WO2021229766A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2021229766A1
WO2021229766A1 PCT/JP2020/019337 JP2020019337W WO2021229766A1 WO 2021229766 A1 WO2021229766 A1 WO 2021229766A1 JP 2020019337 W JP2020019337 W JP 2020019337W WO 2021229766 A1 WO2021229766 A1 WO 2021229766A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
shortage detection
refrigerating apparatus
liquid receiver
Prior art date
Application number
PCT/JP2020/019337
Other languages
English (en)
French (fr)
Inventor
アバスタリ
智也 藤本
裕士 佐多
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/019337 priority Critical patent/WO2021229766A1/ja
Priority to JP2022522448A priority patent/JP7393536B2/ja
Publication of WO2021229766A1 publication Critical patent/WO2021229766A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to a refrigerating device.
  • Patent Document 1 discloses a refrigerating and air-conditioning apparatus that calculates the temperature efficiency of a supercooled heat exchanger, estimates the amount of refrigerant from the calculated temperature efficiency, and determines excess or deficiency. Has been done.
  • the discharge pressure is measured by a pressure sensor provided on the discharge side of the compressor.
  • the saturated gas temperature is obtained based on this discharge pressure.
  • the temperature efficiency is calculated from the saturated gas temperature and the outside air temperature or the outlet temperature of the condenser. Then, when the temperature efficiency falls below the threshold value, the control device determines that the refrigerant is insufficient.
  • the heat source side unit and the user side unit are connected by piping. Since this pipe is connected locally, this pipe will be long. Therefore, the pressure loss of the refrigerant increases between the heat source side unit and the user side unit. Therefore, when the temperature efficiency is calculated, the temperature efficiency becomes larger than the actual value, and the calculation accuracy of the temperature efficiency becomes low. Therefore, erroneous detection of the amount of refrigerant occurs.
  • the amount of refrigerant may not be detected or falsely detected due to fluctuations in operating conditions such as low outside air operation in outside air below freezing point or fluctuations in the amount of refrigerant circulation. Therefore, the detectable range of the amount of the refrigerant is limited.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a freezing device capable of accurately determining a shortage of a refrigerant amount and expanding the detection range of the refrigerant amount. Is.
  • the refrigerating device of the present disclosure includes a refrigerant circuit, a refrigerant shortage detection circuit, and a control device.
  • the refrigerant circuit consists of at least one compressor that compresses the refrigerant, a condenser that condenses the refrigerant discharged from the compressor, a receiver into which the refrigerant flowing out of the condenser flows, and a refrigerant flowing out from the receiver.
  • An overcooling heat exchanger that overcools, a decompression device that decompresses the refrigerant that has been overcooled in the overcooling heat exchanger, an evaporator that evaporates the decompressed refrigerant in the decompression device, and a refrigerant that has flowed out of the evaporator.
  • the refrigerant shortage detection circuit is connected to the refrigerant circuit between the evaporator and the compressor and the liquid receiver.
  • the refrigerant shortage detection circuit consists of a capillary tube into which the refrigerant flowing out of the receiver flows, a heater that heats the refrigerant flowing out of the capillary tube, an inlet temperature sensor that detects the inlet temperature of the refrigerant flowing into the heater, and a heater. It includes an outlet temperature sensor that detects the outlet temperature of the outflowing refrigerant.
  • the control device controls the refrigerant circuit and the refrigerant shortage detection circuit. The control device calculates an evaluation value based on the inlet temperature of the refrigerant detected by the inlet temperature sensor and the outlet temperature of the refrigerant detected by the outlet temperature sensor, and the amount of the refrigerant is insufficient based on the calculated evaluation value. It is configured to determine whether or not it is present.
  • the control device calculates an evaluation value based on the inlet temperature of the refrigerant detected by the inlet temperature sensor and the outlet temperature of the refrigerant detected by the outlet temperature sensor, and the calculated evaluation value. It is configured to determine whether or not the amount of the refrigerant is insufficient based on the above. Therefore, it is possible to accurately determine the shortage of the refrigerant amount, and it is possible to expand the detection range of the refrigerant amount.
  • FIG. It is a refrigerant circuit diagram of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is a functional block diagram of the control device of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram at the time of the refrigerant detection operation of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram of the modification 1 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram of the modification 2 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram of the modification 3 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. 4 It is a refrigerant circuit diagram of the modification 4 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. 5 It is a refrigerant circuit diagram of the modification 5 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. 6 is a refrigerant circuit diagram of the modification 6 of the refrigerating apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows schematically the piping structure inside the liquid receiver of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows schematic the turbulence of the liquid level of the refrigerant in the liquid receiver of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows schematically the piping structure inside the liquid receiver of the modification 1 of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows schematically the piping structure inside the liquid receiver of the modification 2 of the refrigerating apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows schematic the structure of the inside of the liquid receiver of the refrigerating apparatus which concerns on Embodiment 3.
