WO2021240594A1 - エレベータードアの安全装置 - Google Patents

エレベータードアの安全装置 Download PDF

Info

Publication number
WO2021240594A1
WO2021240594A1 PCT/JP2020/020524 JP2020020524W WO2021240594A1 WO 2021240594 A1 WO2021240594 A1 WO 2021240594A1 JP 2020020524 W JP2020020524 W JP 2020020524W WO 2021240594 A1 WO2021240594 A1 WO 2021240594A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
end device
optical axis
light
safety device
Prior art date
Application number
PCT/JP2020/020524
Other languages
English (en)
French (fr)
Inventor
陽介 齋藤
昌也 北澤
敬太 望月
和宏 渡辺
慎也 天野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112020007234.7T priority Critical patent/DE112020007234T5/de
Priority to JP2021538710A priority patent/JP7010416B1/ja
Priority to CN202080100760.3A priority patent/CN115551795A/zh
Priority to PCT/JP2020/020524 priority patent/WO2021240594A1/ja
Publication of WO2021240594A1 publication Critical patent/WO2021240594A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/24Safety devices in passenger lifts, not otherwise provided for, for preventing trapping of passengers
    • B66B13/26Safety devices in passenger lifts, not otherwise provided for, for preventing trapping of passengers between closing doors

Definitions

  • This disclosure relates to elevator door safety devices.
  • Patent Document 1 discloses a safety device for an elevator door provided with an optical axis sensor provided on the door shoe of the elevator.
  • An object of the present disclosure is to provide an elevator door safety device capable of widening the detection range of the lower part of the door shoe.
  • the elevator door safety device includes an upper end device provided at the upper end of the door shoe provided on the first car door of the elevator and the upper end device provided at the lower end of the door shoe along the end surface of the door shoe.
  • the lower end device is provided with a lower end device for forming a light beam between the two, and the lower end device is provided below the door shoe and includes a light guide that changes the traveling direction of the received light beam vertically upward. ..
  • the lower end portion is provided below the door shoe and includes a light guide that changes the traveling direction of the received light beam vertically upward. Therefore, the elevator door safety device can widen the detection range of the lower part of the door shoe.
  • FIG. It is a figure which shows the elevator door in Embodiment 1.
  • FIG. It is a figure which shows the lower end device of the safety device of an elevator door in Embodiment 1.
  • FIG. It is a figure which shows the lower end device and the guide jig of the safety device of an elevator door in Embodiment 1.
  • FIG. It is a figure which shows the difference by the presence / absence of the 1st light-shielding member of the elevator door in Embodiment 1.
  • FIG. It is a figure which shows the 1st antireflection member at the time of closing operation of an elevator door in Embodiment 1.
  • FIG. It is a figure which shows the 2nd antireflection member at the time of closing operation of an elevator door in Embodiment 1.
  • Embodiment 1 It is a modification of a set of optical axis sensors of an elevator door in Embodiment 1. This is a modified example of the installation position of the guide jig for the elevator door in the first embodiment. It is a modification of the elevator door in Embodiment 1. It is a figure which shows the elevator door in Embodiment 2.
  • FIG. This is the lower end device for the elevator door according to the second embodiment. It is a reflective material of an elevator door in the second embodiment.
  • This is a modification of the prism of the elevator door safety device according to the second embodiment. This is a first modification of the lower end device of the elevator door in the second embodiment.
  • FIG. 1 is a diagram showing a car door of an elevator according to the first embodiment.
  • the boarding / alighting direction is defined as the direction of boarding / alighting from the car.
  • the riding direction represents a direction from the front side to the back side of the paper.
  • the descending direction represents the direction from the back side of the paper to the front side.
  • the car door 1a and the car door 1b are provided at the entrance and exit of a car (not shown).
  • the car door 1a and the car door 1b open and close by moving in the horizontal direction.
  • One direction is defined as the right side of the paper in the horizontal direction.
  • the other direction is defined as the left side of the paper in the horizontal direction.
  • the door shoe 2 includes a multi-optical axis sensor floodlight.
  • the door shoe 2 includes a plurality of light projecting portions that emit light axes in the longitudinal direction.
  • the door shoe 2 includes a leading edge 2a and a trailing edge 2b.
  • the door shoe 2 is provided on the car door 1a.
  • the door shoe 2 is provided so as to project in one direction of the car door 1a.
  • the door shoe 2 is provided so as to irradiate the car door 1b with the optical axis of the multi-optical axis sensor.
  • the leading edge 2a is an area representing a side and a surface located in one direction in the door shoe 2.
  • the leading edge 2a includes a plurality of light projecting portions of the multi-optical axis sensor.
  • the trailing edge 2b is a region of the door shoe 2 that represents sides and surfaces located in other directions.
  • the multi-optical axis sensor receiver 3 is provided on the car door 1b.
  • the multi-optical axis sensor receiver 3 is provided on the other side of the car door 1b.
  • the multi-optical axis sensor receiver 3 is provided so as to receive a plurality of optical axes of the multi-optical axis sensor.
  • the multi-optical axis sensor receiver 3 receives a plurality of optical axes of the multi-optical axis sensor floodlight. For example, when the multi-optical axis sensor receiver 3 does not receive any of the optical axes of the plurality of optical axes, the multi-optical axis sensor receiver 3 transmits a detection signal with an obstacle.
  • the multi-optical axis sensor includes a multi-optical axis sensor floodlight provided on the door shoe 2 and a multi-optical axis sensor receiver 3.
  • the controller 4 includes a control mechanism using an electronic circuit inside.
  • the controller 4 is provided on the upper part of a car (not shown).
  • the controller 4 controls the opening / closing operation of the car door 1a and the car door 1b via a car door driving device (not shown).
  • the controller 4 is electrically connected to the multi-optical axis sensor receiver 3. For example, when the controller 4 receives an obstacle detection signal during the closing operation of the car door, the controller 4 opens the car door 1a and the car door 1b.
  • a set of optical axis sensors 30a includes an upper end device 31a and a lower end device 33a.
  • a set of optical axis sensors 30a is detachably provided on the door shoe 2.
  • a set of optical axis sensors 30a forms an optical beam 50a between the upper end device 31a and the lower end device 33a.
  • a set of optical axis sensors 30a forms an optical axis 50 between the upper end device 31a and the lower end device 33a.
  • the optical axis 50 is defined as a region having the highest luminous flux density in the cross section of the optical beam 50a formed by the set of optical axis sensors 30a. That is, the light beam 50a includes the optical axis 50.
  • a set of optical axis sensors 30a forms an optical axis 50 in the vicinity of the leading edge 2a.
  • the upper end device 31a has a rectangular parallelepiped shape.
  • the upper end device 31a includes an upper light passage surface 32a.
  • the upper end device 31a includes a light receiver 35a.
  • the upper end device 31a is provided on the upper surface of the door shoe 2.
  • the upper end device 31a is provided so that the upper light passage surface 32a is on the lower surface.
  • the upper end device 31a is provided so that the upper light passing surface 32a protrudes from the door shoe 2 in the direction of the leading edge 2a.
  • the upper end device 31a is electrically connected to the controller 4.
  • the upper end device 31a receives the optical axis 50 that has passed through the upper optical communication surface 32a. For example, when the upper end device 31a does not receive the optical axis 50, the upper end device 31a transmits a detection signal with an obstacle to the controller 4.
  • the lower end device 33a includes a lower light passage surface 34a.
  • the lower end device 33a includes a floodlight 36a.
  • the lower end device 33a is provided on the lower surface of the door shoe 2.
  • the lower end device 33a is provided so that the lower light passage surface 34a faces upward.
  • the lower end device 33a is provided so that the lower light passage surface 34a protrudes from the door shoe 2 in the direction of the leading edge 2a.
  • the lower end device 33a is provided so that the lower light passage surface 34a is inclined vertically downward in one direction.
  • the lower end device 33a transmits the optical axis 50 through the lower optical passage surface 34a.
  • the first light-shielding member 10 is provided on the leading edge 2a.
  • the first light-shielding member 10 blocks a part of the optical axis 50 near the leading edge 2a.
  • the first antireflection member 11 is provided on the car door 1b.
  • the first antireflection member 11 is provided on the side surface of the car door 1b in the riding direction.
  • the first antireflection member 11 is provided at the center of the car door 1b in the vertical direction.
  • the first antireflection member 11 suppresses the stray light portion from reflecting on the side surface of the car door 1b in the riding direction.
  • the stray light portion represents a region of the light beam 50a that is distant from the optical axis 50.
  • the second antireflection member 12 is provided on the multi-optical axis sensor receiver 3.
  • the second antireflection member 12 is provided on the side surface in the other direction in the multi-optical axis sensor receiver 3.
  • the second antireflection member 12 is provided at the center of the multi-optical axis sensor receiver 3 in the vertical direction.
  • the second antireflection member 12 suppresses the stray light portion from being reflected by the multi-optical axis sensor receiver 3.
  • the guidance jig 13 includes an inclined surface.
  • the guidance jig 13 is provided at the lower end of the car door 1b.
  • the guidance jig 13 is provided on the other side of the car door 1b.
  • the guide jig 13 is provided so that the inclined surface is inclined vertically downward toward the other direction.
  • the guidance jig 13 is provided so that the lower surface is as close as possible to the car floor (not shown).
  • the elevator door safety device 100 includes a car door 1a, a car door 1b, a door shoe 2, a multi-optical axis sensor, a controller 4, a first light-shielding member 10, a first antireflection member 11, and a second antireflection member 12.
  • a guidance jig 13 and a set of optical axis sensors 30a are provided.
  • the safety device 100 suppresses a person and an object from being pinched by the car door by performing the following operations.
  • any optical axis of the multi-optical axis sensor is blocked by the user. Be done. In this case, any of the light receiving units of the multi-optical axis sensor receiver 3 does not detect the optical axis.
  • the multi-optical axis sensor receiver 3 transmits a detection signal with an obstacle to the controller 4.
  • the controller 4 receives a detection signal with an obstacle. After that, the controller 4 opens the car door 1a and the car door 1b. Therefore, the safety device 100 prevents the user from being sandwiched between the car door 1a and the car door 1b.
  • the optical axis 50 is blocked by the string.
  • the upper end device 31a does not detect the optical axis 50.
  • the upper end device 31a When the upper end device 31a does not detect the optical axis 50, the upper end device 31a transmits a detection signal with an obstacle to the controller 4.
  • the controller 4 receives a detection signal with an obstacle. After that, the controller 4 opens the car door 1a and the car door 1b. Therefore, for example, the safety device 100 prevents the string from being pinched between the car door 1a and the car door 1b.
  • FIG. 2 is a diagram showing a lower end device of the elevator door safety device according to the first embodiment.
  • the lower end device 33a is provided so that the lower light passage surface 34a is inclined with respect to the horizontal direction.
  • the optical axis 50 is formed by passing through the lower optical passage surface 34a.
  • the lower light passage surface 34a is provided with an inclination that suppresses the accumulation of dust 61.
  • the dust 61 is assumed to be dust, dirt, lint, or the like.
  • FIG. 3 is a diagram showing a lower end device and a guidance jig of the elevator door safety device according to the first embodiment.
  • the guidance jig 13 is provided on the car door 1b so that the inclined surface is inclined with respect to the horizontal direction.
  • the inclined surface of the guide jig 13 raises the string 60 with the closing operation.
  • the lower optical passage surface 34a pushes up the string 60 upward with the closing operation.
  • the safety device 100 detects the string 60 existing at a position close to the car floor.
  • FIG. 4 is a diagram showing a difference between the presence and absence of the first light-shielding member of the elevator door in the first embodiment.
  • a of FIG. 4 is a diagram showing the safety device 100 of the first embodiment.
  • the string 60 when the string 60 comes into contact with the door shoe 2, the string 60 may be deformed into a mountain-shaped shape in one direction by bending with both ends of the leading edge 2a as fulcrums. ..
  • the first light-shielding member 10 is provided so as to project from the leading edge 2a by the same width as the gap between the bent string 60 and the leading edge 2a.
  • the first light-shielding member 10 is provided so that the optical axis 50 can be shielded by the bent string 60 and the first light-shielding member 10.
  • FIG. 4B is a diagram showing a safety device 100 not provided with the first light-shielding member 10 as a comparative example.
  • the bent string 60 blocks only a part of the optical axis 50.
  • the unobstructed region of the optical axis 50 is detected by the upper end device 31a. Therefore, the upper end device 31a does not transmit the detection signal with an obstacle.
  • FIG. 5 is a diagram showing a first antireflection member when the elevator door is closed according to the first embodiment.
  • FIG. 5A is a diagram showing the safety device 100 of the first embodiment.
  • the first antireflection member 11 is provided at the center of the car door 1b in the vertical direction.
  • the first antireflection member 11 is provided so as not to interfere with the operation of the multi-optical axis sensor receiver 3.
  • the first antireflection member 11 suppresses the reflection of the first stray light portion 51 on the car door 1b.
  • the first stray light portion 51 is a region of the light beam 50a at the end in the descending direction.
  • FIG. 5B is a diagram showing a safety device 100 not provided with the first antireflection member 11 as a comparative example.
  • the first stray light unit 51 reflects off the car door 1b.
  • the upper end device 31a detects the reflected first stray light unit 51. Therefore, regardless of the presence or absence of an obstacle, the upper end device 31a does not transmit a detection signal with an obstacle.
  • FIG. 6 is a diagram showing a second antireflection member when the elevator door is closed according to the first embodiment.
  • the second antireflection member 12 is provided at the center of the multi-optical axis sensor receiver 3 in the vertical direction.
  • the second antireflection member 12 has many second stray light portions 52, which are the horizontal end portions of the light beam 50a.
  • Optical axis sensor Suppresses reflection on the receiver 3.
  • the elevator door includes a car door 1a as a first car door.
  • the elevator door includes a car door 1b as a second car door.
  • a set of optical axis sensors 30a includes an upper end device 31a and a lower end device 33a.
  • the upper end device 31a is provided at the upper end of the door shoe 2.
  • the lower end device 33a is provided at the lower end of the door shoe 2.
  • the lower end device 33a forms a light beam 50a with the upper end device 31a.
  • the safety device 100 moves the car door 1a and the car door 1b in the opening direction.
  • the lower end device 33a includes a lower light passage surface 34a through which the light beam 50a passes.
  • the lower light passage surface 34a is provided so as to incline vertically downward as the distance from the door shoe 2 increases. Therefore, the lower optical passage surface 34a can push up the string 60 upward with the closing operation. As a result, the safety device 100 can detect a string-shaped obstacle near the floor surface. Further, the lower light passage surface 34a can suppress the accumulation of dust 61 on the upper surface.
  • the upper end device 31a includes a light receiver 35a.
  • the lower end device 33a includes a floodlight 36a.
  • a set of optical axis sensors 30a forms an optical beam 50a and an optical axis 50 directed from the lower end device 33a to the upper end device 31a. Therefore, the light beam 50a converges as it goes downward. As a result, the safety device 100 can improve the ability to detect obstacles existing below.
  • the set of optical axis sensors 30a may be provided with a light receiver 35a below.
