WO2021243825A1 - 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用 - Google Patents

一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021243825A1
WO2021243825A1 PCT/CN2020/103350 CN2020103350W WO2021243825A1 WO 2021243825 A1 WO2021243825 A1 WO 2021243825A1 CN 2020103350 W CN2020103350 W CN 2020103350W WO 2021243825 A1 WO2021243825 A1 WO 2021243825A1
Authority
WO
WIPO (PCT)
Prior art keywords
polydopamine
graphene oxide
solution
composite material
graphene
Prior art date
Application number
PCT/CN2020/103350
Other languages
English (en)
French (fr)
Inventor
车清论
梁森
张建军
吕滨江
崔宁
徐洋
郑少梅
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to JP2021535692A priority Critical patent/JP7224605B2/ja
Publication of WO2021243825A1 publication Critical patent/WO2021243825A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the field of nanomaterials and the technical field of super water sliding lubricants, and specifically relates to a lubricating additive of hollow graphene oxide, a super water sliding lubricant, and a preparation method and application thereof.
  • the purpose of the present invention is to provide a lubricating additive for hollow graphene oxide, a super water-skid lubricant, and a preparation method and application thereof.
  • the technical solution of the present invention is:
  • a lubricating additive for hollow graphene oxide is a spherical hollow structure
  • the spherical shell is a composite layer of graphene oxide layer and polydopamine layer from inside to outside, or from inside to
  • the structure of the outer polydopamine layer, graphene layer, and polydopamine layer composite layer, the number of composite layers is single layer or multiple layers, and the multilayer structure is composed of multiple composite layers repeatedly stacked.
  • the present invention prepares a lubricating additive.
  • the main components of this lubricating additive are graphene oxide and polydopamine, and have a hollow structure, so that the lubricant has a lower coefficient of friction.
  • the specific principle is
  • Graphene oxide has a super-smooth surface, but the existing lubricants prepared by using graphene oxide cannot achieve super-smooth properties.
  • graphene oxide is prepared into a hollow sphere to make it have better toughness and Super slippery ability, in the process of surface friction, the friction coefficient is smaller.
  • the present invention includes two lubricating additives, the first is spherical graphene oxide/polydopamine, or spherical multilayer graphene oxide/polydopamine; the multilayer representation can be graphene oxide/polydopamine/graphene oxide/poly Dopamine, graphene oxide are located in the outermost layer, and polydopamine is located in the innermost layer.
  • the second type is graphene oxide spherical polydopamine/graphene/polydopamine, or multilayer spherical polydopamine/graphene/polydopamine.
  • the multi-layer representation can be polydopamine/graphene/polydopamine/graphene/polydopamine.
  • Graphene oxide is located in the outermost and innermost layers.
  • Polydopamine is reductive.
  • the side where the graphene oxide wraps the polydopamine will be reduced, but the outermost graphene oxide does not react with polydopamine, so the outermost graphene oxide in the first lubricating additive is the inner side
  • the outside is not reduced, and the graphene oxide located in the middle of the two polydopamine layers is actually reduced graphene.
  • the graphene in the second type is all between the two polydopamine layers, so they are all graphene after the graphene oxide is reduced.
  • reaction process of polydopamine is reductive, for example, polydopamine/graphene/polydopamine, both sides of graphene oxide are all wrapped by polydopamine, this is all reduced, so it is written as polydopamine/graphene/polydopamine.
  • graphene oxide/polydopamine/graphene oxide/polydopamine this structure means that the outermost layer of graphene oxide does not react with polydopamine and is not reduced; and the outermost layer of graphene oxide that wraps the polydopamine will be reduced , So it is still written as graphene oxide/polydopamine/graphene oxide/polydopamine.
  • the method for preparing the above-mentioned hollow graphene oxide lubricating additive includes the following specific steps:
  • the graphene oxide/polypamine/Al 2 O 3 composite material is mixed with the HCl solution and etched to obtain a hollow spherical lubricating additive.
  • the middle nano alumina is etched and removed, and the remaining graphene oxide protects the polydopamine structure.
  • This patent uses nano alumina balls as carrier balls.
  • One reason is to use its shape to grow graphene oxide balls or graphene balls on alumina balls. Because graphene oxide or graphene cannot form a spherical shape by itself, alumina balls are easy to prepare , The price is relatively low; the surface of the prepared nano alumina ball contains abundant hydroxyl groups, and polydopamine is easier to graft to the surface of spherical alumina; the oxygen-containing groups or ⁇ - ⁇ bonds on the surface of graphene oxide can be combined with polydopamine The bonding self-polymerizes into spherical graphene oxide or graphene. The second reason is that aluminum oxide is easily etched by less polluting acid solutions.
  • the polydopamine/graphene/polypamine/Al 2 O 3 composite material is mixed with the HCl solution and etched to obtain a hollow spherical lubricating additive.
  • the graphene oxide/polypamine/Al 2 O 3 composite material is mixed with dopamine hydrochloride, water, and Tris solution. During the reaction, the dopamine is polymerized and combined with graphene oxide to reduce the graphene oxide to obtain graphene.
  • a super water-skiing lubricant includes water and the above-mentioned lubricating additive.
  • the method for preparing the above-mentioned super water-skiing lubricant is to mix the lubricating additive and water in an atmospheric environment to obtain the super water-skiing lubricant.
  • the present invention uses deionized water as the lubricating fluid and in-situ assembled spherical graphene oxide or graphene composite material as the lubricating additive.
  • the spherical graphene oxide or graphene can roll on the friction surface to reduce friction and wear; polydopamine contains A large number of hydroxyl and amino groups are easy to adsorb on the surface of the friction pair, and polydopamine is easy to disperse in water.
  • super water ski lubricants with different additive mass concentrations can be prepared. Not only are they simple to prepare, easy to operate, stable in process, and reliable in quality , Low cost, renewable, pollution-free, and the additive is easy to adsorb on the dual surface to form a transfer film.
  • As an advanced lubricant material it meets the requirements of commercialized engineering macroscopic use.
  • the super water ski lubricant obtained in the present invention can be stored for 6 months to 1 year without obvious precipitation and has a long shelf life.
  • Tribological tests show that the water lubricant obtained in the present invention has super-slip lubricating behavior and anti-wear performance, so it can be used as a super-slip lubricant material for mechanical moving parts in an atmospheric environment.
