WO2021230229A1 - ガラス材 - Google Patents

ガラス材 Download PDF

Info

Publication number
WO2021230229A1
WO2021230229A1 PCT/JP2021/017838 JP2021017838W WO2021230229A1 WO 2021230229 A1 WO2021230229 A1 WO 2021230229A1 JP 2021017838 W JP2021017838 W JP 2021017838W WO 2021230229 A1 WO2021230229 A1 WO 2021230229A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
glass material
refractive index
raw material
Prior art date
Application number
PCT/JP2021/017838
Other languages
English (en)
French (fr)
Inventor
朋子 榎本
直樹 藤田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US17/920,855 priority Critical patent/US20230286854A1/en
Priority to CN202180031687.3A priority patent/CN115461313A/zh
Publication of WO2021230229A1 publication Critical patent/WO2021230229A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/125Silica-free oxide glass compositions containing aluminium as glass former
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/127Silica-free oxide glass compositions containing TiO2 as glass former
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/13Deposition methods from melts

Definitions

  • the present invention relates to a glass material used for optical elements such as cameras, microscopes, and endoscopes.
  • optical elements such as optical lenses used are required to have high refractive index and high dispersion optical characteristics. ..
  • the content of SiO 2 and B 2 O 3 which are the main skeleton components of the glass is reduced, and La 2 O 3 and Gd 2 O 3 are used .
  • the skeleton component is reduced and the intermediate oxide is contained in a large amount, the glass forming ability is lowered and vitrification becomes difficult.
  • General optical glass is produced by melting a raw material in a melting container such as a crucible and cooling it.
  • a melting container such as a crucible
  • crystallization tends to proceed from the contact interface with the melting vessel in the conventional manufacturing method.
  • a containerless floating method in which a raw material is melted and cooled in a suspended state is known.
  • the molten glass hardly comes into contact with the molten glass and can be cooled rapidly, so that even the above-mentioned composition that is difficult to vitrify can be vitrified.
  • Patent Document 1 a glass containing only TiO 2 and BaO as a glass composition is produced by a container-free floating method.
  • the network-forming oxide has the effect of lowering the refractive index and may not be able to obtain desired optical properties. There is.
  • the glass material of the present invention is characterized by having a refractive index of 1.8 or more and a content of Al 2 O 3 of more than 0 to 500 ppm.
  • the glass material of the present invention is in mol%, La 2 O 30 or more to 70%, Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Lu 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO. 3 + Ga 2 O 3 +, characterized in that it contains a GeO 2 + B 2 O 3 + SiO 2 + P 2 O 5 0 ultra-less than 100%.
  • ⁇ + ⁇ + Means the total amount of the contents of each component.
  • a glass material having a refractive index of 1.8 or more can be easily obtained.
  • the glass material of the present invention is preferably used as an optical element.
  • the glass material of the present invention is preferably used for decoration.
  • the method for producing a glass material of the present invention is a method for producing any of the above glass materials, and a raw material mass is formed on a molding surface by ejecting gas from a gas ejection hole opened in the molding surface of the molding die. It is characterized in that the molten glass is cooled after the raw material mass is heated and melted to obtain molten glass in a state of being suspended and held above.
  • the present invention it is possible to obtain a glass material that is less likely to cause problems such as crystallization and generation of devitrified substances while maintaining desired optical characteristics.
  • the glass material of the present invention has a refractive index (nd) of 1.8 or more, preferably 1.9 or more, particularly preferably 2.0 or more. In this way, it is suitable for use in optical elements and ornaments.
  • the glass material of the present invention contains Al 2 O 3 as an essential component.
  • Al 2 O 3 is a component that suppresses crystallization and generation of devitrified substances in the glass when the molten glass is cooled.
  • the content of Al 2 O 3 is more than 0 to 500 ppm, preferably 0.5 to 400 ppm, more preferably 1 to 300 ppm, and particularly preferably 3 to 250 ppm. If the content of Al 2 O 3 is too small, it is difficult to obtain the above effect. On the other hand, if the content of Al 2 O 3 is too large, the refractive index is lowered and it becomes difficult to obtain desired optical characteristics.
  • the glass article of the present invention is in mol%, La 2 O 30 to 70%, Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Lu 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO. 3 + Ga 2 O 3 + preferably contains GeO 2 + B 2 O 3 + SiO 2 + P 2 O 5 0 ultra-less than 100%.
