WO2021246521A1 - 角度キャリブレーション方法 - Google Patents
角度キャリブレーション方法 Download PDFInfo
- Publication number
- WO2021246521A1 WO2021246521A1 PCT/JP2021/021386 JP2021021386W WO2021246521A1 WO 2021246521 A1 WO2021246521 A1 WO 2021246521A1 JP 2021021386 W JP2021021386 W JP 2021021386W WO 2021246521 A1 WO2021246521 A1 WO 2021246521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calibration method
- angle calibration
- distance
- measurement target
- angle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000005259 measurement Methods 0.000 claims description 31
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/14—Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
- G01B21/042—Calibration or calibration artifacts
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39018—Inverse calibration, find exact joint angles for given location in world space
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39024—Calibration of manipulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41092—References, calibration positions for correction of value position counter
Definitions
- the present invention relates to a robot angle calibration method.
- robots having one or more joints have been known.
- actuators for rotating an arm, a hand, and the like are arranged for each joint.
- the actuator is typically an electric motor.
- Each actuator rotates the output shaft so as to realize an angle according to the input command value.
- each actuator is set at the time of assembly so that the angle at the predetermined origin posture of the robot is 0 °.
- this origin alignment is often performed using large-scale equipment such as a laser tracker.
- Patent Document 1 discloses that a deviation of the installation position and the installation posture at the time of replacement of the work robot is detected by a position measuring machine such as a laser tracker, and the teaching data is corrected by the deviation.
- the present invention has been made in view of the above circumstances, and an object thereof is to obtain a deviation of a rotation angle due to an actuator replacement or the like in a robot easily and with high accuracy in a short time.
- this angle calibration method is applied to a robot including a first member, a second member, and an actuator.
- the second member is rotatably connected to the first member.
- the actuator changes the angle of the second member with respect to the first member according to a command value.
- the angle calibration method includes a first step and a second step. In the first step, there are two measurement target portions, one of which is arranged on the first member and the other is a distance between the two measurement target portions arranged on the second member. The distance is obtained by measuring the distance between the wall surfaces of the two measurement target portions in a state where an arbitrary command value is given to the actuator.
- the rotation angle of the second member by the original actuator can be accurately reproduced. It is not necessary to operate the robot little by little, and calibration can be performed only by measuring the distance between the wall surfaces of the measurement target portion, so that work efficiency can be improved.
- the deviation of the rotation angle due to the replacement of the actuator or the like can be obtained with high accuracy by simple and short-time work.
- the perspective view which shows the industrial robot of one Embodiment of this invention.
- the perspective view which shows the state of attaching a pin to the boss part of a 2nd joint body, and the boss part of a 2nd arm.
- Sectional drawing which shows the structure of a pin and a mounting hole in detail.
- FIG. 1 is a perspective view showing an industrial robot 6 according to an embodiment of the present invention.
- the industrial robot (robot) 6 shown in FIG. 1 is configured as a vertical articulated robot having 6 degrees of freedom of movement.
- the industrial robot 6 includes an arm portion 7 and a controller 8.
- the arm unit 7 operates based on the command of the controller 8 and can perform a predetermined operation.
- the arm portion 7 includes a base base 10, a first joint body 11, a first arm 21, a second joint body (first member) 12, a second arm (second member) 22, and a third joint body. 13 and a tip portion 23 are provided.
- the base base 10 is a member that functions as a base for the arm portion 7, and is fixed to the floor or the like.
- the first joint body 11 is arranged on the upper side of the base base 10.
- the first joint body 11 is rotatably supported with respect to the base base 10 about an axis in the vertical direction (rotational axis c1).
- the first arm 21 is configured as an elongated member. One end of the first arm 21 in the longitudinal direction is rotatably supported by the first joint body 11.
- the rotation axis c2 of the first arm 21 with respect to the first joint body 11 is located in a plane orthogonal to the rotation axis of the first joint body 11.
- the second joint body 12 is configured as a block-shaped member.
- the second joint body 12 is rotatably supported by the tip end portion of the first arm 21.
- the rotation axis c3 of the second joint body 12 with respect to the first arm 21 is arranged in parallel with the rotation axis c2 of the first arm 21 with respect to the first joint body 11.
- the second arm 22 is configured as an elongated member.
- the second arm 22 is supported by the second joint body 12.
- the second arm 22 is rotatable about an axis (rotational axis c4) along the longitudinal direction of the second arm 22.
- the third joint body 13 is rotatably supported by the tip of the second arm 22.
- the rotation axis c5 of the third joint body 13 with respect to the second arm 22 is located in a plane orthogonal to the rotation axis of the second arm 22 with respect to the second joint body 12.
- the tip portion 23 is rotatably supported by the third joint body 13.
- the rotation axis c6 of the tip portion 23 with respect to the third joint body 13 is located in a plane orthogonal to the rotation axis c5 of the third joint body 13 with respect to the second arm 22.
- the controller 8 is installed in the vicinity of the base base 10.
- the controller 8 can appropriately operate the arm portion 7 by transmitting an electric signal to an electric motor (actuator) provided for each of the above-mentioned rotating shafts defined in the arm portion 7.
- the electric motor controlled by the controller 8 includes an electric motor that rotates the second arm 22 with respect to the second joint body 12.
- origin alignment is sometimes called zeroing.
- angle calibration is performed for each electric motor so that the angle at the origin posture of the predetermined robot is 0 °.
- This origin alignment can be performed using, for example, a laser tracker as shown in Patent Document 1. Since the method of origin alignment is well known, the description thereof will be omitted. By this origin alignment, the industrial robot 6 can realize the above-mentioned origin posture with high accuracy by giving an angle of 0 ° to each electric motor as a command value.
- each electric motor for example, an electric motor for rotating the second arm 22 with respect to the second joint body 12
- an abnormality will occur in each electric motor (for example, an electric motor for rotating the second arm 22 with respect to the second joint body 12) in the future. .. Therefore, in the present embodiment, for example, at the timing immediately after the origin alignment, two pins 51 are attached to the arm portion 7 as shown in FIG. 2, and the distance between the two pins 51 is measured in advance as shown in FIG. is doing.
- Each pin 51 functions as a mark indicating a predetermined position in each of the second joint body 12 and the second arm 22.
- the mark can be paraphrased as a measurement target portion.
- the two pins 51 also function as removable jigs used to accurately measure the distance between the marks with the caliper 71 of FIG. This measurement result is later used for re-origin alignment (angle calibration) when, for example, the electric motor fails and is replaced.
- the second joint body 12 is provided with a boss portion 31 for detachably attaching the pin 51.
- the boss portion 31 is integrally formed in a portion of the second joint body 12 near the second arm 22 so as to project in a direction away from the rotation axis c4.
- the direction in which the boss portion 31 protrudes from the second joint body 12 can also be said to be the radial direction of the circle centered on the rotation axis c4.
- the rotation axis c4 is a central axis on which the second arm 22 rotates with respect to the second joint body 12. Therefore, the rotation axis c4 can be said to be the joint axis of the joint connecting the second joint body 12 and the second arm 22.
- the boss portion 31 is formed with a mounting hole 32 for mounting the pin 51.