  • Figure 1 is a flow chart of the preparation of graphene oxide/polydopamine
  • Figure 2 is a flow chart of the preparation of polydopamine/graphene/polydopamine
  • Figure 3 is the friction test curve of the pure deionized water lubricant of Comparative Example 1 of the application on the ball-disk.
  • Fig. 4 is the friction test curve on the ball-disk of the graphene oxide ball additive water lubricant with a mass concentration of 0.20% in Example 16 of this application.
  • Fig. 5 is the friction test curve on the ball-disk of the graphene ball additive water lubricant with a mass concentration of 0.20% in Example 20 of this application.
  • a lubricating additive for hollow graphene oxide is a spherical hollow structure
  • the spherical shell is a composite layer of graphene oxide layer and polydopamine layer from inside to outside, or from inside to
  • the structure of the outer polydopamine layer, graphene layer, and polydopamine layer composite layer, the number of composite layers is single layer or multiple layers, and the multilayer structure is composed of multiple composite layers repeatedly stacked.
  • the diameter of the spherical hollow structure is 50-300 nm.
  • the method for preparing the above-mentioned hollow graphene oxide lubricating additive includes the following specific steps:
  • step 2) The graphene oxide/polypamine/Al 2 O 3 composite material obtained in step 2) is successively repeated in step 1) with the reaction of mixing with dopamine hydrochloride, water, Tris solution, and HCl solution, step 2) The reaction with graphene oxide to obtain a multilayer graphene oxide/polypamine/Al 2 O 3 composite material;
  • the middle nano alumina is etched and removed, and the remaining graphene oxide protects the polydopamine structure.
  • step 1) Repeat step 1) and add hydrochloric acid solution in the reaction process of mixing with dopamine hydrochloride and Tris solution. After hydrochloric acid adjusts the pH value, dopamine hydrochloride can react with the Tris solution.
  • the reacted mixture in step 3 is separated by centrifugation, the supernatant is removed, and freeze-dried to obtain a multilayer graphene oxide/polypamine/Al 2 O 3 composite material.
  • the reacted mixture in step 4) is separated by centrifugation, the supernatant is removed, and the lubricating additive is obtained by freeze drying.
  • the volume ratio and addition amount of dopamine hydrochloride, water, Tris solution, and HCl solution participating in the reaction in step 3) are the same as those in step 1), and the addition amount and concentration of the graphene oxide solution participating in the reaction Same as step 2).
  • step 2) The graphene oxide/polypamine/Al 2 O 3 composite material obtained in step 2) is reacted with dopamine hydrochloride, water, Tris solution, and HCl solution in step 1) to obtain a monolayer polydopamine/graphite Ene/polydopamine/Al 2 O 3 composite material;
  • step 4) The polydopamine/graphene/polydopamine/Al 2 O 3 composite material obtained in step 3) is sequentially repeated in step 2) with the reaction with graphene oxide, and step 1) with dopamine hydrochloride, water, and Tris.
  • step 2) The mixed reaction of the solution and the HCl solution obtains a multilayer polydopamine/graphene/polydopamine/Al 2 O 3 composite material;
  • the surface of graphene oxide contains abundant hydrophilic groups, such as hydroxyl, carboxyl and oxygen-containing groups; polydopamine is bonded to the surface groups of graphene oxide through hydroxyl or ⁇ - ⁇ bonds.
  • Step 3 The graphene oxide/polypamine/Al 2 O 3 composite material is mixed with dopamine hydrochloride, water, Tris solution, and HCl solution. During the reaction, dopamine is polymerized and combined with graphene oxide to reduce graphene oxide , Get graphene.
  • step 4 the wrapping of graphene oxide and the grafting of polydopamine are repeated in sequence to realize the preparation of a multilayer polydopamine/graphene/polydopamine/Al 2 O 3 composite material.
  • the number of polydopamine/graphene composite layers is 3-6 layers.
  • the ratio of dopamine hydrochloride, water, Tris solution, nano Al 2 O 3 , and HCl solution in step 1) is 0.05-0.15 mL: 8-12 mL: 2.2-2.7 mL: 0.05-0.25 g :1mL.
  • the concentration of dopamine hydrochloride in step 1) is 2-5 mg/mL, the concentration of Tris solution is 0.05-0.15 mol/L, and the concentration of HCl solution is 0.05-0.15 mol/L; preferably , The concentration of dopamine hydrochloride is 2 mg/mL, the concentration of Tris solution is 0.1 mol/L, and the concentration of HCl solution is 0.1 mol/L.
  • step 1) dopamine hydrochloride, water and Tris solution are mixed, and then the pH is adjusted with HCl solution, and then nano alumina is added to polymerize dopamine hydrochloride on the surface of nano alumina, and polydopamine is grafted onto the surface of nano alumina, and nano oxidized
  • the particle size of aluminum is 50-300nm.
  • Nano-alumina provides a support for polydopamine into spheres.
  • step 1) adding nano alumina powder or adding a colloidal solution of nano alumina, the concentration of the added nano alumina colloid solution is 0.05-0.15 g/mL; preferably 0.1 g/mL.
  • the concentration of the graphene oxide solution in step 2) is 0.5-2.5 mg/mL.
  • the process of grafting polydopamine on the surface of graphene oxide is carried out at room temperature.
  • the surface of graphene oxide contains functional groups, such as hydroxyl, carboxyl and oxygen-containing groups.
  • Polydopamine is connected to graphene oxide through hydroxyl or ⁇ - ⁇ bonds. Carry out graft connection.
  • the preparation method of graphene oxide is the Hummer method.
  • reaction time of polydopamine and alumina is 10-15 hours.
  • the reacted mixture in step 1) is separated by centrifugation, the supernatant is removed, and freeze-dried to obtain the polydopamine-coated spherical nano-alumina composite material.
  • the reacted mixture in step 2) is separated by centrifugation, the supernatant is removed, and freeze-dried to obtain a graphene oxide/polypamine/Al 2 O 3 composite material.
  • the reacted mixture in step 3 is separated by centrifugation, the supernatant is removed, and freeze-dried to obtain a monolayer polydopamine/graphene/polydopamine/Al 2 O 3 composite material.
  • the reacted mixture in step 4) is separated by centrifugation, the supernatant is removed, and freeze-dried to obtain a multilayer polydopamine/graphene/polydopamine/Al 2 O 3 composite material.