  • FIG. It is sectional drawing which follows the XIV-XIV line of FIG.
  • FIG. It is sectional drawing which follows the XIV-XIV line of FIG.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a configuration inside a liquid receiver of the refrigerating apparatus according to the third embodiment. It is sectional drawing which follows the XVIII-XVIII line of FIG. It is sectional drawing which shows schematic the structure of the inside of the receiver of the modification 1 of the refrigerating apparatus which concerns on Embodiment 3.
  • FIG. It is sectional drawing which shows roughly the structure of the partition plate of the liquid receiver of the modification 2 of the refrigerating apparatus which concerns on Embodiment 3.
  • FIG. It is sectional drawing which shows roughly the structure of the partition plate of the liquid receiver of the modification 3 of the refrigerating apparatus which concerns on Embodiment 3.
  • FIG. It is sectional drawing which shows roughly the structure of the partition plate of the liquid receiver of the modification 4 of the refrigerating apparatus which concerns on Embodiment 3.
  • Embodiment 1 The configuration of the refrigerating apparatus R according to the first embodiment will be described with reference to FIG.
  • FIG. 1 is a refrigerant circuit diagram of the refrigerating apparatus R according to the first embodiment.
  • the refrigerating apparatus R includes a refrigerant circuit C1, a refrigerant shortage detection circuit C2, an injection circuit C3, a control device CD, and an information output device OD. ..
  • the refrigerant circuit C1 includes a compressor 1, a condenser 2, a liquid receiver 3, a supercooling heat exchanger 4, a decompression device 6, an evaporator 7, and an accumulator 8.
  • the refrigerant circuit C1 is configured by connecting the compressor 1, the condenser 2, the liquid receiver 3, the supercooling heat exchanger 4, the decompression device 6, the evaporator 7, and the accumulator 8 by piping. Has been done.
  • the refrigerant circuit C1 is configured so that the refrigerant flows in the order of the compressor 1, the condenser 2, the liquid receiver 3, the supercooling heat exchanger 4, the decompression device 6, the evaporator 7, and the accumulator 8.
  • the compressor 1 is configured to compress the refrigerant.
  • the compressor 1 is configured to suck in the refrigerant, compress it, and discharge it.
  • the compressor 1 is configured to compress the refrigerant into a high temperature and high pressure state.
  • the compressor 1 includes an injection port provided in the intermediate pressure portion.
  • the compressor 1 may be configured to have a variable capacity.
  • the compressor 1 may be configured so that the capacitance is changed by adjusting the rotation speed by changing the frequency based on the instruction from the control device CD.
  • the condenser 2 is configured to condense the refrigerant discharged from the compressor 1.
  • the condenser 2 is configured to cool and condense the refrigerant discharged from the compressor 1.
  • the condenser 2 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a heat transfer tube penetrating the plurality of fins.
  • the condenser 2 is connected to the compressor 1 and the liquid receiver 3 by a pipe.
  • the liquid receiver 3 is configured so that the refrigerant flowing out of the condenser 2 flows in.
  • the liquid receiver 3 is configured to be able to store the refrigerant flowing out of the condenser 2.
  • the liquid receiver 3 is configured to be able to store the surplus refrigerant liquefied in the refrigerant circuit C1.
  • the liquid receiver 3 has a function of separating the gas refrigerant and the liquid refrigerant.
  • the liquid receiver 3 is connected to the condenser 2 and the supercooling heat exchanger 4 by a pipe.
  • the supercooling heat exchanger 4 is configured to supercool the refrigerant flowing out of the liquid receiver 3.
  • the supercooled heat exchanger 4 is, for example, an air-cooled heat exchanger. Further, the supercooling heat exchanger 4 may be, for example, a water-cooled heat exchanger.
  • the supercooling heat exchanger 4 is connected to the liquid receiving device 3 and the decompression device 6 by a pipe.
  • the supercooled heat exchanger 4 includes a first heat exchanger 4a and a second heat exchanger 4b.
  • the first heat exchanger 4a is configured to supercool the liquid refrigerant flowing out of the liquid receiver 3.
  • the first heat exchanger 4a is connected to the liquid receiver 3 and the second heat exchanger 4b by a pipe.
  • the second heat exchanger 4b is configured to supercool the liquid refrigerant flowing out of the first heat exchanger 4a.
  • the second heat exchanger 4b is connected to the first heat exchanger 4a and the decompression device 6 by a pipe.
  • the second heat exchanger 4b has a high-pressure side refrigerant flow path through which the high-pressure refrigerant flows and a low-pressure side refrigerant flow path through which the low-pressure refrigerant flows.
  • the second heat exchanger 4b is configured to exchange heat between the high-pressure refrigerant flowing through the high-pressure side refrigerant flow path and the low-pressure refrigerant flowing through the low-pressure side refrigerant flow path.
