WO2021243826A1 - 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用 - Google Patents

一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021243826A1
WO2021243826A1 PCT/CN2020/103352 CN2020103352W WO2021243826A1 WO 2021243826 A1 WO2021243826 A1 WO 2021243826A1 CN 2020103352 W CN2020103352 W CN 2020103352W WO 2021243826 A1 WO2021243826 A1 WO 2021243826A1
Authority
WO
WIPO (PCT)
Prior art keywords
polydopamine
solution
graphene oxide
layer
water
Prior art date
Application number
PCT/CN2020/103352
Other languages
English (en)
French (fr)
Inventor
车清论
梁森
张建军
徐洋
吕滨江
崔宁
王进
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021243826A1 publication Critical patent/WO2021243826A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • F16N15/02Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions with graphite or graphite-containing compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • F16N15/04Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers

Definitions

  • the invention belongs to the field of nanomaterials and the technical field of super water-skiing lubricants, and specifically relates to a lubricating additive of a composite carbon material, a super water-skiing lubricant, and a preparation method and application thereof.
  • the lubrication of many key components such as motor vehicles and micro-nano mechanical components can help reduce wear and avoid component failure and material loss.
  • the existing solid and liquid lubricants rarely achieve ultra-high performance on a macroscopic or engineering scale. Slippery behavior.
  • the purpose of the present invention is to provide a lubricating additive for composite carbon materials, a super water-skiing lubricant, and a preparation method and application thereof.
  • the technical solution of the present invention is:
  • a lubricating additive for composite carbon materials is a spherical structure with a composite layer structure of nanodiamond layer, polydopamine layer, and graphene oxide layer from the inside to the outside, or from the inside and outside of the nanodiamond
  • the composite layer structure of the polydopamine layer, the polydopamine layer, the graphene layer, and the polydopamine layer is single layer or multiple layers, and the multilayer structure is composed of multiple composite layers repeatedly stacked.
  • the invention includes two lubricating additives.
  • the first is a composite layer structure of a single-layer nanodiamond layer, a polydopamine layer, and a graphene oxide layer.
  • the composite layer can be a nanodiamond layer, a polydopamine layer, a graphene oxide layer, or a polydopamine layer.
  • the second is a single-layer nanodiamond layer, polydopamine layer, graphene layer, polydopamine layer composite layer structure, the composite layer can be nano diamond layer, polydopamine layer, graphene layer , Polydopamine layer, graphene, polydopamine composite layer structure.
  • Polydopamine is reductive.
  • the side where the graphene oxide wraps the polydopamine will be reduced, but the outermost graphene oxide does not react with polydopamine, so the outermost graphene oxide in the first lubricating additive is the inner side
  • the outside is not reduced, and the graphene oxide located in the middle of the two polydopamine layers is actually reduced graphene.
  • the graphene in the second type is all between the two polydopamine layers, so they are all graphene after the graphene oxide is reduced.
  • the invention prepares a lubricating additive.
  • the nano-diamond is located inside the spherical structure.
  • the principle of its super-slip performance is that the nano-diamond has better wear resistance and hardness, so that the lubricant has better wear resistance. It is easy to disperse in water. Graphene oxide can roll on the friction surface.
  • the combination of diamond and polydopamine improves the dispersibility of diamond, makes the dispersant more stable and has better lubricating performance.
  • Nano-diamond has a spheroid-like structure, and the surface is grafted with polydopamine: one is to increase the dispersibility in water, and the other is to graft the graphene oxide layer to its surface; the nano-diamond with greater hardness in the friction process drives oxidation Graphene rolls, reduces the contact area and reduces friction, so that water has good friction properties.
  • the specific steps are:
  • step 2) the graphene oxide/polydopamine/nanodiamond composite material obtained in step 2) is successively repeated the reaction of mixing with dopamine hydrochloride, water, Tris solution, and HCl solution in step 1) and the reaction of step 2).
  • step 2) Mixing the graphene oxide/polydopamine/nanodiamond composite material obtained in step 2) with dopamine hydrochloride, water, Tris solution, and HCl solution to obtain a polydopamine/graphene/polydopamine/nanodiamond composite material;
  • step 3) sequentially repeats the reaction of step 2) and step 1) mixed with dopamine hydrochloride, water, Tris solution, and HCl solution.
  • step 1) polydopamine is grafted on the surface of the nanodiamond, and in step 2) a graphene oxide layer is formed on the surface of the polydopamine, and finally a spherical structure is obtained.
  • a super water-skiing lubricant includes water and the above-mentioned lubricating additive.
  • the method for preparing the above-mentioned super water-skiing lubricant is to mix the lubricating additive and water to obtain the super water-skiing lubricant.
  • the fifth aspect is the application of the above-mentioned super water ski lubricant to mechanical parts used in an atmospheric environment.
  • the water lubricant of the present invention realizes super-slip behavior of mechanical parts in an atmospheric environment.
  • the nano-diamond is placed in the center of the spherical structure, and graphene oxide or graphene wraps the diamond.
  • graphene oxide or graphene wraps the diamond.
  • the present invention uses deionized water as the lubricating fluid, in-situ assembled spherical graphene oxide or graphene composite material as the lubricating additive.
  • the spherical graphene oxide or graphene can roll on the friction surface to reduce friction and wear; polydopamine contains a large number of hydroxyl groups And the amino group is easy to adsorb the surface of the friction pair, and the polydopamine is easy to disperse in water.
  • the preparation of super water ski lubricants with different additive mass concentrations is not only simple to prepare, easy to operate, stable in process, but also reliable in quality, low in cost, and reproducible , No pollution and the additive is easy to adsorb on the dual surface to form a transfer film. As an advanced lubricant material, it meets the requirements of commercialized engineering macroscopic use.
  • the super water ski lubricant obtained in the present invention can be stored for 1 year without obvious precipitation, and has a long shelf life.
  • Tribological tests show that the water lubricant obtained in the present invention has super-slip lubricating behavior and anti-wear performance, so it can be used as a super-slip lubricant material for mechanical moving parts in an atmospheric environment.
