WO2021243824A1 - 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用 - Google Patents

一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用 Download PDF

Info

Publication number
WO2021243824A1
WO2021243824A1 PCT/CN2020/103349 CN2020103349W WO2021243824A1 WO 2021243824 A1 WO2021243824 A1 WO 2021243824A1 CN 2020103349 W CN2020103349 W CN 2020103349W WO 2021243824 A1 WO2021243824 A1 WO 2021243824A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nano
polydopamine
super
graphene oxide
Prior art date
Application number
PCT/CN2020/103349
Other languages
English (en)
French (fr)
Inventor
车清论
张建军
梁森
崔宁
吕滨江
徐洋
马兴华
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to US17/421,219 priority Critical patent/US11685877B2/en
Publication of WO2021243824A1 publication Critical patent/WO2021243824A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/091Water solubility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • C10N2050/025Multi-layer lubricant coatings in the form of films or sheets

Definitions

  • Tribological tests show that the water lubricant obtained in the present invention has super-slip lubricating behavior and anti-wear performance, so it can be used as a super-slip lubricant material for mechanical moving parts or biological lubricating parts in an atmospheric environment.
  • a first polydopamine layer is prepared on the surface of a spherical nano-metal oxide, and nanoparticles are connected to the surface of the first polydopamine layer to make the first
  • the surface of a polydopamine layer is loaded with a nano-particle layer, and then a second polydopamine layer is prepared on the surface of the nano-particle layer, and the surface of the second polydopamine layer is bonded to the graphene oxide surface groups through hydroxyl or ⁇ - ⁇ bonds to make the graphite oxide Alkene forms a graphene oxide layer on the surface of the second polydopamine layer, and the nano metal oxide is etched and removed by an acid solution; the nano particles are nano diamond, nano molybdenum disulfide, or nano tungsten disulfide;

Abstract

本发明公开了一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用,超滑水润滑添加剂为空心球壳结构,所述空心球壳结构包括至少一层球壳;所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、氧化石墨烯层,或者,所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、石墨烯层、第三聚多巴胺层;所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。将超滑水润滑添加剂制备成均匀水溶液,获得超滑水润滑剂。本发明提供的超滑水润滑添加剂易在对偶表面吸附,在摩擦过程中释放的纳米颗粒与球形氧化石墨烯或石墨烯协同形成滚动摩擦,降低摩擦磨损。