  • the solution obtained after HCl etching in step 5 is separated by centrifugation to remove the supernatant and freeze-dried to obtain the lubricating additive.
  • the volume ratio and addition amount of dopamine hydrochloride, water, Tris solution, and HCl solution participating in the reaction in step 3) or step 4) are the same as those in step 1), and the oxidation of the reaction in step 4)
  • the amount and concentration of the graphene solution are the same as in step 2).
  • a super water-skiing lubricant includes water and the above-mentioned lubricating additive.
  • the mass concentration of the lubricating additive in the super water slide lubricant is 0.01%-0.8%; preferably 0.01-0.5%; more preferably 0.2%.
  • the super water ski lubricant within the above-mentioned mass concentration range has a lower coefficient of friction.
  • the method for preparing the above-mentioned super water-skiing lubricant is to mix the lubricating additive and water in an atmospheric environment to obtain the super water-skiing lubricant.
  • FIG. 1 it is the preparation flow chart of graphene oxide/polydopamine, a is spherical nano alumina, b is polydopamine/nano alumina, c is graphene oxide/polydopamine/nano alumina, d is Graphene oxide/polydopamine.
  • Example 2 The difference from Example 1 is that the concentration of the graphene oxide solution is 1.0 mg/mL.
  • Example 1 The difference from Example 1 is that the concentration of the graphene oxide solution is 1.5 mg/mL.
  • Example 1 The difference from Example 1 is that the concentration of the graphene oxide solution is 2.0 mg/mL.
  • Example 1 The difference from Example 1 is that the concentration of the graphene oxide solution is 2.5 mg/mL.
  • Example 1 The difference from Example 1 is the graphene oxide/polypamine/Al 2 O 3 composite material.
  • the polydopamine grafting and step (3) are repeated once to obtain graphene oxide/polypamine/graphene oxide/ Polypamine/Al 2 O 3 composite material, in which polydopamine is polymerized by mixing dopamine hydrochloride, water, Tris solution, and HCl solution for reaction; wherein the volume and concentration of dopamine hydrochloride, water, Tris solution, and HCl solution are related to the steps ( 2) The same.
  • step (3) The single-layer graphene oxide obtained in step (3) is encapsulated with the polypamine/Al 2 O 3 composite material and reacted with dopamine hydrochloride, water, Tris solution, and HCl solution in step (2) to obtain Polydopamine/graphene/polydopamine/Al 2 O 3 composite material;
  • Figure 2 shows the preparation process of polydopamine/graphene/polydopamine
  • a is spherical nano alumina
  • b is polydopamine/nano alumina
  • c is graphene oxide/polydopamine/nano alumina
  • d Is polydopamine/graphene/polydopamine/nano alumina
  • e is polydopamine/graphene/polydopamine.
  • Example 7 The difference from Example 7 is that the concentration of the graphene oxide solution in step (3) is 1.0 mg/mL.
  • Example 7 The difference from Example 7 is that the concentration of the graphene oxide solution in step (3) is 1.5 mg/mL.
  • Example 7 The difference from Example 7 is that the concentration of the graphene oxide solution in step (3) is 2.0 mg/mL.
  • Example 7 The difference from Example 7 is that the concentration of the graphene oxide solution in step (3) is 2.5 mg/mL.
  • Example 7 The difference from Example 7 is that the polydopamine/graphene/polydopamine/Al 2 O 3 composite material obtained in step (4) is repeated once (3), and the step (2) is combined with dopamine hydrochloride, water, and Tris. The solution and the HCl solution are mixed and reacted to obtain a polydopamine/graphene/polydopamine/graphene/polydopamine lubricating additive.
  • Example 13 The difference from Example 13 is that the black powder is added in an amount of 5 mg to obtain a mixed solution with a mass concentration of 0.05%.
  • Example 13 The difference from Example 13 is that the black powder is added in an amount of 10 mg to obtain a mixed solution with a mass concentration of 0.1%.
  • Example 13 The difference from Example 13 is that the black powder is added in an amount of 20 mg to obtain a mixed solution with a mass concentration of 0.2%.
  • the tribological test curve of the super water-skiing lubricant of the multilayer graphene oxide sphere aqueous solution in an atmospheric environment is shown in FIG. 4.
  • Example 13 The difference from Example 13 is that the black powder was added in an amount of 30 mg to obtain a mixed solution with a mass concentration of 0.3%.
  • Example 13 The difference from Example 13 is that the black powder is added in an amount of 40 mg to obtain a mixed solution with a mass concentration of 0.4%.
  • Example 13 The difference from Example 13 is that the black powder is added in an amount of 50 mg to obtain a mixed solution with a mass concentration of 0.5%.
  • Example 16 The difference from Example 16 is that the black powder obtained in step (5) of Example 7 is added.
  • the tribological test curve of the super water-skiing lubricant of the multi-layer graphene ball aqueous solution in an atmospheric environment is shown in FIG. 5.
  • Example 2 The difference from Example 1 is that the nano alumina colloidal aqueous solution is added, and the specific operation steps are as follows:
  • a 0.1g/mL nano Al 2 O 3 colloidal aqueous solution was prepared in a 100 mL beaker, and then 5.0 mg/mL dopamine hydrochloride was prepared.
  • L) Add the above solution to adjust the pH of the solution to 8.5; then add 5.0 mL of nano Al 2 O 3 colloidal solution (0.1 g/mL) to the above prepared solution; magnetically stir the entire solution for 12 hours.
  • Example 21 Compared with Example 1, the form of adding nano-alumina in Example 21 is different, that is, the operation method is different.
  • the water lubricant is deionized water.
  • the ball-disk reciprocating friction and wear tester is used in the atmospheric environment for testing (CETR, UMT-3, USA), in which a stainless steel disk is used as the lower sample to be fixed on a flat chassis, and a steel ball with a diameter of 6.0mm is used as a counter ball It is fixed on it as the upper sample.