  • Fig. 1 is the friction test curve of the pure deionized water lubricant of Comparative Example 1 of the present invention on the ball-disk.
  • Fig. 2 is the friction test curve on the ball-disk of Comparative Example 2 with a mass concentration of 0.3% graphene oxide additive water lubricant.
  • Fig. 3 is the friction test curve on the ball-disk of Comparative Example 3 with a mass concentration of 0.3% nano-diamond additive water lubricant.
  • Fig. 4 is the friction test curve on the ball-disk of the mass concentration polydopamine/graphene oxide additive water lubricant of Comparative Example 4 of the present invention.
  • Fig. 5 is the friction test curve on the ball-disk of the water lubricant with the mass concentration of 0.3% polydopamine/nanodiamond additive in Comparative Example 5 of the present invention.
  • Fig. 6 is the friction test curve on the ball-disk of the water lubricant of the nano-diamond/polydopamine/graphene oxide composite material additive water lubricant with a mass concentration of 0.3% in Example 10 of the present invention.
  • a lubricating additive for composite carbon materials is a spherical structure with a composite layer structure of nanodiamond layer, polydopamine layer, and graphene oxide layer from the inside to the outside, or from the inside and outside of the nanodiamond
  • the composite layer structure of a layer, a polydopamine layer, a graphene layer, and a polydopamine layer, the number of composite layers is single layer or multiple layers, and the multilayer structure is composed of multiple composite layers repeatedly stacked.
  • the invention prepares a lubricating additive whose principle of super-slip performance is that the graphene oxide ball rolls on the friction surface, reduces the contact area, reduces friction and wear, and realizes super-slip. What needs to be explained is: rolling is easy to achieve super-slip. Even if the graphene oxide ball is broken in this process, nano-diamonds will roll on the graphene oxide flakes. The layered sliding of graphene oxide flakes will also reduce friction and wear. Nano-diamond synergy will also achieve super smoothness.
  • the particle size of nanodiamonds is 5-50 nm.
  • the number of graphene oxide or graphene layers with a spherical structure is 1-10 layers.
  • the specific steps are:
  • step 2) the graphene oxide/polydopamine/nanodiamond composite material obtained in step 2) is successively repeated the reaction of mixing with dopamine hydrochloride, water, Tris solution, and HCl solution in step 1) and the reaction of step 2).
  • the mixture obtained by the reaction in step 3) is separated by centrifugation, the supernatant is removed and then freeze-dried to obtain the lubricating additive.
  • the volume ratio and addition amount of dopamine hydrochloride, water, Tris solution, and HCl solution participating in the reaction in step 3) are the same as those in step 1), and the addition amount and concentration of the graphene oxide solution participating in the reaction Same as step 2).
  • step 2) Mixing the graphene oxide/polydopamine/nanodiamond composite material obtained in step 2) with dopamine hydrochloride, water, Tris solution, and HCl solution to obtain a polydopamine/graphene/polydopamine/nanodiamond composite material;
  • step 3) the polydopamine/graphene/polydopamine/nanodiamond composite material obtained in step 3) is successively repeated the reaction of step 2) and step 1) mixed with dopamine hydrochloride, water, Tris solution, and HCl solution.
  • the volume ratio of dopamine hydrochloride, water, Tris solution, nanodiamond colloid solution, and HCl solution in step 1) is 1:18-22:18-22:8-12:3-5; Preferably, it is 1:20:20:10:4.
  • the concentration of dopamine hydrochloride in step 1) is 2-5 mg/mL, the concentration of Tris solution is 0.05-0.15 mol/L, and the concentration of HCl solution is 0.05-0.15 mol/L; preferably , The concentration of dopamine hydrochloride is 2 mg/mL, the concentration of Tris solution is 0.1 mol/l, and the concentration of HCl solution is 0.1 mol/L.
  • the concentration of the nano-diamond colloid solution is 0.05-0.15 mol/L; preferably 0.1 mol/L.
  • the reaction time after adding nano-diamond in step 1) is 10-15 hours.
  • the preparation method of graphene oxide is the Hummer method.
  • the reacted mixture in step 1) is centrifuged, the supernatant is removed, and dried to obtain a polydopamine-coated nanodiamond composite material.
  • the concentration of the graphene oxide solution in step 2) is 0.5-2.5 mg/mL.
  • step 2) at room temperature, graphene oxide is grafted onto the surface of polydopamine.
  • the surface of graphene oxide contains functional groups, such as hydroxyl groups, carboxyl groups and oxygen-containing groups, and polydopamine is grafted to graphene oxide through hydroxyl groups or ⁇ - ⁇ bonds.
  • the reaction mixture in step 2) is centrifuged, the supernatant is removed, and then freeze-dried to obtain a graphene oxide/polydopamine/nanodiamond composite material.
  • the mixture after step 3) is centrifuged, the supernatant is removed, and then freeze-dried to obtain a polydopamine/graphene/polydopamine/nanodiamond composite material.
  • the mixture obtained in step 4) is subjected to centrifugal separation, the supernatant is removed, and then freeze-dried to obtain a lubricating additive.
  • the volume ratio and addition amount of dopamine hydrochloride, water, Tris solution, and HCl solution participating in the reaction in step 3) or step 4) are the same as those in step 1), and the oxidation of the reaction in step 4)
  • the amount and concentration of the graphene solution are the same as in step 2).
  • a super water-skiing lubricant includes water and the above-mentioned lubricating additive.
  • the mass concentration of the lubricating additive in the super-slip water-based lubricant is 0.01%-0.5%; preferably 0.2%-0.5%.
  • the method for preparing the above-mentioned super water-skiing lubricant is to mix the lubricating additive and water to obtain the super water-skiing lubricant.
  • the fifth aspect is the application of the above-mentioned super water ski lubricant to mechanical parts used in an atmospheric environment.
  • Example 1 The difference from Example 1 is that the concentration of the graphene oxide solution in step 3) is 1.0 mg/mL.