Description

一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用 技术领域
本发明涉及一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
机械运动部件在运动过程中因摩擦而消耗能源,磨损造成其失效和损伤,从而给人们带来巨大的经济损失,同时会造成环境污染。如何认识和控制机动车辆、微纳机械组件等关键部件的摩擦磨损成为关键。科学家发现非公度接触的范德华固体表面(如石墨烯、二硫化钼等二维材料表面)之间存在几乎为零摩擦、磨损,定义超滑现象的摩擦系数小于0.01。超滑将在节省能源、费用和环境安全方面具有深远意义。尽管科学家们开发和使用了多种固体和液体润滑剂,但在宏观或工程尺度上很少能实现超滑行为。机械运动部件在运动过程中摩擦引起的环境问题逐渐进入人们视野,价格低廉、环境友好的水介质润滑剂在摩擦学领域越来越受到人们广泛关注。经过本发明的发明人研究发现,在边界润滑或混合润滑状态下,纯水润滑性能较差,水膜容易破裂,使金属表面直接接触,即固-固接触,从而极大限制了其在运动部件和关节液润滑领域的应用。
发明内容
为了解决现有技术的不足,本发明的目的是提供一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用,能够增强水润滑剂的承载能力,降低摩擦磨损。
为了实现上述目的,本发明的技术方案为:
一方面,一种超滑水润滑添加剂,所述超滑水润滑添加剂为空心球壳结构,所述空心球壳结构包括至少一层球壳;
所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、氧化石墨烯层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
或者,所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、石墨烯层、第三聚多巴胺层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
另一方面,一种超滑水润滑添加剂的制备方法,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗 粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
或者,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,利用多巴胺在氧化石墨烯层表面制备第三层聚多巴胺层,在制备第三层聚多巴胺层时,多巴胺将氧化石墨烯还原为石墨烯,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
第三方面,一种超滑水润滑剂,为上述超滑水润滑添加剂的水溶液。
第四方面,一种上述超滑水润滑剂在机械运动部件或生物润滑中的应用。
本发明的有益效果为:
1、本发明以去离子水为润滑液、原位组装球形空心氧化石墨烯或石墨烯/纳米颗粒复合材料为润滑添加剂,原位组装球形空心氧化石墨烯或石墨烯/纳米颗粒在摩擦表面发生滚动,降低摩擦磨损;聚多巴胺含有大量羟基和氨基基团易于吸附摩擦副表面,且聚多巴胺易在水中分散,大气环境条件下配制得到不同添加剂质量浓度的超滑水润滑剂,不但制备简单、易于操作、工艺稳定,而且质量可靠、成本低廉、可再生、无污染以及该添加剂易在对偶表面吸附形成转移膜,作为先进润滑剂材料符合商业化的工程宏观使用要求。
2、本发明所得的超滑水润滑剂可存放1-2年而无明显沉淀现象,保质期长。
3、经过摩擦学测试表明,本发明所得的水润滑剂具有超滑润滑行为和抗磨损性能,因此可以作为大气环境下机械运动部件或生物润滑部件的超滑润滑剂材料。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备过程的示意图;
图2为本发明实施例17制备过程的示意图;
图3为纯去离子水润滑剂在球-盘上的摩擦测试曲线;
图4为本发明实施例1制备的超滑水润滑剂在球-盘上的摩擦测试曲线。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于纯水润滑性能较差、水膜容易破裂等问题,本发明提出了一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用。
本发明的一种典型实施方式,提供了一种超滑水润滑添加剂,所述超滑水润滑添加剂为空心球壳结构,所述空心球壳结构包括至少一层球壳;
