the upper prefabricated panel and the lower prefabricated panel are the prefabricated panels prepared in step S01;
  • step S03 Heat and solidify the plate with flow channel in step S02 at 100°C-350°C for 5min-180min to obtain a fuel cell bipolar plate;
  • step S01 In step S01,
  • the graphite matrix is preferably expanded graphite, flake graphite or microcrystalline graphite.
  • the resin is preferably polyphenylene sulfide (PPS), polyvinylidene fluoride (PVDF), phenolic resin (PF), polyimide (PI), polyethersulfone (PES) and polyetherimide (PEI) One or a mixture of at least two.
  • PPS polyphenylene sulfide
  • PVDF polyvinylidene fluoride
  • PF phenolic resin
  • PI polyimide
  • PES polyethersulfone
  • PEI polyetherimide
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the mixing is preferably carried out in a mixer, ball mill, sand mill, jet mill or paddle mixer.
  • the rolling is preferably carried out in a roller press.
  • the rolling process preferably uses 3-5 rollers.
  • the gap between the first rollers is set to 15mm-20mm, and the gap between the rollers after the first roller is gradually reduced by 1mm-4mm.
  • the density of the prefabricated board is 0.05g/cm 3 -0.5g/cm 3 and the thickness is 3mm-20mm.
  • step S02 In step S02,
  • the conductive substrate is preferably carbon paper, carbon fiber cloth or graphite paper.
  • the thickness of the conductive base material of the middle layer is 0.05mm-0.3mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and/or on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is preferably 5MPa-80MPa.
  • step S03 As a preferred implementation, in step S03,
  • the flexural strength of the fuel cell bipolar plate is preferably 20MPa-80MPa, and the electrical conductivity is preferably 100S/cm-600S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is preferably 0.20mm-0.25mm.
  • embodiments of the present application also provide fuel cell bipolar plates obtained by the above preparation method.
  • the present invention prepares prefabricated boards by mixing 60%-90% graphite matrix, 5%-30% resin and 0-20% conductive fillers, and then uses an intermediate with a three-layer structure (upper prefabricated board, middle layer conductive base material and the lower prefabricated plate) to prepare an electrode plate with a flow channel, which can solve the problem of difficulty in forming the thinnest part of the electrode plate.
  • the prepared bipolar plate has better molding strength and can obtain a thinner bipolar plate; using the bipolar plate of this application
  • the overall volume of the stack produced by the electrode plate is small and the power density is high, which can meet the needs of the fuel cell stack.
  • the preparation method of the invention is simple, the production cost is low, the production efficiency is high, and it is easy to be batched or mass-produced.
  • the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back, top, bottom%), then the directional indications are only used to explain what to do in a certain posture. The relative positional relationship between the components, the movement status, etc., if the specific posture changes, the directional indication will also change accordingly.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • the slightly acidic environment inside the fuel cell has relatively high performance requirements for bipolar plate materials.
  • the manufacturing and processing costs of pure graphite materials are very high, and they are difficult to process, easy to break, and difficult to mass produce.
  • metal bipolar plates are also used to prepare fuel cells.
  • the processing cost of metal bipolar plates is high and their lifespan is short. They are easily corroded when used in an acidic environment for a long time.
  • Graphite-based composite bipolar plates have huge application potential due to their advantages in processing conditions and cost.
  • the graphite-based composite bipolar plate has low molding strength and cannot press thinner bipolar plates.
  • the overall volume of the stack prepared from the graphite-based composite bipolar plate is large and the power density is low, which is difficult to meet the fuel cell requirements. Heap usage is required. Based on this, it is necessary to provide a fuel cell bipolar plate and a preparation method thereof to solve the above technical problems.
  • embodiments of the present invention provide a method for preparing a fuel cell bipolar plate, which includes the following steps:
  • the body is an intermediate body with a two-layer structure or a three-layer structure.
  • the intermediate body of the two-layer structure includes an upper prefabricated plate and a lower conductive base material.
  • the intermediate body of the three-layer structure includes an upper prefabricated plate and a middle conductive base material. and a lower prefabricated panel, wherein both the upper prefabricated panel and the lower prefabricated panel are the prefabricated panels prepared in step S01;
  • step S03 Heat and solidify the plate with flow channel in step S02 at 100°C-350°C for 5min-180min to obtain a fuel cell bipolar plate;
  • graphite provides the main conductive network
  • resin increases mechanical strength
  • conductive fillers are mainly filled inside the resin to reduce contact resistance.
  • the dosage ratio of each component is controlled to prepare the prefabricated board.
  • the resin is in the prefabricated board. Distributed in the form of spherulites or irregular granules, the resin can be melted or cross-linked after heating.
  • the graphite particles can directly form a sintering neck similar to that after powder metallurgy sintering, greatly improving the strength and thus solving the problem of difficulty in forming the thinnest part of the electrode plate. question.
  • Simple prefabricated plates have poor toughness and are prone to breakage when the thickness is thin; in this application, an intermediate body with a three-layer structure (upper prefabricated plate, middle layer conductive substrate and lower prefabricated plate) is used to prepare a plate with a flow channel , by adding conductive substrates (similar to carbon cloth, etc.), the toughness can be greatly increased, further ensuring that thinner bipolar plates can be formed better.
