CN106906027B - 一种自修复纳米润滑油脂及其制备方法 - Google Patents

一种自修复纳米润滑油脂及其制备方法 Download PDF

Info

Publication number
CN106906027B
CN106906027B CN201710059816.5A CN201710059816A CN106906027B CN 106906027 B CN106906027 B CN 106906027B CN 201710059816 A CN201710059816 A CN 201710059816A CN 106906027 B CN106906027 B CN 106906027B
Authority
CN
China
Prior art keywords
nano
self
lubricating grease
repairing
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710059816.5A
Other languages
English (en)
Other versions
CN106906027A (zh
Inventor
顾书英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710059816.5A priority Critical patent/CN106906027B/zh
Publication of CN106906027A publication Critical patent/CN106906027A/zh
Application granted granted Critical
Publication of CN106906027B publication Critical patent/CN106906027B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • C10M105/62Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/76Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种自修复纳米润滑油脂及其制备方法,制备方法包括以下步骤:(1)将纳米粒子加入3‑三硅醇丙磺酸中,进行纳米粒子表面的磺化;(2)在强烈搅拌下加入带有机长链的有机三取代胺中和,经透析后进行干燥处理,即得到自修复纳米润滑油脂。与现有技术相比,本发明的纳米粒子均匀分散在与其以化学键(共价键和离子键)相连的有机介质中,体系稳定,无溶剂,环保,能显著减小摩擦系数,纳米粒子能提高润滑油的承载能力,摩擦过程中纳米润滑剂能修补摩擦表面的沟槽和缺陷,并且纳米粒子表面的有机长链赋予纳米润滑油脂自修复性能,使润滑油脂能在摩擦副表面形成比较稳定的保护膜。