所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、氧化石墨烯层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
或者,所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、石墨烯层、第三聚多巴胺层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
本发明的另一种实施方式,提供了一种超滑水润滑添加剂的制备方法,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
或者,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,利用多巴胺在氧化石墨烯层表面制备第三层聚多巴胺层,在制备第三层聚多巴胺层时,多巴胺将氧化石墨烯还原为石墨烯,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
本发明中所述的球形纳米金属氧化物(10-150nm),例如纳米氧化铝、纳米氧化铜等。
该方法能够获得一层球壳结构的超滑水润滑添加剂,若想获得两层以上的球壳结构的 超滑水润滑添加剂,将获得的一层球壳结构的超滑水润滑添加剂代替纳米金属氧化物重复上述制备方法。
该实施方式的一些实施例中,在球形纳米金属氧化物表面制备第一聚多巴胺层的过程为:将纳米金属氧化物加入至多巴胺聚合反应体系中进行聚合反应,所述多巴胺聚合反应体系包括盐酸多巴胺、Tris溶液、盐酸。盐酸多巴胺可以采用多巴胺代替。多巴胺聚合反应体系中的pH为8.0~9.0。
该实施方式的一些实施例中,第一聚多巴胺层的表面连接纳米颗粒的过程为:将纳米颗粒的分散液加入至第一聚多巴胺层包覆的纳米金属氧化物溶液中混合10~24h。
该实施方式的一些实施例中,在纳米颗粒层表面制备第二聚多巴胺层的过程为:将第一聚多巴胺层表面负载纳米颗粒层的复合材料加入至多巴胺聚合反应体系中进行聚合反应,所述多巴胺聚合反应体系包括盐酸多巴胺、Tris溶液、盐酸。盐酸多巴胺可以采用多巴胺代替。多巴胺聚合反应体系中的pH为8.0~9.0。
该实施方式的一些实施例中,第二聚多巴胺层表面形成氧化石墨烯层的过程为:将在纳米颗粒层表面制备第二聚多巴胺层的复合材料加入至氧化石墨烯分散液中混合10~24h。
该实施方式的一些实施例中,刻蚀去除纳米金属氧化物后进行冷冻干燥。
该实施方式的一些实施例中,制备第三层聚多巴胺层的过程与制备第二层聚多巴胺层一致。
该实施方式的一些实施例中,氧化石墨烯的制备方法为Hummer改进法。
本发明的第三种实施方式,提供了一种超滑水润滑剂,为上述超滑水润滑添加剂的水溶液。
该实施方式的一些实施例中,超滑水润滑添加剂的质量浓度为0.01~1.00%。当超滑水润滑添加剂的质量浓度为0.45~0.55%时,摩擦性能更好。经过大气环境下的摩擦磨损测试后,摩擦系数可以达到0.006,达到了超滑行为,因此制备得到的超滑水润滑剂能够满足对润滑性能较高需求的材料或零件的润滑需求。
本发明的第四种实施方式,提供了一种上述超滑水润滑剂在机械运动部件或生物润滑中的应用。
本发明所述的生物润滑,例如关节液润滑等。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案。
实施例1
(1)利用Hummer改进法制备氧化石墨烯溶液:首先,将1000ml的干燥烧瓶在冰水浴 中冷却5min,然后加入100ml浓硫酸,搅拌过程中加入2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),冰水浴控制反应温度在5℃,磁力搅拌反应2h。然后,将烧瓶取出,置于恒温加热磁力搅拌器上,在35℃条件下磁力搅拌反应2h。最后,加入150ml去离子水,再用恒温加热搅拌器将反应温度升高至95℃,继续磁力搅拌1h,得到浓度为50mg/ml氧化石墨溶液。加入去离子水稀释氧化石墨溶液,超声震荡2h,得到氧化石墨烯水溶液,放入冰箱完全冷冻成冰快,随后取出放入到冷冻干燥机中,冷冻,抽真空,干燥,得到氧化石墨烯粉末。