  • % means "mol%” unless otherwise specified.
  • La 2 O 3 is a component that forms a glass skeleton, and is a component that increases the refractive index without lowering the light transmittance. It also has the effect of improving weather resistance.
  • the content of La 2 O 3 is preferably more than 0 to 70%, 5 to 68%, and particularly preferably 10 to 63%. If the content of La 2 O 3 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of La 2 O 3 is too large, it becomes difficult to vitrify.
  • SiO 2 and P 2 O 5 are components that increase the refractive index and widen the vitrification range.
  • Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Lu 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Ga 2 O 3 + GeO 2 + B 2 O 3 + SiO 2 + P 2 O 5 If it is too small, it will be difficult to obtain the above effect.
  • Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Lu 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Ga 2 O 3 + GeO 2 + B 2 O 3 + SiO 2 + P 2 O 5 The upper limit of the amount is preferably less than 100%, 99% or less, and particularly preferably 95% or less in consideration of the content of other components. It is preferable that the total amount of any two or more of the above components is also within the above range.
  • Gd 2 O 3 is a component that increases the refractive index. It also has the effect of improving weather resistance. However, if the content of Gd 2 O 3 is too large, it becomes difficult to vitrify. Therefore, the content of Gd 2 O 3 is preferably 0 to 40%, 1 to 35%, and particularly preferably 3 to 30%.
  • Y 2 O 3 is a component that increases the refractive index. It also has the effect of improving weather resistance. However, if the content of Y 2 O 3 is too large, it becomes difficult to vitrify. Accordingly, the content of Y 2 O 3 0 ⁇ 30% is 1-25%, particularly preferably 5-20%.
  • Yb 2 O 3 is a component that increases the refractive index. However, if the content of Yb 2 O 3 is too large, it becomes difficult to vitrify. In addition, raw material costs tend to be high. Accordingly, the content of Y 2 O 3 0 ⁇ 30% is 1-25%, particularly preferably 5-20%.
  • Lu 2 O 3 is a component that increases the refractive index. However, if the content of Lu 2 O 3 is too large, it becomes difficult to vitrify and the raw material cost tends to be high. Therefore, the content of Lu 2 O 3 is preferably 0 to 20%, 1 to 15%, and particularly preferably 5 to 10%.
  • ZrO 2 is a component that increases the refractive index. In addition, since it forms a glass skeleton as an intermediate oxide, it has the effect of expanding the vitrification range. However, if the content of ZrO 2 is too large, it becomes difficult to vitrify and the melting temperature becomes too high. Therefore, the content of ZrO 2 is preferably 0 to 40%, 1 to 30%, 3 to 25%, and particularly preferably 5 to 20%.
  • TiO 2 is a component having a large effect of increasing the refractive index, and also has an effect of increasing chemical durability. It also has the effect of expanding the vitrification range.
  • the content of TiO 2 is preferably 0 to 90%, 5 to 85%, and particularly preferably 10 to 80%. If the content of TiO 2 is too large, the absorption end shifts to the long wavelength side, so that the transmittance of visible light (particularly visible light in the short wavelength region) tends to decrease. In addition, it becomes difficult to vitrify.
  • Nb 2 O 5 is a component having a large effect of increasing the refractive index, and also has an effect of expanding the vitrification range.
  • the content of Nb 2 O 5 is preferably 0 to 80%, 1 to 75%, 5 to 70%, and particularly preferably 10 to 65%. If the content of Nb 2 O 5 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of Nb 2 O 5 is too large, it becomes difficult to vitrify.
  • Ta 2 O 5 is a component having a large effect of increasing the refractive index. However, if the content of Ta 2 O 5 is too large, it becomes difficult to vitrify and the raw material cost tends to be high. Therefore, the content of Ta 2 O 5 is preferably 0 to 60%, 0.1 to 50%, 3 to 45%, and particularly preferably 5 to 40%.
  • WO 3 is a component that increases the refractive index. However, if the content of WO 3 is too large, it becomes difficult to vitrify. Therefore, the content of WO 3 is preferably 0 to 30%, 1 to 25%, and particularly preferably 5 to 20%.
  • Ga 2 O 3 is a component that expands the vitrification range because it forms a glass skeleton as an intermediate oxide. It also has the effect of increasing the refractive index. However, if the content of Ga 2 O 3 is too large, it becomes difficult to vitrify and the raw material cost tends to be high. Therefore, the content of Ga 2 O 3 is preferably 0 to 60%, 0 to 50%, 0 to 40%, and particularly preferably 0 to 30%.
  • GeO 2 is a component that increases the refractive index and also has the effect of expanding the vitrification range. However, if the content of GeO 2 is too large, the raw material cost tends to be high. Therefore, the content of GeO 2 is preferably 0 to 10%, more preferably 0 to 5%.