- the mounting hole 32 is formed as an elongated screw hole. The orientation of the shaft of the mounting hole 32 is parallel to the rotating shaft c4.
- the mounting hole 32 is open on the surface of the boss portion 31 on the side closer to the second arm 22.
- the second arm 22 is provided with a boss portion 41 for detachably attaching the pin 51.
- the boss portion 41 is integrally formed in a portion of the second arm 22 near the second joint body 12 so as to project in a direction away from the rotation axis c4.
- the direction in which the boss portion 41 protrudes from the second arm 22 can also be said to be the radial direction of the circle centered on the rotation axis c4.
- the boss portion 41 is formed with a mounting hole 42 for mounting the pin 51.
- the mounting hole 42 is formed as an elongated screw hole. The orientation of the shaft of the mounting hole 42 is parallel to the rotating shaft c4.
- the mounting hole 42 is open on the surface of the boss portion 41 on the side closer to the second joint body 12.
- the two mounting holes 32 and 42 have the same shape.
- the two pins 51 also have the same shape. Thereby, the processing cost and the parts cost can be reduced.
- Each pin 51 is an elongated rod-shaped member.
- the pin 51 includes a cylindrical portion 55, a tapered portion 56, and a male screw portion 57.
- the columnar portion 55, the tapered portion 56, and the male screw portion 57 are integrally formed with each other.
- the columnar portion 55 is a columnar portion processed with high precision so that the diameter becomes a predetermined size. Since the pin 51 is attached to the second joint body 12 or the second arm 22 in a direction parallel to the rotation axis c4, the cross-sectional contour of the cylindrical portion 55 cut in a plane perpendicular to the rotation axis c4 is circular.
- the cylindrical portion 55 is arranged at the longitudinal end of the pin 51. At the end of the cylindrical portion 55, a hexagonal hole into which a tool for screwing the pin 51 can be inserted is formed.
- the tapered portion 56 is a collar-shaped portion connected to the cylindrical portion 55.
- the tapered portion 56 has a larger diameter than the cylindrical portion 55.
- the tapered portion 56 is formed in a truncated cone shape such that the side closer to the column portion 55 has a large diameter and the side far from the column portion 55 has a small diameter. The axis of this cone exactly coincides with the axis of the cylinder of the cylinder portion 55.
- the male screw portion 57 is a portion where the male screw is processed.
- the male screw portion 57 is arranged at an end portion opposite to the cylindrical portion 55 in the longitudinal direction of the pin 51.
- the male screw portion 57 is connected to the tapered portion 56.
- the mounting hole 32 arranged in the second joint body 12 is formed with a tapered recess 36, a peripheral recess 37, and a female threaded portion 38.
- the tapered recess 36 has a larger inner diameter than the female screw portion 38.
- the tapered recess 36 is formed in a truncated cone shape such that the side close to the opening of the mounting hole 32 has a large diameter and the side far from the opening has a small diameter.
- the shape of the tapered recess 36 corresponds to the shape of the tapered portion 56 of the pin 51.
- the axis of the tapered recess 36 is arranged so as to be parallel to the rotation axis c4.
- the axis of the tapered recess 36 is located exactly at a predetermined distance from the rotation axis c4.
- the peripheral recess 37 is formed in a large circular shape with an appropriate depth around the opening of the tapered recess 36. Even if not all of the tapered portion 56 of the pin 51 fits into the tapered recess 36 of the mounting hole 32, the protruding portion enters the peripheral recess 37. As a result, only the columnar portion 55 can be substantially projected from the boss portion 31, so that the measurement by the caliper 71 described later becomes easy.
- the female screw portion 38 is a portion where the female screw is formed.
- the female screw portion 38 is arranged adjacent to the tapered recess 36 on the side far from the opening of the mounting hole 32.
- the male threaded portion 57 of the pin 51 can be screwed to the female threaded portion 38.
- the mounting hole 42 arranged in the second arm 22 is formed with a tapered recess 46, a peripheral recess 47, and a female screw portion 48, similarly to the mounting hole 32 of the second joint body 12.
- the configuration of the tapered recess 46, the peripheral recess 47, and the female threaded portion 48 is the same as that of the tapered recessed portion 36, the peripheral recessed portion 37, and the female threaded portion 38 of the mounting hole 32.
- the axis of the tapered recess 46 is arranged so as to be parallel to the rotation axis c4.
- the axis of the tapered recess 46 is located exactly a predetermined distance from the rotation axis c4. In the two mounting holes 32 and 42, the distances between the axes of the tapered recesses 36 and 46 and the rotating shaft c4 are equal to each other.
- the pin 51 is attached to the mounting hole 32 of the boss portion 31, and the pin 51 is attached to the mounting hole 42 of the boss portion 41.
- the pin 51 is fixed to the mounting holes 32 and 42 by screw connection. Therefore, the work of attaching / detaching the pin 51 is easy.
- the centering action by the tapered portion 56 works. Therefore, the axis of the pin 51 exactly coincides with the axis of the tapered recesses 36 and 46 of the mounting holes 32 and 42, respectively.
- the two pins 51 to be mounted are also parallel to each other. Since the directions of the openings of the mounting holes 32 and 42 differ by 180 °, the directions in which the two pins 51 project from the boss portions 31 and 41 also differ by 180 ° as shown in FIGS. 3 and 4. Since the two pins 51 are the same component, the outer diameters of the cylindrical portions 55 are also equal to each other.
- the centers of the two pins 51 are arranged so as to be equal to each other from the rotation axis c4. In other words, the centers of the two pins 51 are located on the same virtual circle about the rotation axis c4. As the angle of the second arm 22 with respect to the second joint body 12 changes, the pin 51 on the second arm 22 side moves along the virtual circle. As a result, the central angles corresponding to the two pins 51 change.
- the wall surface of the outer periphery of the columnar portion 55 is sandwiched between the two pins 51 by the caliper 71. The distance between them is measured.
- a predetermined command value for example, 0 °
- This command value is arbitrary, but it is preferable to set the two pins 51 so that they are not too close to each other and not too far apart from each other.
- the outer diameter of the cylindrical portion 55 is known. Therefore, the distance between the centers of the pins 51 can be obtained by subtracting two radii of the cylindrical portion 55 from the distance between the wall surfaces measured by the caliper 71.
- the distance between the centers is defined as the distance between the landmarks (distance between the measurement target portions).
- the distance between the wall surfaces may be used as the distance between the landmarks.
- the obtained pin center-to-center distance is used as a reference pin center-to-center distance (distance between reference marks and reference measurement target parts) at an appropriate location in case it needs to be referred to later. Keep a record. After the above measurement, the two pins 51 are removed, and the operation of the industrial robot 6 is started.
- the pins 51 are reattached to the second joint body 12 and the second arm 22, and as shown in FIG. 5, the distance between the outer peripheral wall surfaces of the two pins 51 is measured by the caliper 71. ..
- the distance between the centers of the pins 51 can be obtained (first step).
- a predetermined command value is given to the replaced electric motor. This command value is arbitrary, but it is preferable that the command value is the same as the command value (0 °) given to the electric motor before replacement when initially measured with the caliper 71 because the subsequent calculation becomes easy.