  • Example 13 14 15 16 17 18 19 20 Coefficient of friction 0.24 0.20 0.02 0.006 0.15 0.12 0.016 0.007

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本发明涉及一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用。为一种球型空心结构,球型壳体为由内至外的氧化石墨烯层和聚多巴胺层复合层的结构,或为由内至外的聚多巴胺层、石墨烯层、聚多巴胺层复合层的结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。制备的过程先得到氧化石墨烯/聚巴多胺/Al2O3复合材料,通过重复包覆,得到多层结构,然后进行刻蚀得到空心结构的复合材料。制备得到水润滑剂具有超滑润滑行为和抗磨损性能。

Description

一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用 技术领域
本发明属于纳米材料领域及超滑水润滑剂技术领域,具体涉及一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
机械部件在人们的生活和生产中普遍存在,机械运转的过程中,摩擦损耗了一部分能量,尤其是长期反复运行的设备。所以给人们的生产过程带来巨大的经济损失,同时造成环境污染和资源浪费。机动车辆、微纳机械组件等许多关键部件的润滑技术遇到发展瓶颈,如何认识和控制摩擦磨损成为重要的解决方案。科学家从理论上预测了两个原子级光滑且非公度接触的范德华固体表面(如石墨烯、二硫化钼等二维材料表面)之间存在几乎为零摩擦、磨损,定义超滑现象的摩擦系数小于0.01,这将在节省能源、费用和环境安全方面具有深远意义。尽管开发和使用了多种固体和液体润滑剂,但在宏观或工程尺度上很少能实现超滑行为。
润滑剂多种多样,但是较多种类对环境产生一定的影响,随着人们对环境问题的逐渐重视,水作为润滑剂在摩擦学领域受到人们广泛关注。然而在边界润滑或混合润滑状态下,纯水本身的润滑性能较差,水膜容易破裂,使金属表面直接接触,即固-固接触,从而极大限制了其在运动部件和关节液润滑领域的应用。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种空心氧化石墨烯的润 滑添加剂、超滑水润滑剂及其制备方法和应用。
为了解决以上技术问题,本发明的技术方案为:
第一方面,一种空心氧化石墨烯的润滑添加剂,为一种球型空心结构,球型壳体为由内至外的氧化石墨烯层和聚多巴胺层复合层的结构,或为由内至外的聚多巴胺层、石墨烯层、聚多巴胺层复合层的结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。
本发明制备了一种润滑添加剂,这种润滑添加剂主要成分为氧化石墨烯和聚多巴胺,具有空心的结构,使润滑剂具有更低的摩擦系数,具体原理为
氧化石墨烯具有超滑的表面,但是现有的利用氧化石墨烯制备的润滑剂,不能达到超滑的性质,本发明中将氧化石墨烯制备成空心的球体,使其具有更好的韧性和超滑能力,在表面摩擦的过程中,摩擦系数更小。
虽然现有已经记载氧化石墨烯固体表面具有零摩擦,但在宏观或工程尺度很少实现超滑性能,本申请中制备的石墨烯或氧化石墨烯-聚多巴胺复合材料实现超滑,在宏观角度,在实际的机械摩擦过程中实现了超滑,降低能耗。
本发明包括两种润滑添加剂,第一种为球型氧化石墨烯/聚多巴胺,或球型多层氧化石墨烯/聚多巴胺;多层表示可以为氧化石墨烯/聚多巴胺/氧化石墨烯/聚多巴胺,氧化石墨烯位于最外层,聚多巴胺位于最内层。
第二种为氧化石墨烯球型聚多巴胺/石墨烯/聚多巴胺,或多层球型聚多巴胺/石墨烯/聚多巴胺。多层表示可以为聚多巴胺/石墨烯/聚多巴胺/石墨烯/聚多巴胺。氧化石墨烯位于最外层和最内层。
聚多巴胺具有还原性,氧化石墨烯包裹聚多巴胺的一面就会被还原,而最外层氧化石墨烯没有和聚多巴胺发生反应,所以第一种润滑添加剂中的最外层的氧化石墨烯是内侧被还原,外侧没有被还原,而位于两个聚多巴胺层中间的氧化石墨烯其实是被 还原的石墨烯。第二种中的石墨烯都处于两层聚多巴胺层之间,所以均是氧化石墨烯被还原之后的石墨烯。
聚多巴胺反应过程都具有还原性,例如聚多巴胺/石墨烯/聚多巴胺,氧化石墨烯两个面全部被聚多巴胺包裹,这个就是全部还原了,所以将它写成聚多巴胺/石墨烯/聚多巴胺。
例如氧化石墨烯/聚多巴胺/氧化石墨烯/聚多巴胺,这个结构的话就是最外层氧化石墨烯没有和聚多巴胺反应,没有还原;而最外层氧化石墨烯包裹聚多巴胺的一面就会被还原,所以将它还是写成氧化石墨烯/聚多巴胺/氧化石墨烯/聚多巴胺。
第二方面,上述空心氧化石墨烯的润滑添加剂的制备方法,具体步骤为:
将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米氧化铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
将氧化石墨烯/聚巴多胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂。
刻蚀后将中间的纳米氧化铝刻蚀去除,剩余氧化石墨烯保护聚多巴胺的结构。
本专利将纳米氧化铝球作为载体球,一个原因是利用其形状,在氧化铝球上生长氧化石墨烯球或石墨烯球,因为氧化石墨烯或石墨烯不能自成球形,氧化铝球容易制备,价格相对较低;制备的纳米氧化铝球表面含有丰富的羟基基团,聚多巴胺更易于接枝到球形氧化铝表面;氧化石墨烯表面的含氧基团或π-π键可与聚多巴胺键合自聚成为球形氧化石墨烯或石墨烯。第二个原因是氧化铝易于被污染较小的酸溶液刻蚀。
上述空心氧化石墨烯的润滑添加剂的制备方法,具体步骤为:
将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米氧化 铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
将得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料与盐酸多巴胺、水、Tris溶液混合,反应得到聚多巴胺/石墨烯/聚巴多胺/Al 2O 3复合材料;
将聚多巴胺/石墨烯/聚巴多胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂。
氧化石墨烯/聚巴多胺/Al 2O 3复合材料与盐酸多巴胺、水、Tris溶液混合,反应的过程中多巴胺聚合,并与氧化石墨烯结合,还原氧化石墨烯,得到石墨烯。
第三方面,一种超滑水润滑剂,包括水和上述的润滑添加剂。
第四方面,上述超滑水润滑剂的制备方法为,将润滑添加剂和水,在大气环境下进行混合得到超滑水润滑剂。
第五方面,上述的超滑水润滑剂在机械部件中的应用。
本发明的有益效果:
1、本发明以去离子水为润滑液、原位组装球型氧化石墨烯或石墨烯复合材料为润滑添加剂,球型氧化石墨烯或石墨烯可在摩擦表面滚动,降低摩擦磨损;聚多巴胺含有大量羟基和氨基基团易于吸附摩擦副表面,且聚多巴胺易在水中分散,大气环境条件下配制得到不同添加剂质量浓度的超滑水润滑剂,不但制备简单、易于操作、工艺稳定,而且质量可靠、成本低廉、可再生、无污染以及该添加剂易在对偶表面吸附形成转移膜,作为先进润滑剂材料符合商业化的工程宏观使用要求。
2、本发明所得的超滑水润滑剂可存放6个月-1年而无明显沉淀现象,保质期长。
3、经过摩擦学测试表明,本发明所得的水润滑剂具有超滑润滑行为和抗磨损性能,因此可以作为大气环境下机械运动部件的超滑润滑剂材料。
附图说明
构成本发明的一部分的说明书附图用来提供对本申请的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为氧化石墨烯/聚多巴胺的制备流程图;
图2为聚多巴胺/石墨烯/聚多巴胺的制备流程图;
图3为本申请对比例1纯去离子水润滑剂在球-盘上的摩擦测试曲线。