  • B 2 O 3 is a component that forms a glass skeleton and expands the vitrification range. In addition, the glass transition point is lowered to facilitate press molding. However, if the content of B 2 O 3 is too large, the refractive index is lowered and it becomes difficult to obtain desired optical characteristics. Therefore, the content of B 2 O 3 is preferably 0 to 50%, 0.1 to 40%, 3 to 38%, and particularly preferably 5 to 37%.
  • SiO 2 is a component that forms a glass skeleton and expands the vitrification range. However, if the content of SiO 2 is too large, the refractive index is lowered and it becomes difficult to obtain desired optical characteristics. Therefore, the content of SiO 2 is preferably 0 to 40%, 0 to 30%, and particularly preferably 0.1 to 20%.
  • P 2 O 5 is a component constituting the glass skeleton and has the effect of expanding the vitrification range. However, if the content is too large, phase separation is likely to occur. Therefore, the content of P 2 O 5 is preferably 0 to 10%, more preferably 0 to 5%.
  • Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Lu 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Ga 2 O 3 + GeO 2 content is 0% or more, more than 0%, 5% It is preferably 10% or more, 20% or more, and particularly preferably 30% or more.
  • the content of B 2 O 3 + SiO 2 + P 2 O 5 is preferably 0% or more, more than 0%, 0.1% or more, 3% or more, and particularly preferably 5% or more.
  • the content of B 2 O 3 + SiO 2 + P 2 O 5 is too large, the refractive index will decrease and it will be difficult to obtain the desired optical characteristics. Is preferable.
  • the glass article of the present invention suppresses unreasonable crystallization during glass production by positively containing components such as La 2 O 3 , Nb 2 O 5, TiO 2 , and B 2 O 3 that widen the vitrification range. However, it becomes easy to increase the size of the glass article (for example, diameter of 2 mm or more, 3 mm or more, 4 mm or more, particularly 5 mm or more).
  • the glass article of the present invention may contain the following components in addition to the above.
  • MgO, CaO, SrO, BaO and ZnO are components that expand the vitrification range. Each of these components can be contained in the range of 10% or less. If the content of these components is too large, the refractive index is lowered and it becomes difficult to obtain desired optical characteristics.
  • the glass article By containing a coloring component composed of oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, Ce, Pr or Er, the glass article can be adjusted to a desired color tone and decorated. Suitable for product use.
  • These coloring components may be contained alone or may contain two or more kinds.
  • the content of these oxides (the total amount when two or more kinds are contained) may be 0 to 20%, 0.001 to 10%, 0.005 to 5%, and particularly 0.01 to 1%. preferable.
  • the coloring becomes too strong, and the visible transmittance tends to decrease. As a result, the desired brilliance and fire may not be obtained, making it difficult to use as an ornament.
  • the content of the above oxide may be less than 1%, 0.5% or less, and further 0.1% or less.
  • composition of the glass article include La 2 O 3- Nb 2 O 5 system, La 2 O 3 -TiO 2 system, La 2 O 3 -Ta 2 O 5 system, and La 2 O 3 -B 2. O 3 system, and the like.
  • the La 2 O 3- Nb 2 O 5 system is mol%, La 2 O 3 5 to 80% (preferably 10 to 70%), Nb 2 O 5 1 to 80% (preferably 20 to 70%). , TiO 2 0 ⁇ 80% (preferably 0 to 75%), Ta 2 O 5 0 ⁇ 45% ( preferably 0 ⁇ 40%), Gd 2 O 3 0 ⁇ 20% ( preferably 0-15%), ZrO 2 0 ⁇ 25% (preferably 0 to 20%), WO 3 0 ⁇ 30% ( preferably 0 ⁇ 20%), B 2 O 3 0 ⁇ 50% ( preferably 0 ⁇ 40%), SiO 2 0 to 40% (preferably 0 ⁇ 35%), Ga 2 O 3 0 ⁇ 70% ( preferably 0 to 60%), ZnO 0 - 50% (preferably 0-40%), and those containing.
  • La 2 O 3- TiO 2 system La 2 O 3 5 to 40% (preferably 10 to 35%), TiO 2 40 to 85% (preferably 50 to 80%), and Ta 2 O in mol%. 5 0-55% (preferably 0 ⁇ 50%), Gd 2 O 3 0 ⁇ 20% ( preferably 1 ⁇ 15%), ZrO 2 0 ⁇ 25% ( preferably 5 ⁇ 20%), WO 3 0 ⁇ 30% (preferably 0 to 20%), B 2 O 30 to 50% (preferably 0 to 40%), SiO 20 to 40% (preferably 0 to 35%), Ga 2 O 30 to 70. % (Preferably 0 to 60%) and ZnO 0 to 50% (preferably 0 to 40%).
  • the La 2 O 3- Ta 2 O 5 system is in mol%, La 2 O 3 10 to 80% (preferably 20 to 70%), Ta 2 O 5 5 to 70% (preferably 10 to 60%). , Gd 2 O 3 0 ⁇ 20 % ( preferably from 0 ⁇ 15%), ZrO 2 0 ⁇ 25% ( preferably 0 ⁇ 20%), WO 3 0 ⁇ 30% ( preferably 0 ⁇ 20%), B 2 O 30 to 50% (preferably 0 to 40%), SiO 20 to 40% (preferably 0 to 35%), Ga 2 O 30 to 70% (preferably 0 to 60%), ZnO 0 to 0 to Those containing 50% (preferably 0 to 40%) can be mentioned.
  • the La 2 O 3- B 2 O 3 system is in mol%, La 2 O 3 20 to 75% (preferably 30 to 70%), B 2 O 3 5 to 70% (preferably 10 to 60%). , Gd 2 O 3 0 ⁇ 20 % ( preferably from 0 ⁇ 15%), ZrO 2 0 ⁇ 25% ( preferably 0 ⁇ 20%), WO 3 0 ⁇ 30% ( preferably 0 ⁇ 20%), SiO 2 Examples thereof include those containing 0 to 40% (preferably 0 to 35%), Ga 2 O 30 to 50% (preferably 0 to 40%), and ZnO 0 to 50% (preferably 0 to 40%). ..