(2)在50ml烧杯中加入20ml去离子水,取0.2ml盐酸多巴胺溶液(2.0mg/ml)和5.0ml Tris溶液(0.1mol/l)加入去离子水中,取2.0ml提前配制好的HCl溶液(0.1mol/l)加入上述溶液,调节溶液pH=8.5获得多巴胺聚合溶液;再将100mg的纳米Al 2O 3粉末加入到多巴胺聚合溶液中,将整个溶液磁力搅拌12h,得到聚多巴胺原位接枝在纳米Al 2O 3表面;再将配制浓度0.1g/ml纳米颗粒胶体水溶液加入到上述溶液中,磁力搅拌12h;所得溶液在10000转/分离心20分钟,丢弃上清后,得到纳米金刚石/聚多巴胺/纳米Al 2O 3浆料,将所得纳米颗粒/聚多巴胺/纳米Al 2O 3浆料烘干,离心,干燥,得到黑色粉末,将黑色粉末加入至多巴胺聚合溶液中,将整个溶液磁力搅拌12h,获得聚多巴胺/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料。
(3)称取5mg(2)聚多巴胺/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料加入到浓度为1.5mg/ml氧化石墨烯溶液中;然后磁力搅拌12h;获得单层氧化石墨烯/聚多巴胺/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料。
(4)在(3)氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料溶液中加入5.0ml配制浓度为0.1mol/l HCl盐酸溶液(盐酸过量),刻蚀内核纳米Al 2O 3,从而得到空心球形氧化石墨烯/纳米颗粒溶液;所得溶液放入离心机中,10000转/分钟离心20分钟,丢弃上清后,将所得空心球形氧化石墨烯/纳米颗粒浆料放入冷冻干燥机中,冷冻,干燥,即得到黑色粉末,合成过程如图1所示。
(5)将50mg的(4)黑色粉末加入到盛有去离子水的烧杯中,密封(4)黑色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.50%的均匀混合溶液,得到超滑水润滑剂。
实施例2
本实施例与实施例1相同,区别在于:步骤(3)中氧化石墨烯溶液的浓度为0.5mg/ml。
实施例3
本实施例与实施例1相同,区别在于:步骤(3)中氧化石墨烯溶液的浓度为1.0mg/ml。
实施例4
本实施例与实施例1相同,区别在于:步骤(3)中氧化石墨烯溶液的浓度为2.0mg/ml。
实施例5
本实施例与实施例1相同,区别在于:步骤(3)中氧化石墨烯溶液的浓度为2.5mg/ml。
实施例6
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为1mg,制备质量浓度为0.01%的均匀混合溶液。
实施例7
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为5mg,制备质量浓度为0.05%的均匀混合溶液。
实施例8
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为10mg,制备质量浓度为0.10%的均匀混合溶液。
实施例9
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为20mg,制备质量浓度为0.20%的均匀混合溶液。
实施例10
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为30mg,制备质量浓度为0.30%的均匀混合溶液。
实施例11
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为40mg,制备质量浓度为0.40%的均匀混合溶液。
实施例12
本实施例与实施例1相同,区别在于:步骤(5)中(4)黑色粉末加入的质量为100mg,制备质量浓度为1.00%的均匀混合溶液。
实施例13
本实施例与实施例1相同,区别在于:将步骤(3)获得的单层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料代替步骤(2)中的纳米Al 2O 3,并重复步骤(2)-(3)1次,获得两层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料,将两层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料继续进行步骤(4)-(5)。
实施例14
本实施例与实施例13相同,区别在于:将两层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料代替步骤(2)中的纳米Al 2O 3,并继续重复步骤(2)-(3)1次,获得三层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料,将三层氧化石墨烯/纳米金刚石/聚多巴胺/纳米Al 2O 3复合材料继续进行步骤(4)-(5)。