Description

一种自修复纳米润滑油脂及其制备方法
技术领域
本发明涉及一种纳米润滑油脂,尤其是涉及一种自修复纳米润滑油脂及其制备方法。
背景技术
微/纳机电系统(M/NEMS)是利用集成电路制造技术和微/纳架构技术把微/纳结构、传感器、执行器、控制处理电路甚至接口、通信和电源等制造在一块或多块芯片上的微/纳型集成系统,具有微型化、集成化、智能化、低成本、高性能、可批量生产等优点,在航天、航空、汽车、生物医学、环境监测、军事等领域有十分广阔的应用前景,是目前科技界公认最具发展潜力的研究领域之一。但经过超精密制造的M/NEMS尺寸小,活动部件间间隙在1μm以下甚至接触。运动过程中,受尺寸效应的影响,表面黏着、摩擦及磨损是影响M/NEMS的性能、稳定性和寿命的关键因素,并且宏观的摩擦学定律及研究手段在这里已不适用。因此,寻找减小M/NEMS部件间摩擦磨损的方法是一个亟待解决并富有挑战性的难题。
目前制造M/NEMS所用的材料大多数是硅及其化合物,还有少量的软体金属(镍、金等),M/NEMS尺寸小,活动部件间间隙很小,在运动过程中会产生很大的摩擦磨损,表面容易黏着。在M/NEMS材料表面涂覆具有良好机械性能或化学活性/惰性的薄膜,如:类金刚石DLC(Diamond-like Carbon)、碳膜、碳化硅及氮化硅等固体薄膜,可以有效地改善其物理和化学性质,提高稳定性和寿命。DLC具有极高的硬度、极低的摩擦系数以及极强的抗磨性能,并且DLC涂层有利于提高含氟润滑剂的稳定性,因此,DLC膜已被大量地应用于M/NEMS。但DLC膜在高载荷下会出现磨粒磨损产生的犁沟,耐磨性能明显降低,而且在湿度较高的环境下,摩擦系数较大,波动加剧。单或多分子层的超薄膜可以在不降低M/NEMS承载能力的情况下,显著降低表面的摩擦系数,甚至出现超润滑状态。最常见的超薄膜是LB(Langmuir-Blodgett)膜和自组装膜SAM(Self-assembled monolayer)。LB膜技术在材料表面通过单分子膜组装构成分子有序体系,具有性能稳定,摩擦系数低,厚度可控等优点,现已用于解决磁记录系统的润滑问题,但LB膜制备方法复杂且与基底以范德华力结合(物理吸附),膜的热稳定性和动力学稳定性较差。SAM膜具有更高的有序性和取向性,结构稳定且堆积紧密,通过对SAM方便灵活的分子设计可获得不同结构及物理化学性能的表面,具有防腐蚀,减少摩擦,降低磨损等作用,能有效地减轻静摩擦。但是,SAM膜的摩擦力受速度的影响较大,用于微马达润滑时,效果不理想。表面沉积双层膜也可以提高器件的耐磨性,但因毛细管效应会引起静摩擦,而使其不能广泛适用于M/NEMS。
专利98123247.7在LIGA(光刻、电镀和注模)技术的电镀工艺前,采用由二硫化钼或碳60组成的固体润滑剂来解决微电子机械的润滑和磨损问题,但是固体润滑剂使用过程中存在大量灰尘。
发明内容
本发明的目的就是为了提供一种稳定的具有更高承载能力的自修复纳米润滑油脂及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种自修复纳米润滑油脂的制备方法,该方法包括以下步骤:
(1)将纳米粒子加入3-三硅醇丙磺酸中,进行纳米粒子表面的磺化;
(2)在强烈搅拌下加入带有机长链的有机三取代胺中和,经透析后进行干燥处理,即得到所述的自修复纳米润滑油脂。
作为优选的技术方案,所述的纳米粒子包括二氧化硅、二氧化钛、石墨、石墨烯或碳纳米管。
作为优选的技术方案,所述带有机长链的有机三取代胺包括二聚乙二醇十八胺、二聚乙二醇十二胺或二聚乙二醇辛胺等。
作为优选的技术方案,所述的有机三取代胺分子量为2500~3500,较长的有机长链拓宽了润滑油脂的使用温度范围。
作为优选的技术方案,所述的3-三硅醇丙磺酸与纳米粒子的质量比为1:9~15。该质量比与选用的三取代胺的分子量较高相适应。
一种自修复纳米润滑油脂,采用所述的制备方法制得,该自修复纳米润滑油脂是由纳米粒子经表面修饰形成的具有核-壳-冠结构的稳定体系,所述的纳米粒子均匀分散在与其以化学键相连的有机介质中。
作为优选的技术方案,该自修复纳米润滑油脂中纳米粒子的含量为10~60wt%。
作为优选的技术方案,其表观粘度在50~700Pa·S之间,并且剪切频率变化时,油脂表现出牛顿流体行为。
本发明所采用的纳米颗粒包括纳米二氧化硅、二氧化钛、纳米碳管、石墨、石墨烯等。这些硬度较高的纳米粒子,增加了润滑油脂的承载能力。另外,因纳米粒子以化学键的形式悬浮在表面带有长链的有机冠的体系中,改变了常规的纳米流体纳米粒子含量高时的非牛顿流体特性,即使纳米粒子的含量很高,比如达54wt%,体系也表现出牛顿流体行为,适合于做润滑油脂。
在润滑过程中,牛顿流体具有更好的稳定性,适合在润滑领域的应用。两表面相互摩擦时,纳米润滑油脂在摩擦表面会形成吸附层,吸附层具有长程排斥力,使摩擦表面分开,纳米核对其核外有机分子链起到锚锭的作用,使表面吸附层更稳定,像分子刷一样,有机长链的动态松弛特性使油脂具有自修复性。