  • the La 2 O 3- Ga 2 O 3 system is in mol%, La 2 O 3 10 to 60% (preferably 20 to 55%), Ga 2 O 3 5 to 75% (preferably 10 to 60%). , Gd 2 O 3 0 ⁇ 20 % ( preferably from 0 ⁇ 15%), ZrO 2 0 ⁇ 25% ( preferably 0 ⁇ 20%), WO 3 0 ⁇ 30% ( preferably 0 ⁇ 20%), SiO 2 Examples thereof include those containing 0 to 40% (preferably 0 to 35%) and ZnO 0 to 50% (preferably 0 to 40%).
  • the glass material of the present invention can be used for optical elements such as lenses and prisms, or for ornaments such as jewelry, art objects, and tableware.
  • FIG. 1 is an example of a schematic cross-sectional view of a manufacturing apparatus for manufacturing the glass material of the present invention.
  • the glass material manufacturing apparatus 1 has a molding die 10.
  • the molding die 10 also serves as a melting container.
  • the molding die 10 has a molding surface 10a and a gas ejection hole 10b opened in the molding surface 10a.
  • a plurality of gas ejection holes 10b are provided. By doing so, the raw material block 12, the molten glass, and the glass material can be stably suspended.
  • a molding mold provided with only one gas ejection hole 10b may be used.
  • the gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b.
  • the type of gas is not particularly limited, and may be, for example, air or oxygen, or may be a reducing gas containing nitrogen gas, argon gas, helium gas, carbon monoxide gas,
  • the raw material block 12 is arranged on the molding surface 10a.
  • the raw material mass 12 is a glass raw material powder integrated by press molding or the like, a sintered body obtained by integrating the glass raw material powder by press molding or the like and then sintered, and a crystal having a composition equivalent to the target glass composition.
  • the aggregate of the above is mentioned.
  • a material obtained by cutting or crushing the sintered body may be used as a raw material mass.
  • the raw material mass 12 is suspended on the molding surface 10a by ejecting gas from the gas ejection hole 10b. That is, the raw material mass 12 is held in a state where it is not in contact with the molding surface 10a.
  • the laser beam irradiating the raw material mass 12 is irradiated with the laser beam from the laser beam irradiating device 13.
  • the raw material mass 12 is heated and melted to obtain molten glass.
  • the glass material can be obtained by cooling the molten glass.
  • the heating method may be radiant heating other than the method of irradiating the laser beam.
  • Mold materials include aluminum, aluminum-magnesium alloy, aluminum-silicon alloy, aluminum-magnesium-silicon alloy, aluminum-magnesium-zinc alloy, metallic silicon, stainless steel, duralumin, platinum, platinum-rodium alloy, tungsten, tungsten.
  • Examples include alloys, zirconium, titanium, and titanium alloys. Among them, aluminum, aluminum-magnesium alloy, aluminum-silicon alloy, aluminum-magnesium-silicon alloy, and aluminum-magnesium-zinc alloy are preferable in terms of corrosion resistance and workability.
  • Tables 1 to 4 show examples (No. 2 to 4, 7, 8, 11 to 13, 16, 17, 20 to 22, 25, 26, 29 to 31, 34, 35) and comparative examples (No. 2 to 4, 7, 8, 11 to 13, 16, 17, 20 to 22, 25, 26, 29 to 31, 34, 35) of the present invention. .1, 5, 6, 9, 10, 14, 15, 18, 19, 23, 24, 27, 28, 32, 33, 36).
  • a raw material mass was prepared by press-molding 0.3 to 0.6 g of the raw material powder prepared so as to have the glass composition shown in Tables 1 to 4 and sintering at 900 to 1100 ° C. for 3 to 12 hours.
  • a substantially spherical glass material having a diameter of about 5 to 7 mm was produced by a container-free floating method using an apparatus according to FIG.
  • a heat source 1 to 4 100 W CO 2 laser oscillators were used.
  • the gas flow rate was supplied in the range of 1 to 15 L / min. Twenty samples were prepared for each glass composition, and the probability of occurrence of devitrified substances and the refractive index (nd) were evaluated as follows.
  • the presence or absence of devitrified substances inside the glass material was confirmed by observing at a magnification of 10 times.
  • the probability of occurrence of devitrification is 0 to 10%: ⁇ , when more than 10 to 20%: ⁇ , when more than 20% : ⁇ .
  • the refractive index was evaluated by measuring the d-line (587.6 nm) of the helium lamp using KPR-2000 manufactured by Shimadzu Corporation after adhering the glass material on a soda plate substrate with a thickness of 5 mm and performing right angle polishing.
  • the glass material of the example contained Al 2 O 3 in the range of more than 0 to 500 ppm, and was excellent in devitrification resistance.
  • the glass materials of 1, 6, 10, 15, 19, 24, 28, and 33 were inferior in devitrification resistance.
  • the refractive index of the glass materials of 5, 9, 14, 18, 23, 27, 32, and 36 was slightly lowered, and the desired optical properties could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