图4为本申请实施例16质量浓度为0.20%氧化石墨烯球添加剂水润滑剂在球-盘上的摩擦测试曲线。
图5为本申请实施例20质量浓度为0.20%石墨烯球添加剂水润滑剂在球-盘上的摩擦测试曲线。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
第一方面,一种空心氧化石墨烯的润滑添加剂,为一种球型空心结构,球型壳体为由内至外的氧化石墨烯层和聚多巴胺层复合层的结构,或为由内至外的聚多巴胺层、石墨烯层、聚多巴胺层复合层的结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。
在本发明的一些实施方式中,球型空心结构的直径为50-300nm。
第二方面,上述空心氧化石墨烯的润滑添加剂的制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米氧化铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
2)将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
或,3)将步骤2)得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料依次重复进行步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应、步骤2)中与氧化石墨烯的反应得到多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
4)将单层氧化石墨烯/聚巴多胺/Al 2O 3复合材料或多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂。
刻蚀后将中间的纳米氧化铝刻蚀去除,剩余氧化石墨烯保护聚多巴胺的结构。
重复进行步骤1)中与盐酸多巴胺、Tris溶液混合的反应过程中加入盐酸溶液,盐酸调节PH值后盐酸多巴胺才能和Tris溶液反应。
在本发明的一些实施方式中,步骤3)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料。
在本发明的一些实施方式中,步骤4)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到润滑添加剂。
在本发明的一些实施方式中,步骤3)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
另一种制备方法:
上述空心氧化石墨烯的润滑添加剂的制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米 氧化铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
2)将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
3)将步骤2)得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料进行步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应,得到单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
或,4)将步骤3)得到的聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料依次重复进行步骤2)中与氧化石墨烯的反应、步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应得到多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
5)将单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料或多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂。
步骤1)是将纳米氧化铝加入到通过盐酸调节的盐酸多巴胺、水与Tris混合溶液PH=8.5中,聚合反应在氧化铝表面进行,从而接枝到纳米氧化铝表面。
氧化石墨烯表面含有丰富的亲水基团,如羟基、羧基和含氧基团;聚多巴胺通过羟基或π-π键与氧化石墨烯表面基团键合。
步骤3)中氧化石墨烯/聚巴多胺/Al 2O 3复合材料与盐酸多巴胺、水、Tris溶液、HCl溶液混合,反应的过程中多巴胺聚合,并与氧化石墨烯结合,还原氧化石墨烯,得到石墨烯。
步骤4)中重复依次进行氧化石墨烯的包裹,聚多巴胺的接枝,实现了制备多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料。一般聚多巴胺/石墨烯的复合层的层数为3-6层。
在本发明的一些实施方式中,步骤1)中盐酸多巴胺、水、Tris溶液、纳米Al 2O 3、HCl溶液的比为0.05-0.15mL:8-12mL:2.2-2.7mL:0.05-0.25g:1mL。
在本发明的一些实施方式中,步骤1)中盐酸多巴胺的浓度为2-5mg/mL,Tris溶液的浓度为0.05-0.15mol/L,HCl溶液的浓度为0.05-0.15mol/L;优选的,盐酸多巴胺的浓度为2mg/mL,Tris溶液的浓度为0.1mol/L,HCl溶液的浓度为0.1mol/L。
步骤1)中,盐酸多巴胺、水与Tris溶液混合,然后利用HCl溶液调节pH,然后加入纳米氧化铝,使盐酸多巴胺在纳米氧化铝表面发生聚合,聚多巴胺接枝到纳米氧化铝表面,纳米氧化铝的粒径为50-300nm。纳米氧化铝提供聚多巴胺成球的载体。在本发明的一些实施方式中,步骤1)中,加入纳米氧化铝粉体或者加入纳米氧化铝的胶体溶液,加入的纳米氧化铝胶体的溶液的浓度为0.05-0.15g/mL;优选为0.1g/mL。
在本发明的一些实施方式中,步骤2)中氧化石墨烯溶液的浓度为0.5-2.5mg/mL。聚多巴胺接枝在氧化石墨烯的表面接枝的过程是在常温下进行,氧化石墨烯表面含有官能团,如羟基、羧基和含氧基团,聚多巴胺通过羟基或π-π键与氧化石墨烯进行接枝连接。
在本发明的一些实施方式中,氧化石墨烯的制备方法为Hummer法。
在本发明的一些实施方式中,聚多巴胺与氧化铝进行反应的时间为10-15h。
在本发明的一些实施方式中,步骤1)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到聚多巴胺包裹球型纳米氧化铝复合材料。
在本发明的一些实施方式中,步骤2)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料。
在本发明的一些实施方式中,步骤3)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料。
在本发明的一些实施方式中,步骤4)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料。
在本发明的一些实施方式中,步骤5)中利用HCl刻蚀后得到的溶液,通过离心 分离,去除上清液,冷冻干燥得到润滑添加剂。
在本发明的一些实施方式中,步骤3)或步骤4)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,步骤4)中参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
第三方面,一种超滑水润滑剂,包括水和上述的润滑添加剂。
在本发明的一些实施方式中,超滑水润滑剂中润滑添加剂的质量浓度为0.01%-0.8%;优选为0.01-0.5%;进一步优选为0.2%。在上述质量浓度范围内的超滑水润滑剂具有较低的摩擦系数。
第四方面,上述超滑水润滑剂的制备方法为,将润滑添加剂和水,在大气环境下进行混合得到超滑水润滑剂。
第五方面,上述的超滑水润滑剂在机械部件中的应用。