  • Example 3 The difference from Example 1 is that the concentration of the graphene oxide solution in step 3) is 1.5 mg/mL.
  • Example 2 The difference from Example 1 is that the concentration of the graphene oxide solution in step 3) is 2.0 mg/mL.
  • Example 2 The difference from Example 1 is that the concentration of the graphene oxide solution in step 3) is 2.5 mg/mL.
  • Example 1 1 mg of graphene oxide obtained in Example 1 was wrapped with polydopamine/nanodiamond composite material, added to a beaker of deionized water, and the mouth of the beaker containing the black powder and deionized water was sealed at room temperature, and ultrasonically vibrated for 2h Then, a uniform mixed solution with a mass concentration of 0.01% is obtained, and a super-slip water-based lubricant is obtained.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 5 mg.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 10 mg.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 20 mg.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 30 mg.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 40 mg.
  • Example 6 The difference from Example 6 is that the added graphene oxide encapsulated polydopamine/nanodiamond composite material has a mass of 50 mg.
  • the graphene oxide/polydopamine/graphene oxide/polydopamine/nanodiamond composite material is obtained.
  • step 3 of Example 1 The graphene oxide/polydopamine/nanodiamond composite material obtained in step 3 of Example 1 is followed by the mixing reaction of step 2) with dopamine hydrochloride solution, water, Tris solution, and HCl solution. The resulting product is centrifuged and freeze-dried to obtain polydopamine /Graphene/polydopamine/nanodiamond composite material.
  • Example 1 Step 3 to obtain the graphene oxide/polydopamine/nanodiamond composite material proceed to step 2) of mixing reaction with dopamine hydrochloride solution, water, Tris solution, HCl solution, and then proceed to step 3) with graphene oxide
  • the reaction is followed by the mixing reaction with the dopamine hydrochloride solution, water, Tris solution, and HCl solution of step 2), and the obtained product is centrifuged and freeze-dried to obtain polydopamine/graphene/polydopamine/graphene/polydopamine/ Nano-diamond composite materials.
  • the graphene oxide solution was prepared by Hummer's improved method: first, cool a 1000 mL dry flask in an ice water bath for 5 minutes, then add 100 mL of analytically pure sulfuric acid, and add 2 g flake graphite, 1.8 g copper nitrate, and 5.4 g sodium chlorate during stirring. (2g flake graphite, 1.2g sodium nitrate, 8.0g potassium permanganate), control the reaction temperature at 5°C, stir and react for 2h. Then, the flask was taken out, placed on a heat-collecting thermostatic heating stirrer, and stirred at 35°C for 2h. Finally, 150 mL of deionized water was added, and the reaction temperature was increased to 95° C.
  • the graphene oxide solution was prepared by Hummer's improved method: first, cool a 1000 mL dry flask in an ice water bath for 5 minutes, then add 100 mL of analytically pure sulfuric acid, and add 2 g flake graphite, 1.8 g copper nitrate, and 5.4 g sodium chlorate during stirring. (2g flake graphite, 1.2g sodium nitrate, 8.0g potassium permanganate), control the reaction temperature at 5°C, stir and react for 2h. Then, the flask was taken out, placed on a heat-collecting thermostatic heating stirrer, and stirred for 2 hours at 35°C. Finally, 150 mL of deionized water was added, and the reaction temperature was raised to 95° C.