- the distance R between the rotation axis c4 of the second arm 22 and the centers of the two pins 51 is equal to each other. Therefore, the triangle consisting of the rotation axis c4 and the centers of the two pins 51 becomes an isosceles triangle.
- the apex angle ⁇ of this isosceles triangle indicates the central angle with respect to the two pins 51.
- the distance L between the centers of the pins 51 can be obtained from the measurement result by the caliper 71 as described above.
- the angle difference ⁇ before and after the replacement of the electric motor can be obtained by calculating the angle ⁇ with respect to the value of L before the replacement and the value of L after the replacement (second step).
- the offset amount of the command value for canceling this angle difference ⁇ is calculated (third step).
- Different command values may be given to the electric motor before replacement and the electric motor after replacement.
- the dial gauge is fixed at a predetermined position of the arm portion 7 immediately after the initial origin alignment.
- an appropriate command value is given to each electric motor of the robot, and the dial gauge is applied to an appropriate frame.
- the dial gauge is similarly fixed at a predetermined position on the robot, and the dial gauge is applied to the frame.
- the robot is moved little by little, and the command offset value is obtained based on the command value when the dial gauge shows the same value as the initial value.
- an appropriate surface of the arm portion 7 is processed with high accuracy in advance.
- an inclinometer is installed on the surface via an appropriate jig, and the value indicated by the inclinometer is recorded.
- pins are attached to two frames that move relative to each other (for example, the second joint body 12 and the second arm 22).
- the pins are attached so that the pins come into direct contact with each other when the two frames are at a predetermined angle.
- the robot is operated little by little until the pins come into contact with each other, and the command value when the pins come into contact is recorded.
- pins are attached and the robot is operated little by little in the same way as the initial origin alignment. Obtain the command offset value based on the command value when the pins touch.
- the pin 51 which is easy to manufacture, can be attached with high accuracy by using the tapered portion 56.
- re-origin alignment can be completed in a short time, and early recovery of the robot can be realized.
- the measurement data at the time of the initial origin alignment is used as a reference, the re-origin alignment can be performed with high accuracy.
- the industrial robot 6 of the present embodiment includes a second joint body 12, a second arm 22, and an electric motor.
- the second arm 22 is rotatably connected to the second joint body 12.
- the electric motor changes the angle of the second arm 22 with respect to the second joint body 12 according to the command value.
- the re-angle calibration method performed in this embodiment includes a first step and a second step.
- the first step there are two pins 51 (markers), one of which is the distance between the two pins 51 arranged in the second joint body 12 and the other of which is arranged in the second arm 22. The distance is obtained by measuring the distance between the wall surfaces of the pin 51 in a state where an arbitrary command value is given to the electric motor.
- the rotation angle of the second arm 22 by the replaced electric motor can be accurately reproduced. It is not necessary to operate the industrial robot 6 little by little, and re-origin alignment can be performed only by measuring the distance between the wall surfaces of the pins 51, so that the work efficiency can be improved.
- one of the two marks is a pin 51 provided so as to protrude from the second joint body 12.
- the other is a pin 51 provided so as to project from the second arm 22.
- the directions in which the two pins 51 protrude are opposite to each other.
- each of the two pins 51 is removable from the second joint body 12 or the second arm 22.
- each of the two pins 51 is attached to the mounting holes 32 and 42 formed in the second joint body 12 or the second arm 22.
- the mounting holes 32 and 42 are screw holes.
- the pin 51 can be fixed to the second joint body 12 or the second arm 22 by a simple operation of screwing the pin 51.
- each of the two pins 51 has a tapered portion 56.
- the second joint body 12 or the second arm 22 is formed with tapered recesses 36, 46 corresponding to the tapered portion 56 of the pin 51.
- the center of the pin 51 can be exactly aligned with the center of the tapered recesses 36 and 46 by centering by the tapered portion 56. As a result, the accuracy of re-origin alignment can be improved.
- the cross-sectional contour of the cylindrical portion 55 of the two pins 51 cut by a plane perpendicular to the axis is a circle.
- the diameters of the circles of the cross-sectional contours of the two pins 51 are equal.
- the cylindrical portions 55 of the two pins 51 are separated from each other by an equal distance from the rotation axis c4.
- the distance between the pins is measured by bringing the caliper 71 into contact with the wall surface of each of the two pins 51.
- the pin 51 can be left attached even after the initial origin alignment as long as it does not interfere with the operation of the industrial robot 6. Therefore, at least one pin 51 may be detachably fixed to the second joint body 12 or the second arm 22.
- the pin 51 can also be fixed to the second joint body 12 or the second arm 22 by a method other than screwing (for example, driving the pin into the tapered hole).
- the two pins 51 can be changed so that they project in the same direction instead of projecting in opposite directions.
- the boss portions 31, 41 can be omitted.
- the two pins 51 can have different shapes from each other.
- the diameters of the two cylindrical portions 55 may be different from each other.
- the cross-sectional contour cut by a plane perpendicular to the rotation axis c4 does not have to be a circle.
- the distances of the axes of the two pins 51 from the rotation axis c4 may be different from each other. In this case, the triangle does not become an isosceles triangle as shown in FIG. However, if the distances of the axes of the pins 51 from the rotation axis c4 are known, it is possible to calculate ⁇ by the cosine theorem.
- a columnar recess formed in the boss portions 31 and 41 can be used as a mark.
- the cylindrical shape of the recess is arranged so that its axis is parallel to the rotation axis c4.
- the distance between the centers of the recesses can be obtained by measuring the distance between the inner peripheral surfaces (wall surfaces) of the recesses with the caliper 71.
- the angle calibration method of the present invention can target any two members connected via joints provided in the industrial robot 6.