  • the set of optical axis sensors 30a may include a floodlight 36a above. That is, the upper end device 31a includes a floodlight 36a.
  • the lower end device 33a includes a light receiver 35a. In this case, the lower end device 33a transmits a detection signal with an obstacle to the controller 4. As a result, the safety device 100 can improve the ability to detect obstacles existing above.
  • the safety device 100 can improve workability when a set of optical axis sensors 30a is maintained and maintained.
  • the door shoe 2 is equipped with a multi-optical axis sensor floodlight.
  • the multi-optical axis sensor receiver 3 is provided on the car door 1b so as to face the multi-optical axis sensor floodlight. That is, the safety device 100 includes a multi-optical axis sensor. Therefore, the safety device 100 can detect the presence or absence of an obstacle without coming into contact with the obstacle.
  • the first light-shielding member 10 is provided on the door shoe 2.
  • the first light-shielding member 10 blocks a part of the region of the light beam 50a near the leading edge 2a. Therefore, the first light-shielding member 10 can block a part of the optical axis 50 that passes when the string 60 is bent. As a result, the safety device 100 can improve the accuracy of detecting obstacles.
  • the first antireflection member 11 is provided on the side surface of the car door 1b in the riding direction. That is, the first antireflection member 11 is provided on the side surface of the car door 1b in the car internal direction. Therefore, the first antireflection member 11 can suppress the reflection of the first stray light portion 51 in the descending direction on the car door 1b. As a result, the safety device 100 can improve the accuracy of detecting obstacles.
  • the second antireflection member 12 is provided on the side surface of the multi-optical axis sensor receiver 3 in the other direction so as to face the door shoe 2. Therefore, the second antireflection member 12 can suppress the reflection of the second stray light portion 52 in the horizontal direction on the multi-optical axis sensor receiver 3. As a result, the safety device 100 can improve the accuracy of detecting obstacles.
  • the guidance jig 13 is provided at the lower end of the car door 1b.
  • the guide jig 13 is provided so that the inclined surface is inclined vertically downward toward the other direction. Therefore, the guide jig 13 can push up the string 60 upward with the closing operation. As a result, the safety device 100 can improve the detection ability of the string 60 existing below.
  • FIG. 7 is a modified example of the optical axis sensor 30a of the elevator door in the first embodiment.
  • the upper end device 31a includes a light receiver 35a and a floodlight 36a.
  • the lower end device 33a includes a reflector 37a.
  • the lower light passage surface 34a includes a reflector 37a.
  • the reflector 37a has a surface having photoreflexivity.
  • the reflector 37a reflects the light on the surface in the direction in which the light is incident.
  • the floodlight 36a of the upper end device 31a emits the optical axis 50. After that, the optical axis 50 is reflected by the lower end device 33a. The reflected optical axis 53 is received by the receiver 35a of the upper end device. The reflected optical axis 53 is an optical axis after the optical axis 50 is reflected by the lower end device 33a.
  • the upper end device 31a includes a light receiver 35a and a floodlight 36a.
  • the lower end device 33a includes a reflector 37a.
  • the optical axis 50 emitted from the upper end device 31a is reflected by the lower end device 33a.
  • the reflected optical axis 53 is received by the receiver 35a of the upper end device 31a. Therefore, the lower end device 33a can be made smaller than the lower end device 33a of the first embodiment.
  • the set of optical axis sensors 30a can detect obstacles by using the optical beam 50a and the reflected optical axis 53. Therefore, the safety device 100 can improve the accuracy of detecting obstacles.
  • the door shoe 2 may be mechanical.
  • the car door 1a opens by moving the door shoe 2 relative to the car door 1a in the closing direction.
  • FIG. 8 is a modified example of the installation position of the guide jig for the elevator door in the first embodiment.
  • the guidance jig 13 is provided at the lower end of the car door 1b.
  • the guide jig 13 is provided so that the lower portion exists in the region of the groove of the car sill.
  • the guide jig 13 moves in the region of the groove of the car sill.
  • the lower part of the car door 1a (not shown) has a notch (not shown).
  • the notch stores the guide jig 13 inside when the car door 1a and the car door 1b are fully closed.
  • the lower portion of the guide jig 13 exists in the region of the groove of the car sill.
  • the guidance jig 13 moves in the region of the groove of the car sill. Therefore, the guidance jig 13 can push up an obstacle in contact with the floor surface upward.
  • the safety device 100 can improve the ability to detect obstacles.
  • the guide jig 13 may be provided on the car door 1a in addition to the one provided on the car door 1b.
  • the safety device 100 includes two guidance jigs 13.
  • One of the two guidance jigs 13 is provided on the car door 1b.
  • the other of the two guidance jigs 13 (not shown in FIG. 9) is provided on the unidirectional side of the lower end of the car door 1a.
  • the other of the two guidance jigs 13 is provided so that the inclined surface is inclined in the vertical direction toward one direction.
  • the other of the two guidance jigs 13 is provided at a position where the car door 1a and the car door 1b do not physically interfere with one of the two guidance jigs 13 when the car door 1a and the car door 1b are fully closed.
  • the two guide jigs 13 can push up the obstacles existing below.
  • the safety device 100 can improve the ability to detect obstacles existing below.
  • FIG. 9 is a modified example of the elevator door in the first embodiment.
  • the elevator door is a single door type.
  • the elevator door is a 2S system.
  • the elevator door includes a car door 1c and a door per door 5.
  • the car door 1c is provided at the entrance / exit of a car (not shown).
  • the car door 1c opens and closes by moving in the horizontal direction.
  • the car door 1c includes a door shoe 2.
  • One side end of the car door 1c is stored in the accommodation space of the elevator door in the fully closed state.
  • the door stop 5 is a rod-shaped member.
  • the door stop 5 is connected to the car by a door stop pillar.
  • the door stop 5 is provided in the accommodation space.
  • the door stop 5 is provided so as to face the car door 1c.
  • the door stop 5 contacts the door shoe 2 when the car door 1c is fully closed.
  • the door shoe 2 includes a multi-optical axis sensor floodlight.
  • the door shoe 2 includes a plurality of light projecting portions that emit light axes in the longitudinal direction.
  • the door shoe 2 is provided so as to project in one direction of the car door 1c.
  • the door shoe 2 is provided so as to irradiate the optical axis of the multi-optical axis sensor with respect to 5 per door.
  • the multi-optical axis sensor receiver 3 is provided at 5 per door.
  • the multi-optical axis sensor receiver 3 is provided on the other side of the door stop 5.
  • the multi-optical axis sensor receiver 3 is provided so as to receive a plurality of optical axes of the multi-optical axis sensor.
  • a set of optical axis sensors 30a includes an upper end device 31a and a lower end device 33a.
  • a set of optical axis sensors 30a is detachably provided on the door shoe 2.
  • the first antireflection member 11 is provided in the accommodation space riding direction on the side surface of the car.
  • the first antireflection member 11 is provided on the side other than the door stop 5.
  • the first antireflection member 11 is provided at the same height as the center of the car door 1c in the vertical direction.
  • the second antireflection member 12 is provided on the multi-optical axis sensor receiver 3.
  • the second antireflection member 12 is provided on the side surface in the other direction in the multi-optical axis sensor receiver 3.
  • the second antireflection member 12 is provided at the center of the multi-optical axis sensor receiver 3 in the vertical direction.
  • the guidance jig 13 is provided at the lower end of the door stop 5 so that the inclined surface is inclined with respect to the horizontal direction.
  • the guidance jig 13 is provided on the other side of the door stop 5.
  • the guide jig 13 is provided so that the inclined surface is inclined vertically downward toward the other direction.
  • the guidance jig 13 is provided so that the lower portion exists in the area of the car threshold (not shown).
  • the guidance jig 13 is provided so that the inclined surface exists in a part of the entrance / exit of the car. For example, when the car door 1c is fully closed, the guidance jig 13 is stored in a notch provided in the lower part of the car door 1c.
  • the elevator door is provided with 5 per door.
  • the first antireflection member 11 is provided in the accommodation space riding direction on the side surface of the car. Therefore, the first antireflection member 11 can suppress the reflection of the first stray light portion 51 (not shown in FIG. 9) on the side surface of the car. As a result, the safety device 100 can improve the accuracy of detecting obstacles.
  • the second antireflection member 12 is provided on the side surface of the multi-optical axis sensor receiver 3 in the other direction so as to face the door shoe 2. Therefore, the second antireflection member 12 can suppress the reflection of the second stray light portion 52 in the horizontal direction on the multi-optical axis sensor receiver 3. As a result, the safety device 100 can improve the accuracy of detecting obstacles.
  • the guidance jig 13 is provided at the lower end of the door stop 5.
  • the guide jig 13 is provided so that the inclined surface is inclined vertically downward toward the other direction. Therefore, the guide jig 13 can push up the string 60, which is not shown in FIG. 9, as an obstacle in the closing operation. As a result, the safety device 100 can improve the detection ability of the string 60 existing below.
  • the door shoe 2 may be mechanical.
  • the car door 1c opens by moving the door shoe 2 relative to the car door 1c in the closing direction.
  • the second antireflection member 12 is provided at the door stop 5.
  • the guide jig 13 may be provided on the car door 1c in addition to the one provided on the door stop 5.
  • the safety device 100 includes two guidance jigs 13.
  • One of the two guidance jigs 13 is provided at the door stop 5.
  • the other of the two guidance jigs 13 (not shown in FIG. 9) is provided on the unidirectional side of the lower end of the car door 1c.
  • the other of the two guidance jigs 13 is provided so that the inclined surface is inclined in the vertical direction toward one direction.
  • the other of the two guidance jigs 13 is provided at a position where it does not physically interfere with one of the two guidance jigs 13 when the car door 1c is fully closed.
  • the two guide jigs 13 can push up the obstacles existing below.
  • the safety device 100 can improve the ability to detect obstacles existing below.
  • FIG. 10 is a diagram showing an elevator door according to the second embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the safety device 100 includes a set of optical axis sensors 30b.
  • a set of optical axis sensors 30b includes an upper end device 31b and a lower end device 33b.
  • a set of optical axis sensors 30b forms an optical beam 50a between the upper end device 31b and the lower end device 33b.
  • a set of optical axis sensors 30b forms an optical axis 50 between the upper end device 31b and the lower end device 33b.
  • the upper end device 31b has the same configuration as the upper end device 31a of the first embodiment.
  • the lower end device 33b includes a lower light passage surface 34b, a floodlight 36b, and a light guide 40.
  • the lower end device 33b is provided on the lower surface of the door shoe 2.
  • the lower end device 33b is connected to the lower surface of the door shoe 2 and the trailing edge 2b.
  • the lower end device 33b is provided so that the lower light passage surface 34b faces upward.
  • the lower end device 33b is provided so that the lower light passage surface 34b has an angle of 45 degrees or more from the horizontal plane.
  • the floodlight 36b is connected to the trailing edge 2b.
  • the light guide 40 is located below the door shoe 2.
  • the light guide 40 is connected to the lower light passage surface 34b.
  • the light guide 40 changes the traveling direction of the received light beam 50a vertically upward.
  • FIG. 11 is a lower end device for an elevator door according to the second embodiment.
  • the floodlight 36b is connected to the trailing edge 2b.
  • the floodlight 36b irradiates the light beam 50a in the vertical downward direction.
  • the light guide 40 includes a lens 41 and a reflector 42.
  • the light guide 40 is provided below the door shoe 2.
  • the lens 41 is a convex lens.
  • the lens 41 is provided so that the convex surface faces the floodlight 36b.
  • the optical axis of the lens 41 is provided so as to coincide with the optical axis 50.
  • the lens 41 is provided so that the focal point coincides with the light source of the floodlight 36b.
  • the reflective material 42 includes a prism.
  • the reflective material 42 allows light to pass through the inside.
  • the reflective material 42 changes the traveling direction of the light by reflecting the light on the inner wall.
  • the reflective material 42 is provided inside the lower end device 33b.
  • the other end of the reflector 42 is provided below the lens 41.
  • the unidirectional end of the reflector 42 is connected to the lower light transmission surface 34b.
  • the reflective material 42 is provided so that the optical axis 50 is emitted directly above.
  • the light beam 50a emitted from the floodlight 36b passes through the lens 41, the reflector 42, and the lower light passing surface 34b. After that, the light beam 50a is emitted from the lower end device 33a.
  • the floodlight 36a emits a light beam 50a in the vertically downward direction.
  • the floodlight 36a radially emits a light beam 50a.
  • the light beam 50a is incident on the lens 41.
  • the light beam 50a is collimated with the lens 41.
  • Collected is defined as the ability to align the angles of multiple rays in parallel. Therefore, the light beam 50a is emitted from the lens 41 in parallel in the downward direction. After that, the light beam 50a is incident on the reflector 42.
  • the traveling direction of the light beam 50a can be changed inside the reflective material 42.
  • the light beam 50a travels inside the reflector 42 in the direction of the leading edge 2a. After that, the light beam 50a travels vertically upward.
  • the light beam 50a is emitted vertically upward from the reflective material 42.
  • the light beam 50a passes through the lower light passage surface 34b and is emitted vertically upward from the lower end device 33b.
  • FIG. 12 is a light guide for an elevator door according to the second embodiment.
  • the reflective material 42 includes a prism 42a.
  • the prism 42a has a trapezoidal shape.
  • the prism 42a has two equal base angles.
  • the lower base of the prism 42a has a base angle ⁇ b .
  • the prism 42a is provided so that the upper base and the lower base are parallel to each other in the horizontal direction.
  • the prism 42a is provided so that the optical axis 50 is incident on the leg on the other direction side.
  • the prism 42a is provided so that the optical axis 50 is emitted from the leg on the one-way side.
  • the optical axis 50 is incident on the prism 42a at an incident angle ⁇ 1.
  • the optical axis 50 emits light from the prism 42a at an emission angle ⁇ 2.
  • the emission angle ⁇ 2 depends on the incident angle ⁇ 1 regardless of the refractive index of the prism 42a.
  • the emission angle ⁇ 2 is equal to the incident angle ⁇ 1 regardless of the refractive index of the prism 42a.
  • the elevator door includes a car door 1a as a first car door.
  • the elevator door includes a car door 1b as a second car door.
  • a set of optical axis sensors 30b includes an upper end device 31b and a lower end device 33b.
  • the upper end device 31b is provided at the upper end of the door shoe 2.
  • the lower end device 33b is provided at the lower end of the door shoe 2.
  • the lower end device 33b forms a light beam 50a with the upper end device 31b.
  • the lower end device 33b includes a light guide 40.
  • the light guide 40 is provided below the door shoe 2.
  • the light guide 40 changes the traveling direction of the received light beam 50a in the vertically upward direction. Therefore, the floodlight 36b can be provided at a portion other than the vicinity of the leading edge 2a of the door shoe 2. That is, the protruding portion of the lower end device 33b can be miniaturized.
  • the door shoe 2 can be provided further down. As a result, the safety device 100 can widen the detection range of the lower part of the door shoe.
  • the upper end device 31b includes a light receiver 35b.
  • the lower end device 33b includes a floodlight 36b.
  • a set of optical axis sensors 30b forms an optical beam 50a and an optical axis 50 directed from the lower end device 33b toward the upper end device 31b. Therefore, the light beam 50a converges as it goes downward. As a result, the safety device 100 can improve the ability to detect obstacles existing below.
  • the light guide 40 is provided so as to protrude from the door shoe 2 in the direction of the trailing edge 2b.