下面结合实施例对本发明进一步说明
实施例1
(1)利用Hummer改进法制备氧化石墨烯溶液:首先,将1000mL的干燥烧瓶在冰水浴中冷却5min,然后加入100mL浓硫酸,搅拌过程中加入2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),冰水浴控制反应温度在5℃,磁力搅拌反应2h。然后,将烧瓶取出,置于恒温加热磁力搅拌器上,在35℃条件下磁力搅拌反应2h。最后,加入150mL去离子水,再用恒温加热搅拌器将反应温度升高至95℃,继续磁力搅拌1h,得到浓度为50mg/mL氧化石墨溶液。加入去离子水稀释氧化石墨溶液,超声震荡2h,得到氧化石墨烯水溶液,放入冰箱完全冷冻,随后取出放入到冷冻干燥机中,冷冻,抽真空,干燥,得到氧化石墨烯粉末。
(2)在50mL烧杯中加入20mL去离子水,取0.2mL盐酸多巴胺溶液(2.0mg/mL)和5.0mLTris溶液(0.1mol/L)加入去离子水中,取2.0mL提前配制好的HCl溶液 (0.1mol/L)加入上述溶液,调节溶液PH=8.5;再将100mg的纳米Al 2O 3粉末加入到上述溶液中,将整个溶液磁力搅拌12h,得到聚多巴胺原位接枝球型纳米Al 2O 3表面;所得上述溶液放入离心机中,10000转/分钟离心20分钟;丢弃上清后,将所得聚多巴胺包裹纳米Al 2O 3粉末烘干,离心,干燥,得到黑色粉末。
(3)称取5mg(2)黑色粉末分别加入到浓度为0.5mg/mL氧化石墨烯溶液中;然后磁力搅拌12h;获得单层氧化石墨烯包裹聚巴多胺/Al 2O 3复合材料。
(4)在得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料溶液中加入5.0mL配制浓度为0.1mol/L HCl溶液(盐酸过量),刻蚀内核纳米Al 2O 3,从而得到少层氧化石墨烯球溶液;所得溶液放入离心机中,10000转/分钟离心20分钟,丢弃上清后,将所得少层氧化石墨烯球放入冷冻干燥机中,冷冻,干燥,即得到黑色粉末。
如图1所示,为氧化石墨烯/聚多巴胺的制备流程图,a为球型纳米氧化铝,b为聚多巴胺/纳米氧化铝,c为氧化石墨烯/聚多巴胺/纳米氧化铝,d为氧化石墨烯/聚多巴胺。
实施例2
与实施例1不同的是氧化石墨烯溶液的浓度为1.0mg/mL。
实施例3
与实施例1不同的是氧化石墨烯溶液的浓度为1.5mg/mL。
实施例4
与实施例1不同的是氧化石墨烯溶液的浓度为2.0mg/mL。
实施例5
与实施例1不同的是氧化石墨烯溶液的浓度为2.5mg/mL。
实施例6
与实施例1不同的是氧化石墨烯/聚巴多胺/Al 2O 3复合材料,重复进行一次聚多巴 胺接枝和步骤(3),得到氧化石墨烯/聚巴多胺/氧化石墨烯/聚巴多胺/Al 2O 3复合材料,其中聚多巴胺的聚合为盐酸多巴胺、水和Tris溶液、HCl溶液混合进行反应;其中盐酸多巴胺、水、Tris溶液、HCl溶液的体积和浓度与步骤(2)的相同。
实施例7
(1)与实施例1的步骤(1)相同;
(2)与实施例1的步骤(2)相同;
(3)称取5mg(2)黑色粉末分别加入到浓度为0.5mg/mL氧化石墨烯溶液中;然后磁力搅拌12h;获得单层氧化石墨烯包裹聚巴多胺/Al 2O 3复合材料表面;
(4)将步骤(3)得到的单层氧化石墨烯包裹聚巴多胺/Al 2O 3复合材料进行步骤(2)中的与盐酸多巴胺、水、Tris溶液、HCl溶液混合进行反应,得到聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
(5)在得到的聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料溶液中加入5.0mL配制浓度为0.1mol/LHCl溶液(盐酸过量),刻蚀内核纳米Al 2O 3,从而得到少层石墨烯球溶液;所得溶液放入离心机中,10000转/分钟离心20分钟,丢弃上清后,将所得少层石墨烯球放入冷冻干燥机中,冷冻,干燥,即得到黑色粉末。
如图2所示为,聚多巴胺/石墨烯/聚多巴胺的制备流程,a为球型纳米氧化铝,b为聚多巴胺/纳米氧化铝,c为氧化石墨烯/聚多巴胺/纳米氧化铝,d为聚多巴胺/石墨烯/聚多巴胺/纳米氧化铝,e为聚多巴胺/石墨烯/聚多巴胺。
实施例8
与实施例7不同的是步骤(3)中氧化石墨烯溶液的浓度为1.0mg/mL。
实施例9
与实施例7不同的是步骤(3)中氧化石墨烯溶液的浓度为1.5mg/mL。
实施例10
与实施例7不同的是步骤(3)中氧化石墨烯溶液的浓度为2.0mg/mL。
实施例11
与实施例7不同的是步骤(3)中氧化石墨烯溶液的浓度为2.5mg/mL。
实施例12
与实施例7不同的是:将步骤(4)得到的聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料重复进行一次(3)、步骤(2)中的与盐酸多巴胺、水、Tris溶液、HCl溶液混合进行反应,得到聚多巴胺/石墨烯/聚多巴胺/石墨烯/聚多巴胺润滑添加剂。
实施例13
将1mg的实施例1步骤(4)黑色粉末加入到盛有去离子水的烧杯中,密封(4)黑色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.01%的均匀混合溶液,得到超滑水基润滑剂。
实施例14
与实施例13不同的是黑色粉末的加入量为5mg,得到质量浓度0.05%的混合溶液。
实施例15
与实施例13不同的是黑色粉末的加入量为10mg,得到质量浓度0.1%的混合溶液。
实施例16
与实施例13不同的是黑色粉末的加入量为20mg,得到质量浓度0.2%的混合溶液。所述多层氧化石墨烯球水溶液的超滑水润滑剂在大气环境中的摩擦学测试曲线如图4所示。
实施例17
与实施例13不同的是黑色粉末的加入量为30mg,得到质量浓度0.3%的混合溶 液。
实施例18
与实施例13不同的是黑色粉末的加入量为40mg,得到质量浓度0.4%的混合溶液。
实施例19
与实施例13不同的是黑色粉末的加入量为50mg,得到质量浓度0.5%的混合溶液。
实施例20
与实施例16不同的是:加入实施例7步骤(5)得到的黑色粉末。所述多层石墨烯球水溶液的超滑水润滑剂在大气环境中的摩擦学测试曲线如图5所示。
实施例21
与实施例1不同的是加入纳米氧化铝胶体水溶液,具体操作步骤为:
在100mL烧杯中配制浓度0.1g/mL纳米Al 2O 3胶体水溶液,然后配制5.0mg/mL盐酸多巴胺。在50mL烧杯中加入20mL去离子水,取0.2mL盐酸多巴胺溶液(2.0mg/mL)和5mL Tris溶液(0.1mol/L)加入去离子水中,取2.0mL提前配制好的HCl溶液(0.1mol/L)加入上述溶液,调节溶液pH=8.5;再将5.0mL纳米Al 2O 3胶体溶液(0.1g/mL)加入上述配制溶液中;将整个溶液磁力搅拌12h。
其余操作步骤与实施例1相同。得到氧化石墨烯/聚多巴胺润滑添加剂。
实施例21相比于实施例1加入纳米氧化铝的形式不同,即操作方法不同。
对比例1
水润滑剂为去离子水。
试验例1
在大气环境中采用球-盘往复摩擦磨损试验机进行测试(美国CETR公司,UMT-3), 其中,不锈钢盘作为下试样被固定在平底盘上,直径为6.0mm的钢球作为对偶球被固定在上面作为上试样。测试滑动时间60min、滑动振幅1mm、往复频率20Hz、负载1N。
采用origin 9.0软件作图绘制摩擦磨损曲线图如图3、图4、图5,分别为是对比例1、实施例16、实施例20,结果表明:相比较纯去离子水而言,原位组装球型氧化石墨烯水溶液润滑剂的摩擦系数降至到0.006,实现了宏观大气环境下超滑行为,磨损率几乎为零,进一步证明原位组装复合材料可以做宏观工程超滑水润滑剂添加剂。
图4和图5的曲线走势不同,说明聚多巴胺/石墨烯/聚多巴胺相比于氧化石墨烯/聚多巴胺在摩擦过程中,前者达到超滑所需磨合时间较短,且前者超滑摩擦系数更稳定。
实施例13至实施例20的摩擦因数如表1所示:
表1,不同实施例的摩擦因数
实施例 13 14 15 16 17 18 19 20