  • step S01 In step S01,
  • the graphite matrix is preferably expanded graphite, flake graphite or microcrystalline graphite.
  • the resin is preferably one or a mixture of at least two of PPS, PVDF, phenolic resin, PI, PES and PEI.
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the conductive filler is preferably one or a mixture of at least two of carbon black, carbon fiber, carbon nanotube and graphene.
  • the added conductive fillers are controlled to be point-shaped, flake-shaped and line-shaped.
  • the nano-conductive material in the shape can form a certain conductive network in the resin (dispersed reinforcement phase), thereby further improving the conductive performance of the bipolar plate structure of the present application.
  • the mixing is preferably carried out in a mixer, ball mill, sand mill, jet mill or paddle mixer.
  • the rolling is preferably carried out in a roller press.
  • the rolling process preferably uses 3-5 rollers.
  • the gap between the first rollers is set to 15mm-20mm, and the gap between the rollers after the first roller is gradually reduced by 1mm-4mm. In this way, the physical cross-linking of each material is achieved by gradually reducing the gap between the pressure rollers, thereby effectively improving the strength of the prefabricated plate and ensuring that the thinner bipolar plate can be better formed.
  • the density of the prefabricated board is 0.05g/cm 3 -0.5g/cm 3 and the thickness is 3mm-20mm.
  • step S02 In step S02,
  • the conductive substrate is preferably carbon paper, carbon fiber cloth or graphite paper.
  • the conductive substrate can effectively improve the toughness of the bipolar plate and effectively ensure the conductive performance of the bipolar plate.
  • the thickness of the conductive base material of the middle layer is 0.05mm-0.3mm. Since the compressibility of the conductive base material is not high, in this application, the thickness of the conductive base material is controlled to make the conductive base material thinner than the prefabricated plate and thinner than the final plate thickness to ensure a thinner thickness. Bipolar plates can be formed better.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and/or on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is preferably 5MPa-80MPa.
  • step S03 As a preferred implementation, in step S03,
  • the flexural strength of the fuel cell bipolar plate is preferably 20MPa-80MPa, and the electrical conductivity is preferably 100S/cm-600S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is preferably 0.20mm-0.25mm.
  • embodiments of the present application also provide fuel cell bipolar plates obtained by the above preparation method.
  • the present invention prepares prefabricated boards by mixing 60%-90% graphite matrix, 5%-30% resin and 0-20% conductive fillers, and then uses an intermediate with a three-layer structure (upper prefabricated board, middle layer conductive base material and the lower prefabricated plate) to prepare a pole plate with a flow channel, which can solve the problem of difficulty in forming the thinnest part of the pole plate.
  • the prepared bipolar plate has better molding strength and can obtain a thinner bipolar plate (the bipolar plate of this application).
  • the thickness of the thinnest part of the polar plate is 0.20mm-0.25mm, which is thinner than the current thickness of the thinnest part of the graphite bipolar plate (0.40mm); the overall volume of the stack produced by using the bipolar plate of this application is smaller and the power density is higher. It can meet the use needs of fuel cell stacks.
  • the preparation method of the invention is simple, the production cost is low, the production efficiency is high, and it is easy to be batched or mass-produced.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • the body is an intermediate body with a three-layer structure, including an upper prefabricated plate, an intermediate conductive substrate and a lower prefabricated plate, wherein both the upper prefabricated plate and the lower prefabricated plate are the prefabricated plates prepared in step S01;
  • step S03 Heat and solidify the plate with flow channels in step S02 at 100°C for 180 minutes to obtain a fuel cell bipolar plate
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PPS.
  • the conductive filler is carbon fiber.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap between the first pressure roller is set to 15 mm, and the gap between the rollers after the first pressure roller is gradually reduced by 1 mm.
  • the density of the prefabricated board is 0.1g/cm 3 and the thickness is 3mm.
  • step S02
  • the conductive substrate is carbon paper.
  • the thickness of the conductive substrate in the middle layer is 0.05mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 5MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 70MPa and a conductivity of 500S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.20mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • the body is an intermediate body with a three-layer structure, including an upper prefabricated plate, an intermediate conductive substrate and a lower prefabricated plate, wherein both the upper prefabricated plate and the lower prefabricated plate are the prefabricated plates prepared in step S01;
  • step S03 Heat and solidify the plate with the flow channel in step S02 at 350°C for 20 minutes to obtain a fuel cell bipolar plate;
  • step S01
  • the graphite matrix is microcrystalline graphite.
  • the resin is phenolic resin.
  • the conductive filler is carbon nanotubes.
  • the mixing is carried out in a ball mill.
  • the rolling is carried out in a roller press.
  • the rolling process uses five rollers.
  • the gap between the first rollers is set to 18mm.
  • the gap between the rollers after the first roller is set to be gradually reduced by 2mm.
  • the density of the prefabricated board is 0.5g/cm 3 and the thickness is 10mm.
  • step S02
  • the conductive substrate is graphite paper.