  • Tribological performance tests were performed on the lubricants of Example 6 to Example 12 and Comparative Example 1 to Comparative Example 5.
  • the ball-disk reciprocating friction and wear tester was used in the atmospheric environment for testing (CETR Corporation, UMT-3, USA), in which a stainless steel disk was used as the lower sample to be fixed on a flat chassis, and a commercially available steel ball with a diameter of 6.0mm As a dual ball is fixed on it as the upper sample.
  • Example 6 The friction factor of the ultra-slip lubricant of Example 12 is shown in Table 1:
  • Example 12 Friction factor 0.15 0.05 0.01 0.005 0.003 0.007 0.008
  • the friction factor of Example 10 has a smaller friction factor than that of graphene oxide alone, nanodiamond alone, polydopamine/graphene oxide, and polydopamine/nanodiamond.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用。其为一种球状结构,由内至外依次为纳米金刚石层、聚多巴胺层、氧化石墨烯层的复合层结构,或由内至外的纳米金刚石层、聚多巴胺层、石墨烯层、聚多巴胺层的复合层结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。制备过程为将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液混合得到聚多巴胺包裹纳米金刚石复合材料,然后与氧化石墨烯反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料,与水混合即得到超滑水润滑剂,摩擦因数达到0.003。

Description

一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用 技术领域
本发明属于纳米材料领域及超滑水润滑剂技术领域,具体涉及一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
机动车辆、微纳机械组件等许多关键部件的润滑有助于降低磨损,避免引起部件失效和材料的损耗,现有的多种固体和液体润滑剂,在宏观或工程尺度上很少能实现超滑行为。
随着人们对环境问题的逐渐重视,水作为润滑剂在摩擦学领域受到人们广泛关注。然而在边界润滑或混合润滑状态下,纯水本身的润滑性能较差,水膜容易破裂,使金属表面直接接触,即固-固接触,从而极大限制了其在运动部件和关节液润滑领域的应用。现有的使用金刚石作为润滑添加剂,能够低摩擦,不能实现宏观的大气环境下的超滑行为。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用。
为了解决以上技术问题,本发明的技术方案为:
第一方面,一种复合碳材料的润滑添加剂,为一种球状结构,由内至外依次为纳米金刚石层、聚多巴胺层、氧化石墨烯层的复合层结构,或由内之外的纳米金刚石层、 聚多巴胺层、石墨烯层、聚多巴胺层的复合层结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。
本发明包括两种润滑添加剂,第一种为单层的纳米金刚石层、聚多巴胺层、氧化石墨烯层的复合层结构,复合层可以为纳米金刚石层、聚多巴胺层、氧化石墨烯层、聚多巴胺层、氧化石墨烯层;第二种为单层的纳米金刚石层、聚多巴胺层、石墨烯层、聚多巴胺层的复合层结构,复合层可以为纳米金刚石层、聚多巴胺层、石墨烯层、聚多巴胺层、石墨烯、聚多巴胺的复合层结构。
聚多巴胺具有还原性,氧化石墨烯包裹聚多巴胺的一面就会被还原,而最外层氧化石墨烯没有和聚多巴胺发生反应,所以第一种润滑添加剂中的最外层的氧化石墨烯是内侧被还原,外侧没有被还原,而位于两个聚多巴胺层中间的氧化石墨烯其实是被还原的石墨烯。第二种中的石墨烯都处于两层聚多巴胺层之间,所以均是氧化石墨烯被还原之后的石墨烯。
本发明制备了一种润滑添加剂,纳米金刚石位于球状结构的内部,其具有超滑性能的原理为纳米金刚石具有较好的耐磨性和硬度,使润滑剂具备较好的耐磨性能,聚多巴胺易于在水中分散,氧化石墨烯可在摩擦表面滚动,金刚石和聚多巴胺结合,提高了金刚石的分散性,使整个分散剂更加稳定,润滑性能更好。
纳米级金刚石具有类球状结构,表面接枝聚多巴胺:一是为了增加在水里的分散性,二是为了氧化石墨烯层能够接枝到其表面;在摩擦过程硬度较大的纳米金刚石带动氧化石墨烯发生滚动,减小接触面积,降低摩擦,从而使水具有好的摩擦性能。
第二方面,上述复合碳材料的润滑添加剂的制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应 得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
或,3)将步骤2)得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料依次重复步骤1)中的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应和步骤2)的反应。
另一种制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
3)将步骤2)中得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应,得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料;
或,4)步骤3)得到的聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料依次重复进行步骤2)和步骤1)的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应。
步骤1)中在纳米金刚石的表面接枝聚多巴胺,步骤2)中在聚多巴胺的表面形成一层氧化石墨烯层,最后得到球状结构。
第三方面,一种超滑水润滑剂,包括水和上述的润滑添加剂。
第四方面,上述超滑水润滑剂的制备方法为,将润滑添加剂和水,进行混合得到超滑水润滑剂。
第五方面,上述的超滑水润滑剂在大气环境下的使用的机械部件中的应用。本发明的水润滑剂在大气环境下使机械部件实现超滑行为。
本发明的有益效果:
1、本发明中将纳米金刚石放置于球状结构的中心部位,氧化石墨烯或石墨烯包裹金刚石有两个好处:一是即使摩擦过程中氧化石墨烯或石墨烯球破裂,氧化石墨烯 或石墨烯片层也会保护配副表面,纳米金刚石会在氧化石墨烯或石墨烯片层上滚动,降低摩擦;二是,氧化石墨烯或石墨烯球包裹金刚石,可降低其硬度,滚动不至于划伤表面,也能增强在水里面的分散性。