  • the floodlight 36b is provided on the trailing edge 2b.
  • the floodlight 36b is provided so as to emit a light beam 50a in a vertically downward direction. Therefore, in the lower end device 33b, the region located below the door shoe 2 can be reduced. As a result, the safety device 100 can widen the detection range of the door shoe 2.
  • the lower end device 33b is provided so that the lower optical passage surface 34b has an angle of 45 degrees or more from the horizontal plane. Therefore, when the traveling direction of the light beam 50a is changed in the vertical direction, the light beam 50a is focused in the horizontal direction. The horizontal width of the light beam 50a becomes narrower. As a result, the safety device 100 can improve the ability to detect obstacles.
  • the light guide 40 includes a prism 42a.
  • the prism 42a can change the traveling direction of the light beam 50a by reflecting the light beam 50a on the inner wall. Therefore, the floodlight 36b can be provided in a place not directly under the light receiver 35b. As a result, the safety device 100 can reduce the size of the region of the lower end device 33b protruding toward the front edge side.
  • the prism 42a has a trapezoidal cross section in which the two base angles of the lower base are equal.
  • the optical axis 50 passes through the leg on one side and the leg on the other side of the trapezoid. Therefore, in the optical axis 50, the declination angle of the prism 42a does not depend on the refractive index of the prism 42a.
  • the declination angle of the prism 42a is determined by the angle of incidence on the prism 42a.
  • the safety device 100 can keep the position of the optical axis 50 constant regardless of the change in the refractive index due to the temperature change.
  • the light guide 40 includes a lens 41.
  • the lens 41 has the shape of a convex lens.
  • the lens 41 faces the floodlight 36b.
  • the lens 41 is provided so that the focal point coincides with the light source of the floodlight 36b. Therefore, the light beam 50a is collimated with the lens 41. As a result, the safety device 100 can suppress the stray light of the light beam 50a.
  • the lower end device 33b includes a lower optical passage surface 34b.
  • the lower light passage surface 34b allows the light beam 50a to pass through.
  • the lower light passage surface 34b is provided so as to incline vertically downward as the distance from the door shoe 2 increases. Therefore, the lower optical passage surface 34b can push up the string 60 upward with the closing operation. Further, the lower light passage surface 34b can suppress the accumulation of dust 61 on the upper surface.
  • FIG. 13 is a modification of the prism of the elevator door safety device according to the second embodiment.
  • the prism 42a has a hexagonal shape.
  • the prism 42a has two opposing angles at an angle ⁇ c.
  • the prism 42a has two adjacent angles at an angle ⁇ d on the lowermost side.
  • the optical axis 50 is incident on the prism 42a at an incident angle ⁇ 1.
  • the optical axis 50 reflects inside the prism 42a on two sides between the angle ⁇ c and the angle ⁇ d.
  • the optical axis 50 emits light from the prism 42a at an emission angle ⁇ 2.
  • the emission angle ⁇ 2 depends on the incident angle ⁇ 1 regardless of the refractive index of the prism 42a.
  • the emission angle ⁇ 2 is equal to the incident angle ⁇ 1 regardless of the refractive index of the prism 42a.
  • the safety device 100 can keep the position of the optical axis 50 constant regardless of the change in the refractive index due to the temperature change.
  • FIG. 11 is a first modification of the lower end device of the elevator door in the second embodiment.
  • the lower end device 33b includes a floodlight 36b and a light guide 40.
  • the floodlight 36b is connected to the trailing edge 2b.
  • the floodlight 36b irradiates the light beam 50a in the vertical downward direction.
  • the light guide 40 includes a prism 43 with a curved lens surface.
  • the prism 43 with a curved lens surface includes a curved surface 43a and an exit surface 43b.
  • the prism 43 with a curved lens surface is provided so that the curved surface 43a faces the floodlight 36b.
  • the prism 43 with a curved lens surface is provided so that the light source of the floodlight 36b is located at the focal point of the curved surface 43a.
  • the prism 43 with a curved lens surface is provided so that the emission surface 43b is located below the lower light transmission surface 34b.
  • the curved surface 43a includes a convex curved surface.
  • the light beam 50a is incident on the prism 43 with a lens curved surface on the curved surface 43a.
  • the light beam 50a is collimated on the curved surface 43a. After that, the light beam 50a passes through the inside of the prism 43 with a curved lens surface and is emitted from the exit surface 43b.
  • the light guide 40 includes a prism 43 with a curved lens surface.
  • the prism 43 with a curved lens surface has a convex curved surface.
  • the prism 43 with a curved lens surface is provided so that the convex curved surface faces the floodlight 36b.
  • the prism 43 with a curved lens surface changes the traveling direction of the optical axis 50 by internally reflecting the optical axis 50. Therefore, the light guide 40 can collimate the light beam 50a. As a result, the safety device 100 can suppress the stray light of the light beam 50a.
  • FIG. 15 is a second modification of the lower end device of the elevator door in the second embodiment.
  • the lower end device 33b includes a floodlight 36b and a light guide 40.
  • the floodlight 36b is connected to the trailing edge 2b.
  • the floodlight 36b irradiates the light beam 50a in one horizontal direction.
  • the light guide 40 includes a prism 43 with a curved lens surface.
  • the prism 43 with a curved lens surface includes a curved surface 43a and an exit surface 43b.
  • the prism 43 with a curved lens surface is provided so that the curved surface 43a faces the floodlight 36b.
  • the prism 43 with a curved lens surface is provided so that the light source of the floodlight 36b is located at the focal point of the curved surface 43a.
  • the prism 43 with a curved lens surface is provided so that the emission surface 43b is located below the lower light transmission surface 34b.
  • the curved surface 43a includes a convex curved surface.
  • the light beam 50a is incident on the prism 43 with a lens curved surface on the curved surface 43a.
  • the light beam 50a is collimated on the curved surface 43a. After that, the light beam 50a passes through the inside of the prism 43 with a curved lens surface and is emitted from the exit surface 43b.
  • the light guide 40 does not have to include the prism 43 with a curved lens surface.
  • the light guide 40 includes a prism having no curved surface.
  • the floodlight 36b is connected to the trailing edge 2b.
  • the floodlight 36b emits a light beam 50a traveling in the horizontal direction toward the light guide 40. Therefore, the lower end device 33b does not have to include the floodlight 36b below the door shoe 2.
  • the lower portion of the door shoe 2 of the lower end device 33b can be miniaturized. As a result, the door shoe 2 can be provided at a lower position.
  • FIG. 16 is a third modification of the lower end device of the elevator door in the second embodiment.
  • the lower end device 33b includes a floodlight 36b and a light guide 40.
  • the floodlight 36b is provided below the door shoe 2.
  • the floodlight 36b irradiates the light beam 50a in one direction.
  • the light guide 40 includes a prism 43 with a curved lens surface.
  • the prism 43 with a curved lens surface includes a curved surface 43a and an exit surface 43b.
  • the prism 43 with a curved lens surface is provided so that the curved surface 43a faces the floodlight 36b.
  • the prism 43 with a curved lens surface is provided so that the light source of the floodlight 36b is located at the focal point of the curved surface 43a.
  • the prism 43 with a curved lens surface is provided so that the emission surface 43b is located below the lower light transmission surface 34b.
  • the curved surface 43a includes a convex curved surface.
  • the light beam 50a is incident on the prism 43 with a lens curved surface on the curved surface 43a.
  • the light beam 50a is collimated on the curved surface 43a. After that, the light beam 50a passes through the inside of the prism 43 with a curved lens surface and is emitted from the exit surface 43b.
  • the light receiver 35b is provided below the door shoe 2.
  • the light receiver 35b emits a light beam 50a toward the light guide 40.
  • the light receiver 35b emits a light beam 50a in one horizontal direction. Therefore, the floodlight 36b can be provided in a place not directly under the light receiver 35b.
  • the safety device 100 can reduce the size of the region of the lower end device 33b protruding toward the front edge side.
  • the light guide 40 does not have to include the prism 43 with a curved lens surface.
  • the light guide 40 includes a prism having no curved surface.
  • the light guide 40 includes a reflector.
  • FIG. 17 is a diagram showing an elevator door according to the third embodiment.
  • the same or corresponding parts as those of the first embodiment or the second embodiment are designated by the same reference numerals. The explanation of this part is omitted.
  • the safety device 100 includes a set of optical axis sensors 30c, a first antireflection member 11, and a second light-shielding member 14.
  • a set of optical axis sensors 30c includes an upper end device 31c and a lower end device 33c.
  • a set of optical axis sensors 30c forms an optical beam 50a between the upper end device 31c and the lower end device 33c.
  • a set of optical axis sensors 30c forms an optical axis 50 between the upper end device 31c and the lower end device 33c.
  • a set of optical axis sensors 30c forms an optical axis 50 in the vicinity of the leading edge 2a.
  • a set of optical axis sensors 30c forms an optical axis 50 along the end face of the door shoe.
  • a set of optical axis sensors 30c forms an optical axis 50 at a position in a descending direction and one direction with respect to a leading edge 2a.
  • the upper end device 31c has a rectangular parallelepiped shape.
  • the upper end device 31c includes an upper light passage surface 32c.
  • the upper end device 31c includes a light receiver 35c.
  • the upper end device 31c is provided on the upper surface of the door shoe 2.
  • the upper end device 31c is provided so as to protrude in the downward direction from the door shoe 2.
  • the upper end device 31c is provided so that the upper light passing surface 32c protrudes from the door shoe 2 in the direction of the leading edge 2a.
  • the upper end device 31c is provided so that the upper light passage surface 32c is on the lower surface.
  • the upper end device 31c is electrically connected to a controller 4 (not shown).
  • the upper end device 31c receives the optical axis 50 that has passed through the upper optical passage surface 32c. For example, when the upper end device 31c does not receive the optical axis 50, it transmits a detection signal with an obstacle to a controller 4 (not shown).
  • the lower end device 33c is provided on the side surface of the door shoe 2 in the descending direction.
  • the lower end device 33c is provided below the door shoe 2.
  • the lower end device 33c is provided so that the optical axis 50 passes through the lower optical passage surface 34c.
  • the lower end device 33c transmits the optical axis 50 through the lower optical passage surface 34c.
  • the second light-shielding member 14 has a rectangular parallelepiped shape.
  • the length in the boarding / alighting direction of the second light-shielding member 14 is equal to the length in the boarding / alighting direction of the lower end device 33c.
  • the second light-shielding member 14 is provided on the side surface of the door shoe 2 in the descending direction.
  • the second light-shielding member 14 is provided between the upper light-transmitting surface 32c and the lower light-transmitting surface 34c.
  • the unidirectional side surface of the second light-shielding member 14 is provided on the same plane as the leading edge 2a.
  • the second light-shielding member 14 blocks a part of the optical axis 50 on the other direction side.
  • FIG. 18 is a diagram showing a lower end device for an elevator door according to the third embodiment.
  • the lower end device 33c includes a lower light passage surface 34c, a floodlight 36c, and a light guide 40.
  • the floodlight 36c includes a mounting portion 62, a mold 63, a substrate 64, and a light source 65.
  • the floodlight 36c is provided in the other direction of the door shoe 2.
  • the mounting portion 62 is provided in the other direction of the door shoe 2. One end of the mounting portion 62 is connected to the trailing edge 2b.
  • the cross section of the mold 63 has a shape that is line-symmetrical in the horizontal direction.
  • the mold 63 is provided in the other direction of the door shoe 2.
  • the side surface of the mold 63 in the riding direction is connected to the other end of the mounting portion 62.
  • the substrate 64 includes a circuit for causing the light source 65 to emit light.
  • the substrate 64 is provided inside the mold 63.
  • the light source 65 is connected to the substrate 64.
  • the light source 65 emits light when controlled by the substrate 64.
  • the light guide 40 includes a lens 41 and a reflector 42.
  • the light guide 40 is provided on the side of the door shoe 2 in the descending direction.
  • One end of the light guide 40 is connected to the lower light passage surface 34c.
  • the other end of the light guide 40 is connected to the floodlight 36c.
  • the lens 41 is a convex lens.
  • the lens 41 is provided so that the convex surface faces the floodlight 36c.
  • the optical axis of the lens 41 is provided so as to coincide with the optical axis 50.
  • the lens 41 is provided so that the focal point coincides with the light source of the floodlight 36c.
  • the reflective material 42 includes a prism.
  • the reflective material 42 allows light to pass through the inside.
  • the reflective material 42 changes the traveling direction of the light by reflecting the light on the inner wall.
  • the reflective material 42 is provided on the side surface of the door shoe 2 in the other direction.
  • the other end of the reflector 42 faces the lens 41.
  • the unidirectional end of the reflector 42 is connected to the lower light transmission surface 34c.
  • the reflective material 42 is provided so that the optical axis 50 is emitted directly above.
  • FIG. 19 is a plan view of the elevator door in the third embodiment as viewed from above.
  • the second light-shielding member 14 is in contact with the string 60. Therefore, the optical axis 50 is blocked by the second light-shielding member 14 and the string 60.
  • the receiver 35c (not shown) does not detect the optical axis 50.
  • the light receiver 35c transmits a detection signal with an obstacle to a controller 4 (not shown).
  • the set of optical axis sensors 30c includes an upper end device 31c and a lower end device 33c.
  • the upper end device 31c is provided at the upper end of the door shoe 2.
  • the lower end device 33c is provided on the side surface of the door shoe 2 in the descending direction.
  • a set of optical axis sensors 30c forms an optical beam 50a between the upper end device 31c and the lower end device 33c.
  • a set of optical axis sensors 30c forms an optical beam 50a along the end face of the door shoe 2. Therefore, the safety device 100 can install a set of optical axis sensors 30c without replacing the door shoe 2. As a result, the elevator door safety device 100 can form the light beam 50a by using the existing door shoe 2. Further, the safety device 100 can be provided with a set of optical axis sensors 30c at low cost.
  • the upper end device 31c includes a light receiver 35c.
  • the lower end device 33c includes a floodlight 36c.
  • a set of optical axis sensors 30c forms an optical beam 50a and an optical axis 50 directed from the lower end device 33c to the upper end device 31c. Therefore, the light beam 50a converges as it goes downward. As a result, the safety device 100 can improve the ability to detect obstacles existing below.
  • the lower end device 33c includes a light guide 40.
  • the light guide 40 changes the light beam 50a from the horizontal direction to the vertically upward direction. Therefore, the lower end device 33c can be provided with the floodlight 36c at a place not directly under the receiver 35c.
  • the second light-shielding member 14 is provided on the side surface of the door shoe 2 in the descending direction.
  • the second light-shielding member 14 is provided so as to block a part of the optical axis 50. Therefore, the safety device 100 can improve the detection accuracy of the string 60 in contact with the door shoe 2.
  • the safety device 100 is applied regardless of the form of the car door.
  • the safety device 100 is used in a single door type elevator as in the first embodiment.
  • the safety device 100 is used in a double-door door shoe type elevator.
  • the lens 41 is not limited to a convex lens as long as it has a function of collimating the optical axis 50.
  • the lens 41 is a collimator lens.
  • the light guide 40 does not have to include the lens 41.
  • the light guide 40 does not include the lens 41.
  • the light source having high directivity is a light source using a shot put LED element, a laser light source, or the like.
  • the elevator door safety device according to the present disclosure can be used for the elevator system.