实施例15
本实施例与实施例1相同,区别在于:将纳米金刚石替换为纳米MoS 2
实施例16
本实施例与实施例1相同,区别在于:将纳米金刚石替换为纳米WS 2
实施例17
(1)利用Hummer改进法制备氧化石墨烯溶液:首先,将1000ml的干燥烧瓶在冰水浴中冷却5min,然后加入100ml浓硫酸,搅拌过程中加入2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),冰水浴控制反应温度在5℃,磁力搅拌反应2h。然后,将烧瓶取出,置于恒温加热磁力搅拌器上,在35℃条件下磁力搅拌反应2h。最后,加入150ml去离子水,再用恒温加热搅拌器将反应温度升高至95℃,继续磁力搅拌1h,得到浓度为50mg/ml氧化石墨溶液。加入去离子水稀释氧化石墨溶液,超声震荡2h,得到氧化石墨烯水溶液,放入冰箱完全冷冻成冰快,随后取出放入到冷冻干燥机中,冷冻,抽真空,干燥,得到氧化石墨烯粉末。
(2)在50ml烧杯中加入20ml去离子水,取0.2ml盐酸多巴胺溶液(2.0mg/ml)和5.0ml Tris溶液(0.1mol/l)加入去离子水中,取2.0ml提前配制好的HCl溶液(0.1mol/l)加入上述溶液,调节溶液pH=8.5获得多巴胺聚合溶液;再将100mg的纳米Al 2O 3粉末加入到多巴胺聚合溶液中,将整个溶液磁力搅拌12h,得到聚多巴胺原位接枝在纳米Al 2O 3表面;再将配制浓度0.1g/ml纳米颗粒(纳米金刚石、MoS 2、WS 2)胶体水溶液加入到上述溶液中,磁力搅拌12h;所得溶液在10000转/分离心20分钟;丢弃上清后,得到纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3浆料;将所得聚巴多胺/纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3浆料烘干,离心,干燥,得到黑色粉末。
(3)称取5mg(2)黑色粉末分别加入到浓度为0.5、1.0、1.5、2.0、2.5mg/ml氧化石墨烯溶液中;然后磁力搅拌12h;搅拌后,将溶液加入到多巴胺聚合溶液中获得单层聚巴多胺/石墨烯/聚巴多胺/纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3复合材料;为了获得多层氧化石墨烯/纳米颗粒,即球形聚巴多胺/石墨烯/纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3复合材料;重复步骤(2)和(3),即可得到多层聚巴多胺/石墨烯/聚巴多胺/纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3复合材 料。
(4)在(3)聚巴多胺/石墨烯/聚巴多胺/纳米颗粒(纳米金刚石、MoS 2、WS 2)/聚多巴胺/纳米Al 2O 3复合材料溶液中加入5.0ml配制浓度为0.1mol/l HCl盐酸溶液(盐酸过量),刻蚀内核纳米Al 2O 3,从而得到少层空心球形石墨烯或多层石墨烯/纳米颗粒溶液;所得溶液放入离心机中,10000转/分钟离心20分钟,丢弃上清后,将所得少层空心球形石墨烯或多层石墨烯/纳米颗粒粉末放入冷冻干燥机中,冷冻,干燥,即得到黑色粉末,少层空心球形石墨烯合成过程如图2所示。
(5)将1mg、5mg、10mg、20mg、30mg、40mg、50mg的(4)黑色粉末加入到盛有去离子水的烧杯中,密封(4)黑色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.01%、0.05%、0.10%、0.20%、0.30%、0.40%、0.50%、1.00%的均匀混合溶液,得到超滑水润滑剂。
摩擦学性能测试:
对去离子水和实施例1制备得到的原位组装空心氧化石墨烯/纳米颗粒复合材料添加剂的水润滑剂进行摩擦磨损测试,在大气环境中采用球-盘往复摩擦磨损试验机进行测试(美国CETR公司,UMT-3),其中,不锈钢盘作为下试样被固定在平底盘上,直径为6.0mm的钢球作为对偶球被固定在上面作为上试样。测试滑动时间1500s、滑动振幅1mm、往复频率20Hz、负载1N。