2、本发明以去离子水为润滑液、原位组装球形氧化石墨烯或石墨烯复合材料为润滑添加剂,球形氧化石墨烯或石墨烯可在摩擦表面滚动,降低摩擦磨损;聚多巴胺含有大量羟基和氨基基团易于吸附摩擦副表面,且聚多巴胺易在水中分散,配制得到不同添加剂质量浓度的超滑水润滑剂,不但制备简单、易于操作、工艺稳定,而且质量可靠、成本低廉、可再生、无污染以及该添加剂易在对偶表面吸附形成转移膜,作为先进润滑剂材料符合商业化的工程宏观使用要求。
3、本发明所得的超滑水润滑剂可存放1年而无明显沉淀现象,保质期长。
4、经过摩擦学测试表明,本发明所得的水润滑剂具有超滑润滑行为和抗磨损性能,因此可以作为大气环境下机械运动部件的超滑润滑剂材料。
附图说明
构成本发明的一部分的说明书附图用来提供对本申请的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明对比例1纯去离子水润滑剂在球-盘上的摩擦测试曲线。
图2为本发明对比例2质量浓度为0.3%氧化石墨烯添加剂水润滑剂在球-盘上的摩擦测试曲线。
图3为本发明对比例3质量浓度为0.3%纳米金刚石添加剂水润滑剂在球-盘上的摩擦测试曲线。
图4为本发明对比例4质量浓度聚多巴胺/氧化石墨烯添加剂水润滑剂在球-盘上的摩擦测试曲线。
图5为本发明对比例5质量浓度为0.3%聚多巴胺/纳米金刚石添加剂水润滑剂在 球-盘上的摩擦测试曲线。
图6为本发明是实施例10质量浓度为0.3%纳米金刚石/聚多巴胺/氧化石墨烯复合材料添加剂水润滑剂在球-盘上的摩擦测试曲线。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
第一方面,一种复合碳材料的润滑添加剂,为一种球状结构,由内至外依次为纳米金刚石层、聚多巴胺层、氧化石墨烯层的复合层结构,或由内之外的纳米金刚石层、聚多巴胺层、石墨烯层、聚多巴胺层的复合层结构,复合层的层数为单层或多层,多层的结构由若干复合层重复叠合组成。
本发明制备了一种润滑添加剂,其具有超滑性能的原理为氧化石墨烯球在摩擦表面发生滚动,减小接触面积,降低摩擦磨损,实现超滑。需要解释的是:滚动容易实现超滑,这个过程即使氧化石墨烯球破裂,纳米金刚石也会在氧化石墨烯片状上滚动,氧化石墨烯片层状滑动也会降低摩擦磨损,氧化石墨烯与纳米金刚石协同也会实现超滑。
在本发明的一些实施方式中,纳米金刚石的粒径为5-50nm。
在本发明的一些实施方式中,球状结构的氧化石墨烯或石墨烯层数为1-10层。
第二方面,上述复合碳材料的润滑添加剂的制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
或,3)将步骤2)得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料依次重复步骤1)中的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应和步骤2)的反应。
在本发明的一些实施方式中,步骤3)反应得到的混合物通过离心分离,除去上清液后进行冷冻干燥得到润滑添加剂。
在本发明的一些实施方式中,步骤3)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
另一种制备方法,具体步骤为:
1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
3)将步骤2)中得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应,得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料;
或,4)将步骤3)得到的聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料依次重复进行步骤2)和步骤1)的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应。
在本发明的一些实施方式中,步骤1)中盐酸多巴胺、水、Tris溶液、纳米金刚石胶体溶液、HCl溶液的体积比为1:18-22:18-22:8-12:3-5;优选为1:20:20:10:4。
在本发明的一些实施方式中,步骤1)中盐酸多巴胺的浓度为2-5mg/mL,Tris溶液的浓度为0.05-0.15mol/L,HCl溶液的浓度为0.05-0.15mol/L;优选的,盐酸多巴胺的浓度为2mg/mL,Tris溶液的浓度为0.1mol/l,HCl溶液的浓度为0.1mol/L。
在本发明的一些实施方式中,纳米金刚石胶体溶液的浓度为0.05-0.15mol/L;优选为0.1mol/L。
在本发明的一些实施方式中,步骤1)中加入纳米金刚石后进行反应的时间为10-15h。
在本发明的一些实施方式中,氧化石墨烯的制备方法为Hummer法。
在本发明的一些实施方式中,步骤1)中反应后的混合物经过离心分离,除去上清液,烘干得到聚多巴胺包裹纳米金刚石复合材料。
在本发明的一些实施方式中,步骤2)中氧化石墨烯溶液的浓度为0.5-2.5mg/mL。步骤2)中在常温下,在聚多巴胺的表面接枝氧化石墨烯。氧化石墨烯表面含有官能团,如羟基、羧基和含氧基团,聚多巴胺通过羟基或π-π键与氧化石墨烯进行接枝连接。
在本发明的一些实施方式中,步骤2)反应后的混合物经过离心分离,除去上清液后冷冻干燥得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料。
在本发明的一些实施方式中,步骤3)反应后的混合物经过离心分离,除去上清液后冷冻干燥得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料。
在本发明的一些实施方式中,步骤4)反应得到的混合物经过离心分离,除去上清液后冷冻干燥得到润滑添加剂。
在本发明的一些实施方式中,步骤3)或步骤4)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,步骤4)中参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
第三方面,一种超滑水润滑剂,包括水和上述的润滑添加剂。
在本发明的一些实施方式中,超滑水基润滑剂中的润滑添加剂的质量浓度0.01%-0.5%;优选为0.2%-0.5%。
第四方面,上述超滑水润滑剂的制备方法为,将润滑添加剂和水,进行混合得到超滑水润滑剂。
第五方面,上述的超滑水润滑剂在大气环境下使用的机械部件中的应用。
下面结合实施例对本发明进一步说明
实施例1
1)Hummer法制备氧化石墨烯:首先,将1000mL的干燥烧瓶在冰水浴中冷却5min,然后加入100mL的分析纯的硫酸,搅拌中加入2g鳞片石墨、1.8g硝酸铜、5.4g氯酸钠(2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),控制反应温度在5℃,搅拌反应2h。然后,将烧瓶取出,置于集热式恒温加热搅拌器上,在35℃条件下搅拌反应2h。最后,加入150mL去离子水,再用热式恒温加热搅拌器将反应温度升高至95℃,继续搅拌1h,得到氧化石墨溶液。根据需要稀释配制所需浓度,超声震荡2h,得到所需浓度氧化石墨烯溶液。
2)在100mL烧杯中配制浓度0.1g/mL纳米金刚石胶体水溶液,然后配制5.0mg/mL盐酸多巴胺。在50mL烧杯中加入10mL去离子水,取0.5mL盐酸多巴胺溶液(5.0mg/mL)和10mL Tris溶液(0.1mol/L)加入去离子水中,取2.0mL提前配制好的HCl溶液(0.1mol/L)加入上述溶液,调节溶液pH=8.5;再将5.0mL纳米金刚石胶体溶液(0.1g/mL)加入上述配制溶液中;将整个溶液磁力搅拌12h。
3)所得上述溶液放入离心机中,10000转/分钟离心20分钟;丢弃上清后,将所得的聚多巴胺包裹纳米金刚石粉末烘干,称取5mg聚多巴胺包裹纳米金刚石粉末分别加入到浓度为0.5mg/mL的氧化石墨烯溶液中;然后搅拌12h,将所得上述溶液放 入冰箱冷冻,待完全冷冻成冰块,放入冷冻干燥机中,冷冻,抽真空,干燥,得到氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料。