所望の光学特性を維持しつつ、結晶化や失透物の発生といった不具合が生じにくいガラス材を提供する。 屈折率が1.8以上であり、Alの含有量が0超~500ppmであることを特徴とするガラス材。

Description

ガラス材
 本発明は、カメラ、顕微鏡、内視鏡等の光学素子に用いられるガラス材に関する。
 近年、カメラ、顕微鏡及び内視鏡等に用いられる光学系の小型化や軽量化に伴い、使用される光学レンズ等の光学素子に対し、高屈折率かつ高分散の光学特性が求められている。光学素子に使用されるガラスをより高屈折率にするためには、ガラスの主要な骨格成分であるSiOやBの含有量を少なくし、La、Gd、Ta等の希土類酸化物、またはNbやTiOといった中間酸化物を多量に含有させる必要がある。しかし、骨格成分を少なくし、中間酸化物を多量に含有させると、ガラス形成能が低下し、ガラス化が困難になる。一般的な光学ガラスは、原料を坩堝等の溶融容器内で溶融し、冷却することにより作製する。ここで、ガラス形成能に劣るガラス組成の場合、従来の作製方法では溶融容器との接触界面を起点として結晶化が進行しやすい。
 ガラス化しにくい組成であっても、溶融容器との接触をなくし、溶融状態からの冷却速度を速めることでガラス化が可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器浮遊法(無容器凝固法)が知られている。当該方法を用いると、溶融ガラスが溶融容器にほとんど接触することがなく、また急速に冷却することが可能なため、上記のようなガラス化しにくい組成であってもガラス化が可能となる。例えば、特許文献1では、無容器浮遊法により、ガラス組成としてTiOとBaOのみを含有するガラスが作製されている。
特許第4789086号公報
 無容器浮遊法を利用しても、製造工程で結晶化が生じてガラス材を得られない場合や、得られたガラス中に失透物が生じる場合がある。特に、ガラス化しにくい組成の場合はそのような傾向が顕著である。
 結晶化や失透物を生じさせないためには、網目形成酸化物を添加することが有用であるが、一般に網目形成酸化物は屈折率を下げる効果があり、所望の光学特性を得られなくなるおそれがある。
 以上に鑑み、本発明は、所望の光学特性を維持しつつ、結晶化や失透物の発生といった不具合が生じにくいガラス材を提供することを目的とする。
 本発明のガラス材は、屈折率が1.8以上でありAlの含有量が0超~500ppmであることを特徴とする。
 このように、ガラス材中にAlを0超~500ppmという極めて微量だけ必須成分として含有させているため、屈折率を低下させることなく、結晶化や失透物の発生を抑制することが出来る。
 本発明のガラス材は、モル%で、La 0超~70%、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+P 0超~100%未満を含有することを特徴とする。なお本発明において、「○+○+・・・」は各成分の含有量の合量を意味する。ここで、必ずしも各成分を必須成分として含有しなくてもよく、含有しない(0%)である成分が存在しても構わない。
 上記構成によれば、屈折率が1.8以上のガラス材を容易に得ることができる。
 本発明のガラス材は、光学素子として用いられることが好ましい。
 本発明のガラス材は、装飾用として用いられることが好ましい。
 本発明のガラス材の製造方法は、上記いずれかのガラス材を製造するための方法であって、成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、原料塊を成形面上で浮遊させて保持した状態で、原料塊を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却することを特徴とする。
 本発明によれば、所望の光学特性を維持しつつ、結晶化や失透物の発生といった不具合が生じにくいガラス材を得ることができる。
本発明のガラス材を製造するための装置の一実施形態を示す模式的断面図である。
 本発明のガラス材は屈折率(nd)が1.8以上であり、1.9以上、特に2.0以上が好ましい。このようにすれば、光学素子や装飾品の用途として好適である。
 本発明のガラス材はAlを必須成分として含有する。Alは、溶融ガラスの冷却時における結晶化やガラス中の失透物の発生を抑制する成分である。Alの含有量は0超~500ppmであり、好ましくは0.5~400ppm、より好ましくは1~300ppm、特に好ましくは3~250ppmである。Alの含有量が少なすぎると、上記効果を得にくい。一方、Alの含有量が多すぎると、屈折率が低下し、所望の光学特性を得にくくなる。
 本発明のガラス物品は、モル%で、La 0超~70%、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+P 0超~100%未満を含有することが好ましい。ガラス組成をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「モル%」を意味する。
 Laはガラス骨格を形成する成分であり、光透過率を低下させることなく屈折率を高める成分である。また、耐候性を向上させる効果もある。Laの含有量は0超~70%、5~68%、特に10~63%であることが好ましい。Laの含有量が少なすぎると、上記効果を得にくくなる。一方、Laの含有量が多すぎると、ガラス化しにくくなる。
 Gd、Y、Yb、Lu、ZrO、TiO、Nb、Ta、WO、Ga、GeO、B、SiO及びPは、屈折率を高めたり、ガラス化範囲を広げたりする成分である。Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+Pの含有量は0%超、5%以上、10%以上、20%以上、特に30%以上であることが好ましい。Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+Pの含有量が少なすぎると、上記効果を得にくくなる。一方、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+Pの含有量の上限は、他の成分の含有量を考慮し、100%未満、99%以下、特に95%以下とすることが好ましい。なお、上記成分のいずれか2種以上の合量も上記範囲であることが好ましい。
 以下に、Gd、Y、Yb、Lu、ZrO、TiO、Nb、Ta、WO、Ga、GeO、B、SiO及びPの各成分について詳細に説明する。
 Gdは屈折率を高める成分である。また、耐候性を向上させる効果もある。ただし、Gdの含有量が多すぎると、ガラス化しにくくなる。従って、Gdの含有量は0~40%、1~35%、特に3~30%であることが好ましい。