  • the thickness of the conductive substrate in the middle layer is 0.3mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 80MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 80MPa and a conductivity of 600S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.23mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • the body is an intermediate body with a three-layer structure, including an upper prefabricated plate, an intermediate conductive substrate and a lower prefabricated plate, wherein both the upper prefabricated plate and the lower prefabricated plate are the prefabricated plates prepared in step S01;
  • step S03 Heat and solidify the plate with the flow channel in step S02 at 300°C for 5 minutes to obtain a fuel cell bipolar plate;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PEI.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses four rollers.
  • the gap between the first rollers is set to 20 mm, and the gap between the rollers after the first roller is gradually reduced by 4 mm.
  • the density of the prefabricated board is 0.05g/cm 3 and the thickness is 20mm.
  • step S02
  • the conductive substrate is carbon fiber cloth.
  • the thickness of the conductive substrate in the middle layer is 0.2mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 50MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 75 MPa and a conductivity of preferably 550 S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.25mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • the body is an intermediate body with a three-layer structure, including an upper prefabricated plate, an intermediate conductive substrate and a lower prefabricated plate, wherein both the upper prefabricated plate and the lower prefabricated plate are the prefabricated plates prepared in step S01;
  • step S03 Heat and solidify the plate with the flow channel in step S02 at 300°C for 10 minutes to obtain a fuel cell bipolar plate;
  • step S01
  • the graphite matrix is microcrystalline graphite.
  • the resin is PES.
  • the conductive filler is graphene.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses four pressure rollers.
  • the inter-roller gap of the first pressure roller is set to 17mm, and the inter-roller gap of the pressure rollers after the first pressure roller is gradually reduced by 3mm.
  • the density of the prefabricated board is 0.3g/cm 3 and the thickness is 10mm.
  • step S02
  • the conductive substrate is carbon fiber cloth.
  • the thickness of the conductive substrate in the middle layer is 0.1mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 60MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 75MPa and a conductivity of 500S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.20mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • the body is an intermediate body with a three-layer structure, including an upper prefabricated plate, an intermediate conductive substrate and a lower prefabricated plate, wherein both the upper prefabricated plate and the lower prefabricated plate are the prefabricated plates prepared in step S01;
  • step S03 Heat and solidify the plate with flow channels in step S02 at 150°C for 100 minutes to obtain a fuel cell bipolar plate
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PPS.
  • the conductive filler is a mixture of 10% carbon black and 10% graphene.
  • the mixing is done in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses five rollers.
  • the gap between the first rollers is set to 20 mm, and the gap between the rollers after the first roller is gradually reduced by 3 mm.
  • the density of the prefabricated board is 0.3g/cm 3 and the thickness is 7mm.
  • step S02
  • the conductive substrate is carbon paper.
  • the thickness of the conductive substrate in the middle layer is 0.05mm.
  • the upper prefabricated panel, the middle layer conductive substrate and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer and on the surface of the lower prefabricated plate far away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 20MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 70MPa and a conductivity of 560S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.20mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • step S01 Stack the conductive substrate and the prefabricated plate in step S01 to obtain a multi-layer intermediate; press the multi-layer intermediate under vacuum to obtain an electrode plate with a flow channel; the multi-layer intermediate
  • the body is an intermediate body with a two-layer structure, including an upper prefabricated plate and a lower conductive substrate, wherein the upper prefabricated plate is the prefabricated plate prepared in step S01;
  • step S03 Heat and solidify the plate with flow channels in step S02 at 100°C for 180 minutes to obtain a fuel cell bipolar plate
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PPS.
  • the conductive filler is carbon fiber.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap between the first pressure roller is set to 15 mm, and the gap between the rollers after the first pressure roller is gradually reduced by 1 mm.
  • the density of the prefabricated board is 0.1g/cm 3 and the thickness is 3mm.
  • step S02
  • the conductive substrate is carbon paper.
  • the thickness of the lower conductive substrate is 0.05mm.
  • the upper prefabricated panel and the lower conductive substrate have the same shape and area.
  • the flow channel is provided on the surface of the upper prefabricated plate away from the conductive base material layer.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 5MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 60MPa and a conductivity of 500S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.20mm.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • step S01 Stack the prefabricated plates in step S01 to obtain a multi-layer intermediate; press the multi-layer intermediate under vacuum to obtain a pole plate with flow channels; the multi-layer intermediate has two
  • the intermediate of a layer-by-layer structure includes an upper prefabricated panel and a lower prefabricated panel, wherein both the upper prefabricated panel and the lower prefabricated panel are the prefabricated panels prepared in step S01;
  • step S03 Heat and solidify the plate with flow channels in step S02 at 100°C for 180 minutes to obtain a fuel cell bipolar plate
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PPS.
  • the conductive filler is carbon fiber.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap between the first pressure roller is set to 15 mm, and the gap between the rollers after the first pressure roller is gradually reduced by 1 mm.
  • the density of the prefabricated board is 0.1g/cm 3 and the thickness is 3mm.
  • step S02
  • the upper prefabricated panel and the lower prefabricated panel have the same shape and area.
  • the flow channel is provided on the outer surface of the upper prefabricated panel and the outer surface of the lower prefabricated panel.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 5MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 40MPa and a conductivity of 60S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.15mm. Due to the lack of conductive base material, the toughness of the bipolar plate is low, the bending strength of the fuel cell bipolar plate is poor, and the thickness at the thinnest point is thin. The yield rate of the fuel cell bipolar plate in this embodiment is low and relatively low. Difficult to shape.