摩擦系数 0.24 0.20 0.02 0.006 0.15 0.12 0.016 0.007
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种空心氧化石墨烯的润滑添加剂,其特征在于:具体步骤为:为一种球型空心结构,球型壳体为由内至外的氧化石墨烯层和聚多巴胺层复合层的结构,或为由内至外的聚多巴胺层、石墨烯层、聚多巴胺层复合层的结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。
  2. 权利要求1所述的空心氧化石墨烯的润滑添加剂,其特征在于:球型空心结构的直径为50-300nm。
  3. 权利要求1-2任一所述的空心氧化石墨烯的润滑添加剂的制备方法,其特征在于:具体步骤为:
    1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米氧化铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
    2)将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
    或,3)将步骤2)得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料依次重复进行步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应、步骤2)中与氧化石墨烯的反应得到多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
    4)将单层氧化石墨烯/聚巴多胺/Al 2O 3复合材料或多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂;
    优选的,步骤3)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到多层氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
    优选的,步骤4)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到润滑添加剂;
    优选的,步骤3)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相 同。
  4. 权利要求1-2任一所述的空心氧化石墨烯的润滑添加剂的制备方法,其特征在于:
    1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液,然后加入纳米氧化铝胶体水溶液,反应得到含有聚多巴胺包裹球型纳米氧化铝复合材料;
    2)将得到的聚多巴胺包裹球型纳米氧化铝复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料;
    3)将步骤2)得到的氧化石墨烯/聚巴多胺/Al 2O 3复合材料进行步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应,得到单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
    或,4)将步骤3)得到的聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料依次重复进行步骤2)中与氧化石墨烯的反应、步骤1)中与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应得到多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
    5)将单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料或多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料与HCl溶液混合,进行刻蚀,得到空心球型的润滑添加剂。
  5. 如权利要求3或4任一所述的空心氧化石墨烯的润滑添加剂的制备方法,其特征在于:步骤1)中盐酸多巴胺、水、Tris溶液、纳米Al 2O 3、HCl溶液的比为0.05-0.15mL:8-12mL:2.2-2.7mL:0.05-0.25g:1mL;
    或,骤1)中盐酸多巴胺的浓度为2-5mg/mL,Tris溶液的浓度为0.05-0.15mol/l,HCl溶液的浓度为0.05-0.15mol/l;优选的,盐酸多巴胺的浓度为2mg/mL,Tris溶液的浓度为0.1mol/l,HCl溶液的浓度为0.1mol/l;
    或,步骤1)中,加入纳米氧化铝粉体或者加入纳米氧化铝的胶体溶液,加入的纳米氧化铝胶体的溶液的浓度为0.05-0.15g/mL;优选为0.1g/mL;
    或,步骤2)中氧化石墨烯溶液的浓度为0.5-2.5mg/mL;
    或,氧化石墨烯的制备方法为Hummer法。
  6. 如权利要求3或4任一所述的空心氧化石墨烯的润滑添加剂的制备方法,其特征在于:聚多巴胺与氧化铝进行反应的时间为10-15h;
    或,步骤1)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到聚多巴胺包裹球型纳米氧化铝复合材料;
    或,步骤2)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到氧化石墨烯/聚巴多胺/Al 2O 3复合材料。
  7. 如权利要求4任一所述的空心氧化石墨烯的润滑添加剂的制备方法,其特征在于:步骤3)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到单层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
    或,步骤4)中反应后的混合物通过离心分离,去除上清液,冷冻干燥得到多层聚多巴胺/石墨烯/聚多巴胺/Al 2O 3复合材料;
    或,步骤5)中利用HCl刻蚀后得到的溶液,通过离心分离,去除上清液,冷冻干燥得到润滑添加剂;
    或,步骤3)或步骤4)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,步骤4)中参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
  8. 一种超滑水润滑剂,其特征在于:包括水和权利要求1所述的润滑添加剂;
    优选的,超滑水润滑剂中润滑添加剂的质量浓度为0.01%-0.8%;优选为0.01-0.5%;进一步优选为0.2%。
  9. 如权利要求8所述的超滑水润滑剂的制备方法,其特征在于:将润滑添加剂和水,在大气环境下进行混合得到超滑水润滑剂。
  10. 如权利要求8所述的超滑水润滑剂在机械部件中的应用。
PCT/CN2020/103350 2020-06-05 2020-07-21 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用 WO2021243825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535692A JP7224605B2 (ja) 2020-06-05 2020-07-21 中空酸化グラフェンの潤滑添加剤及び超潤滑の水潤滑剤、及びその製造方法並びに使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010503914.5 2020-06-05
CN202010503914.5A CN111500340A (zh) 2020-06-05 2020-06-05 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021243825A1 true WO2021243825A1 (zh) 2021-12-09