Landscapes

  • Elevator Door Apparatuses (AREA)

Abstract

ドアシュー下部の検知範囲を広くすることができるエレベータードアの安全装置を提供する。エレベータードアの安全装置は、エレベーターの第1かごドアに設けられたドアシューの上端に設けられた上端装置と、前記ドアシューの下端に設けられ、前記ドアシューの端面に沿って前記上端装置との間に光ビームを形成する下端装置と、を備え、前記下端装置は、前記ドアシューの下方に設けられ、受信した前記光ビームの進行方向を鉛直上方へ変化させる導光器、を備えた。

Description

エレベータードアの安全装置
 本開示は、エレベータードアの安全装置に関する。
 特許文献1は、エレベーターのドアシューに設けられた光軸センサを備えたエレベータードアの安全装置を開示する。
日本特開平3-098984号公報
 しかしながら、特許文献1に記載の光軸センサの下端部は、床面から数百ミリ上部に設けられる。このため、ドアシュー下部の検知範囲は、光軸センサの下端部の分だけ狭くなる。
 本開示は、上述の課題を解決するためになされた。本開示の目的は、ドアシュー下部の検知範囲を広くすることができるエレベータードアの安全装置を提供することである。
 本開示に係るエレベータードアの安全装置は、エレベーターの第1かごドアに設けられたドアシューの上端に設けられた上端装置と、前記ドアシューの下端に設けられ、前記ドアシューの端面に沿って前記上端装置との間に光ビームを形成する下端装置と、を備え、前記下端装置は、前記ドアシューの下方に設けられ、受信した前記光ビームの進行方向を鉛直上方へ変化させる導光器、を備えた。
 本開示によれば下端部は、ドアシューの下方に設けられ、受信した光ビームの進行方向を鉛直上方へ変化させる導光器、を備える。このため、エレベータードアの安全装置は、ドアシュー下部の検知範囲を広くすることができる。
実施の形態1におけるエレベータードアを示す図である。 実施の形態1におけるエレベータードアの安全装置の下端装置を示す図である。 実施の形態1におけるエレベータードアの安全装置の下端装置と誘導治具とを示す図である。 実施の形態1におけるエレベータードアの第1遮光部材の有無による差異を示す図である。 実施の形態1におけるエレベータードアの閉動作時の第1反射防止部材を示す図である。 実施の形態1におけるエレベータードアの閉動作時の第2反射防止部材を示す図である。 実施の形態1におけるエレベータードアの1組の光軸センサの変形例である。 実施の形態1におけるエレベータードアの誘導治具の設置位置の変形例である。 実施の形態1におけるエレベータードアの変形例である。 実施の形態2におけるエレベータードアを示す図である。 実施の形態2におけるエレベータードアの下端装置である。 実施の形態2におけるエレベータードアの反射材である。 実施の形態2におけるエレベータードアの安全装置のプリズムの変形例である。 実施の形態2におけるエレベータードアの下端装置の第1変形例である。 実施の形態2におけるエレベータードアの下端装置の第2変形例である。 実施の形態2におけるエレベータードアの下端装置の第3変形例である。 実施の形態3におけるエレベータードアを示す図である。 実施の形態3におけるエレベータードアの下端装置を示す図である。 実施の形態3におけるエレベータードアの鉛直上方向から見た平面図である。
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。
実施の形態1.
 図1は実施の形態1におけるエレベーターのかごドアを示す図である。
 図示されないかごは、図示されない昇降路の内部に設けられる。乗降方向は、かごから乗降する方向で定義される。図1において、乗方向は、紙面手前側から奥側へ向かう方向を表す。降方向は、紙面奥側から手前側へ向かう方向を表す。
 かごドア1aとかごドア1bとは、図示されないかごの出入口に設けられる。かごドア1aとかごドア1bとは、水平方向に移動することで開閉動作を行う。一方向は、水平方向のうち紙面右側方向と定義される。他方向は、水平方向のうち紙面左側方向と定義される。
 例えば、ドアシュー2は、多光軸センサ投光器を備える。例えば、ドアシュー2は、光軸を発信する投光部を長手方向に複数備える。ドアシュー2は、前縁2aと後縁2bとを備える。
 ドアシュー2は、かごドア1aに設けられる。ドアシュー2は、かごドア1aの一方向側に突出するように設けられる。例えば、ドアシュー2は、かごドア1bに対して多光軸センサの光軸を照射するように設けられる。
 前縁2aは、ドアシュー2において、一方向に位置する辺および面を表す領域である。例えば、前縁2aは、多光軸センサの複数の投光部を備える。
 後縁2bは、ドアシュー2において、他方向に位置する辺および面を表す領域である。
 例えば、多光軸センサ受光器3は、かごドア1bに設けられる。例えば、多光軸センサ受光器3は、かごドア1bの他方向側に設けられる。例えば、多光軸センサ受光器3は、多光軸センサの複数の光軸を受信するように設けられる。
 多光軸センサ受光器3は、多光軸センサ投光器の複数の光軸を受信する。例えば、多光軸センサ受光器3は、当該複数の光軸のうちいずれかの光軸を受信しない場合、障害物ありの検知信号を発信する。多光軸センサは、ドアシュー2に設けられた多光軸センサ投光器と多光軸センサ受光器3とを備える。
 例えば、制御器4は、内部に電子回路を用いた制御機構を備える。例えば、制御器4は、図示されないかご上部に設けられる。例えば、制御器4は、図示されないかごドア駆動装置を介して、かごドア1aとかごドア1bとの開閉動作を制御する。
 例えば、制御器4は、多光軸センサ受光器3と電気的に接続される。例えば、制御器4は、かごドア閉動作中に障害物ありの検知信号を受信した場合、かごドア1aとかごドア1bとの開動作を行う。
 1組の光軸センサ30aは、上端装置31aと下端装置33aとを備える。1組の光軸センサ30aは、ドアシュー2に着脱自在に設けられる。例えば、1組の光軸センサ30aは、上端装置31aと下端装置33aとの間に光ビーム50aを形成する。1組の光軸センサ30aは、上端装置31aと下端装置33aとの間に光軸50を形成する。光軸50は、1組の光軸センサ30aが形成する光ビーム50aの横断面の中で最も光束密度の高い領域と定義される。即ち、光ビーム50aは、光軸50を包含する。例えば、1組の光軸センサ30aは、前縁2aの近傍に光軸50を形成する。
 例えば、上端装置31aは、直方体の形状を備える。上端装置31aは、上部光通面32aを備える。例えば、上端装置31aは、受光器35aを備える。
 上端装置31aは、ドアシュー2の上面に設けられる。上端装置31aは、上部光通面32aが下面になるよう設けられる。上端装置31aは、ドアシュー2から前縁2a方向に上部光通面32aが突き出すよう設けられる。例えば、上端装置31aは、制御器4と電気的に接続される。
 例えば、上端装置31aは、上部光通面32aを通過した光軸50を受信する。例えば、上端装置31aは、光軸50を受信しない場合、障害物ありの検知信号を制御器4へ発信する。
 下端装置33aは、下部光通面34aを備える。例えば、下端装置33aは、投光器36aを備える。
 下端装置33aは、ドアシュー2の下面に設けられる。下端装置33aは、下部光通面34aが上方を向くよう設けられる。下端装置33aは、ドアシュー2から前縁2a方向に下部光通面34aが突き出すよう設けられる。下端装置33aは、下部光通面34aが一方向へ向かって鉛直下方向に傾斜するよう設けられる。
 例えば、下端装置33aは、下部光通面34aを通過させて光軸50を発信する。
 第1遮光部材10は、前縁2aに設けられる。例えば、第1遮光部材10は、光軸50のうち前縁2aに近い領域の一部を遮る。
 第1反射防止部材11は、かごドア1bに設けられる。第1反射防止部材11は、かごドア1bの乗方向の側面に設けられる。例えば、第1反射防止部材11は、かごドア1bの鉛直方向中央に設けられる。
 第1反射防止部材11は、迷光部がかごドア1bの乗方向の側面に反射することを抑制する。迷光部は、光ビーム50aのうち光軸50から離れた領域を表す。
 例えば、第2反射防止部材12は、多光軸センサ受光器3に設けられる。例えば、第2反射防止部材12は、多光軸センサ受光器3において他方向の側面に設けられる。例えば、第2反射防止部材12は、多光軸センサ受光器3の鉛直方向中央に設けられる。
 第2反射防止部材12は、迷光部が多光軸センサ受光器3に反射することを抑制する。
 例えば、誘導治具13は、傾斜面を備える。誘導治具13は、かごドア1bの下端に設けられる。誘導治具13は、かごドア1bの他方向側に設けられる。誘導治具13は、当該傾斜面が他方向へ向かって鉛直下方向に傾斜するよう設けられる。例えば、誘導治具13は、下面が図示されないかご床になるべく近づくように設けられる。
 例えば、エレベータードアの安全装置100は、かごドア1aとかごドア1bとドアシュー2と多光軸センサと制御器4と第1遮光部材10と第1反射防止部材11と第2反射防止部材12と誘導治具13と1組の光軸センサ30aとを備える。例えば、安全装置100は、以下のような動作を行うことで、人と物とがかごドアへの挟まれることを抑制する。
 かごドア1a、1bが閉動作を開始してから完了するまでの間に、図示されない利用者がかごの出入口を横切った場合、多光軸センサのいずれかの光軸は、当該利用者によって遮られる。この場合、多光軸センサ受光器3のいずれかの受光部は、光軸を検知しない。
 多光軸センサ受光器3のいずれかの受光部が光軸を検知しない場合、多光軸センサ受光器3は、障害物ありの検知信号を制御器4へ送信する。
 制御器4は、障害物ありの検知信号を受信する。その後、制御器4は、かごドア1aとかごドア1bとの開動作を行う。このため、安全装置100は、当該利用者がかごドア1aとかごドア1bとに挟まれることを抑制する。
 例えば、かごドア1a、1bが閉動作を開始してから完了するまでの間に、紐がドアシュー2の前縁2aと接触した場合、光軸50は、当該紐によって遮られる。この場合、上端装置31aは、光軸50を検知しない。
 上端装置31aが光軸50を検知しない場合、上端装置31aは、障害物ありの検知信号を制御器4へ送信する。
 制御器4は、障害物ありの検知信号を受信する。その後、制御器4は、かごドア1aとかごドア1bとの開動作を行う。このため、例えば、安全装置100は、紐がかごドア1aとかごドア1bとに挟まれることを抑制する。
 次に、図2を用いて、下端装置33aの下部光通面34aに関して説明する。
 図2は実施の形態1におけるエレベータードアの安全装置の下端装置を示す図である。
 図2に示されるように、下端装置33aは、下部光通面34aが水平方向に対して傾斜するように設けられる。
 光軸50は、下部光通面34aを通過して形成される。
 例えば、下部光通面34aは、ゴミ61の堆積を抑制する程度の傾斜をもって設けられる。例えば、ゴミ61は、埃、土、糸くず等であることが想定される。
 次に、図3を用いて、かごドア1a、1bが閉動作をする際の、誘導治具13の傾斜面と下部光通面34aとの作用に関して説明する。
 図3は実施の形態1におけるエレベータードアの安全装置の下端装置と誘導治具とを示す図である。
 図3に示されるように、誘導治具13は、傾斜面が水平方向に対して傾斜するようにかごドア1bに設けられる。
 例えば、かごドア1aとかごドア1bとが閉動作を行う際に紐60が図示されないかご床に近い位置に存在する場合、誘導治具13の傾斜面は、閉動作に伴って紐60を上方向へ押し上げる。例えば、下部光通面34aは、閉動作に伴って紐60を上方向へ押し上げる。
 その後、紐60は、光軸50を遮る位置まで移動される。このため、安全装置100は、かご床に近い位置に存在する紐60を検知する。
 次に、図4を用いて、第1遮光部材10の作用に関して説明する。
 図4は実施の形態1におけるエレベータードアの第1遮光部材の有無による差異を示す図である。
 図4のAは、実施の形態1の安全装置100を示す図である。図4に示されるように、例えば、紐60がドアシュー2に接触した際、紐60は、前縁2aの両端を支点としてたわむことで、一方向へ山型の形状に変形する可能性がある。例えば、第1遮光部材10は、たわんだ紐60と前縁2aとの隙間と同じ広さだけ前縁2aから突出するように設けられる。例えば、第1遮光部材10は、たわんだ紐60と第1遮光部材10によって、光軸50を遮ることができるように設けられる。