  • a method for preparing a fuel cell bipolar plate including the following steps:
  • step S01 Press the prefabricated plate in step S01 under vacuum to obtain a pole plate with flow channels; S03. Heat and solidify the pole plate with flow channels in step S02 at 100°C for 180 minutes to obtain a fuel cell bipolar plate;
  • step S01
  • the graphite matrix is expanded graphite.
  • the resin is PPS.
  • the conductive filler is carbon fiber.
  • the conductive substrate is carbon paper, and the thickness of the carbon paper is 0.05mm.
  • the mixing is carried out in a mixer.
  • the rolling is carried out in a roller press.
  • the rolling process uses three pressure rollers.
  • the gap between the first pressure roller is set to 15 mm, and the gap between the rollers after the first pressure roller is gradually reduced by 1 mm.
  • the density of the prefabricated board is 0.2g/cm 3 and the thickness is 4mm.
  • step S02
  • the flow channel is provided on the outer surface of the prefabricated panel.
  • the vacuum degree of the vacuum is >0.08MPa; the pressing pressure is 5MPa.
  • step S03
  • the fuel cell bipolar plate has a bending strength of 15MPa and a conductivity of 300S/cm.
  • the thickness of the thinnest part of the fuel cell bipolar plate is 0.35mm. Since the fuel cell bipolar plate has poor bending strength and is thick at its thinnest point, the overall volume of the stack produced by the fuel cell bipolar plate of this embodiment is larger and the power density is smaller, making it difficult to meet the needs of use. .
  • the intrinsic lithium ion diffusion coefficient data can be obtained.
  • the data distribution of the lithium ion diffusion coefficient is more concentrated, the data fluctuation is relatively small, and there is no obvious discrete phenomena.
  • the charging and discharging current increases and the charging and discharging time shortens, the data stability of the lithium ion diffusion coefficient will decrease, and a relatively large fluctuation range will appear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开了一种燃料电池双极板及其制备方法,该制备方法包括如下步骤:S01、将60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层结构或三层结构的中间体,所述两层结构的中间体包括上层预制板和下层导电基材,所述三层结构的中间体包括上层预制板、中间层导电基材和下层预制板;S03、将步骤S02中带流道的极板于100℃-350℃加热固化5min-180min,得到燃料电池双极板。本申请能够解决极板最薄处难以成型的问题,制备得到的双极板成型强度较好,可满足燃料电池的使用需要。

Description

一种燃料电池双极板及其制备方法 技术领域
本发明涉及燃料电池技术领域,特别是涉及一种燃料电池双极板及其制备方法。
背景技术
燃料电池利用燃料与氧气的化学转化产生电能,其核心组件包括膜电极单元。膜电极单元是由可传导质子的膜和分别设置在膜两侧的电极(阳极和阴极)构成的联合体。燃料电池一般由大量堆叠设置的膜电极单元构成,这些膜电极单元的电功率相互叠加。
燃料电池电堆是由多片双极板与膜电极组装而成,结构为双极板、膜电极、双极板、膜电极……其中双极板是燃料电池电堆的主要部件,占据电池电堆整体成本的40%以上。双极板起着分隔阳极反应物和阴极反应物、支撑整个电池系统的重要作用。燃料电池内部的微酸性环境对双极板材料的性能要求比较高,目前只有纯石墨材料能够完全满足双极板材料性能上的要求。但是,纯石墨材料的制造及加工成本都很高,而且加工困难,易于破碎,很难批量生产。目前,也有采用金属双极板制备燃料电池的,但是,金属双极板的加工成本很高,且寿命较短,长期在酸性环境下使用很容易被腐蚀。
目前,石墨基复合双极板因其加工条件及成本上的优势,应用潜力巨大。但是,石墨基复合双极板成型强度较低,无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料电池电堆的使用需要。
发明内容
基于此,本发明提供一种燃料电池双极板及其制备方法,旨在解决现有的石墨基复合双极板成型强度较低、无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料电 池电堆的使用需要等问题。本申请能够改善极板最薄处难以成型的问题,制备得到的双极板成型强度较好,能够得到厚度较薄的双极板;采用本申请双极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。
为实现上述目的,一方面,本发明实施例提供一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层结构或三层结构的中间体,所述两层结构的中间体包括上层预制板和下层导电基材,所述三层结构的中间体包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于100℃-350℃加热固化5min-180min,得到燃料电池双极板;
所述百分比为重量百分比。
作为优选的实施方式,步骤S01中,
所述石墨基体优选为膨胀石墨、鳞片石墨或者微晶石墨。