- the angle calibration method of the present invention is not limited to the vertical articulated robot, but can be applied to the horizontal articulated robot. Further, the angle calibration method of the present invention can also be applied to a cylindrical coordinate robot and a polar coordinate robot.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulator (AREA)
Abstract
ロボットは、指令値に応じて第2部材の第1部材に対する角度を変化させるアクチュエータを備える。角度キャリブレーション方法の第1工程では、2つの測定対象部であって、一方が前記第1部材に配置され、他方が前記第2部材に配置される2つの測定対象部の間の距離である測定対象部間距離を、前記アクチュエータに任意の指令値を与えた状態で、2つの前記測定対象部の壁面間の距離を測定することで得る。第2工程では、過去にアクチュエータに任意の指令値を与えた状態で前記測定対象部間距離を測定して得られた参照用測定対象部間距離と、前記第1工程で得られた前記測定対象部間距離と、に基づいて、2つの測定対象部間距離の差に対応する角度差を計算により求める。
Description
本発明は、ロボットの角度キャリブレーション方法に関する。
従来から、1又は複数の関節を有するロボットが知られている。このロボットでは、アーム及びハンド等を回転させるためのアクチュエータが、関節毎に配置されている。アクチュエータは、典型的には電動モータである。
それぞれのアクチュエータは、入力された指令値に応じた角度を実現するように、出力軸を回転させる。多くの場合、それぞれのアクチュエータは、予め定められたロボットの原点姿勢における角度が0°となるように、組立時に設定される。
ロボットの先端部の位置精度を向上させるために、この原点合わせ(角度キャリブレーション)は、レーザトラッカー等の大掛かりな設備を用いて行われることが多い。
特許文献1では、作業ロボットの交換時の設置位置及び設置姿勢のずれを、レーザトラッカー等の位置測定機によって検出し、そのずれの分だけ教示データを修正することが開示されている。
特許文献1のようなロボットでは、工場出荷後に電動モータに不具合が生じ、電動モータの部分だけを交換するような場合も考えられる。ロボットの全体を交換する場合であればともかく、一部の交換だけの場合は、特許文献1で示すレーザトラッカーのような高価な装置を使用することが難しい。
本発明は以上の事情に鑑みてされたものであり、その目的は、ロボットにおいて、アクチュエータの交換等に伴う回転角度のズレを、簡便かつ短時間の作業で高精度に取得することにある。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
本発明の観点によれば、以下の角度キャリブレーション方法が提供される。即ち、この角度キャリブレーション方法は、第1部材と、第2部材と、アクチュエータと、を備えるロボットに適用される。前記第2部材は、前記第1部材に対して相対回転可能に連結される。前記アクチュエータは、指令値に応じて前記第2部材の前記第1部材に対する角度を変化させる。角度キャリブレーション方法は、第1工程と、第2工程と、を含む。前記第1工程では、2つの測定対象部であって、一方が前記第1部材に配置され、他方が前記第2部材に配置される2つの測定対象部の間の距離である測定対象部間距離を、前記アクチュエータに任意の指令値を与えた状態で、2つの前記測定対象部の壁面間の距離を測定することで得る。前記第2工程では、過去にアクチュエータに任意の指令値を与えた状態で前記測定対象部間距離を測定して得られた参照用測定対象部間距離と、前記第1工程で得られた前記測定対象部間距離と、に基づいて、2つの測定対象部間距離の差に対応する角度差を計算により求める。
これにより、現状のアクチュエータに与える指令値を、得られた角度差に基づいて調整することで、当初のアクチュエータによる第2部材の回転角度を精度良く再現することができる。ロボットを少しずつ動作させる必要がなく、測定対象部の壁面間の距離を測定するだけでキャリブレーションを行うことができるので、作業効率を向上させることができる。
本発明によれば、ロボットにおいて、アクチュエータの交換等に伴う回転角度のズレを、簡便かつ短時間の作業で高精度に取得することができる。
次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態の産業用ロボット6を示す斜視図である。
図1に示す産業用ロボット(ロボット)6は、動作自由度が6である垂直型の多関節ロボットとして構成されている。この産業用ロボット6は、アーム部7と、コントローラ8と、を備える。アーム部7はコントローラ8の指令に基づいて動作し、所定の作業を行うことができる。
アーム部7は、ベース台10と、第1関節体11と、第1アーム21と、第2関節体(第1部材)12と、第2アーム(第2部材)22と、第3関節体13と、先端部23と、を備える。
ベース台10は、アーム部7の土台として機能する部材であり、床等に固定されている。
第1関節体11は、ベース台10の上側に配置されている。第1関節体11は、ベース台10に対し、上下方向の軸(回転軸c1)を中心にして回転可能に支持されている。
第1アーム21は、細長い部材として構成されている。第1アーム21の長手方向一側の端部が、第1関節体11に回転可能に支持されている。第1関節体11に対する第1アーム21の回転軸c2は、第1関節体11の回転軸と直交する平面内に位置している。
第2関節体12は、ブロック状の部材として構成されている。第2関節体12は、第1アーム21の先端部に回転可能に支持されている。第1アーム21に対する第2関節体12の回転軸c3は、第1関節体11に対する第1アーム21の回転軸c2と平行に配置されている。
第2アーム22は、細長い部材として構成されている。第2アーム22は、第2関節体12に支持されている。第2アーム22は、第2アーム22の長手方向に沿う軸(回転軸c4)を中心にして回転可能である。
第3関節体13は、第2アーム22の先端部に回転可能に支持されている。第2アーム22に対する第3関節体13の回転軸c5は、第2関節体12に対する第2アーム22の回転軸と直交する平面内に位置している。
先端部23は、第3関節体13に回転可能に支持されている。第3関節体13に対する先端部23の回転軸c6は、第2アーム22に対する第3関節体13の回転軸c5と直交する平面内に位置している。
コントローラ8は、ベース台10の近傍に設置されている。このコントローラ8は、アーム部7において定められた上述の回転軸のそれぞれについて備えられている電動モータ(アクチュエータ)に対して電気信号を送信することにより、アーム部7を適宜動作させることができる。
図示されていないが、コントローラ8で制御される電動モータには、第2関節体12に対して第2アーム22を回転させる電動モータが含まれている。
上記の構成の産業用ロボット6においては、工場等に産業用ロボット6が設置される際に、原点合わせと呼ばれる作業が行われる。原点合わせは、ゼロイングと呼ばれることもある。この原点合わせでは、それぞれの電動モータを対象として、予め定められたロボットの原点姿勢における角度が0°となるように角度キャリブレーションが行われる。
この原点合わせは、例えば特許文献1に示すようなレーザトラッカーを用いて行うことができる。原点合わせの方法は周知であるため、説明は省略する。この原点合わせにより、それぞれの電動モータに角度0°を指令値として与えることで、産業用ロボット6が上述の原点姿勢を精度良く実現できるようになる。
産業用ロボット6の運用を開始した後に、各電動モータ(例えば、第2関節体12に対して第2アーム22を回転させるための電動モータ)に将来的に異常が発生する可能性も考えられる。そこで、本実施形態では、例えば原点合わせの直後のタイミングで、アーム部7に図2に示すように2つのピン51を取り付け、2つのピン51の間の距離を図5のように事前に計測している。