 図4のBは、比較例として、第1遮光部材10を備えない安全装置100を示す図である。比較例において、たわんだ紐60は、光軸50を一部分のみ遮る。光軸50の遮られていない領域は、上端装置31aに検知される。このため、上端装置31aは、障害物ありの検知信号を送信しない。
 次に、図5を用いて、第1反射防止部材11に関して説明する。
 図5は実施の形態1におけるエレベータードアの閉動作時の第1反射防止部材を示す図である。
 図5のAは、実施の形態1の安全装置100を示す図である。図5のAに示されるように、例えば、第1反射防止部材11は、かごドア1bの鉛直方向中央に設けられる。例えば、第1反射防止部材11は、多光軸センサ受光器3の動作に支障が無いように設けられる。第1反射防止部材11は、第1迷光部51がかごドア1bに反射することを抑制する。第1迷光部51は、光ビーム50aのうち降方向端部の領域である。
 図5のBは、比較例として、第1反射防止部材11を備えない安全装置100を示す図である。比較例において、例えば、第1迷光部51は、かごドア1bに反射する。上端装置31aは、反射した第1迷光部51を検知する。このため、障害物の有無にかかわらず、上端装置31aは、障害物ありの検知信号を送信しない。
 次に、図6を用いて、第2反射防止部材12に関して説明する。
 図6は実施の形態1におけるエレベータードアの閉動作時の第2反射防止部材を示す図である。
 図6において、例えば、第2反射防止部材12は、多光軸センサ受光器3の鉛直方向中央に設けられる。例えば、閉動作によってドアシュー2と多光軸センサ受光器3との距離が近くなった場合、第2反射防止部材12は、光ビーム50aのうち水平方向端部である第2迷光部52が多光軸センサ受光器3に反射することを抑制する。
 以上で説明した実施の形態1によれば、エレベータードアは、第1かごドアとして、かごドア1aを備える。エレベータードアは、第2かごドアとして、かごドア1bを備える。1組の光軸センサ30aは、上端装置31aと下端装置33aとを備える。上端装置31aは、ドアシュー2の上端に設けられる。下端装置33aは、ドアシュー2の下端に設けられる。下端装置33aは、上端装置31aとの間に光ビーム50aを形成する。1組の光軸センサ30aが障害物ありの検知信号を送信した場合、安全装置100は、かごドア1aとかごドア1bとを開方向に移動させる。下端装置33aは、光ビーム50aが通過する下部光通面34aを備える。下部光通面34aは、ドアシュー2から離れるにつれて鉛直下方向へ傾斜するように設けられる。このため、下部光通面34aは、閉動作に伴って紐60を上方向へ押し上げることができる。その結果、安全装置100は、床面付近の紐状の障害物を検知できる。また、下部光通面34aは、上面にゴミ61が堆積することを抑制することが出来る。
 また、上端装置31aは、受光器35aを備える。下端装置33aは、投光器36aを備える。1組の光軸センサ30aは、下端装置33aから上端装置31aへ向かう光ビーム50aと光軸50とを形成する。このため、光ビーム50aは、下方へ向かうにつれて収束する。その結果、安全装置100は、下方に存在する障害物の検知能力を向上することができる。
 また、1組の光軸センサ30aは、受光器35aを下方に備えてもよい。1組の光軸センサ30aは、投光器36aを上方に備えてもよい。即ち、上端装置31aは、投光器36aを備える。下端装置33aは、受光器35aを備える。この場合、下端装置33aは、障害物ありの検知信号を制御器4へ発信する。その結果、安全装置100は、上方に存在する障害物の検知能力を向上することができる。
 また、上端装置31aと下端装置33aとは、ドアシュー2に着脱自在に設けられる。その結果、安全装置100は、1組の光軸センサ30aが保守整備される際の作業性を向上することができる。
 また、ドアシュー2は、多光軸センサ投光器を備える。多光軸センサ受光器3は、かごドア1bに、多光軸センサ投光器と対向するように設けられる。即ち、安全装置100は、多光軸センサを備える。このため、安全装置100は、障害物に接触することなく、障害物ありの検知を行うことができる。
 また、第1遮光部材10は、ドアシュー2に設けられる。第1遮光部材10は、光ビーム50aのうち前縁2aに近い領域の一部を遮る。このため、第1遮光部材10は、紐60がたわんだ場合に通過する光軸50の一部を遮ることができる。その結果、安全装置100は、障害物の検知精度を向上することができる。
 また、第1反射防止部材11は、かごドア1bの乗方向の側面に設けられる。即ち、第1反射防止部材11は、かごドア1bのかご内部方向の側面に設けられる。このため、第1反射防止部材11は、降方向の第1迷光部51がかごドア1bに反射することを抑制することができる。その結果、安全装置100は、障害物の検知精度を向上することができる。
 また、第2反射防止部材12は、多光軸センサ受光器3の他方向の側面に、ドアシュー2に対向するように設けられる。このため、第2反射防止部材12は、水平方向の第2迷光部52が多光軸センサ受光器3に反射することを抑制することができる。その結果、安全装置100は、障害物の検知精度を向上することができる。
 また、誘導治具13は、かごドア1bの下端に設けられる。誘導治具13は、傾斜面が他方向へ向かって鉛直下方向に傾斜するよう設けられる。このため、誘導治具13は、閉動作に伴って紐60を上方向へ押し上げることができる。その結果、安全装置100は、下方に存在する紐60の検知能力を向上することが出来る。
 次に、図7を用いて、1組の光軸センサ30aにおける受光器35aと投光器36aの変形例を説明する。
 図7は実施の形態1におけるエレベータードアの光軸センサ30aの変形例である。
 図7に示されるように、実施の形態1の光軸センサ30aの変形例において、上端装置31aは、受光器35aと投光器36aとを備える。下端装置33aは、反射体37aを備える。例えば、下部光通面34aは、反射体37aを備える。
 例えば、反射体37aは、光再帰性を有する表面を備える。反射体37aは、当該表面において、光が入射する方向に当該光を反射する。
 上端装置31aの投光器36aは、光軸50を出射する。その後、光軸50は、下端装置33aにおいて反射される。反射光軸53は、上端装置の受光器35aに受信される。反射光軸53は、光軸50が下端装置33aで反射された後の光軸である。
 以上で説明した実施の形態1の光軸センサ30aの変形例によれば、上端装置31aは、受光器35aと投光器36aとを備える。下端装置33aは、反射体37aを備える。上端装置31aから出射された光軸50は、下端装置33aで反射する。反射光軸53は、上端装置31aの受光器35aに受信される。このため、下端装置33aは、実施の形態1の下端装置33aと比べ、小型化することができる。また、1組の光軸センサ30aは、光ビーム50aと反射光軸53とを用いて、障害物を検知することができる。このため、安全装置100は、障害物の検知精度を向上することができる。
 なお、ドアシュー2は、機械式でもよい。例えば、かごドア1aは、ドアシュー2がかごドア1aに対して閉方向に相対移動することで、開動作を行う。
 次に、図8を用いて、誘導治具13の設置位置の変形例を説明する。
 図8は実施の形態1におけるエレベータードアの誘導治具の設置位置の変形例である。
 図8に示されるように、誘導治具13は、かごドア1bの下端に設けられる。誘導治具13は、かご敷居の溝の領域に、下部が存在するように設けられる。誘導治具13は、かごドア1bが移動した場合、かご敷居の溝の領域を移動する。
 図示されないかごドア1aの下部は、図示されない切欠を備える。当該切欠は、かごドア1aとかごドア1bとが全閉である場合、誘導治具13を内部に格納する。
 以上で説明した実施の形態1における誘導治具の設置位置の変形例において、誘導治具13の下部は、かご敷居の溝の領域に存在する。かごドア1bが移動した場合、誘導治具13は、かご敷居の溝の領域を移動する。このため、誘導治具13は、床面に接する障害物を上方向に押し上げることが出来る。その結果、安全装置100は、障害物の検知能力を向上することができる。
 なお、誘導治具13は、かごドア1bに設けられるものに加えて、かごドア1aに設けられてもよい。
 例えば、安全装置100は、2つの誘導治具13を備える。2つの誘導治具13のうち一方は、かごドア1bに設けられる。図9には図示されない2つの誘導治具13のうち他方は、かごドア1aの下端の一方向側に設けられる。2つの誘導治具13のうち他方は、傾斜面が一方向へ向かって鉛直方向に傾斜するよう設けられる。2つの誘導治具13のうち他方は、かごドア1aとかごドア1bとが全閉状態の場合、2つの誘導治具13のうち一方と物理的に干渉しない位置に設けられる。
 このため、2つの誘導治具13は、下方に存在する障害物を上方向に押し上げることができる。その結果、安全装置100は、下方に存在する障害物の検知能力を向上することができる。
 次に、図9を用いて、片開きドア方式における安全装置100の設置例を説明する。
 図9は実施の形態1におけるエレベータードアの変形例である。
 図9に示されるように、エレベータードアは、片開き方式である。例えば、エレベータードアは、2S方式である。エレベータードアは、かごドア1cと戸当たり5とを備える。
 かごドア1cは、図示されないかごの出入口に設けられる。かごドア1cは、水平方向に移動することで開閉動作を行う。かごドア1cは、ドアシュー2を備える。かごドア1cの一側端は、全閉状態において、エレベータードアの収容空間に格納される。
 例えば、戸当たり5は、棒状部材である。例えば、戸当たり5は、戸当たり柱によって、かごに接続される。戸当たり5は、収容空間に設けられる。戸当たり5は、かごドア1cに対向するよう設けられる。例えば、戸当たり5は、かごドア1cが全閉状態の場合、ドアシュー2に接する。
 例えば、ドアシュー2は、多光軸センサ投光器を備える。例えば、ドアシュー2は、光軸を発信する投光部を長手方向に複数備える。
 ドアシュー2は、かごドア1cの一方向側に突出するように設けられる。例えば、ドアシュー2は、戸当たり5に対して多光軸センサの光軸を照射するように設けられる。
 例えば、多光軸センサ受光器3は、戸当たり5に設けられる。例えば、多光軸センサ受光器3は、戸当たり5の他方向側に設けられる。例えば、多光軸センサ受光器3は、多光軸センサの複数の光軸を受信するように設けられる。
 1組の光軸センサ30aは、上端装置31aと下端装置33aとを備える。1組の光軸センサ30aは、ドアシュー2に着脱自在に設けられる。
 第1反射防止部材11は、かご側面の収容空間乗方向に設けられる。第1反射防止部材11は、戸当たり5よりも他方向側に設けられる。例えば、第1反射防止部材11は、かごドア1cの鉛直方向中央と同じ高さに設けられる。
 例えば、第2反射防止部材12は、多光軸センサ受光器3に設けられる。例えば、第2反射防止部材12は、多光軸センサ受光器3において他方向の側面に設けられる。例えば、第2反射防止部材12は、多光軸センサ受光器3の鉛直方向中央に設けられる。
 誘導治具13は、傾斜面が水平方向に対して傾斜するように、戸当たり5の下端に設けられる。例えば、誘導治具13は、戸当たり5の他方向側に設けられる。誘導治具13は、当該傾斜面が他方向へ向かって鉛直下方向に傾斜するよう設けられる。例えば、誘導治具13は、下部が図示されないかご敷居の領域に存在するように設けられる。例えば、誘導治具13は、傾斜面がかごの出入口の一部に存在するように設けられる。例えば、誘導治具13は、かごドア1cが全閉状態の場合、かごドア1cの下部に設けられた切欠に格納される。
 以上で説明した実施の形態1のエレベータードアの変形例において、エレベータードアは、戸当たり5を備える。第1反射防止部材11は、かご側面の収容空間乗方向に設けられる。このため、第1反射防止部材11は、図9には図示されない第1迷光部51がかご側面に反射することを抑制することができる。その結果、安全装置100は、障害物の検知精度を向上することができる。