所述树脂优选为聚苯硫醚(PPS)、聚偏氟乙烯(PVDF)、酚醛树脂(PF)、聚酰亚胺(PI)、聚醚砜(PES)和聚醚酰亚胺(PEI)中的一种或者至少两种的混合物。
所述导电填充物优选为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。
所述混合优选在混炼机、球磨机、砂磨机、气流粉碎机或者桨式搅拌机中进行混合。
所述辊压优选在辊压机中进行。
所述辊压优选采用3-5道压辊,第一道压辊的辊间间隙设置为15mm-20mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm-4mm。
所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。
作为优选的实施方式,步骤S02中,
所述导电基材优选为碳纸、碳纤维布或者石墨纸。
所述中间层导电基材的厚度为0.05mm-0.3mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上和/或所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力优选为5MPa-80MPa。
作为优选的实施方式,步骤S03中,
所述燃料电池双极板的抗弯强度优选为20MPa-80MPa,导电率优选为100S/cm-600S/cm。
所述燃料电池双极板的最薄处厚度优选为0.20mm-0.25mm。
另一方面,本申请实施例还提供由上述制备方法得到的燃料电池双极板。
本发明通过以60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合制备预制板,然后以具有三层结构的中间体(上层预制板、中间层导电基材和下层预制板)制备带流道的极板,能够解决极板最薄处难以成型的问题,制备得到的双极板成型强度较好,能够得到厚度较薄的双极板;采用本申请双极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。本发明的制备方法简单,生产成本较低,生产效率较高,易于批量化或大规模生产。
本发明目的的实现、功能特点及优点将结合实施例做进一步说明。
具体实施方式
下面将结合本发明实施例中对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后、顶、底……),则该方向性指示仅用于解释在某一特定姿态下各部 件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
燃料电池内部的微酸性环境对双极板材料的性能要求比较高,目前只有纯石墨材料能够完全满足双极板材料性能上的要求。但是,纯石墨材料的制造及加工成本都很高,而且加工困难,易于破碎,很难批量生产。目前,也有采用金属双极板制备燃料电池的,但是,金属双极板的加工成本很高,且寿命较短,长期在酸性环境下使用很容易被腐蚀。石墨基复合双极板因其加工条件及成本上的优势,应用潜力巨大。但是,石墨基复合双极板成型强度较低,无法压制厚度较薄的双极板,而且石墨基复合双极板制备得到的电堆整体体积较大、功率密度小,很难满足燃料电池电堆的使用需要。基于此,有必要提供一种燃料电池双极板及其制备方法以解决上述技术问题。
为实现上述目的,一方面,本发明实施例提供一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层结构或三层结构的中间体,所述两层结构的中间体包括上层预制板和下层导电基材,所述三层结构的中间体包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于100℃-350℃加热固化5min-180min,得到燃料电池双极板;
所述百分比为重量百分比。
在本申请中,通过石墨提供主要的导电网络、树脂增加机械强度、导电填充物主要是填充在树脂内部来降低接触电阻,同时控制各组分的用量比例来制备预制板,树脂在预制板中以球晶或者不规则颗粒状分布,加热之后可以使树脂熔融或交联,同时使石墨颗粒直接形成类似粉末冶金烧结后的烧结颈,大幅度提高强度,从而解决极板最薄处难以成型的问题。
单纯预制板韧性较差,在厚度较薄的情况下容易发生折断;本申请以具有三层结构的中间体(上层预制板、中间层导电基材和下层预制板)制备带流道的极板,通过增加导电基材(类似碳布等)可以大幅度增加韧性,进一步保证厚度较薄的双极板能够较好成型。
作为优选的实施方式,步骤S01中,
所述石墨基体优选为膨胀石墨、鳞片石墨或者微晶石墨。
所述树脂优选为PPS、PVDF、酚醛树脂、PI、PES和PEI中的一种或者至少两种的混合物。
所述导电填充物优选为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。本申请的双极板结构中,存在以石墨为主体的连续导电网络以及以树脂为主体的分散式增强相,通过加入导电填充物,且控制加入的导电填充物为点状、片状以及线状的纳米导电材料,可以在树脂(分散式增强相)内形成一定的导电网络,从而进一步提高本申请双极板结构的导电性能。
所述混合优选在混炼机、球磨机、砂磨机、气流粉碎机或者桨式搅拌机中进行混合。
所述辊压优选在辊压机中进行。
所述辊压优选采用3-5道压辊,第一道压辊的辊间间隙设置为15mm-20mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm-4mm。这样,通过一步步缩小压辊的辊间间隙来实现各物料的物理交联,从而有效提高预制板的强度,保证厚度较薄的双极板能够较好成型。
所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。通过控制预制板的密度在比较低的范围,能够有效提高后续带流道的极板的压制成型的可压缩性,保证厚度较薄的双极板能够较好成型。
作为优选的实施方式,步骤S02中,
所述导电基材优选为碳纸、碳纤维布或者石墨纸。导电基材能够有效提高双极板的韧性,同时有效保证双极板的导电性能。
所述中间层导电基材的厚度为0.05mm-0.3mm。由于导电基材的可压缩性不高,在本申请中,通过控制导电基材的厚度,使得导电基材要比预制板薄,并且比最终的极板成型厚度薄,以保证厚度较薄的双极板能够较好成型。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上和/或所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力优选为5MPa-80MPa。
作为优选的实施方式,步骤S03中,
所述燃料电池双极板的抗弯强度优选为20MPa-80MPa,导电率优选为100S/cm-600S/cm。
所述燃料电池双极板的最薄处厚度优选为0.20mm-0.25mm。
另一方面,本申请实施例还提供由上述制备方法得到的燃料电池双极板。
本发明通过以60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合制备预制板,然后以具有三层结构的中间体(上层预制板、中间层导电基材和下层预制板)制备带流道的极板,能够解决极板最薄处难以成型的问题,制备得到的双极板成型强度较好,能够得到厚度较薄的双极板(本申请的双极 板最薄处厚度为0.20mm-0.25mm,比目前石墨双极板最薄处厚度0.40mm更薄);采用本申请双极板制得的电堆整体体积较小、功率密度较大,可以满足燃料电池电堆的使用需要。本发明的制备方法简单,生产成本较低,生产效率较高,易于批量化或大规模生产。
实施例1
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%石墨基体、20%树脂和20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有三层结构的中间体,包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于100℃加热固化180min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PPS。所述导电填充物为碳纤维。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的辊间间隙设置为15mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm。