それぞれのピン51は、第2関節体12及び第2アーム22のそれぞれにおいて所定の位置を示す目印として機能する。目印は、測定対象部と言い換えることもできる。同時に、2つのピン51は、目印の間の距離を図5のノギス71で正確に計測するために用いられる、着脱可能な治具としても機能する。この計測結果が、後で例えば電動モータが故障して交換した場合の再原点合わせ(角度キャリブレーション)に用いられる。
具体的に説明すると、第2関節体12には、ピン51を着脱可能に取り付けるためのボス部31が設けられている。ボス部31は、第2関節体12のうち第2アーム22に近い部分において、回転軸c4から遠ざかる向きに突出するように一体的に形成される。ボス部31が第2関節体12から突出する向きは、回転軸c4を中心とする円の径方向ということもできる。
回転軸c4は、第2アーム22が第2関節体12に対して回転する中心軸である。従って、回転軸c4は、第2関節体12と第2アーム22とを連結する関節の関節軸ということができる。
ボス部31には、ピン51を取り付けるための取付穴32が形成されている。この取付穴32は、細長いネジ穴として形成されている。取付穴32の軸の向きは、回転軸c4と平行である。取付穴32は、ボス部31のうち、第2アーム22に近い側の面に開口している。
第2アーム22には、ピン51を着脱可能に取り付けるためのボス部41が設けられている。ボス部41は、第2アーム22のうち第2関節体12に近い部分において、回転軸c4から遠ざかる向きに突出するように一体的に形成される。ボス部41が第2アーム22から突出する向きは、回転軸c4を中心とする円の径方向ということもできる。
ボス部41には、ピン51を取り付けるための取付穴42が形成されている。この取付穴42は、細長いネジ孔として形成されている。取付穴42の軸の向きは、回転軸c4と平行である。取付穴42は、ボス部41のうち、第2関節体12に近い側の面に開口している。
図3に示すように、2つの取付穴32,42は同一の形状である。これに対応して、2つのピン51も同一の形状となっている。これにより、加工コスト及び部品コストを低減することができる。
それぞれのピン51は、細長い棒状の部材である。ピン51は、円柱部55と、テーパ部56と、オネジ部57と、を備える。円柱部55、テーパ部56及びオネジ部57は、互いに一体的に形成されている。
円柱部55は、径が所定の大きさとなるように高精度に加工された円柱状の部分である。ピン51は回転軸c4と平行な向きで第2関節体12又は第2アーム22に取り付けられるため、回転軸c4に垂直な平面で円柱部55を切った断面輪郭は、円形となる。円柱部55は、ピン51の長手方向端部に配置されている。この円柱部55の端部には、ピン51のネジ止めのための工具を差込可能な6角穴が形成されている。
テーパ部56は、円柱部55に接続した鍔状の部分である。テーパ部56は、円柱部55よりも径が大きく形成されている。テーパ部56は、円柱部55に近い側が大径、円柱部55から遠い側が小径となるような円錐台状に形成されている。この円錐の軸心は、円柱部55の円柱の軸心と精密に一致している。
オネジ部57は、オネジが加工された部分である。オネジ部57は、ピン51の長手方向において、円柱部55と反対側の端部に配置されている。オネジ部57は、テーパ部56に接続している。
第2関節体12に配置された取付穴32には、テーパ凹部36と、周辺凹部37と、メネジ部38と、が形成されている。
テーパ凹部36は、メネジ部38よりも内径が大きく形成されている。テーパ凹部36は、取付穴32の開口に近い側が大径、開口から遠い側が小径となるような円錐台状に形成されている。このテーパ凹部36の形状は、ピン51のテーパ部56の形状に対応している。テーパ凹部36の軸心は、回転軸c4と平行となるように配置される。テーパ凹部36の軸心は、回転軸c4から正確に所定距離だけ離れた場所に位置している。
周辺凹部37は、テーパ凹部36の開口の周囲に、適宜の深さで大きな円状に形成されている。ピン51のテーパ部56の全部が取付穴32のテーパ凹部36に入らない場合でも、ハミ出した部分が周辺凹部37に入る。この結果、ボス部31から円柱部55だけを実質的に突出させることができるので、後述のノギス71による測定が容易になる。
メネジ部38は、メネジが形成された部分である。メネジ部38は、テーパ凹部36に対して、取付穴32の開口から遠い側で隣接して配置されている。このメネジ部38には、ピン51のオネジ部57がネジ結合することができる。
第2アーム22に配置された取付穴42は、第2関節体12の取付穴32と同様に、テーパ凹部46と、周辺凹部47と、メネジ部48と、が形成されている。テーパ凹部46、周辺凹部47及びメネジ部48の構成は、取付穴32のテーパ凹部36、周辺凹部37及びメネジ部38と同様である。
テーパ凹部46の軸心は、回転軸c4と平行となるように配置される。テーパ凹部46の軸心は、回転軸c4から正確に所定距離だけ離れた場所に位置している。2つの取付穴32,42において、テーパ凹部36,46の軸心と回転軸c4との距離は、互いに等しい。
以上の構成で、ボス部31の取付穴32にピン51を取り付け、ボス部41の取付穴42にピン51を取り付ける。ピン51を回転させることで、当該ピン51はネジ結合によって取付穴32,42に固定される。従って、ピン51の取付け/取外し作業は容易である。
ピン51のネジを締め付けることで、テーパ部56による心出し作用が働く。従って、ピン51の軸心は、取付穴32,42のそれぞれのテーパ凹部36,46の軸心と正確に一致する。
2つの取付穴32,42が互いに平行であるので、取り付けられる2つのピン51も互いに平行である。取付穴32,42の開口の向きが180°異なるので、2つのピン51がボス部31,41から突出する向きも、図3及び図4に示すように180°異なる。2つのピン51は同一の部品であるので、円柱部55の外径も互いに等しい。
2つのピン51のそれぞれの中心は、回転軸c4から互いに等しい距離となるように配置される。言い換えれば、2つのピン51の中心は、回転軸c4を中心とする同一の仮想円上に位置する。第2関節体12に対する第2アーム22の角度が変化するのに伴って、第2アーム22側のピン51が、仮想円に沿って移動する。この結果、2つのピン51に相当する中心角が変化する。
産業用ロボット6の組立てが完了し、上述の原点合わせが行われた後の適宜のタイミングで、図5に示すように、ノギス71で2つのピン51を挟むようにして、円柱部55の外周の壁面同士の距離が計測される。このとき、第2アーム22を駆動する電動モータには、所定の指令値(例えば、0°)を与えた状態とする。この指令値は任意であるが、2つのピン51同士が近接し過ぎず、かつ離れ過ぎないように定めることが好ましい。
円柱部55の外径は既知である。従って、ノギス71で計測した壁面同士の距離から円柱部55の半径2つ分を減算することで、ピン51の中心間の距離を得ることができる。本実施形態では、この中心間の距離を目印間距離(測定対象部間距離)と定義する。ただし、ピン51の中心間の距離に代えて、壁面同士の距離を目印間距離としても良い。本実施形態において、得られたピン中心間距離は、後に参照する必要が生じるのに備えて、基準ピン中心間距離(参照用目印間距離、参照用測定対象部間距離)として適宜の場所に記録しておく。上記の計測後に2つのピン51は取り外され、産業用ロボット6の運用が開始される。
その後、第2関節体12に対して第2アーム22を回転させるための電動モータが故障し、新しい電動モータに交換した場合を考える。この場合、交換完了後に第2関節体12及び第2アーム22にピン51が再び取り付けられて、図5に示すように、ノギス71で2つのピン51の外周の壁面同士の距離が計測される。この壁面同士の距離から、円柱部55の半径2つ分を減算することで、ピン51の中心間距離(目印間距離)を得ることができる(第1工程)。このとき、交換後の電動モータには、所定の指令値を与えた状態とする。この指令値は任意であるが、当初にノギス71で計測したときに交換前の電動モータに与えた指令値(0°)と同じ指令値とすると、後の計算が簡単になるために好ましい。
次に、ノギス71による測定結果から、2つのピン51に対応する中心角を得る方法について簡単に説明する。
図6に示すように、第2アーム22の回転軸c4と、2つのピン51の中心と、の間の距離Rは、互いに等しくなっている。従って、回転軸c4と、2つのピン51の中心と、からなる3角形は、2等辺3角形になる。この2等辺3角形の頂角θが、2つのピン51に対する中心角を示している。
ピン51の中心間の距離Lは、上述のとおり、ノギス71による測定結果から得ることができる。