 Yは屈折率を高める成分である。また、耐候性を向上させる効果もある。ただし、Yの含有量が多すぎると、ガラス化しにくくなる。従って、Yの含有量は0~30%、1~25%、特に5~20%であることが好ましい。
 Ybは屈折率を高める成分である。ただし、Ybの含有量が多すぎると、ガラス化しにくくなる。また、原料コストが高くなる傾向がある。従って、Yの含有量は0~30%、1~25%、特に5~20%であることが好ましい。
 Luは屈折率を高める成分である。ただし、Luの含有量が多すぎると、ガラス化しにくくなり、また原料コストが高くなる傾向がある。従って、Luの含有量は0~20%、1~15%、特に5~10%であることが好ましい。
 ZrOは屈折率を高める成分である。また、中間酸化物としてガラス骨格を形成するため、ガラス化範囲を広げる効果がある。ただし、ZrOの含有量が多すぎると、ガラス化しにくくなり、また溶融温度が高くなりすぎる。従って、ZrOの含有量は0~40%、1~30%、3~25%、特に5~20%であることが好ましい。
 TiOは屈折率を高める効果が大きい成分であり、化学的耐久性を高める効果もある。またガラス化範囲を広げる効果がある。TiOの含有量は0~90%、5~85%、特に10~80%であることが好ましい。TiOの含有量が多すぎると、吸収端が長波長側にシフトするため可視光(特に短波長域の可視光)の透過率が低下しやすくなる。また、ガラス化しにくくなる。
 Nbは屈折率を高める効果が大きい成分であり、ガラス化範囲を広げる効果もある。Nbの含有量は0~80%、1~75%、5~70%、特に10~65%であることが好ましい。Nbの含有量が少なすぎると、上記効果を得にくくなる。一方、Nbの含有量が多すぎると、ガラス化しにくくなる。
 Taは屈折率を高める効果が大きい成分である。ただし、Taの含有量が多すぎると、ガラス化しにくくなり、また原料コストが高くなる傾向がある。従って、Taの含有量は0~60%、0.1~50%、3~45%、特に5~40%であることが好ましい。
 WOは屈折率を高める成分である。ただし、WOの含有量が多すぎると、ガラス化しにくくなる。従って、WOの含有量は0~30%、1~25%、特に5~20%であることが好ましい。
 Gaは中間酸化物としてガラス骨格を形成するため、ガラス化範囲を広げる成分である。また、屈折率を高める効果がある。ただし、Gaの含有量が多すぎると、ガラス化しにくくなり、また原料コストが高くなる傾向がある。従って、Gaの含有量は0~60%、0~50%、0~40%、特に0~30%であることが好ましい。
 GeOは屈折率を高める成分であり、ガラス化範囲を広げる効果もある。ただし、GeOの含有量が多すぎると、原料コストが高くなる傾向がある。従って、GeOの含有量は、好ましくは0~10%、より好ましくは0~5%である。
 Bはガラス骨格となり、ガラス化範囲を広げる成分である。またガラス転移点を低くして、プレス成型を容易にする。ただし、Bの含有量が多すぎると、屈折率が低下して所望の光学特性を得にくくなる。従って、Bの含有量は0~50%、0.1~40%、3~38%、特に5~37%であることが好ましい。
 SiOはガラス骨格を形成し、ガラス化範囲を広げる成分である。ただし、SiOの含有量が多すぎると、屈折率が低下して所望の光学特性を得にくくなる。従って、SiOの含有量は0~40%、0~30%、特に0.1~20%であることが好ましい。
 Pはガラス骨格を構成する成分であり、ガラス化範囲を広げる効果がある。ただし、その含有量が多すぎると、分相しやすくなる。従って、Pの含有量は、好ましくは0~10%、より好ましくは0~5%である。
 なお、高屈折率の光学特性を得るためには、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeOの含有量を調整することが好ましい。Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeOの含有量は0%以上、0%超、5%以上、10%以上、20%以上、特に30%以上であることが好ましい。ただし、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeOの含有量が多すぎるとガラス化しにくくなるため、100%未満、99%以下、特に95%とすることが好ましい。
 また、ガラス化しやすくするためには、B+SiO+Pの含有量を調整することが好ましい。B+SiO+Pの含有量は0%以上、0%超、0.1%以上、3%以上、特に5%以上であることが好ましい。ただし、B+SiO+Pの含有量が多すぎると、屈折率が低下して所望の光学特性を得にくくなるため、80%以下、75%以下、特に70%以下であることが好ましい。
 本発明ガラス物品は、La、Nb5、TiO、B等のガラス化範囲を広げる成分を積極的に含有させることにより、ガラス作製時における不当な結晶化を抑制し、ガラス物品のサイズを大きくする(例えば、直径2mm以上、3mm以上、4mm以上、特に5mm以上)ことが容易になる。
 本発明のガラス物品は、上記以外にも下記の成分を含有させることができる。
 MgO、CaO、SrO、BaO、ZnOはガラス化範囲を広げる成分である。これらの成分は各々10%以下の範囲で含有させることができる。これらの成分の含有量が多すぎると、屈折率が低下して所望の光学特性を得にくくなる。
 V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Ru、Ce、PrまたはErの酸化物からなる着色成分を含有させることにより、ガラス物品を所望の色調に調整することができ、装飾品用途に好適となる。これらの着色成分は単独で含有させてもよく、2種以上を含有させてもよい。これらの酸化物の含有量(2種以上含有させる場合は合量)は、0~20%、0.001~10%、0.005~5%、特に0.01~1%であることが好ましい。なお、含有させる成分によっては着色が強くなりすぎて、可視域透過率が低下しやすくなる。その結果、所望の輝きやファイアが得られなくなり、装飾品としての使用が困難になる場合がある。その場合は、上記の酸化物の含有量を1%未満、0.5%以下、さらには0.1%以下としてもよい。
 なお、ガラス物品の組成の具体例としては、La-Nb系、La-TiO系、La-Ta系、La-B系が挙げられる。
 La-Nb系としては、モル%で、La 5~80%(好ましくは10~70%)、Nb 1~80%(好ましくは20~70%)、TiO 0~80%(好ましくは0~75%)、Ta 0~45%(好ましくは0~40%)、Gd 0~20%(好ましくは0~15%)、ZrO 0~25%(好ましくは0~20%)、WO 0~30%(好ましくは0~20%)、B 0~50%(好ましくは0~40%)、SiO 0~40%(好ましくは0~35%)、Ga 0~70%(好ましくは0~60%)、ZnO 0~50%(好ましくは0~40%)を含有するものが挙げられる。