所述预制板的密度为0.1g/cm 3,厚度为3mm。
步骤S02中,
所述导电基材为碳纸。
所述中间层导电基材的厚度为0.05mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上及所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为5MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为70MPa,导电率为500S/cm。
所述燃料电池双极板的最薄处厚度为0.20mm。
实施例2
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将90%石墨基体、5%树脂和5%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有三层结构的中间体,包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于350℃加热固化20min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为微晶石墨。所述树脂为酚醛树脂。所述导电填充物为纳米碳管。
所述混合在球磨机中进行混合。所述辊压在辊压机中进行。
所述辊压采用5道压辊,第一道压辊的辊间间隙设置为18mm,第一道压辊之后的压辊的辊间间隙设置逐级递减2mm。
所述预制板的密度为0.5g/cm 3,厚度为10mm。
步骤S02中,
所述导电基材为石墨纸。
所述中间层导电基材的厚度为0.3mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上及所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为80MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为80MPa,导电率为600S/cm。
所述燃料电池双极板的最薄处厚度为0.23mm。
实施例3
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将70%石墨基体和30%树脂混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有三层结构的中间体,包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于300℃加热固化5min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PEI。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用4道压辊,第一道压辊的辊间间隙设置为20mm,第一道压辊之后的压辊的辊间间隙设置逐级递减4mm。
所述预制板的密度为0.05g/cm 3,厚度为20mm。
步骤S02中,
所述导电基材为碳纤维布。
所述中间层导电基材的厚度为0.2mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上及所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为50MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为75MPa,导电率优选为550S/cm。
所述燃料电池双极板的最薄处厚度为0.25mm。
实施例4
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将80%石墨基体、5%%树脂和15%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有三层结构的中间体,包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于300℃加热固化10min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为微晶石墨。所述树脂为PES。所述导电填充物为石墨烯。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用4道压辊,第一道压辊的辊间间隙设置为17mm,第一道压辊之后的压辊的辊间间隙设置逐级递减3mm。
所述预制板的密度为0.3g/cm 3,厚度为10mm。
步骤S02中,
所述导电基材为碳纤维布。
所述中间层导电基材的厚度为0.1mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上及所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为60MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为75MPa,导电率为500S/cm。
所述燃料电池双极板的最薄处厚度为0.20mm。
实施例5
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将65%石墨基体、15%树脂和20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有三层结构的中间体,包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于150℃加热固化100min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PPS。所述导电填充物为10%炭黑和10%石墨烯的混合物。
所述混合在混炼机。所述辊压在辊压机中进行。
所述辊压采用5道压辊,第一道压辊的辊间间隙设置为20mm,第一道压辊之后的压辊的辊间间隙设置逐级递减3mm。
所述预制板的密度为0.3g/cm 3,厚度为7mm。
步骤S02中,
所述导电基材为碳纸。
所述中间层导电基材的厚度为0.05mm。
所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上及所述下层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为20MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为70MPa,导电率为560S/cm。
所述燃料电池双极板的最薄处厚度为0.20mm。
实施例6
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%石墨基体、20%树脂和20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层层结构的中间体,包括上层预制板和下层导电基材,其中,所述上层预制板为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于100℃加热固化180min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PPS。所述导电填充物为碳纤维。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的辊间间隙设置为15mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm。
所述预制板的密度为0.1g/cm 3,厚度为3mm。
步骤S02中,
所述导电基材为碳纸。