一般的に、3角形ABCにおいて、a=BC,b=CA,c=AB,α=∠CABとしたとき、cosα=(b2+c2-a2)/(2bc)の関係が成立する。これは余弦定理として良く知られている。これに、a=L,b=c=R,α=θを代入すると、cosθ=(1-(L2/2R2))となる。従って、θは、θ=arccos(1-(L2/2R2))により求めることができる。
次に、再原点合わせについて説明する。
交換前の電動モータと、交換後の電動モータとで、同一の指令値を与えてもθが異なる場合を考える。電動モータの交換前後の角度差Δθは、交換前のLの値と、交換後のLの値と、に対して角度θをそれぞれ計算することにより得ることができる(第2工程)。次に、この角度差Δθをキャンセルするための指令値のオフセット分を計算する(第3工程)。交換後の電動モータに与える指令値を、計算された値だけオフセットすれば、交換前後での電動モータの角度ズレを解消することができる。以上により、再原点合わせを実現することができる。
交換前の電動モータと、交換後の電動モータとで、異なる指令値が与えられても良い。この場合は、上記の角度差Δθを計算する際、指令値のズレに相当する角度を考慮する必要がある。
ところで、再原点合わせを行うには、本実施形態で説明した方法以外にも幾つか考えられる。
第1に、ダイアルゲージを用いる方法がある。この方法では、当初の原点合わせ直後に、ダイアルゲージをアーム部7の所定位置に固定する。この状態で、ロボットの各電動モータに適宜の指令値を与え、ダイアルゲージを適宜のフレームに当てさせる。このとき、ダイアルゲージが示した値を記録しておく。再原点合わせでは、同じようにダイアルゲージをロボットの所定位置に固定し、当該ダイアルゲージをフレームに当てる。この状態でロボットを少しずつ動かし、ダイアルゲージが当初と等しい値を示したときの指令値に基づき、指令オフセット値を求める。
この方法では、ダイアルゲージをロボットに固定する必要があり、作業が煩雑になり易い。また、ロボットを少しずつ動かすときに、動作分解能等の関係で、ダイアルゲージの値を当初の値とぴったり一致させることが難しい場合がある。
第2に、傾斜計を用いる方法がある。この方法では、産業用ロボット6の製造時に、アーム部7の適宜の面を予め高精度に加工しておく。当初の原点合わせ直後に、当該面に適宜の治具を介して傾斜計を設置し、傾斜計が示した値を記録しておく。再原点合わせでは、同じように傾斜計を設置する。この傾斜計が示す値に基づき、指令オフセット値を求める。
この方法では、アーム部7に高精度加工した面を形成する必要があり、加工コストが掛かる。また、傾斜計の据付面を基準として原点合わせが行われるため、再原点合わせの精度が必ずしも高くない。
第3に、ピンの接触を用いる方法がある。この方法では、相対運動する2つのフレーム(例えば、第2関節体12と第2アーム22)にそれぞれピンを取り付ける。ただし、ピンは、上記のピン51とは異なり、2つのフレームが所定の角度になるとピン同士が直接接触するように取り付けられる。当初の原点合わせ直後に、ピン同士が接触するまでロボットを少しずつ動作させ、ピンが接触したときの指令値を記録しておく。再原点合わせでは、当初の原点合わせと同じようにピンを取り付け、ロボットを少しずつ動作させる。ピンが接触したときの指令値に基づき、指令オフセット値を求める。
この方法では、ピン同士の接触判定が難しい。例えば、ピンとピンの間に薄いシートを挟み、シートが動くか否かでピン同士の接触判定を行うことができるが、判定作業が煩雑である。また、ロボットを動作させ過ぎてしまうと、ピンが変形して原点合わせの精度が大幅に低下するので、デリケートな作業を強いられる。また、ピンを取り付けるピン穴を基準として原点合わせが行われるため、再原点合わせの精度が必ずしも高くない。ピンを差込式にする場合、ピン穴への差込みを可能とするための隙間が、再原点合わせの精度低下に繋がってしまう。
この点、本実施形態の方法では、製造が容易なピン51を、テーパ部56を用いて精度良く取り付けることができる。また、ロボットを少しずつ動作させる作業が不要になるので、再原点合わせを短時間で完了させることができ、ロボットの早期復旧を実現できる。更に、当初の原点合わせ時の測定データを基準にしているので、再原点合わせを高い精度で行うことができる。
以上に説明したように、本実施形態の産業用ロボット6は、第2関節体12と、第2アーム22と、電動モータと、を備える。第2アーム22は、第2関節体12に対して相対回転可能に連結される。電動モータは、指令値に応じて第2アーム22の第2関節体12に対する角度を変化させる。本実施形態で行われる再角度キャリブレーション方法は、第1工程と、第2工程と、を含む。第1工程では、2つのピン51(目印)であって、一方が第2関節体12に配置され、他方が第2アーム22に配置される2つのピン51の間の距離であるピン中心間距離を、電動モータに任意の指令値を与えた状態で、ピン51の壁面間の距離を測定することで得る。第2工程では、当初の原点合わせ時に電動モータに任意の指令値を与えた状態でピン中心間距離を測定して得られた基準ピン中心間距離と、第1工程で得られたピン中心間距離と、に基づいて、2つのピン中心間距離の差に対応する角度差Δθを計算により求める。
これにより、交換後の電動モータに与える指令値を、得られた角度差Δθに基づいて調整することで、交換前の電動モータによる第2アーム22の回転角度を精度良く再現することができる。産業用ロボット6を少しずつ動作させる必要がなく、ピン51の壁面間の距離を測定するだけで再原点合わせを行うことができるので、作業効率を向上させることができる。
また、本実施形態において、2つの目印のうち一方は、第2関節体12から突出するように設けられたピン51である。他方は、第2アーム22から突出するように設けられたピン51である。
これにより、再原点合わせのための簡素な構成を実現することができる。
また、本実施形態において、2つのピン51が突出する向きが互いに逆である。
これにより、それぞれのピン51の長さを短くしつつ、ピン51の壁面間の距離を容易に測定することができる。
また、本実施形態において、2つのピン51のそれぞれは、第2関節体12又は第2アーム22に対して着脱可能である。
これにより、ピン51を取り外して、産業用ロボット6の運用時に邪魔にならないようにすることができる。
また、本実施形態において、2つのピン51のそれぞれは、第2関節体12又は第2アーム22に形成された取付穴32,42に取り付けられる。取付穴32,42は、ネジ孔である。
これにより、ピン51を捩じ込む簡単な作業で、ピン51を第2関節体12又は第2アーム22に固定することができる。
また、本実施形態において、2つのピン51のそれぞれは、テーパ部56を有する。第2関節体12又は第2アーム22には、ピン51のテーパ部56に対応するテーパ凹部36,46が形成されている。
これにより、テーパ部56による心出しが行われることで、ピン51の中心をテーパ凹部36,46の中心に厳密に一致させることができる。この結果、再原点合わせの精度を高めることができる。
また、本実施形態において、2つのピン51の円柱部55を軸に垂直な平面で切った断面輪郭は、何れも円である。2つのピン51の断面輪郭の円の径(言い換えれば、円柱部55の外径)が等しい。2つのピン51の円柱部55は、回転軸c4から互いに等しい距離離れている。
これらにより、2つのピン51に対応する角度θの計算が容易になる。
また、本実施形態において、ピン間距離は、2つのピン51のそれぞれの壁面にノギス71を接触させることで測定される。
これにより、ノギス71による低コストかつ汎用的な手法で、距離を測定することができる。
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
ピン51は、産業用ロボット6の運転に邪魔にならないのであれば、当初の原点合わせの後も取り付けたままとすることができる。従って、少なくとも1つのピン51は、第2関節体12又は第2アーム22に着脱不能に固定されても良い。
ピン51は、ネジ止め以外の方法(例えば、テーパ穴へのピンの打込み)によって第2関節体12又は第2アーム22に固定することもできる。
2つのピン51は、互いに逆向きで突出する代わりに、同じ向きで突出するように変更することができる。
目印としてのピン51を配置するためのスペースを、ボス部31,41を形成しなくても確保できる場合、ボス部31,41を省略することができる。
2つのピン51を互いに異なる形状とすることもできる。例えば、2つの円柱部55の径が互いに異なっていても良い。一方又は両方のピン51において、回転軸c4に垂直な平面で切った断面輪郭が、円でなくても良い。