与现有技术相比,本发明的自修复纳米润滑油脂油脂中,纳米粒子均匀分散在与其以化学键(共价键和离子键)相连的有机介质中,体系稳定,无溶剂,环保。润滑油脂能显著减小摩擦系数,纳米粒子能提高润滑油的承载能力,摩擦过程中纳米润滑油脂在摩擦表面会形成吸附层,吸附层具有长程排斥力,使摩擦表面分开,纳米核对其核外有机分子链起到锚锭的作用,使表面吸附层更稳定,像分子刷一样,有机长链的动态松弛特性使油脂具有自修复性,该润滑油脂在微机电系统等润滑领域有潜在的应用。
附图说明
图1为以碳纳米管为核的自修复纳米润滑油脂的性状;
图2为表面吸附层的相对滑动示意图(F∥:剪切力;F⊥:法向应力;ν:相对运动速率)
图3为实施例2中自修复纳米润滑油脂微观摩擦曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
以下实施例是对本发明的进一步说明,而不是限制本发明的范围。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。
实施例1
4g纳米碳纳米管加入到1.3g的含35wt%的3-三硅醇丙磺酸水溶液中,在60℃下反应24小时后,再在强烈搅拌下加入分子量为2800的二聚乙二醇十八胺8g,并调节pH至7,经透析后进行干燥处理,即得以碳纳米管为核的自修复纳米润滑油脂,所得润滑油脂中碳纳米管的含量为15wt%,其性状如图1,表观粘度为60Pa·S,具有高承载能力及自修复功能。
润滑油脂能显著减小摩擦系数,纳米粒子能提高润滑油的承载能力,摩擦过程中纳米润滑油脂在摩擦表面会形成吸附层,吸附层具有长程排斥力,使摩擦表面分开,纳米核对其核外有机分子链起到锚锭的作用,使表面吸附层更稳定,像分子刷一样,有机长链的动态松弛特性使油脂具有自修复性,如图2所示。
实施例2
6g纳米二氧化硅加入到1.4g 3-三硅醇丙磺酸35%的水溶液中,在60℃下反应24小时后,再在强烈搅拌下加入分子量为3200的二聚乙二醇十二胺7g,并调节pH至7,经透析后进行干燥处理,即得以纳米二氧化硅为核的自修复纳米润滑油脂。所得润滑油脂中纳米二氧化硅的含量为12.5wt%,表观粘度为52Pa·S,实施例2中所制得的纳米润滑油脂涂在硅片基体上,用原位纳米力学测试系统表征微观摩擦试验,载荷为200μN时,摩擦系数小于0.1,见图3,并且润滑油脂膜具有自修复性。具有高承载能力及自修复功能。
实施例3
6g纳米二氧化硅加入到1.7g 3-三硅醇丙磺酸35%的水溶液中,在65℃下反应24小时后,再在强烈搅拌下加入分子量为3500的二聚乙二醇十八胺5g,并调节pH至7,经透析后进行干燥处理,即得以二氧化硅为核的自修复纳米润滑油脂,所得润滑油脂中二氧化硅的含量为20.5wt%,表观粘度为95Pa·S。具有高承载能力及自修复功能。
实施例4
6g纳米二氧化硅加入到1.9g 3-三硅醇丙磺酸35%的水溶液中,在65℃下反应24小时后,再在强烈搅拌下加入分子量为2500的二聚乙二醇十八胺4g,并调节pH至7,经透析后进行干燥处理,即得以二氧化硅为核的自修复纳米润滑油脂,所得润滑油脂中二氧化硅的含量为54wt%,表观粘度为655Pa·S。具有高承载能力及自修复功能。
实施例5
6g纳米二氧化钛加入到1.8g 3-三硅醇丙磺酸35%的水溶液中,在65℃下反应24小时后,再在强烈搅拌下加入分子量为2500的二聚乙二醇十八胺6g,并调节pH至7,经透析后进行干燥处理,即得以二氧化硅为核的自修复纳米润滑油脂,所得润滑油脂中二氧化钛的含量为19.5wt%,表观粘度为87Pa·S。具有高承载能力及自修复功能。
实施例6
2g碳纳米管加入到0.52g 3-三硅醇丙磺酸35%的水溶液中,在60℃下反应24小时后,再在强烈搅拌下加入分子量为3000的二聚乙二醇辛胺4g,并调节pH至7,经透析后进行干燥处理,即得以碳纳米管为核的自修复纳米润滑油脂,所得润滑油脂中碳纳米管的含量为32.5wt%,表观粘度为320Pa·S。具有高承载能力及自修复功能。
实施例7
2.5g石墨烯加入到0.8g 3-三硅醇丙磺酸35%的水溶液中,在70℃下反应24小时后,再在强烈搅拌下加入分子量为3000的二聚乙二醇十二胺5g,并调节pH至7,经透析后进行干燥处理,即得以石墨烯为核的自修复纳米润滑油脂,所得润滑油脂中石墨烯的含量为25.2wt%,表观粘度为102Pa·S。具有高承载能力及自修复功能。
实施例8
2.5g石墨烯加入到0.7g 3-三硅醇丙磺酸35%的水溶液中,在70℃下反应24小时后,再在强烈搅拌下加入分子量为3300的二聚乙二醇十八胺7g,并调节pH至7,经透析后进行干燥处理,即得以石墨烯为核的自修复纳米润滑油脂,所得润滑油脂中石墨烯的含量为19.2wt%,表观粘度为60Pa·S。具有高承载能力及自修复功能。
实施例9
本实施例与实施例1基本相同,不同之处在于,本实施例中的纳米粒子为石墨粉。制得的润滑油脂具有高承载能力及自修复功能。
实施例10
本实施例与实施例1基本相同,不同之处在于,本实施例中,碳纳米管的质量为6.8g,制得的润滑油脂具有高承载能力及自修复功能。
实施例11
本实施例的自修复纳米润滑油脂中的纳米粒子的含量为10wt%,表观粘度略大于50Pa·S,该润滑油脂具有高承载能力及自修复功能。其制备工艺过程与实施例1类似。
实施例12
本实施例的自修复纳米润滑油脂中的纳米粒子的含量为60wt%,表观粘度略小于50Pa·S,该润滑油脂具有高承载能力及自修复功能。其制备工艺过程与实施例1类似。