 また、第2反射防止部材12は、多光軸センサ受光器3の他方向の側面に、ドアシュー2に対向するように設けられる。このため、第2反射防止部材12は、水平方向の第2迷光部52が多光軸センサ受光器3に反射することを抑制することができる。その結果、安全装置100は、障害物の検知精度を向上することができる。
 また、誘導治具13は、戸当たり5の下端に設けられる。誘導治具13は、傾斜面が他方向へ向かって鉛直下方向に傾斜するよう設けられる。このため、誘導治具13は、閉動作に伴って、障害物として、図9には図示されない紐60を上方向へ押し上げることができる。その結果、安全装置100は、下方に存在する紐60の検知能力を向上することが出来る。
 なお、ドアシュー2は、機械式でもよい。例えば、かごドア1cは、ドアシュー2がかごドア1cに対して閉方向に相対移動することで、開動作を行う。ドアシュー2が機械式である場合、第2反射防止部材12は、戸当たり5に設けられる。
 なお、誘導治具13は、戸当たり5に設けられるものに加えて、かごドア1cに設けられてもよい。
 例えば、安全装置100は、2つの誘導治具13を備える。2つの誘導治具13のうち一方は、戸当たり5に設けられる。図9には図示されない2つの誘導治具13のうち他方は、かごドア1cの下端の一方向側に設けられる。2つの誘導治具13のうち他方は、傾斜面が一方向へ向かって鉛直方向に傾斜するよう設けられる。2つの誘導治具13のうち他方は、かごドア1cが全閉状態の場合、2つの誘導治具13のうち一方と物理的に干渉しない位置に設けられる。
 このため、2つの誘導治具13は、下方に存在する障害物を上方向に押し上げることができる。その結果、安全装置100は、下方に存在する障害物の検知能力を向上することができる。
実施の形態2.
 図10は実施の形態2におけるエレベータードアを示す図である。なお、実施の形態1の部分と同一または相当部分には同一符号が付される。当該部分の説明は省略される。
 図10に示されるように、安全装置100は、1組の光軸センサ30bを備える。1組の光軸センサ30bは、上端装置31bと下端装置33bとを備える。1組の光軸センサ30bは、上端装置31bと下端装置33bとの間に光ビーム50aを形成する。1組の光軸センサ30bは、上端装置31bと下端装置33bとの間に光軸50を形成する。
 例えば、上端装置31bは、実施の形態1の上端装置31aと同様の構成を備える。
 下端装置33bは、下部光通面34bと投光器36bと導光器40とを備える。
 例えば、下端装置33bは、ドアシュー2の下面に設けられる。例えば、下端装置33bは、ドアシュー2の下面と後縁2bとに接続される。下端装置33bは、下部光通面34bが上方を向くように設けられる。例えば、下端装置33bは、下部光通面34bが水平面から45度以上の角度を持つように設けられる。
 例えば、投光器36bは、後縁2bに接続される。
 例えば、導光器40は、ドアシュー2の下方に位置する。例えば、導光器40は、下部光通面34bに接続される。導光器40は、受信した光ビーム50aの進行方向を鉛直上方へ変化させる。
 次に、図11を用いて、下端装置33bにおける投光器36bと導光器40とを説明する。
 図11は実施の形態2におけるエレベータードアの下端装置である。
 図11に示されるように、投光器36bは、後縁2bに接続される。例えば、投光器36bは、鉛直下方向に光ビーム50aを照射する。
 例えば、導光器40は、レンズ41と反射材42とを備える。導光器40は、ドアシュー2の下方に設けられる。
 例えば、レンズ41は、凸レンズである。レンズ41は、凸型面が投光器36bと対向するように設けられる。例えば、レンズ41の光軸は、光軸50と一致するように設けられる。例えば、レンズ41は、焦点が投光器36bの光源と一致するように設けられる。
 例えば、反射材42は、プリズムを備える。反射材42は、内部に光を通過させる。反射材42は、内壁で光を反射させることで、光の進行方向を変える。
 例えば、反射材42は、下端装置33bの内部に設けられる。例えば、反射材42の他方向の端部は、レンズ41の下方に設けられる。例えば、反射材42の一方向の端部は、下部光通面34bに接続される。反射材42は、光軸50が直上へ出射されるよう設けられる。
 投光器36bから出射された光ビーム50aは、レンズ41と反射材42と下部光通面34bとを通過する。その後、光ビーム50aは、下端装置33aから出射される。
 投光器36aは、鉛直下方向へ光ビーム50aを出射する。投光器36aは、光ビーム50aを放射状に出射する。
 光ビーム50aは、レンズ41に入射する。例えば、光ビーム50aは、レンズ41にコリメートされる。「コリメートされる」とは、複数の光線の角度を平行に揃えられること、と定義される。従って、光ビーム50aは、レンズ41から下方向に平行に出射される。その後、光ビーム50aは、反射材42に入射する。
 光ビーム50aは、反射材42の内部において、進行方向を変えられる。光ビーム50aは、反射材42の内部を前縁2aの方向へ進行する。その後、光ビーム50aは、鉛直上方向へ進行する。光ビーム50aは、反射材42から鉛直上方向へ出射される。
 光ビーム50aは、下部光通面34bを通過して、下端装置33bから鉛直上方向へ出射される。
 次に、図12を用いて、1組の光軸センサ30bにおける導光器40の備えるプリズムの形状を説明する。
 図12は実施の形態2におけるエレベータードアの導光器である。
 図12に示されるように、例えば、反射材42は、プリズム42aを備える。
 プリズム42aは、台形の形状を備える。プリズム42aは、等しい2つの底角を備える。例えば、プリズム42aの下底は、底角θbを備える。
 プリズム42aは、上底と下底とが水平方向に平行になるように設けられる。プリズム42aは、他方向側の脚に光軸50が入射するよう設けられる。プリズム42aは、一方向側の脚から光軸50が出射されるよう設けられる。
 光軸50は、入射角θ1でプリズム42aに入射する。光軸50は、出射角θ2でプリズム42aから出射する。図10に示されるように下底の2つの底角がθbで等しい場合、出射角θ2は、プリズム42aの屈折率に依らず入射角θ1に依存する。例えば、出射角θ2は、プリズム42aの屈折率に依らず入射角θ1に等しい。
 以上で説明した実施の形態2によれば、エレベータードアは、第1かごドアとして、かごドア1aを備える。エレベータードアは、第2かごドアとして、かごドア1bを備える。1組の光軸センサ30bは、上端装置31bと下端装置33bとを備える。上端装置31bは、ドアシュー2の上端に設けられる。下端装置33bは、ドアシュー2の下端に設けられる。下端装置33bは、上端装置31bとの間に光ビーム50aを形成する。1組の光軸センサ30bが障害物ありの検知信号を送信した場合、安全装置100は、かごドア1aとかごドア1bとを開方向に移動させる。下端装置33bは、導光器40を備える。導光器40は、ドアシュー2の下方に設けられる。導光器40は、受信した光ビーム50aの進行方向を鉛直上方向へ変化させる。このため、投光器36bは、ドアシュー2の前縁2a付近以外の部分に設けられることができる。即ち、下端装置33bの突き出した部位は、小型化されることができる。ドアシュー2は、より下方に設けられることができる。その結果、安全装置100は、ドアシュー下部の検知範囲を広くすることができる。
 また、上端装置31bは、受光器35bを備える。下端装置33bは、投光器36bを備える。1組の光軸センサ30bは、下端装置33bから上端装置31bへ向かう光ビーム50aと光軸50とを形成する。このため、光ビーム50aは、下方へ向かうにつれて収束する。その結果、安全装置100は、下方に存在する障害物の検知能力を向上することができる。
 また、導光器40は、ドアシュー2から後縁2bの方向へ突き出すように設けられる。投光器36bは、後縁2bに設けられる。投光器36bは、鉛直下方向に光ビーム50aを発信するよう設けられる。このため、下端装置33bにおいて、ドアシュー2の下方に位置する領域を小さくすることができる。その結果、安全装置100は、ドアシュー2の検知範囲を広くすることができる。
 また、下端装置33bは、下部光通面34bが水平面から45度以上の角度を持つように設けられる。このため、光ビーム50aの進行方向が鉛直方向に変化される場合、光ビーム50aは、水平方向に集光される。光ビーム50aの水平方向の幅は、狭くなる。その結果、安全装置100は、障害物の検知能力を向上することができる。
 また、導光器40は、プリズム42aを備える。プリズム42aは、内壁で光ビーム50aを反射させることで、光ビーム50aの進行方向を変化させることが出来る。このため、投光器36bは、受光器35bの直下でない場所に設けられることができる。その結果、安全装置100は、下端装置33bのうち前縁側へ突き出た領域のサイズを小さくすることができる。
 また、プリズム42aは、下底の2つの底角が等しい台形の形状の断面を備える。光軸50は、当該台形の一側の脚と他側の脚とを通過する。このため、光軸50において、プリズム42aの偏角は、プリズム42aの屈折率に依存しない。プリズム42aの偏角は、プリズム42aへの入射角によって定まる。その結果、安全装置100は、温度変化による屈折率の変化に関わらず、光軸50の位置を一定に保つことができる。
 また、導光器40は、レンズ41を備える。レンズ41は、凸レンズの形状を備える。レンズ41は、投光器36bに対向する。レンズ41は、焦点が投光器36bの光源に一致するように設けられる。このため、光ビーム50aは、レンズ41にコリメートされる。その結果、安全装置100は、光ビーム50aの迷光を抑制することができる。
 また、下端装置33bは、下部光通面34bを備える。下部光通面34bは、光ビーム50aを通過させる。下部光通面34bは、ドアシュー2から離れるにつれて鉛直下方向へ傾斜するように設けられる。このため、下部光通面34bは、閉動作に伴って紐60を上方向へ押し上げることができる。また、下部光通面34bは、上面にゴミ61が堆積することを抑制することが出来る。
 次に、図13を用いて、プリズム42aの形状の変形例を説明する。
 図13は実施の形態2におけるエレベータードアの安全装置のプリズムの変形例である。
 図13に示されるように、例えば、プリズム42aは、六角形の形状を備える。プリズム42aは、角度θの向かい合う2つの角を備える。プリズム42aは、最も下方の辺において、角度θの隣り合う2つの角を備える。
 光軸50は、入射角θ1でプリズム42aに入射する。光軸50は、角度θの角と角度θの角と間の2つの辺において、プリズム42aの内部に反射する。光軸50は、出射角θ2でプリズム42aから出射する。
 以上で説明した実施の形態2におけるプリズムの変形例において、出射角θ2は、プリズム42aの屈折率に依らず入射角θ1に依存する。例えば、出射角θ2は、プリズム42aの屈折率に依らず入射角θ1に等しい。その結果、安全装置100は、温度変化による屈折率の変化に関わらず、光軸50の位置を一定に保つことができる。
 次に、図14を用いて、1組の光軸センサ30bにおける下端装置33bの第1変形例を説明する。
 図11は実施の形態2におけるエレベータードアの下端装置の第1変形例である。
 図14に示されるように、第1変形例において、下端装置33bは、投光器36bと導光器40とを備える。
 投光器36bは、後縁2bに接続される。例えば、投光器36bは、鉛直下方向に光ビーム50aを照射する。
 導光器40は、レンズ曲面付プリズム43を備える。
 レンズ曲面付プリズム43は、曲面43aと出射面43bとを備える。例えば、レンズ曲面付プリズム43は、曲面43aが投光器36bに対向するように設けられる。例えば、レンズ曲面付プリズム43は、曲面43aの焦点に投光器36bの光源が位置するように設けられる。例えば、レンズ曲面付プリズム43は、出射面43bが下部光通面34bの下方に位置するように設けられる。
 曲面43aは、凸型曲面を備える。
 光ビーム50aは、曲面43aにおいてレンズ曲面付プリズム43に入射する。例えば、光ビーム50aは、曲面43aにおいてコリメートされる。その後、光ビーム50aは、レンズ曲面付プリズム43の内部を経て、出射面43bから出射する。