2つのピン51の軸心の回転軸c4からの距離が、互いに異なっていても良い。この場合、3角形が図6のような2等辺3角形にはならない。しかし、ピン51の軸心の回転軸c4からの距離がそれぞれ既知であれば、余弦定理によってθを計算することは可能である。
ピン51の代わりに、ボス部31,41に形成した円柱状の凹部を目印として用いることができる。凹部の円柱形は、その軸が回転軸c4と平行となるように配置される。この場合、凹部の内周面(壁面)同士の距離をノギス71によって測定することで、凹部の中心間の距離を得ることができる。
本発明の角度キャリブレーション方法は、産業用ロボット6が備える、関節を介して連結された任意の2つの部材を対象とすることができる。
本発明の角度キャリブレーション方法は、垂直型の多関節ロボットに限定されず、水平型の多関節ロボットに適用することができる。また、本発明の角度キャリブレーション方法は、円筒座標ロボット、極座標ロボットに適用することもできる。
6 産業用ロボット(ロボット)
12 第2関節体(第1部材)
22 第2アーム(第2部材)
31 ボス部
32 取付穴
36 テーパ凹部
41 ボス部
42 取付穴
46 テーパ凹部
51 ピン(目印)
55 円柱部
56 テーパ部
71 ノギス
12 第2関節体(第1部材)
22 第2アーム(第2部材)
31 ボス部
32 取付穴
36 テーパ凹部
41 ボス部
42 取付穴
46 テーパ凹部
51 ピン(目印)
55 円柱部
56 テーパ部
71 ノギス
Claims (11)
- 第1部材と、
前記第1部材に対して相対回転可能に連結された第2部材と、
指令値に応じて前記第2部材の前記第1部材に対する角度を変化させるアクチュエータと、
を備えるロボットの角度キャリブレーション方法であって、
2つの測定対象部であって、一方が前記第1部材に配置され、他方が前記第2部材に配置される2つの測定対象部の間の距離である測定対象部間距離を、前記アクチュエータに任意の指令値を与えた状態で、2つの前記測定対象部の壁面間の距離を測定することで得る第1工程と、
過去にアクチュエータに任意の指令値を与えた状態で前記測定対象部間距離を測定して得られた参照用測定対象部間距離と、前記第1工程で得られた前記測定対象部間距離と、に基づいて、2つの測定対象部間距離の差に対応する角度差を計算により求める第2工程と、
を含むことを特徴とする角度キャリブレーション方法。 - 請求項1に記載の角度キャリブレーション方法であって、
2つの前記測定対象部のうち一方は、前記第1部材から突出するように設けられたピンであり、
他方は、前記第2部材から突出するように設けられたピンであることを特徴とする角度キャリブレーション方法。 - 請求項2に記載の角度キャリブレーション方法であって、
2つの前記ピンが突出する向きが互いに逆であることを特徴とする角度キャリブレーション方法。 - 請求項2又は3に記載の角度キャリブレーション方法であって、
2つの前記ピンのうち少なくとも1つは、前記第1部材又は前記第2部材に対して着脱可能であることを特徴とする角度キャリブレーション方法。 - 請求項4に記載の角度キャリブレーション方法であって、
2つの前記ピンのうち少なくとも1つは、前記第1部材又は前記第2部材に形成されたネジ孔に取り付けられることを特徴とする角度キャリブレーション方法。 - 請求項4又は5に記載の角度キャリブレーション方法であって、
2つの前記ピンのうち少なくとも1つは、テーパ部を有し、
前記第1部材又は前記第2部材には、前記テーパ部に対応するテーパ凹部が形成されていることを特徴とする角度キャリブレーション方法。 - 請求項1に記載の角度キャリブレーション方法であって、
2つの前記測定対象部のうち一方は、前記第1部材に形成された凹部であり、
他方は、前記第2部材に形成された凹部であることを特徴とする角度キャリブレーション方法。 - 請求項1から7までの何れか一項に記載の角度キャリブレーション方法であって、
2つの前記測定対象部を、前記第2部材の中心軸に垂直な平面で切った断面輪郭は、何れも円であることを特徴とする角度キャリブレーション方法。 - 請求項8に記載の角度キャリブレーション方法であって、
2つの前記測定対象部の前記断面輪郭である円の径が等しいことを特徴とする角度キャリブレーション方法。 - 請求項1から9までの何れか一項に記載の角度キャリブレーション方法であって、
2つの前記測定対象部は、前記第2部材の中心軸から互いに等しい距離離れていることを特徴とする角度キャリブレーション方法。 - 請求項1から10までの何れか一項に記載の角度キャリブレーション方法であって、
前記第1工程において、前記測定対象部間距離は、2つの前記測定対象部のそれぞれの壁面にノギスを接触させることで測定されることを特徴とする角度キャリブレーション方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/008,301 US20230173680A1 (en) | 2020-06-05 | 2021-06-04 | Angle calibration method |
KR1020237000409A KR20230037537A (ko) | 2020-06-05 | 2021-06-04 | 각도 캘리브레이션 방법 |
EP21818961.1A EP4163062A4 (en) | 2020-06-05 | 2021-06-04 | ANGLE CALIBRATION PROCEDURE |
CN202180039817.8A CN115968330A (zh) | 2020-06-05 | 2021-06-04 | 角度校准方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020098368A JP7544511B2 (ja) | 2020-06-05 | 2020-06-05 | 角度キャリブレーション方法 |
JP2020-098368 | 2020-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021246521A1 true WO2021246521A1 (ja) | 2021-12-09 |
Family
ID=78830274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021386 WO2021246521A1 (ja) | 2020-06-05 | 2021-06-04 | 角度キャリブレーション方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230173680A1 (ja) |
EP (1) | EP4163062A4 (ja) |
JP (1) | JP7544511B2 (ja) |
KR (1) | KR20230037537A (ja) |
CN (1) | CN115968330A (ja) |
WO (1) | WO2021246521A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023078023A (ja) | 2021-11-25 | 2023-06-06 | 株式会社ニフコ | 表皮係止用クリップ |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60172481A (ja) * | 1984-02-20 | 1985-09-05 | フアナツク株式会社 | 工業用ロボツトの基準点調整機構 |
JPH0434606A (ja) * | 1990-05-30 | 1992-02-05 | Seiko Instr Inc | 位置補正装置のキャリブレーション方法 |
JPH1034572A (ja) * | 1996-07-17 | 1998-02-10 | Fanuc Ltd | 産業用ロボットの基準姿勢決め装置 |
JP2002239967A (ja) * | 2001-02-14 | 2002-08-28 | Denso Corp | ロボット |
JP2003220587A (ja) * | 2002-01-29 | 2003-08-05 | Nachi Fujikoshi Corp | 産業用ロボットのキャリブレーション方法 |
JP2003322501A (ja) * | 2002-04-30 | 2003-11-14 | Japan Atom Energy Res Inst | ダクトの真円度・真直度計測システム |
JP2011251365A (ja) * | 2010-06-01 | 2011-12-15 | Fanuc Ltd | ロボットの位置情報復元装置および位置情報復元方法 |