所述下层导电基材的厚度为0.05mm。
所述上层预制板和所述下层导电基材具有相同的形状和面积。
所述流道设置于所述上层预制板远离所述导电基材层的表面上。
所述真空的真空度>0.08MPa;所述压制的压力为5MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为60MPa,导电率为500S/cm。
所述燃料电池双极板的最薄处厚度为0.20mm。
对比实施例1
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%石墨基体、20%树脂和20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
S02、将步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层层结构的中间体,包括上层预制板和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
S03、将步骤S02中带流道的极板于100℃加热固化180min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PPS。所述导电填充物为碳纤维。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的辊间间隙设置为15mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm。
所述预制板的密度为0.1g/cm 3,厚度为3mm。
步骤S02中,
所述上层预制板和所述下层预制板具有相同的形状和面积。
所述流道设置于所述上层预制板的外表面上及所述下层预制板的外表面上。
所述真空的真空度>0.08MPa;所述压制的压力为5MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为40MPa,导电率为60S/cm。
所述燃料电池双极板的最薄处厚度为0.15mm。由于缺少导电基材使得双极板的韧性较低、燃料电池双极板的抗弯强度较差,最薄处的厚度较薄,本实施例的燃料电池双极板的成品率较低,较难成型。
对比实施例2
一种燃料电池双极板的制备方法,包括如下步骤:
S01、将60%石墨基体、20%树脂和20%导电填充物混合均匀,得到混合物;将所述混合物和导电基材进行辊压,得到预制板;
S02、于真空下,将步骤S01中的预制板进行压制,得到带流道的极板;S03、将步骤S02中带流道的极板于100℃加热固化180min,得到燃料电池双极板;
所述百分比为重量百分比。
步骤S01中,
所述石墨基体为膨胀石墨。所述树脂为PPS。所述导电填充物为碳纤维。所述导电基材为碳纸,所述碳纸的厚度为0.05mm。
所述混合在混炼机中进行混合。所述辊压在辊压机中进行。
所述辊压采用3道压辊,第一道压辊的辊间间隙设置为15mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm。
所述预制板的密度为0.2g/cm 3,厚度为4mm。
步骤S02中,
所述流道设置于所述预制板的外表面上。
所述真空的真空度>0.08MPa;所述压制的压力为5MPa。
步骤S03中,
所述燃料电池双极板的抗弯强度为15MPa,导电率为300S/cm。
所述燃料电池双极板的最薄处厚度为0.35mm。由于燃料电池双极板的抗弯强度较差,最薄处的厚度较厚,本实施例的燃料电池双极板制得的电堆整体体积较大、功率密度较小,很难满足使用需要。
从本申请的实施例可以看出,在本申请给定的测试参数范围内,能够获得本征的锂离子扩散系数数据,锂离子扩散系数的数据分布更加集中,数据波动比较小,没有明显的离散现象。当充放电的电流增大,充放电的时间缩短时,锂离子扩散系数的数据稳定性会降低,出现比较大的波动范围。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种燃料电池双极板的制备方法,其特征在于,包括如下步骤:
    S01、将60%-90%石墨基体、5%-30%树脂和0-20%导电填充物混合均匀,得到混合物;将所述混合物进行辊压,得到预制板;
    S02、将导电基材与步骤S01中的预制板进行叠放,得到多层中间体;于真空下,将所述多层中间体进行压制,得到带流道的极板;所述多层中间体为具有两层结构或三层结构的中间体,所述两层结构的中间体包括上层预制板和下层导电基材,所述三层结构的中间体包括上层预制板、中间层导电基材和下层预制板,其中,所述上层预制板和所述下层预制板均为步骤S01中制备得到的预制板;
    S03、将步骤S02中带流道的极板于100℃-350℃加热固化5min-180min,得到燃料电池双极板;
    所述百分比为重量百分比。
  2. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述石墨基体为膨胀石墨、鳞片石墨或者微晶石墨;
    所述树脂为PPS、PVDF、酚醛树脂、PI、PES和PEI中的一种或者至少两种的混合物。
  3. 根据权利要求2所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述导电填充物为炭黑、碳纤维、纳米碳管和石墨烯中的一种或者至少两种的混合物。
  4. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述辊压采用3-5道压辊,第一道压辊的辊间间隙设置为15mm-20mm,第一道压辊之后的压辊的辊间间隙设置逐级递减1mm-4mm。
  5. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S01中,所述预制板的密度为0.05g/cm 3-0.5g/cm 3,厚度为3mm-20mm。
  6. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S02中,所述导电基材为碳纸、碳纤维布或者石墨纸;所述中间层导电基材的厚度为0.05mm-0.3mm。
  7. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步 骤S02中,所述上层预制板、所述中间层导电基材和所述下层预制板具有相同的形状和面积;
    所述流道设置于所述上层预制板远离所述导电基材层的表面上和/或所述下层预制板远离所述导电基材层的表面上。
  8. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S02中,所述真空的真空度>0.08MPa;所述压制的压力为5MPa-80MPa。
  9. 根据权利要求1所述的燃料电池双极板的制备方法,其特征在于,步骤S03中,所述燃料电池双极板的抗弯强度为20MPa-80MPa,导电率为100S/cm-600S/cm;
    所述燃料电池双极板的最薄处厚度为0.20mm-0.25mm。
  10. 一种燃料电池双极板,其特征在于,由权利要求1至9任一项所述的燃料电池双极板的制备方法制备得到。
PCT/CN2022/099069 2022-06-08 2022-06-16 一种燃料电池双极板及其制备方法 WO2023236234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210643647.0 2022-06-08
CN202210643647.0A CN115000442A (zh) 2022-06-08 2022-06-08 一种燃料电池双极板及其制备方法

Publications (1)

Publication Number Publication Date
WO2023236234A1 true WO2023236234A1 (zh) 2023-12-14

Family