 以上で説明した実施の形態2の第1変形例によれば、導光器40は、レンズ曲面付プリズム43を備える。レンズ曲面付プリズム43は、凸型曲面を備える。レンズ曲面付プリズム43は、凸型曲面が投光器36bと対向するように設けられる。レンズ曲面付プリズム43は、光軸50を内部で反射させることで、光軸50の進行方向を変化させる。このため、導光器40は、光ビーム50aをコリメートすることができる。その結果、安全装置100は、光ビーム50aの迷光を抑制することができる。
 次に、図15を用いて、1組の光軸センサ30bにおける下端装置33bの第2変形例を説明する。
 図15は実施の形態2におけるエレベータードアの下端装置の第2変形例である。
 図15に示されるように、第2変形例において、下端装置33bは、投光器36bと導光器40とを備える。
 投光器36bは、後縁2bに接続される。投光器36bは、水平一方向に光ビーム50aを照射する。
 例えば、導光器40は、レンズ曲面付プリズム43を備える。
 例えば、レンズ曲面付プリズム43は、曲面43aと出射面43bとを備える。例えば、レンズ曲面付プリズム43は、曲面43aが投光器36bに対向するように設けられる。例えば、レンズ曲面付プリズム43は、曲面43aの焦点に投光器36bの光源が位置するように設けられる。例えば、レンズ曲面付プリズム43は、出射面43bが下部光通面34bの下方に位置するように設けられる。
 例えば、曲面43aは、凸型曲面を備える。
 光ビーム50aは、曲面43aにおいてレンズ曲面付プリズム43に入射する。例えば、光ビーム50aは、曲面43aにおいてコリメートされる。その後、光ビーム50aは、レンズ曲面付プリズム43の内部を経て、出射面43bから出射する。
 なお、導光器40は、レンズ曲面付プリズム43を備えなくてもよい。例えば、導光器40は、曲面を持たないプリズムを備える。
 以上で説明した実施の形態2の第2変形例によれば、投光器36bは、後縁2bに接続される。投光器36bは、導光器40へ向けて水平方向に進行する光ビーム50aを発信する。このため、下端装置33bは、ドアシュー2の下方に投光器36bを備えなくてよい。下端装置33bのドアシュー2の下方の部分は、小型化されることができる。その結果、ドアシュー2は、より低い位置に設けられることができる。
 次に、図16を用いて、1組の光軸センサ30bにおける下端装置33bの第3変形例を説明する。
 図16は実施の形態2におけるエレベータードアの下端装置の第3変形例である。
 図16に示されるように、第3変形例において、下端装置33bは、投光器36bと導光器40とを備える。
 投光器36bは、ドアシュー2の下方に設けられる。例えば、投光器36bは、一方向に光ビーム50aを照射する。
 例えば、導光器40は、レンズ曲面付プリズム43を備える。
 レンズ曲面付プリズム43は、曲面43aと出射面43bとを備える。例えば、レンズ曲面付プリズム43は、曲面43aが投光器36bに対向するように設けられる。例えば、レンズ曲面付プリズム43は、曲面43aの焦点に投光器36bの光源が位置するように設けられる。例えば、レンズ曲面付プリズム43は、出射面43bが下部光通面34bの下方に位置するように設けられる。
 例えば、曲面43aは、凸型曲面を備える。
 光ビーム50aは、曲面43aにおいてレンズ曲面付プリズム43に入射する。例えば、光ビーム50aは、曲面43aにおいてコリメートされる。その後、光ビーム50aは、レンズ曲面付プリズム43の内部を経て、出射面43bから出射する。
 以上で説明した実施の形態2の第3変形例によれば、受光器35bは、ドアシュー2の下方に設けられる。受光器35bは、導光器40へ向けて光ビーム50aを発信する。受光器35bは、水平一方向へ光ビーム50aを発信する。このため、投光器36bは、受光器35bの直下でない場所に設けられることができる。その結果、安全装置100は、下端装置33bのうち前縁側へ突き出た領域のサイズを小さくすることができる。
 なお、導光器40は、レンズ曲面付プリズム43を備えなくてもよい。例えば、導光器40は、曲面を持たないプリズムを備える。例えば、導光器40は、反射鏡を備える。
実施の形態3.
 図17は実施の形態3におけるエレベータードアを示す図である。なお、実施の形態1または実施の形態2の部分と同一または相当部分には同一符号が付される。当該部分の説明は省略される。
 図17に示されるように、安全装置100は、1組の光軸センサ30cと第1反射防止部材11と第2遮光部材14とを備える。1組の光軸センサ30cは、上端装置31cと下端装置33cとを備える。
 1組の光軸センサ30cは、上端装置31cと下端装置33cとの間に光ビーム50aを形成する。1組の光軸センサ30cは、上端装置31cと下端装置33cとの間に光軸50を形成する。例えば、1組の光軸センサ30cは、前縁2aの近傍に光軸50を形成する。例えば、1組の光軸センサ30cは、ドアシューの端面に沿って光軸50を形成する。例えば、1組の光軸センサ30cは、前縁2aに対して降方向かつ一方向の位置に光軸50を形成する。
 例えば、上端装置31cは、直方体の形状を備える。上端装置31cは、上部光通面32cを備える。例えば、上端装置31cは、受光器35cを備える。
 上端装置31cは、ドアシュー2の上面に設けられる。上端装置31cは、ドアシュー2から降方向へ突き出すように設けられる。上端装置31cは、ドアシュー2から前縁2a方向に上部光通面32cが突き出すよう設けられる。上端装置31cは、上部光通面32cが下面になるよう設けられる。例えば、上端装置31cは、図示されない制御器4と電気的に接続される。
 例えば、上端装置31cは、上部光通面32cを通過した光軸50を受信する。例えば、上端装置31cは、光軸50を受信しない場合、障害物ありの検知信号を図示されない制御器4へ発信する。
 下端装置33cは、ドアシュー2の降方向の側面に設けられる。下端装置33cは、ドアシュー2の下方に設けられる。下端装置33cは、光軸50が下部光通面34cを通過するように設けられる。
 例えば、下端装置33cは、下部光通面34cを通過させて光軸50を発信する。
 例えば、第2遮光部材14は、直方体の形状を備える。例えば、第2遮光部材14の乗降方向長さは、下端装置33cの乗降方向長さに等しい。
 第2遮光部材14は、ドアシュー2の降方向の側面に設けられる。第2遮光部材14は、上部光通面32cと下部光通面34cとの間に設けられる。例えば、第2遮光部材14の一方向の側面は、前縁2aと同一平面上に設けられる。例えば、第2遮光部材14は、光軸50のうち他方向側の一部の領域を遮る。
 次に、図18を用いて、下端装置33cの構造を説明する。
 図18は実施の形態3におけるエレベータードアの下端装置を示す図である。
 図18に示されるように、下端装置33cは、下部光通面34cと投光器36cと導光器40とを備える。
 投光器36cは、取付部62と金型63と基板64と光源65とを備える。例えば、投光器36cは、ドアシュー2の他方向に設けられる。
 取付部62は、ドアシュー2の他方向に設けられる。取付部62の一端は、後縁2bと接続される。
 例えば、金型63の断面は、水平方向に線対称の形状を備える。
 金型63は、ドアシュー2の他方向に設けられる。金型63の乗方向の側面は、取付部62の他端に接続される。
 例えば、基板64は、光源65を発光させるための回路を備える。基板64は、金型63の内部に設けられる。
 光源65は、基板64に接続される。光源65は、基板64に制御されることで発光する。
 例えば、導光器40は、レンズ41と反射材42とを備える。導光器40は、ドアシュー2の降方向の側方に設けられる。導光器40は、一端が下部光通面34cに接続される。導光器40は、他端が投光器36cに接続される。
 例えば、レンズ41は、凸レンズである。レンズ41は、凸型面が投光器36cと対向するように設けられる。例えば、レンズ41の光軸は、光軸50と一致するように設けられる。例えば、レンズ41は、焦点が投光器36cの光源と一致するように設けられる。
 例えば、反射材42は、プリズムを備える。反射材42は、内部に光を通過させる。反射材42は、内壁で光を反射させることで、光の進行方向を変える。
 例えば、反射材42は、ドアシュー2の他方向の側面に設けられる。例えば、反射材42の他方向の端部は、レンズ41と対向する。例えば、反射材42の一方向の端部は、下部光通面34cに接続される。反射材42は、光軸50が直上へ出射されるよう設けられる。
 次に、図19を用いて、安全装置100が紐60を検知する場合について説明する。
 図19は実施の形態3におけるエレベータードアの鉛直上方向から見た平面図である。
 図19に示されるように、例えば、紐60が図示されないかごの出入口を横切った状態でかごドア1aとかごドア1bとが閉動作を行う場合、ドアシュー2は、紐60と接する。
 例えば、第2遮光部材14は、紐60と接する。このため、光軸50は、第2遮光部材14と紐60とに遮られる。図示されない受光器35cは、光軸50を検出しない。受光器35cは、障害物ありの検知信号を図示されない制御器4へ発信する。
 以上で説明した実施の形態3によれば、1組の光軸センサ30cは、上端装置31cと下端装置33cとを備える。上端装置31cは、ドアシュー2の上端に設けられる。下端装置33cは、ドアシュー2の降方向の側面に設けられる。1組の光軸センサ30cは、上端装置31cと下端装置33cとの間に光ビーム50aを形成する。1組の光軸センサ30cは、ドアシュー2の端面に沿って光ビーム50aを形成する。このため、安全装置100は、ドアシュー2を取り換えることなく、1組の光軸センサ30cを設置することができる。その結果、エレベータードアの安全装置100は、既存のドアシュー2を用いて光ビーム50aを形成することができる。また、安全装置100は、1組の光軸センサ30cを安価に備えることができる。
 また、上端装置31cは、受光器35cを備える。下端装置33cは、投光器36cを備える。1組の光軸センサ30cは、下端装置33cから上端装置31cへ向かう光ビーム50aと光軸50とを形成する。このため、光ビーム50aは、下方へ向かうにつれて収束する。その結果、安全装置100は、下方に存在する障害物の検知能力を向上することができる。
 また、下端装置33cは、導光器40を備える。導光器40は、光ビーム50aを水平方向から鉛直上方向へ変化させる。このため、下端装置33cは、投光器36cを受光器35cの直下でない場所に設けることができる。
 また、第2遮光部材14は、ドアシュー2の降方向の側面に設けられる。第2遮光部材14は、光軸50の一部を遮るよう設けられる。このため、安全装置100は、ドアシュー2に接する紐60の検知精度を向上することができる。
 なお、実施の形態2または実施の形態3において、安全装置100は、かごドアの形態に依らず適用される。例えば、安全装置100は、実施の形態1と同様に、片開きドア方式のエレベーターにおいて用いられる。例えば、安全装置100は、両扉ドアシュー方式のエレベーターにおいて用いられる。
 なお、実施の形態2または実施の形態3において、レンズ41は、光軸50をコリメートする働きを備えれば、凸レンズに限らない。例えば、レンズ41は、コリメータレンズである。
 なお、実施の形態2または実施の形態3において、導光器40は、レンズ41を備えなくてもよい。例えば、投光器36cが指向性の高い光源を備える場合、導光器40は、レンズ41を備えない。具体的には、指向性の高い光源は、砲丸型のLED素子を使用した光源、レーザ光源などである。
 以上のように、本開示に係るエレベータードアの安全装置は、エレベーターのシステムに利用できる。
 1a,1b,1c かごドア、 2 ドアシュー、 2a 前縁、 2b 後縁、 3 多光軸センサ受光器、 4 制御器、 5 戸当たり、 10 第1遮光部材、 11 第1反射防止部材、 12 第2反射防止部材、 13 誘導治具、 14 第2遮光部材、 30a,30b,30c 光軸センサ、 31a,31b,31c 上端装置、 32a,32c 上部光通面、 33a,33b,33c 下端装置、 34a,34b,34c 下部光通面、 35a,35b,35c 受光器、 36a,36b,36c 投光器、 37a 反射体、 40 導光器、 41 レンズ、 42 反射材、 42a プリズム、 43 レンズ曲面付プリズム、 43a 曲面、 43b 出射面、 50 光軸、 51 第1迷光部、 52 第2迷光部、 53 反射光軸、 60 紐、 61 ゴミ、 62 取付部、 63 金型、 64 基板、 65 光源、 100 安全装置