JP2016078173A (ja) | 2014-10-17 | 2016-05-16 | 本田技研工業株式会社 | 作業ロボットの設置状態検出方法 |
JP2017100202A (ja) * | 2015-11-30 | 2017-06-08 | 株式会社アイキューブテクノロジ | ロボットシステム、制御装置、制御方法、及びプログラム |
CN111145630A (zh) * | 2020-01-20 | 2020-05-12 | 福建省特种设备检验研究院 | 一种用于工业机器人工具坐标系测定的教具及其使用方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300181A (ja) * | 1991-03-28 | 1992-10-23 | Kobe Steel Ltd | 工業用ロボットの基準姿勢決定方法 |
JP6298026B2 (ja) * | 2015-09-15 | 2018-03-20 | ファナック株式会社 | 多関節ロボットのたわみを計測するたわみ計測システム |
DE102018207198A1 (de) | 2018-05-09 | 2019-11-14 | Kuka Deutschland Gmbh | Roboterjustage |
-
2020
- 2020-06-05 JP JP2020098368A patent/JP7544511B2/ja active Active
-
2021
- 2021-06-04 CN CN202180039817.8A patent/CN115968330A/zh active Pending
- 2021-06-04 US US18/008,301 patent/US20230173680A1/en active Pending
- 2021-06-04 WO PCT/JP2021/021386 patent/WO2021246521A1/ja unknown
- 2021-06-04 KR KR1020237000409A patent/KR20230037537A/ko unknown
- 2021-06-04 EP EP21818961.1A patent/EP4163062A4/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60172481A (ja) * | 1984-02-20 | 1985-09-05 | フアナツク株式会社 | 工業用ロボツトの基準点調整機構 |
JPH0434606A (ja) * | 1990-05-30 | 1992-02-05 | Seiko Instr Inc | 位置補正装置のキャリブレーション方法 |
JPH1034572A (ja) * | 1996-07-17 | 1998-02-10 | Fanuc Ltd | 産業用ロボットの基準姿勢決め装置 |
JP2002239967A (ja) * | 2001-02-14 | 2002-08-28 | Denso Corp | ロボット |
JP2003220587A (ja) * | 2002-01-29 | 2003-08-05 | Nachi Fujikoshi Corp | 産業用ロボットのキャリブレーション方法 |
JP2003322501A (ja) * | 2002-04-30 | 2003-11-14 | Japan Atom Energy Res Inst | ダクトの真円度・真直度計測システム |
JP2011251365A (ja) * | 2010-06-01 | 2011-12-15 | Fanuc Ltd | ロボットの位置情報復元装置および位置情報復元方法 |
JP2016078173A (ja) | 2014-10-17 | 2016-05-16 | 本田技研工業株式会社 | 作業ロボットの設置状態検出方法 |
JP2017100202A (ja) * | 2015-11-30 | 2017-06-08 | 株式会社アイキューブテクノロジ | ロボットシステム、制御装置、制御方法、及びプログラム |
CN111145630A (zh) * | 2020-01-20 | 2020-05-12 | 福建省特种设备检验研究院 | 一种用于工业机器人工具坐标系测定的教具及其使用方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4163062A4 |
Also Published As
Publication number | Publication date |
---|---|
CN115968330A (zh) | 2023-04-14 |
JP7544511B2 (ja) | 2024-09-03 |
US20230173680A1 (en) | 2023-06-08 |
JP2021191596A (ja) | 2021-12-16 |
EP4163062A4 (en) | 2024-07-03 |
EP4163062A1 (en) | 2023-04-12 |
KR20230037537A (ko) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111771099B (zh) | 坐标定位机 | |
JP5628873B2 (ja) | パラレルリンクロボット | |
JP4072628B2 (ja) | ロボットのキャリブレーション方法およびシステム | |
JP5321532B2 (ja) | ロボットキャリブレーション装置及びキャリブレーション方法 | |
US9903698B2 (en) | Object posture calculation system | |
US20170363490A1 (en) | Force sensor unit and robot | |
JP2010531238A (ja) | 切断機用自在軸受装置の位置調整用装置および方法 | |
JP2019132857A (ja) | センサ、駆動機構、およびロボット | |
JP5064344B2 (ja) | ロボットシステム | |
WO2021246521A1 (ja) | 角度キャリブレーション方法 | |
TW201534881A (zh) | 多維力/力矩感測器 | |
US11904464B2 (en) | Three-dimensional measuring device and robotic arm calibration method thereof | |
US5418890A (en) | Arm origin calibrating method for an articulated robot | |
WO2014129162A1 (ja) | 産業用ロボットおよび産業用ロボットのツール取り付け位置の較正方法 | |
JPH0445311B2 (ja) | ||
US20070214919A1 (en) | Method for Tightening a Screwed Joint on a Component in an Automated Manner, and Suitable Industrial Robot System | |
JP2009255197A (ja) | パラレルメカニズムにおける原点較正方法、および原点較正用の較正治具 | |
WO2013118312A1 (ja) | 形状測定装置 | |
WO2022019262A1 (ja) | ロボット、マスタリング治具、マスタリングシステムおよびマスタリング方法 | |
JP2003121134A (ja) | 運動精度の測定方法 | |
JP4093111B2 (ja) | ワークの精度測定装置と精度測定方法 | |
JP2005028529A (ja) | 産業用ロボットの原点位置合わせ装置 | |
CN109968347B (zh) | 一种七轴机器人的零位标定方法 | |
KR102508280B1 (ko) | 틸팅 헤드용 회전중심 보정장치 | |
JP6221528B2 (ja) | ロボットの手先軸原点位置較正方法、ロボットの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21818961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021818961 Country of ref document: EP Effective date: 20230105 |