实施例2
与实施例1不同的是步骤3)中氧化石墨烯溶液的浓度为1.0mg/mL。
实施例3
与实施例1不同的是步骤3)中氧化石墨烯溶液的浓度为1.5mg/mL。
实施例4
与实施例1不同的是步骤3)中氧化石墨烯溶液的浓度为2.0mg/mL。
实施例5
与实施例1不同的是步骤3)中氧化石墨烯溶液的浓度为2.5mg/mL。
实施例6
将实施例1得到的1mg氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料,加入到去离子水的烧杯中,密封盛有上述黑色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.01%的均匀混合溶液,得到超滑水基润滑剂。
实施例7
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为5mg。
实施例8
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为10mg。
实施例9
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为20mg。
实施例10
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为30mg。
实施例11
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为40mg。
实施例12
与实施例6不同的是,加入的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量为50mg。
实施例13
实施例1得到的氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料,依次进行步骤2)中的与盐酸多巴胺溶液、水、Tris溶液、HCl溶液的混合反应和步骤3)的与氧化石墨烯的反应,得到氧化石墨烯/聚多巴胺/氧化石墨烯/聚多巴胺/纳米金刚石复合材料。
实施例14
实施例1步骤3得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料后进行步骤2)的与盐酸多巴胺溶液、水、Tris溶液、HCl溶液的混合反应,所得产物经过离心分离,冷冻干燥得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料。
实施例15
实施例1步骤3得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料后进行步骤2)的与盐酸多巴胺溶液、水、Tris溶液、HCl溶液的混合反应,然后进行步骤3)的与氧化石墨烯的反应,再进行与步骤2)的与盐酸多巴胺溶液、水、Tris溶液、HCl溶液的混合反应,得到的产物经过离心分离、冷冻干燥得到聚多巴胺/石墨烯/聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料。
对比例1
将采用纯的去离子水添加到球-盘界面进行大气环境中摩擦学性能测试,如图1所示,实验结果表明,纯的去离子水在大气环境中的摩擦系数为0.45。
对比例2
利用Hummer改进法制备氧化石墨烯溶液:首先,将1000mL的干燥烧瓶在冰水浴中冷却5min,然后加入100mL的分析纯的硫酸,搅拌中加入2g鳞片石墨、1.8g硝酸铜、5.4g氯酸钠(2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),控制反应温度在5℃,搅拌反应2h。然后,将烧瓶取出,置于集热式恒温加热搅拌器上,在35℃条件下搅拌反应2h。最后,加入150mL去离子水,再用热式恒温加热搅拌器将反应温度升高至95℃,继续搅拌1h,得到浓度为50mg/L氧化石墨溶液。在浓度为0.05mg/mL氧化石墨烯溶液中加入一定量去离子水稀释,超声震荡2h,得到稳定均匀分散的量浓度为0.3%的氧化石墨烯溶液。所述氧化石墨烯水溶液在大气环境中的摩擦学测试曲线如图2所示,摩擦因数为0.01。
对比例3
先将10mL去离子水倒入30mL烧杯,随后将30mg的纳米金刚石粉末(上海阿拉丁生化科技股份有限公司,N140011)加入到盛有去离子水的烧杯中,密封盛有纳米金刚石和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.3%的均匀混合溶液。所述纳米金刚石水溶液在大气环境中的摩擦学测试曲线如图3所示,摩擦因数为0.07。
对比例4
利用Hummer改进法制备氧化石墨烯溶液:首先,将1000mL的干燥烧瓶在冰水浴中冷却5min,然后加入100mL的分析纯的硫酸,搅拌中加入2g鳞片石墨、1.8g硝酸铜、5.4g氯酸钠(2g鳞片石墨、1.2g硝酸钠、8.0g高锰酸钾),控制反应温度 在5℃,搅拌反应2h。然后,将烧瓶取出,置于集热式恒温加热搅拌器上,在35℃条件下搅拌反应2h。最后,加入150mL去离子水,再用热式恒温加热搅拌器将反应温度升高至95℃,继续搅拌1h,得到浓度为50mg/L氧化石墨溶液。在氧化石墨烯溶液中加入一定量去离子水稀释,超声震荡2h,得到均匀混合氧化石墨烯溶液,放入冰箱冷冻成冰,随后取出放入到冷冻干燥机中冷冻,抽真空,干燥,得到氧化石墨烯粉末。
在50mL烧杯中加入10mL去离子水,取0.5mL盐酸多巴胺溶液(5.0mg/mL)和10MLTris溶液(0.1mol/L)加入去离子水中,取2.0mL提前配制好的HCl溶液(0.1mol/L)加入上述溶液,调节溶液pH=8.5;再将100mg的氧化石墨烯粉末加入到上述溶液中,将整个溶液磁力搅拌12h,得到聚多巴胺原位还原氧化石墨烯,抽滤,干燥,得到黑色的粉末。
随后将30mg上述黑色粉末加入到盛有去离子水的烧杯中,密封盛有上述黑色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为0.3%的均匀混合溶液。所述聚多巴胺/氧化石墨烯水溶液在大气环境中的摩擦学测试曲线如图4所示,摩擦因数为0.004。
对比例5
在50mL烧杯中加入10mL去离子水,取0.5mL盐酸多巴胺溶液(5.0mg/mL)和10mL Tris溶液(0.1mol/L)加入去离子水中,取2.0mL提前配制好的HCl溶液(0.1mol/L)加入上述溶液,调节溶液pH=8.5;再将100mg的纳米金刚石粉末(上海阿拉丁生化科技股份有限公司,N140011)加入到上述溶液中,将整个溶液磁力搅拌12h,得到聚多巴胺原位接枝纳米金刚石,抽滤,干燥,得到黑褐色粉末。
随后将30mg的上述黑褐色粉末加入到盛有去离子水的烧杯中,密封盛有上述黑褐色粉末和去离子水的烧杯口在室温下密封,并超声震荡2h,随后得到质量浓度为 0.03%的均匀混合溶液。所述聚多巴胺/纳米金刚石水溶液在大气环境中的摩擦学测试曲线如图5所示,摩擦因数为0.008。
试验例
对实施例6-实施例12和对比例1-对比例5的润滑剂进行摩擦学性能测试。
在大气环境中采用球-盘往复摩擦磨损试验机进行测试(美国CETR公司,UMT-3),其中,不锈钢盘作为下试样被固定在平底盘上,市售的直径为6.0mm的钢球作为对偶球被固定在上面作为上试样。测试滑动时间60min、滑动振幅1mm、往复频率20Hz、负载1N。
采用origin 9.0软件作图绘制摩擦磨损曲线图(参见图1-6),结果表明:相比较纯的去离子水而言,原位合成的纳米金刚石/聚多巴胺/氧化石墨烯水溶液润滑剂的摩擦系数降至到0.003,实现了宏观大气环境下超滑行为,磨损率几乎为零,进一步证明原位合成复合材料具有做超滑水润滑剂添加剂的能力。
实施例6-实施例12的超滑润滑剂的摩擦因数如表1所示:
  实施例6 实施例7 实施例8 实施例9 实施例10 实施例11 实施例12
摩擦因数 0.15 0.05 0.01 0.005 0.003 0.007 0.008