Claims (16)

  1.  エレベーターの第1かごドアに設けられたドアシューの上端に設けられた上端装置と、
     前記ドアシューの下端に設けられ、前記ドアシューの端面に沿って前記上端装置との間に光ビームを形成する下端装置と、
    を備え、
     前記下端装置は、
     前記ドアシューの下方に設けられ、受信した前記光ビームの進行方向を鉛直上方へ変化させる導光器を備えたエレベータードアの安全装置。
  2.  前記上端装置は、前記光ビームを受信する受光器を備え、
     前記下端装置は、前記光ビームを発信する投光器を備えた請求項1に記載のエレベータードアの安全装置。
  3.  前記投光器は、前記ドアシューの下方に設けられ、前記導光器へ向けて水平方向に進行する前記光ビームを発信する請求項2に記載のエレベータードアの安全装置。
  4.  前記投光器は、前記ドアシューの後縁の方向の面に接続され、前記導光器へ向けて水平方向に進行する前記光ビームを発信する請求項2に記載のエレベータードアの安全装置。
  5.  前記導光器は、前記ドアシューの後縁の方向へ突き出すように設けられ、
     前記投光器は、前記ドアシューの後縁の方向の面に設けられ、前記導光器へ向けて鉛直下方向に進行する前記光ビームを発信する請求項2に記載のエレベータードアの安全装置。
  6.  前記導光器は、
     内壁に反射させることで、前記光ビームの進行方向を変化させるプリズムを備えた請求項3から請求項5のいずれか1項に記載のエレベータードアの安全装置。
  7.  前記プリズムは、下底の2つの底角が等しい台形の形状の断面を備え、前記光ビームが前記台形の一側の脚と他側の脚とを通過するよう設けられた請求項6に記載のエレベータードアの安全装置。
  8.  前記導光器は、
     前記投光器の光源が焦点に一致するよう設けられた凸レンズを備えた請求項3から請求項5のいずれか1項に記載のエレベータードアの安全装置。
  9.  前記導光器は、
     前記投光器に対向する凸型曲面を備え、内部で反射させることで前記光ビームの進行方向を変化させるレンズ曲面付プリズムを備えた請求項3から請求項5のいずれか1項に記載のエレベータードアの安全装置。
  10.  前記下端装置は、前記光ビームが通過し、前記ドアシューから離れるにつれて下方へ傾斜した下部光通面を備えた請求項1から請求項9のいずれか一項に記載のエレベータードアの安全装置。
  11.  前記上端装置と前記下端装置とは、ドアシューに着脱自在に設けられた請求項1から請求項10のいずれか一項に記載のエレベータードアの安全装置。
  12.  前記ドアシューに設けられた多光軸センサ投光器と、
     前記第1かごドアに設けられ、前記多光軸センサ投光器と対向する多光軸センサ受光器と、
    を備えた請求項1から請求項11のいずれか一項に記載のエレベータードアの安全装置。
  13.  前記ドアシューの前縁に設けられ、前記光ビームの一部を遮る第1遮光部材を備えた請求項1から請求項12のいずれか一項に記載のエレベータードアの安全装置。
  14.  前記第1かごドアに対向する第2かごドアにおいて、かご内部方向の側面に設けられた第1反射防止部材を備えた請求項1から請求項13のいずれか一項に記載のエレベータードアの安全装置。
  15.  前記第1かごドアに対向する第2かごドアまたは前記第1かごドアに対向する戸当たりにおいて、前記ドアシューに対向する面に設けられた第2反射防止部材を備えた請求項1から請求項14のいずれか一項に記載のエレベータードアの安全装置。
  16.  傾斜面を備え、前記傾斜面が前記第1かごドアに近づくにつれて下方へ傾斜するように前記第1かごドアに対向する第2かごドアの下端または前記第1かごドアに対向する戸当たりの下端に設けられた誘導治具を備えた請求項1から請求項15のいずれか一項に記載のエレベータードアの安全装置。
PCT/JP2020/020524 2020-05-25 2020-05-25 エレベータードアの安全装置 WO2021240594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020007234.7T DE112020007234T5 (de) 2020-05-25 2020-05-25 Aufzugtür-Sicherheitseinrichtung
JP2021538710A JP7010416B1 (ja) 2020-05-25 2020-05-25 エレベータードアの安全装置
CN202080100760.3A CN115551795A (zh) 2020-05-25 2020-05-25 电梯门的安全装置
PCT/JP2020/020524 WO2021240594A1 (ja) 2020-05-25 2020-05-25 エレベータードアの安全装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020524 WO2021240594A1 (ja) 2020-05-25 2020-05-25 エレベータードアの安全装置

Publications (1)

Publication Number Publication Date
WO2021240594A1 true WO2021240594A1 (ja) 2021-12-02

Family

ID=78723184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020524 WO2021240594A1 (ja) 2020-05-25 2020-05-25 エレベータードアの安全装置

Country Status (4)

Country Link
JP (1) JP7010416B1 (ja)
CN (1) CN115551795A (ja)
DE (1) DE112020007234T5 (ja)
WO (1) WO2021240594A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323792A1 (en) * 2020-04-20 2021-10-21 Fujitec Co., Ltd. Elevator Safety Device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203680U (ja) * 1985-06-13 1986-12-22
JPH0398984A (ja) * 1989-09-12 1991-04-24 Toshiba Corp エレベータ扉の安全装置
JP2006001662A (ja) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp スライドドア装置
JP2007031103A (ja) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp エレベータの乗客検出装置
JP2007326699A (ja) * 2006-06-09 2007-12-20 Hitachi Ltd エレベータ用ドア装置
WO2010024215A1 (ja) * 2008-09-01 2010-03-04 フジテック株式会社 エレベータの安全装置
WO2010047202A1 (ja) * 2008-10-20 2010-04-29 フジテック株式会社 エレベータの安全装置
JP2010224473A (ja) * 2009-03-25 2010-10-07 Olympus Corp 頭部装着型映像表示装置
JP2014055045A (ja) * 2012-09-12 2014-03-27 Mitsubishi Electric Corp 出入り口装置およびエレベータ装置
JP2016060559A (ja) * 2014-09-16 2016-04-25 株式会社日立製作所 エレベータ装置
WO2016113564A1 (en) * 2015-01-13 2016-07-21 Avire Limited Object detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203680U (ja) * 1985-06-13 1986-12-22
JPH0398984A (ja) * 1989-09-12 1991-04-24 Toshiba Corp エレベータ扉の安全装置
JP2006001662A (ja) * 2004-06-15 2006-01-05 Mitsubishi Electric Corp スライドドア装置
JP2007031103A (ja) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp エレベータの乗客検出装置
JP2007326699A (ja) * 2006-06-09 2007-12-20 Hitachi Ltd エレベータ用ドア装置
WO2010024215A1 (ja) * 2008-09-01 2010-03-04 フジテック株式会社 エレベータの安全装置
WO2010047202A1 (ja) * 2008-10-20 2010-04-29 フジテック株式会社 エレベータの安全装置
JP2010224473A (ja) * 2009-03-25 2010-10-07 Olympus Corp 頭部装着型映像表示装置
JP2014055045A (ja) * 2012-09-12 2014-03-27 Mitsubishi Electric Corp 出入り口装置およびエレベータ装置
JP2016060559A (ja) * 2014-09-16 2016-04-25 株式会社日立製作所 エレベータ装置
WO2016113564A1 (en) * 2015-01-13 2016-07-21 Avire Limited Object detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323792A1 (en) * 2020-04-20 2021-10-21 Fujitec Co., Ltd. Elevator Safety Device
US12060248B2 (en) * 2020-04-20 2024-08-13 Fujitec Co., Ltd. Elevator safety device

Also Published As

Publication number Publication date
JP7010416B1 (ja) 2022-01-26
CN115551795A (zh) 2022-12-30
JPWO2021240594A1 (ja) 2021-12-02
DE112020007234T5 (de) 2023-03-09

Similar Documents

Publication Publication Date Title
KR101529804B1 (ko) 자동 도어용 센서
KR101018203B1 (ko) 거리 측정 장치
JP6158853B2 (ja) 物体の位置を符号化する装置、システム、および方法
JP4091131B2 (ja) スライドドアの安全検出システムのアセンブリ
KR101640989B1 (ko) 한정 영역 반사형 광학 센서 및 전자 기기
JP4584065B2 (ja) エレベータの乗客検出装置
WO2021240594A1 (ja) エレベータードアの安全装置
JP6992933B1 (ja) エレベータードアの安全装置
WO2021240595A1 (ja) エレベータードアの安全装置
JP2007031103A5 (ja)
JP4967672B2 (ja) 乗客コンベアの安全装置
US12060248B2 (en) Elevator safety device
TWI423098B (zh) 光學觸控結構
JP5474067B2 (ja) スライドドア装置及びエレベータ
JP4481091B2 (ja) スライドドア装置
KR101101538B1 (ko) 광 센서 장치
KR20100004974A (ko) 슬라이드 도어장치
US2853158A (en) Closure control mechanism
JP3890128B2 (ja) 反射型プリズム
JP2010256183A (ja) 反射型光電センサ
JP2005263434A (ja) スライドドア安全装置
JP4379848B2 (ja) 測量機のガイド光装置
JP6997967B2 (ja) エレベータのドア装置
CN101162413A (zh) 输入装置之光导引结构
WO2023149569A1 (ja) マルチリーフコリメータおよび放射線治療装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538710

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937248

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20937248

Country of ref document: EP

Kind code of ref document: A1