 La-TiO系としては、モル%で、La 5~40%(好ましくは10~35%)、TiO 40~85%(好ましくは50~80%)、Ta 0~55%(好ましくは0~50%)、Gd 0~20%(好ましくは1~15%)、ZrO 0~25%(好ましくは5~20%)、WO 0~30%(好ましくは0~20%)、B 0~50%(好ましくは0~40%)、SiO 0~40%(好ましくは0~35%)、Ga 0~70%(好ましくは0~60%)、ZnO 0~50%(好ましくは0~40%)を含有するものが挙げられる。
 La-Ta系としては、モル%で、La 10~80%(好ましくは20~70%)、Ta 5~70%(好ましくは10~60%)、Gd 0~20%(好ましくは0~15%)、ZrO 0~25%(好ましくは0~20%)、WO 0~30%(好ましくは0~20%)、B 0~50%(好ましくは0~40%)、SiO 0~40%(好ましくは0~35%)、Ga 0~70%(好ましくは0~60%)、ZnO 0~50%(好ましくは0~40%)を含有するものが挙げられる。
 La-B系としては、モル%で、La 20~75%(好ましくは30~70%)、B 5~70%(好ましくは10~60%)、Gd 0~20%(好ましくは0~15%)、ZrO 0~25%(好ましくは0~20%)、WO 0~30%(好ましくは0~20%)、SiO 0~40%(好ましくは0~35%)、Ga 0~50%(好ましくは0~40%)、ZnO 0~50%(好ましくは0~40%)を含有するものが挙げられる。
 La-Ga系としては、モル%で、La 10~60%(好ましくは20~55%)、Ga 5~75%(好ましくは10~60%)、Gd 0~20%(好ましくは0~15%)、ZrO 0~25%(好ましくは0~20%)、WO 0~30%(好ましくは0~20%)、SiO 0~40%(好ましくは0~35%)、ZnO 0~50%(好ましくは0~40%)を含有するものが挙げられる。
 本発明のガラス材は、レンズやプリズム等の光学素子、あるいは、宝飾品、芸術品、食器等の装飾品用途に使用することができる。
 図1は本発明のガラス材を製造するための製造装置の模式的断面図の例である。ガラス材の製造装置1は成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口しているガス噴出孔10bを有する。ガス噴出孔10bは複数設けられている。このようにすれば、原料塊12、溶融ガラス、ガラス材を安定して浮遊させることができる。なお、ガス噴出孔10bが一つだけ設けられた成形型を用いてもよい。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよく、窒素ガス、アルゴンガス、ヘリウムガス、一酸化炭素ガス、二酸化炭素ガス、水素を含有した還元性ガスであってもよい。
 製造装置1を用いてガラス材を製造するには、まず、原料塊12を成形面10a上に配置する。原料塊12は、ガラスの原料粉末をプレス成形等により一体化したもの、ガラスの原料粉末をプレス成形等により一体化した後に焼結させた焼結体、目標ガラス組成と同等の組成を有する結晶の集合体などが挙げられる。また、上記焼結体を切断や破砕したものを原料塊として用いてもよい。次に、ガス噴出孔10bからガスを噴出させることにより、原料塊12を成形面10a上で浮遊させる。すなわち、原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光を原料塊12に照射する。これにより原料塊12を加熱溶融して、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。溶融工程と冷却工程においては、少なくともガスの噴出を継続し、原料塊12、溶融ガラス、ガラス材と成形面10aとの接触を抑制することが好ましい。加熱する方法は、レーザー光を照射する方法以外にも、輻射加熱であってもよい。
 成形型の材質としては、アルミニウム、アルミニウム-マグネシウム合金、アルミニウム-シリコン合金、アルミニウム-マグネシウム-シリコン合金、アルミニウム-マグネシウム-亜鉛合金、金属シリコン、ステンレス、ジュラルミン、白金、白金-ロジウム合金、タングステン、タングステン合金、ジルコニウム、チタン、チタン合金などが挙げられる。中でもアルミニウム、アルミニウム-マグネシウム合金、アルミニウム-シリコン合金、アルミニウム-マグネシウム-シリコン合金、アルミニウム-マグネシウム-亜鉛合金は、耐食性、加工性の面で好ましい。
 以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。
 表1~4は本発明の実施例(No.2~4、7、8、11~13、16、17、20~22、25、26、29~31、34、35)及び比較例(No.1、5、6、9、10、14、15、18、19、23、24、27、28、32、33、36)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に記載のガラス組成になるように調合した原料粉末0.3~0.6gをプレス成形して、900~1100℃で3~12時間焼結することにより原料塊を作製した。
 上記で得られた原料塊を用いて、図1に準じた装置を用いた無容器浮遊法によって直径約5~7mmの略球形状のガラス材を作製した。熱源としては100W COレーザー発振器を1~4台用いた。ガス流量は1~15L/minの範囲で供給した。各ガラス組成につき20個ずつ試料を作製し、以下のようにして失透物の発生確率及び屈折率(nd)について評価した。
 実体顕微鏡(ニコン(株)製、SMZ1000)を用い、10倍で観察することで、ガラス材内部の失透物の有無を確認した。失透物の発生確率(20個の試料のうち欠陥が発生した試料の個数の割合)が、0~10%の場合:○、10超~20%の場合:△、20%超~の場合:×とした。
 屈折率は、ガラス材を厚さ5mmのソーダ板基板上に接着後、直角研磨を行い、島津製作所製KPR-2000用いて、ヘリウムランプのd線(587.6nm)に対する測定値で評価した。
 表1~4から明らかなように、実施例のガラス材はAlを0超~500ppmの範囲で含有しており、耐失透性に優れていた。一方、Alを含有しないNo.1、6、10、15、19、24、28、33のガラス材は耐失透物に劣っていた。また、Alを500ppm超含有するNo.5、9、14、18、23、27、32、36のガラス材は屈折率がわずかに低下し、所望の光学特性を得られなかった。