采用origin 9.0软件作图绘制摩擦磨损曲线图,参见图3-4,结果表明:纯的去离子水在大气环境中的摩擦系数为0.45,相比较纯去离子水而言,实施例1的超滑水润滑剂在大气环境中的摩擦系数降至到0.006,实现了宏观大气环境下超滑行为,磨损率几乎为零,进一步证明原位组装复合材料可以做宏观工程超滑水润滑剂添加剂。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超滑水润滑添加剂,其特征是,所述超滑水润滑添加剂为空心球壳结构,所述空心球壳结构包括至少一层球壳;
    所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、氧化石墨烯层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
    或者,所述球壳由内至外依次包括第一聚多巴胺层、纳米颗粒层、第二聚多巴胺层、石墨烯层、第三聚多巴胺层,所述纳米颗粒层的纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
  2. 一种超滑水润滑添加剂的制备方法,其特征是,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨;
    或者,在球形纳米金属氧化物表面制备第一聚多巴胺层,在第一聚多巴胺层的表面连接纳米颗粒,使第一聚多巴胺层表面负载纳米颗粒层,然后在纳米颗粒层表面制备第二聚多巴胺层,在第二聚多巴胺层表面通过羟基或π-π键与氧化石墨烯表面基团键合,使氧化石墨烯在第二聚多巴胺层表面形成氧化石墨烯层,利用多巴胺在氧化石墨烯层表面制备第三层聚多巴胺层,在制备第三层聚多巴胺层时,多巴胺将氧化石墨烯还原为石墨烯,采用酸溶液将纳米金属氧化物刻蚀去除;所述纳米颗粒为纳米金刚石、纳米二硫化钼或纳米二硫化钨。
  3. 如权利要求2所述的超滑水润滑添加剂的制备方法,其特征是,在球形纳米金属氧化物表面制备第一聚多巴胺层的过程为:将纳米金属氧化物加入至多巴胺聚合反应体系中进行聚合反应,所述多巴胺聚合反应体系包括盐酸多巴胺、Tris溶液、盐酸。
  4. 如权利要求2所述的超滑水润滑添加剂的制备方法,其特征是,第一聚多巴胺层的表面连接纳米颗粒的过程为:将纳米颗粒的分散液加入至第一聚多巴胺层包覆的纳米金属氧化物溶液中混合10~24h。
  5. 如权利要求2所述的超滑水润滑添加剂的制备方法,其特征是,在纳米颗粒层表面制备第二聚多巴胺层的过程为:将第一聚多巴胺层表面负载纳米颗粒层的复合材料加入至多巴胺聚合反应体系中进行聚合反应,所述多巴胺聚合反应体系包括盐酸多巴胺、Tris溶液、盐酸。
  6. 如权利要求2所述的超滑水润滑添加剂的制备方法,其特征是,第二聚多巴胺层表面 形成氧化石墨烯层的过程为:将在纳米颗粒层表面制备第二聚多巴胺层的复合材料加入至氧化石墨烯分散液中混合10~24h。
  7. 如权利要求2所述的超滑水润滑添加剂的制备方法,其特征是,刻蚀去除纳米金属氧化物后进行冷冻干燥。
  8. 一种超滑水润滑剂,其特征是,为权利要求1所述的超滑水润滑添加剂或权利要求2~7任一所述制备方法获得的超滑水润滑添加剂的水溶液。
  9. 如权利要求8所述的超滑水润滑剂,其特征是,超滑水润滑添加剂的质量浓度为0.01~1.00%;优选的,超滑水润滑添加剂的质量浓度为0.45~0.55%。
  10. 一种权利要求8或9所述的超滑水润滑剂在机械运动部件或生物润滑中的应用。
PCT/CN2020/103349 2020-06-04 2020-07-21 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用 WO2021243824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/421,219 US11685877B2 (en) 2020-06-04 2020-07-21 Super-lubricity water lubricating additive, super-lubricity water lubricant, preparation method and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010498505.0A CN111575087A (zh) 2020-06-04 2020-06-04 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用
CN202010498505.0 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021243824A1 true WO2021243824A1 (zh) 2021-12-09