从表1可以得到,氧化石墨烯包裹聚多巴胺/纳米金刚石复合材料的质量浓度不同对得到的超滑润滑剂的摩擦因数的影响为添加一定浓度摩擦系数最低,最终达到超滑,过多的加入对于实现超滑意义不大。
如图6所示,实施例10的摩擦因数相比于单独的氧化石墨烯、单独的纳米金刚石、聚多巴胺/氧化石墨烯、聚多巴胺/纳米金刚石,具有更小的摩擦因数。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合碳材料的润滑添加剂,其特征在于:为一种球状结构,由内至外依次为纳米金刚石层、聚多巴胺层、氧化石墨烯层,聚多巴胺包覆纳米金刚石层,氧化石墨烯层包覆聚多巴胺层;或由内至外依次为纳米金刚石层、聚多巴胺层、石墨烯层、聚多巴胺层,聚多巴胺包覆纳米金刚石层,石墨烯层包覆聚多巴胺层,聚多巴胺包覆石墨烯层。
  2. 如权利要求1所述的复合碳材料的润滑添加剂,其特征在于:纳米金刚石的粒径为5-50nm。
  3. 如权利要求1所述的复合碳材料的润滑添加剂,其特征在于:球状结构的氧化石墨烯或石墨烯层数为1-10层。
  4. 如权利要求1-3任一所述的复合碳材料的润滑添加剂的制备方法,其特征在于:具体步骤为:
    1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
    2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
    或,3)将步骤2)得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料依次重复步骤1)中的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应和步骤2)的反应;
    优选的,步骤3)反应得到的混合物通过离心分离,除去上清液后进行冷冻干燥得到润滑添加剂;
    优选的,步骤3)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
  5. 如权利要求1-3任一所述的复合碳材料的润滑添加剂的制备方法,其特征在 于:具体步骤为:具体步骤为:
    1)将盐酸多巴胺溶液、水、Tris溶液混合,然后加入HCl溶液调节pH值,然后加入纳米金刚石胶体水溶液,反应得到聚多巴胺包裹纳米金刚石复合材料;
    2)将得到的聚多巴胺包裹纳米金刚石复合材料加入到氧化石墨烯溶液中,反应得到氧化石墨烯/聚多巴胺/纳米金刚石复合材料;
    3)将步骤2)中得到的氧化石墨烯/聚多巴胺/纳米金刚石复合材料与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应,得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料;
    或,4)步骤3)得到的聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料依次重复进行步骤2)和步骤1)的与盐酸多巴胺、水、Tris溶液、HCl溶液混合的反应。
  6. 如权利要求4或5所述的复合碳材料的润滑添加剂的制备方法,其特征在于:步骤1)中盐酸多巴胺、水、Tris溶液、纳米金刚石胶体溶液、HCl溶液的体积比为1:18-22:18-22:8-12:3-5;优选为1:20:20:10:4;
    或,步骤1)中盐酸多巴胺的浓度为2-5mg/mL,Tris溶液的浓度为0.05-0.15mol/L,HCl溶液的浓度为0.05-0.15mol/L;优选的,盐酸多巴胺的浓度为2mg/mL,Tris溶液的浓度为0.1mol/L,HCl溶液的浓度为0.1mol/L;
    或,纳米金刚石胶体溶液的浓度为0.05-0.15mol/L;优选为0.1mol/L;
    或,步骤1)中加入纳米金刚石后进行反应的时间为10-15h;
    或,氧化石墨烯的制备方法为Hummer法;
    或,步骤2)中氧化石墨烯溶液的浓度为0.5-2.5mg/mL。
  7. 如权利要求5所述的复合碳材料的润滑添加剂的制备方法,其特征在于:步骤3)反应后的混合物经过离心分离,除去上清液后冷冻干燥得到聚多巴胺/石墨烯/聚多巴胺/纳米金刚石复合材料;
    或,步骤4)反应得到的混合物经过离心分离,除去上清液后冷冻干燥得到润滑添加剂;
    或,步骤3)或步骤4)中参与反应的盐酸多巴胺、水、Tris溶液、HCl溶液的体积比及加入量与步骤1)相同,步骤4)中参与反应的氧化石墨烯溶液的加入量及浓度与步骤2)相同。
  8. 一种超滑水润滑剂,其特征在于:包括水和权利要求1-3任一所述的润滑添加剂。
  9. 权利要求8所述的超滑水润滑剂的制备方法,其特征在于:将润滑添加剂和水,进行混合得到超滑水润滑剂。
  10. 权利要求8所述的超滑水润滑剂在大气环境下使用的机械部件中的应用。
PCT/CN2020/103352 2020-06-05 2020-07-21 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用 WO2021243826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010504264.6A CN111592925A (zh) 2020-06-05 2020-06-05 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用
CN202010504264.6 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021243826A1 true WO2021243826A1 (zh) 2021-12-09

Family

ID=72184633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103352 WO2021243826A1 (zh) 2020-06-05 2020-07-21 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111592925A (zh)
WO (1) WO2021243826A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225716A (zh) * 2021-12-14 2022-03-25 河北工业大学 一种氧化石墨烯改性复合纳滤膜及其制备方法与应用
CN116286144A (zh) * 2023-03-07 2023-06-23 陕西科技大学 一种微纳米纤维素限制MXene/PFW@PDA油基润滑剂及其制备方法
CN116375471A (zh) * 2023-03-01 2023-07-04 青岛科技大学 一种多刺激响应的自修复薄膜驱动器的制备方法
CN118374077A (zh) * 2024-06-25 2024-07-23 杭州富阳富翔化工有限公司 一种导电羧基丁苯胶乳复合材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457698A (zh) * 2020-10-29 2021-03-09 广东海洋大学 一种石墨烯修饰的锌粉、制备方法及其在富锌防腐涂料中的应用
CN113980717B (zh) * 2021-10-15 2022-12-27 西安建筑科技大学 一种复合型高温固体润滑剂的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435829A (zh) * 2013-07-24 2013-12-11 烟台绿水赋膜材料有限公司 一种基于邻苯二酚衍生物的纳米功能化表面修饰方法
CN104593130A (zh) * 2014-12-29 2015-05-06 北京航空航天大学 一种原位制备石墨烯水基润滑剂的方法