Claims (5)

  1.  屈折率が1.8以上であり、Alの含有量が0超~500ppmであることを特徴とするガラス材。
  2.  モル%で、La 0超~70%、Gd+Y+Yb+Lu+ZrO+TiO+Nb+Ta+WO+Ga+GeO+B+SiO+P 0超~100%未満を含有することを特徴とする請求項1に記載のガラス材。
  3.  光学素子として用いられることを特徴とする請求項1または2に記載のガラス材。
  4.  装飾品として用いられることを特徴とする請求項1または2に記載のガラス材。
  5.  請求項1~4のいずれか一項に記載のガラス材を製造するための方法であって、
     成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、原料塊を前記成形面上で浮遊させて保持した状態で、前記原料塊を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却することを特徴とするガラス材の製造方法。
PCT/JP2021/017838 2020-05-15 2021-05-11 ガラス材 WO2021230229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/920,855 US20230286854A1 (en) 2020-05-15 2021-05-11 Glass material
CN202180031687.3A CN115461313A (zh) 2020-05-15 2021-05-11 玻璃材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-085892 2020-05-15
JP2020085892A JP2021178765A (ja) 2020-05-15 2020-05-15 ガラス材

Publications (1)

Publication Number Publication Date
WO2021230229A1 true WO2021230229A1 (ja) 2021-11-18

Family

ID=78510883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017838 WO2021230229A1 (ja) 2020-05-15 2021-05-11 ガラス材

Country Status (4)

Country Link
US (1) US20230286854A1 (ja)
JP (1) JP2021178765A (ja)
CN (1) CN115461313A (ja)
WO (1) WO2021230229A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009847A1 (ja) * 2022-07-04 2024-01-11 日本電気硝子株式会社 ガラス材の製造方法及びガラス材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246337A (ja) * 2010-04-30 2011-12-08 Ohara Inc 光学ガラス、光学素子およびガラス成形体の製造方法
JP2013519610A (ja) * 2010-02-12 2013-05-30 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド 精密成形用光学ガラス
JP2015129058A (ja) * 2014-01-07 2015-07-16 日本電気硝子株式会社 光学ガラス
JP2015151321A (ja) * 2014-02-18 2015-08-24 日本電気硝子株式会社 光学ガラス
JP2016011228A (ja) * 2014-06-30 2016-01-21 日本電気硝子株式会社 光学ガラス
CN105461222A (zh) * 2016-01-12 2016-04-06 成都光明光电有限责任公司 高折射高色散光学玻璃
JP2019511445A (ja) * 2016-03-07 2019-04-25 成都光明光▲電▼股▲分▼有限公司 光学ガラス及び光学素子
JP2020029378A (ja) * 2018-08-21 2020-02-27 日本電気硝子株式会社 光学ガラス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334523B2 (ja) * 2004-10-12 2009-09-30 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP4789086B2 (ja) * 2005-03-08 2011-10-05 独立行政法人 宇宙航空研究開発機構 無容器凝固法によるバリウチタン系酸化物ガラスの製造方法
JP4466955B2 (ja) * 2005-07-15 2010-05-26 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP4459178B2 (ja) * 2006-03-02 2010-04-28 Hoya株式会社 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2010248057A (ja) * 2009-03-24 2010-11-04 Hoya Corp 光学ガラス、ならびにプレス成形用ガラス素材、光学素子ブランク、光学素子およびそれらの製造方法
CN102050571A (zh) * 2009-11-06 2011-05-11 湖北新华光信息材料股份有限公司 高折射率光学玻璃
JP5704503B2 (ja) * 2010-09-28 2015-04-22 日本電気硝子株式会社 光学ガラス
CN104098267A (zh) * 2013-04-05 2014-10-15 株式会社小原 光学玻璃、预成型材料及光学元件
CN109775981B (zh) * 2019-03-28 2022-04-15 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件及光学仪器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519610A (ja) * 2010-02-12 2013-05-30 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド 精密成形用光学ガラス
JP2011246337A (ja) * 2010-04-30 2011-12-08 Ohara Inc 光学ガラス、光学素子およびガラス成形体の製造方法
JP2015129058A (ja) * 2014-01-07 2015-07-16 日本電気硝子株式会社 光学ガラス
JP2015151321A (ja) * 2014-02-18 2015-08-24 日本電気硝子株式会社 光学ガラス
JP2016011228A (ja) * 2014-06-30 2016-01-21 日本電気硝子株式会社 光学ガラス
CN105461222A (zh) * 2016-01-12 2016-04-06 成都光明光电有限责任公司 高折射高色散光学玻璃
JP2019511445A (ja) * 2016-03-07 2019-04-25 成都光明光▲電▼股▲分▼有限公司 光学ガラス及び光学素子
JP2020029378A (ja) * 2018-08-21 2020-02-27 日本電気硝子株式会社 光学ガラス

Also Published As

Publication number Publication date
US20230286854A1 (en) 2023-09-14
CN115461313A (zh) 2022-12-09
JP2021178765A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP4508987B2 (ja) 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP4361004B2 (ja) 光学ガラス、精密プレス成形用プリフォームおよびその製造方法ならびに光学素子およびその製造方法
JP4459178B2 (ja) 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
EP1236694B1 (en) Press-molding preform from optical glass and optical part
JP2009091242A (ja) 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP2008201646A (ja) 光学ガラス及び光学素子
JP2006137662A (ja) 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP6869482B2 (ja) 光学ガラス及びその製造方法
JP2013067559A (ja) 光学ガラス
JP2005298262A (ja) 光学素子の量産方法
JP6471894B2 (ja) 光学ガラス及びその製造方法
WO2016129470A1 (ja) 光学ガラス及びその製造方法
WO2021230229A1 (ja) ガラス材
JP2016011228A (ja) 光学ガラス
JP6869481B2 (ja) 光学ガラス及びその製造方法
JP6173224B2 (ja) 光学ガラス
JP6451199B2 (ja) 光学ガラス及びその製造方法
JP6340623B2 (ja) 光学ガラス
JP6681013B2 (ja) 光学ガラス及びその製造方法
JP6442952B2 (ja) 光学ガラス及びその製造方法
JP7250434B6 (ja) 光学ガラス、光学素子、光学機器、光学ガラスの製造方法および光学素子の製造方法
JP2022187243A (ja) ガラス材
JP2022187244A (ja) ガラス材
JP5318000B2 (ja) 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
WO2020226063A1 (ja) 光学ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803393

Country of ref document: EP

Kind code of ref document: A1