ID=83033320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099069 WO2023236234A1 (zh) 2022-06-08 2022-06-16 一种燃料电池双极板及其制备方法

Country Status (2)

Country Link
CN (1) CN115000442A (zh)
WO (1) WO2023236234A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763861A (zh) * 2022-12-05 2023-03-07 吉林大学 一种具有3d金属骨架的石墨复合材料双极板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117397A (zh) * 2013-02-04 2013-05-22 昆山弗尔赛能源有限公司 一种燃料电池用双极板的制造工艺
CN110993980A (zh) * 2019-11-25 2020-04-10 深圳市雄韬电源科技股份有限公司 一种燃料电池极板的制备方法
CN111509251A (zh) * 2020-04-29 2020-08-07 陕西六元碳晶股份有限公司 一种氢燃料电池用双极板及其制备方法
CN111613807A (zh) * 2020-05-20 2020-09-01 山东魔方新能源科技有限公司 一种燃料电池石墨双极板辊压设备
CN213845334U (zh) * 2020-07-27 2021-07-30 同济大学 分层式石墨复合双极板及其加工系统
CN113224339A (zh) * 2021-03-30 2021-08-06 苏州然普能源有限公司 柔性超薄石墨双极板及其制备方法
CN114156491A (zh) * 2021-11-10 2022-03-08 深圳市氢瑞燃料电池科技有限公司 一种燃料电池极板的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183852B (zh) * 2014-08-14 2017-02-15 济南圣泉集团股份有限公司 一种酚醛树脂‑石墨‑石墨烯复合电池双极性栅板及其制备方法
CN107819136B (zh) * 2016-09-12 2021-03-26 中国科学院金属研究所 一种层叠结构双极板及其制备方法
CN107195921A (zh) * 2017-04-06 2017-09-22 上海交通大学 多层复合导电板及其制备方法
CN108384184A (zh) * 2018-03-06 2018-08-10 吉林化工学院 一种接地网用石墨/热固性树脂导电复合材料的制备方法
CN111805899B (zh) * 2020-06-09 2022-04-15 深圳市氢瑞燃料电池科技有限公司 一种燃料电池双极板及其制备方法
CN111883794A (zh) * 2020-07-27 2020-11-03 同济大学 一种分层式石墨复合双极板及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117397A (zh) * 2013-02-04 2013-05-22 昆山弗尔赛能源有限公司 一种燃料电池用双极板的制造工艺
CN110993980A (zh) * 2019-11-25 2020-04-10 深圳市雄韬电源科技股份有限公司 一种燃料电池极板的制备方法
CN111509251A (zh) * 2020-04-29 2020-08-07 陕西六元碳晶股份有限公司 一种氢燃料电池用双极板及其制备方法
CN111613807A (zh) * 2020-05-20 2020-09-01 山东魔方新能源科技有限公司 一种燃料电池石墨双极板辊压设备
CN213845334U (zh) * 2020-07-27 2021-07-30 同济大学 分层式石墨复合双极板及其加工系统
CN113224339A (zh) * 2021-03-30 2021-08-06 苏州然普能源有限公司 柔性超薄石墨双极板及其制备方法
CN114156491A (zh) * 2021-11-10 2022-03-08 深圳市氢瑞燃料电池科技有限公司 一种燃料电池极板的制备方法

Also Published As

Publication number Publication date
CN115000442A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
EP2192644B1 (en) Molding material for fuel cell separator
US8790846B2 (en) Gas diffusion layer and process for production thereof, and fuel cell
KR100376013B1 (ko) 연료 전지용 세퍼레이터
KR101815134B1 (ko) 연료전지 분리판 및 그 제조방법
KR100659132B1 (ko) 연료전지용 막전극 접합체, 그 제조방법 및 이를 채용한연료전지
US20020182473A1 (en) Fuel cell separator plate having controlled fiber orientation and method of manufacture
EP1116293B1 (en) Water transport plate and method of using same
KR20030022126A (ko) 연료 전지 쌍극판용 나노복합물
US20040058249A1 (en) Mesh reinforced fuel cell separator plate
WO2007052650A1 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
WO2002065567A1 (fr) Cellule a combustible de type a electrolyte polymerique
CN1330026C (zh) 一种质子交换膜燃料电池双极板制备工艺
CN114784307B (zh) 一种石墨烯增强膨胀石墨/聚酰亚胺-聚醚醚酮复合双极板及其制备方法
CN109599573B (zh) 一种用于燃料电池的复合双极板及其制备方法与应用
JP2005026076A (ja) 燃料電池用セパレータ、燃料電池用エンドプレート及び燃料電池発電装置
WO2023236234A1 (zh) 一种燃料电池双极板及其制备方法
WO2007132549A1 (ja) 燃料電池用セパレータ及びその製造方法
US20080220154A1 (en) Method of forming fluid flow field plates for electrochemical devices
Chen et al. Recent advances on materials and technologies of composite bipolar plate for proton exchange membrane fuel cell
WO2023236235A1 (zh) 一种燃料电池复合极板及其制备方法
JP2003297385A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ、および固体高分子型燃料電池
JP3561241B2 (ja) 直接型メタノール燃料電池用セパレータ及び直接型メタノール燃料電池
KR102050971B1 (ko) 초경량 탄소계 분리판 및 그를 포함하는 연료전지 스택과 그 제조방법
JP3296801B2 (ja) カーボン複合成形体
JP4781333B2 (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945374

Country of ref document: EP

Kind code of ref document: A1