US20150367381A1 (en) * 2014-06-19 2015-12-24 Uchicago Argonne, Llc. Low friction wear resistant graphene films
US20170001915A1 (en) * 2012-03-02 2017-01-05 Dynamic Material Systems, LLC Composite Ceramics and Ceramic Particles and Method for Producing Ceramic Particles and Bulk Ceramic Particles
CN106832273A (zh) * 2016-12-13 2017-06-13 北京航空航天大学 一种制备超抗疲劳仿生石墨烯纳米复合材料的方法
CN107739643A (zh) * 2017-10-18 2018-02-27 黑龙江省华升石墨股份有限公司 一种含有表面改性的碳纳米材料的润滑油及其制备方法
CN108659912A (zh) * 2018-06-20 2018-10-16 成都天成鑫钻纳米科技股份有限公司 一种润滑油复相添加剂及其制备方法
CN110540190A (zh) * 2018-05-29 2019-12-06 戴念华 高热传导散热复合膜及其制备方法
TW202003381A (zh) * 2018-05-29 2020-01-16 國立清華大學 高熱傳導散熱複合膜及其製備方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170001915A1 (en) * 2012-03-02 2017-01-05 Dynamic Material Systems, LLC Composite Ceramics and Ceramic Particles and Method for Producing Ceramic Particles and Bulk Ceramic Particles
CN103435829A (zh) * 2013-07-24 2013-12-11 烟台绿水赋膜材料有限公司 一种基于邻苯二酚衍生物的纳米功能化表面修饰方法
US20150367381A1 (en) * 2014-06-19 2015-12-24 Uchicago Argonne, Llc. Low friction wear resistant graphene films
CN104593130A (zh) * 2014-12-29 2015-05-06 北京航空航天大学 一种原位制备石墨烯水基润滑剂的方法
CN106832273A (zh) * 2016-12-13 2017-06-13 北京航空航天大学 一种制备超抗疲劳仿生石墨烯纳米复合材料的方法
CN107739643A (zh) * 2017-10-18 2018-02-27 黑龙江省华升石墨股份有限公司 一种含有表面改性的碳纳米材料的润滑油及其制备方法
CN110540190A (zh) * 2018-05-29 2019-12-06 戴念华 高热传导散热复合膜及其制备方法
TW202003381A (zh) * 2018-05-29 2020-01-16 國立清華大學 高熱傳導散熱複合膜及其製備方法
CN108659912A (zh) * 2018-06-20 2018-10-16 成都天成鑫钻纳米科技股份有限公司 一种润滑油复相添加剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225716A (zh) * 2021-12-14 2022-03-25 河北工业大学 一种氧化石墨烯改性复合纳滤膜及其制备方法与应用
CN116375471A (zh) * 2023-03-01 2023-07-04 青岛科技大学 一种多刺激响应的自修复薄膜驱动器的制备方法
CN116375471B (zh) * 2023-03-01 2023-11-17 青岛科技大学 一种多刺激响应的自修复薄膜驱动器的制备方法
CN116286144A (zh) * 2023-03-07 2023-06-23 陕西科技大学 一种微纳米纤维素限制MXene/PFW@PDA油基润滑剂及其制备方法
CN118374077A (zh) * 2024-06-25 2024-07-23 杭州富阳富翔化工有限公司 一种导电羧基丁苯胶乳复合材料及其制备方法

Also Published As

Publication number Publication date
CN111592925A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021243826A1 (zh) 一种复合碳材料的润滑添加剂、超滑水润滑剂及其制备方法和应用
WO2021243824A1 (zh) 一种超滑水润滑添加剂、超滑水润滑剂及制备方法与应用
JP5753756B2 (ja) スクロールコンプレッサ
Rapoport et al. Fullerene‐like WS2 nanoparticles: superior lubricants for harsh conditions
EP3418576B1 (en) Refrigerant compressor and freezing apparatus using same
CN111534357B (zh) 纳米二硫化钼/黑磷纳米片复合润滑油添加剂的制备方法
Song et al. Facile synthesis of core–shell Ag@ C nanospheres with improved tribological properties for water-based additives
CN111440651B (zh) 黑磷烯/氧化石墨烯复合水基润滑添加剂的制备方法
CN111944585B (zh) 亲油型碳量子点基纳米润滑油添加剂及其制备方法
CN108130159B (zh) 一种石墨烯水润滑添加剂及其制备方法与应用
CN103502640A (zh) 斜盘式压缩机的斜盘
CN110591787B (zh) 一种无溶剂碳纳米管类流体的应用
WO2021243825A1 (zh) 一种空心氧化石墨烯的润滑添加剂、超滑水润滑剂及其制备方法和应用
CN113980717A (zh) 一种双层核壳结构的制备方法、双层核壳结构及其应用
EP1031726A2 (en) Compressor piston
Rapoport et al. Friction and wear of fullerene-like WS 2 under severe contact conditions: friction of ceramic materials
JP2013083302A (ja) オートマティックトランスミッション用黒鉛添加樹脂系すべり軸受
CN111635804B (zh) 一种全氟聚醚超分子凝胶复合纳米颗粒润滑剂及其制备方法和应用
WO2023203944A1 (ja) スクロール型流体機械及びその製造方法
CN115322822A (zh) 一种油溶性黑磷纳米片/铜纳米颗粒复合材料及其制备方法与应用
CN108977253B (zh) 一种润滑油复配添加剂、其制备方法及润滑油
Ma et al. Extremely low friction and wear enabled by 4-dodecylphenol functionalized magnesium oxide nanolubricant for steel tribopairs
JP2008261345A (ja) ピストンのコーティング方法
JPH02178353A (ja) 摺動材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939423

Country of ref document: EP

Kind code of ref document: A1