Family

ID=71872279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103350 WO2021243825A1 (zh) 2020-06-05 2020-07-21 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP7224605B2 (zh)
CN (1) CN111500340A (zh)
WO (1) WO2021243825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117777548A (zh) * 2023-12-04 2024-03-29 科迈特新材料有限公司 一种用于高分子材料的改性阻燃剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832273A (zh) * 2016-12-13 2017-06-13 北京航空航天大学 一种制备超抗疲劳仿生石墨烯纳米复合材料的方法
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
WO2019059662A2 (ko) * 2017-09-20 2019-03-28 한양대학교 산학협력단 금속 전극을 구비하는 금속이차전지
CN109777100A (zh) * 2019-02-19 2019-05-21 西北师范大学 一种还原氧化石墨烯-聚多巴胺-谷胱甘肽复合材料的制备方法
CN110770947A (zh) * 2017-01-24 2020-02-07 沙特基础工业全球技术公司 具有多个蛋黄/蛋壳结构的多层石墨烯材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105949861B (zh) 2016-05-06 2018-04-06 上海海事大学 一种能自修复的超疏水复合材料、其制备方法和用途
CN110540190A (zh) 2018-05-29 2019-12-06 戴念华 高热传导散热复合膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832273A (zh) * 2016-12-13 2017-06-13 北京航空航天大学 一种制备超抗疲劳仿生石墨烯纳米复合材料的方法
CN110770947A (zh) * 2017-01-24 2020-02-07 沙特基础工业全球技术公司 具有多个蛋黄/蛋壳结构的多层石墨烯材料
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
WO2019059662A2 (ko) * 2017-09-20 2019-03-28 한양대학교 산학협력단 금속 전극을 구비하는 금속이차전지
CN109777100A (zh) * 2019-02-19 2019-05-21 西北师范大学 一种还原氧化石墨烯-聚多巴胺-谷胱甘肽复合材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117777548A (zh) * 2023-12-04 2024-03-29 科迈特新材料有限公司 一种用于高分子材料的改性阻燃剂及其制备方法
CN117777548B (zh) * 2023-12-04 2024-05-31 科迈特新材料有限公司 一种用于高分子材料的改性阻燃剂及其制备方法

Also Published As

Publication number Publication date
CN111500340A (zh) 2020-08-07
JP7224605B2 (ja) 2023-02-20
JP2022539276A (ja) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021243824A1 (zh) 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用
WO2021243826A1 (zh) 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用
CN111440651B (zh) 黑磷烯/氧化石墨烯复合水基润滑添加剂的制备方法
CN110591787B (zh) 一种无溶剂碳纳米管类流体的应用
WO2021243825A1 (zh) 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用
CN103073060B (zh) 用作减摩添加剂的六方二硫化钼纳米片的制备方法
CN111534357B (zh) 纳米二硫化钼/黑磷纳米片复合润滑油添加剂的制备方法
Wu et al. Carbon solid lubricants: role of different dimensions
CN108085089B (zh) 一种无溶剂二氧化硅纳米类流体及其应用
Ma et al. Tribological properties of SiO 2@ Cu and SiO 2@ MoS 2 core–shell microspheres as lubricant additives
Liu et al. Remarkable lubricating effect of ionic liquid modified carbon dots as a kind of water-based lubricant additives
Wu et al. Ultra-dispersive sulfonated graphene as water-based lubricant additives for enhancing tribological performance
CN109082329B (zh) 一种三元纳米自润滑复合材料及其制备方法
CN108753106B (zh) 一种纳米杂化材料改性环氧树脂自润滑复合涂层及其制备方法
Chen et al. Ultralow friction polymer composites enabled by the solid–liquid core microcapsules at high temperatures
CN106906027B (zh) 一种自修复纳米润滑油脂及其制备方法
CN112300852B (zh) 一种基于表面修饰的纳米碳材料复合添加剂及其制备方法
CN116344146A (zh) 一种硅油基磁流体及其制备方法
CN114479985A (zh) 一种包覆黑磷量子点的复合材料及其制备方法和应用
CN111635804B (zh) 一种全氟聚醚超分子凝胶复合纳米颗粒润滑剂及其制备方法和应用
CN105925341B (zh) 一种类液体石墨烯水基润滑剂、制备方法及用途
Yin et al. Recent Progress on carbon nanomaterials for resisting the Wear damages
CN114835952B (zh) 一种石墨烯-氮化硅杂化气凝胶及其制备方法和环氧树脂基复合材料及其制备方法
CN115591533B (zh) 一种石墨烯基靶向吸氢纳米复合材料及其制备方法
CN115322822A (zh) 一种油溶性黑磷纳米片/铜纳米颗粒复合材料及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021535692

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938759

Country of ref document: EP

Kind code of ref document: A1