Family

ID=72121800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103349 WO2021243824A1 (zh) 2020-06-04 2020-07-21 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用

Country Status (3)

Country Link
US (1) US11685877B2 (zh)
CN (1) CN111575087A (zh)
WO (1) WO2021243824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984309A (zh) * 2022-05-30 2022-09-02 四川大学 一种两性离子聚合物修饰的纳米片的制备方法及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322370A (zh) * 2020-10-13 2021-02-05 长春一汽富维东阳汽车塑料零部件有限公司 一种双层空心复合壳结构纳米润滑油添加剂的制备方法
CN114212777B (zh) * 2021-12-15 2022-11-08 广东省科学院化工研究所 一种石墨烯纳米球及其制备方法和应用
CN115806850B (zh) * 2022-11-25 2023-12-19 北京石墨烯技术研究院有限公司 石墨烯润滑添加剂及其制备方法和润滑油
CN115960671A (zh) * 2022-12-21 2023-04-14 东莞市勤振润滑科技有限公司 一种高效润滑的水基切削液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105949861A (zh) * 2016-05-06 2016-09-21 上海海事大学 一种能自修复的超疏水复合材料、其制备方法和用途
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法
CN108352514A (zh) * 2015-11-13 2018-07-31 罗伯特·博世有限公司 用于锂-硫电池的含有高石墨化的碳材料的硫-碳复合材料及其制备方法
CN110770947A (zh) * 2017-01-24 2020-02-07 沙特基础工业全球技术公司 具有多个蛋黄/蛋壳结构的多层石墨烯材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201402569SA (en) * 2012-01-05 2014-06-27 Univ Nanyang Tech Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN106582562A (zh) * 2015-10-20 2017-04-26 中国科学院大连化学物理研究所 一种磁性氧化石墨烯复合纳米材料及其制备方法
CN108417853B (zh) * 2018-04-09 2020-04-07 湖南科技大学 一种内层碳镶嵌金属纳米颗粒的碳空心球的制备方法及其应用
CN110253995B (zh) * 2019-06-20 2021-07-27 云南电网有限责任公司电力科学研究院 一种绝缘材料结构及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352514A (zh) * 2015-11-13 2018-07-31 罗伯特·博世有限公司 用于锂-硫电池的含有高石墨化的碳材料的硫-碳复合材料及其制备方法
CN105949861A (zh) * 2016-05-06 2016-09-21 上海海事大学 一种能自修复的超疏水复合材料、其制备方法和用途
CN110770947A (zh) * 2017-01-24 2020-02-07 沙特基础工业全球技术公司 具有多个蛋黄/蛋壳结构的多层石墨烯材料
CN107164020A (zh) * 2017-04-06 2017-09-15 江苏大学 一种石墨烯‑聚多巴胺‑铜纳米复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984309A (zh) * 2022-05-30 2022-09-02 四川大学 一种两性离子聚合物修饰的纳米片的制备方法及其应用

Also Published As

Publication number Publication date
US11685877B2 (en) 2023-06-27
US20220340834A1 (en) 2022-10-27
CN111575087A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021243824A1 (zh) 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用
WO2021243826A1 (zh) 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用
Meng et al. Au/graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive
CN103073060B (zh) 用作减摩添加剂的六方二硫化钼纳米片的制备方法
Wu et al. Carbon solid lubricants: role of different dimensions
CN102807907B (zh) 一种石墨烯/MoS2纳米自润滑复合材料及其制备方法
CN106571454B (zh) 一种用于锂电池的网络状硅/石墨复合材料及制备方法
CN110591787B (zh) 一种无溶剂碳纳米管类流体的应用
Wu et al. Synthesis of hollow fullerene-like molybdenum disulfide/reduced graphene oxide nanocomposites with excellent lubricating properties
Cui et al. Fabrication of carbon dots intercalated MXene hybrids via laser treatment as oil-based additives for synergistic lubrication
CN108085089B (zh) 一种无溶剂二氧化硅纳米类流体及其应用
CN112210417B (zh) 一种实现碳薄膜超低摩擦的摩擦催化设计方法
CN111592883B (zh) 一种镁离子掺杂碳量子点及其制备和应用方法
CN108359455A (zh) 石墨烯量子点的提取方法及以其配制的润滑油改性添加剂
CN108899496B (zh) 石墨烯掺杂ws2制备方法及在锂/钠离子电池中的应用
Wu et al. Ultra-dispersive sulfonated graphene as water-based lubricant additives for enhancing tribological performance
Zhang et al. Synthetic kilogram carbon dots for superior friction reduction and antiwear additives
Zhu et al. Design of novel lubricating structured MOF-on-MOF heterostructure towards the tribological application
Zhang et al. A novel sonogel based on h-BN nanosheets for the tribological application under extreme conditions
Qu et al. MoS2/CF synergistic reinforcement on tribological properties of NBR/PU/EP interpenetrating polymer networks
CN109082329B (zh) 一种三元纳米自润滑复合材料及其制备方法
WO2021243825A1 (zh) 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用
Miao et al. Bioinspired multi-crosslinking and solid–liquid composite lubricating MXene/PVA hydrogel based on salting out effect
CN106893620A (zh) 一种稳定的二硫化钼纳米润滑剂及其制备方法
CN111171947A (zh) 石墨烯/离子液体/Triton X-100/H2O体系层状液晶润滑剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938763

Country of ref document: EP

Kind code of ref document: A1