Claims (5)

1.一种自修复纳米润滑油脂的制备方法,其特征在于,该方法包括以下步骤:
(1)将纳米粒子加入3-三硅醇丙磺酸中,进行纳米粒子表面的磺化;
(2)在强烈搅拌下加入带有机长链的有机三取代胺中和,经透析后进行干燥处理,即得到所述的自修复纳米润滑油脂;
所述的纳米粒子为二氧化硅、二氧化钛、石墨、石墨烯或碳纳米管;
所述的带有机长链的有机三取代胺为二聚乙二醇十八胺、二聚乙二醇十二胺或二聚乙二醇辛胺;
所述的有机三取代胺分子量为2500~3500;
所述的自修复纳米润滑油脂是由纳米粒子经表面修饰形成的具有核-壳-冠结构的稳定体系,所述的纳米粒子均匀分散在与其以化学键相连的有机介质中,该自修复纳米润滑油脂中纳米粒子的含量为10~60wt%,并在纳米粒子含量高达54%时,体系表现出牛顿流体行为。
2.根据权利要求1所述的一种自修复纳米润滑油脂的制备方法,其特征在于,所述的3-三硅醇丙磺酸与纳米粒子的质量比为1:9~15。
3.一种自修复纳米润滑油脂,其特征在于,采用如权利要求1所述的制备方法制得,该自修复纳米润滑油脂是由纳米粒子经表面修饰形成的具有核-壳-冠结构的稳定体系,所述的纳米粒子均匀分散在与其以化学键相连的有机介质中。
4.根据权利要求3所述的一种自修复纳米润滑油脂,其特征在于,该自修复纳米润滑油脂中纳米粒子的含量为10~60wt%。
5.根据权利要求3所述的一种自修复纳米润滑油脂,其特征在于,其表观粘度在50~700Pa·S之间,并且剪切频率变化时,该油脂表现出牛顿流体行为。
CN201710059816.5A 2017-01-24 2017-01-24 一种自修复纳米润滑油脂及其制备方法 Expired - Fee Related CN106906027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710059816.5A CN106906027B (zh) 2017-01-24 2017-01-24 一种自修复纳米润滑油脂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710059816.5A CN106906027B (zh) 2017-01-24 2017-01-24 一种自修复纳米润滑油脂及其制备方法

Publications (2)

Publication Number Publication Date
CN106906027A CN106906027A (zh) 2017-06-30
CN106906027B true CN106906027B (zh) 2020-08-14

Family

ID=59207630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710059816.5A Expired - Fee Related CN106906027B (zh) 2017-01-24 2017-01-24 一种自修复纳米润滑油脂及其制备方法

Country Status (1)

Country Link
CN (1) CN106906027B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653024B (zh) * 2017-09-11 2020-05-26 东华大学 一种减摩耐磨润滑剂的制备方法
CN108085089B (zh) * 2017-12-07 2020-12-01 中国科学院兰州化学物理研究所 一种无溶剂二氧化硅纳米类流体及其应用
CN109456827B (zh) * 2018-10-29 2021-10-15 酒泉钢铁(集团)有限责任公司 一种金属磨损自修复复合添加剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618350A (zh) * 2012-02-27 2012-08-01 同济大学 一种新型核-壳-冠结构无溶剂纳米流体的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618350A (zh) * 2012-02-27 2012-08-01 同济大学 一种新型核-壳-冠结构无溶剂纳米流体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"The Ages in a Self-Suspended Nanoparticle Liquid";Praveen Agarwal等;《Nano Letters》;20091201;第10卷;第111-115页 *
"The synthesis and properties of nanoscale ionic materials";Robert Rodriguez等;《Applied Organometallic Chemistry》;20100217;第24卷;第581-589页 *
"液态有机-无机纳米颗粒离子化材料合成及结构研究进展";张逸晗等;《高分子通报》;20110831(第8期);第8-15页 *

Also Published As

Publication number Publication date
CN106906027A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
JP6899916B2 (ja) グラフェン含有被膜潤滑剤
Rapoport et al. Fullerene‐like WS2 nanoparticles: superior lubricants for harsh conditions
Guo et al. Mechanical properties of nanoparticles: basics and applications
CN106906027B (zh) 一种自修复纳米润滑油脂及其制备方法
Palacio et al. A review of ionic liquids for green molecular lubrication in nanotechnology
Liang et al. Graphene oxide film as solid lubricant
Miao et al. MXenes in tribology: current status and perspectives
Zhang et al. MoS2 lubricating film meets supramolecular gel: a novel composite lubricating system for space applications
Dhanola et al. A critical review on liquid superlubricitive technology for attaining ultra-low friction
Zhu et al. Effect of the anion on the tribological properties of ionic liquid nano-films on surface-modified silicon wafers
Zhao et al. Effect of anion on micro/nano-tribological properties of ultra-thin imidazolium ionic liquid films on silicon wafer
Pu et al. Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon
Sun et al. Excellent lubricating ability of functionalization graphene dispersed in perfluoropolyether for titanium alloy
Mo et al. Functionalized imidazolium wear‐resistant ionic liquid ultrathin films for MEMS/NEMS applications
Gusain et al. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity
Pu et al. Tribology study of dual-layer ultrathin ionic liquid films with bonded phase: Influences of the self-assembled underlayer
Reinert et al. Influence of surface roughness on the lubrication effect of carbon nanoparticle-coated steel surfaces
Kogovšek et al. Comparison of graphene as an oil additive with conventional automotive additives for the lubrication of steel and DLC-coated surfaces
Singh et al. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications
Xie et al. Tribological characterization of several silicon-based materials under ionic-liquids lubrication
Han et al. Non external field adsorption regulation mechanism of nanoparticles in lubricating fluid on metal and non-metal surfaces based on solvent-induced surface polarity change
Fleischer et al. New nanotechnology solid lubricants for superior dry lubrication
Wang et al. Fabrication and tribological behavior of patterned multiply-alkylated cyclopentanes (MACs)–octadecyltrichlorosilane (OTS) dual-component film by a soft lithographic approach
Qin et al. Fabricating fluorosilane self-assembled molecular film on Babbitt alloy and its tribological performance
Wang et al. Fabrication and tribological properties of a self-assembled silane bilayer on silicon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200814