  • the decompression device 6 is configured to depressurize the refrigerant supercooled in the supercooling heat exchanger 4.
  • the pressure reducing device 6 is an expansion valve.
  • the decompression device 6 is, for example, a solenoid valve. This solenoid valve is configured so that the flow rate of the refrigerant can be adjusted based on the instruction from the control device CD.
  • the decompression device 6 is connected to the supercooling heat exchanger 4 and the evaporator 7 by a pipe.
  • the evaporator 7 is configured to evaporate the decompressed refrigerant in the decompression device 6.
  • the evaporator 7 is configured to heat and evaporate the refrigerant flowing out of the decompression device 6.
  • the evaporator 7 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a heat transfer tube penetrating the plurality of fins.
  • the evaporator 7 is connected to the decompression device 6 and the accumulator 8 by a pipe.
  • the accumulator 8 is configured so that the refrigerant flowing out of the evaporator 7 flows in.
  • the accumulator 8 is configured to be able to store the refrigerant flowing out of the evaporator 7.
  • the accumulator 8 is configured to be able to store excess refrigerant.
  • the accumulator 8 is connected to the evaporator 7 and the compressor 1 by a pipe.
  • the refrigerant shortage detection circuit C2 is connected to the refrigerant circuit C1 and the liquid receiver 3 between the evaporator 7 and the compressor 1.
  • the refrigerant shortage detection circuit C2 is connected to the accumulator 8 and the liquid receiver 3. Further, the refrigerant shortage detection circuit C2 is connected to the inside of the liquid receiver 3 and the refrigerant circuit C1 between the evaporator 7 and the accumulator 8.
  • the refrigerant shortage detection circuit C2 includes a solenoid valve 10, a capillary tube 11, a heater 12, an inlet temperature sensor THa, and an outlet temperature sensor THb.
  • the solenoid valve 10, the capillary tube 11, the inlet temperature sensor THa, the heater 12, and the outlet temperature sensor THb are connected by piping.
  • the solenoid valve 10 is configured to open and close the refrigerant shortage detection circuit C2.
  • the solenoid valve 10 is configured to be able to open and close the refrigerant shortage detection circuit C2 based on an instruction from the control device CD.
  • the solenoid valve 10 is connected to a refrigerant shortage detection circuit C2 between the liquid receiver 3 and the capillary tube 11.
  • the solenoid valve 10 is connected to the liquid receiver 3 and the capillary tube 11 by a pipe.
  • the capillary tube 11 is configured so that the refrigerant flowing out of the liquid receiver 3 flows in.
  • the capillary tube 11 is configured to suppress the amount of refrigerant flowing through the refrigerant shortage detection circuit C2.
  • the capillary tube 11 is configured to reduce the pressure of the refrigerant flowing through the refrigerant shortage detection circuit C2.
  • the capillary tube 11 is arranged between the solenoid valve 10 and the inlet temperature sensor THa in the refrigerant shortage detection circuit C2.
  • the heater 12 is configured to heat the refrigerant flowing out of the capillary tube 11.
  • the heater 12 is configured to be able to heat the refrigerant flowing through the refrigerant shortage detection circuit C2 by generating heat based on an instruction from the control device CD.
  • the heater 12 is, for example, an electric heater.
  • the inlet temperature sensor THa is configured to detect the inlet temperature of the refrigerant flowing into the heater 12.
  • the inlet temperature sensor THa is provided at any position of the flow path from the outlet side of the capillary tube 11 to the inlet side of the heater 12.
  • the inlet temperature sensor THa is, for example, a thermistor.
  • the outlet temperature sensor THb is configured to detect the outlet temperature of the refrigerant flowing out of the heater 12.
  • the outlet temperature sensor THb is provided at any position of the flow path from the outlet side of the heater 12 to the inlet side of the accumulator 8.
  • the outlet temperature sensor THb is, for example, a thermistor.
  • the injection circuit C3 branches from the refrigerant circuit C1 between the supercooling heat exchanger 4 and the decompression device 6, and is connected to the intermediate pressure side of the compressor 1 through the low pressure side flow path of the second heat exchanger 4b. There is.
  • the injection circuit C3 includes a solenoid valve 5.
  • the solenoid valve 5 is configured to be able to adjust the amount of the refrigerant flowing through the injection circuit C3 based on the instruction from the control device CD.
  • the solenoid valve 5, the second heat exchanger 4b, and the compressor 1 are connected by piping.
  • the control device CD is configured to control the entire refrigerating device R.
  • the control device CD is composed of, for example, a microcomputer.
  • the control device CD includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the control program is stored in the ROM.
  • the control device CD is configured to control the refrigerant circuit C1 and the refrigerant shortage detection circuit C2. Further, the control device CD is configured to control the injection circuit C3.
  • the information output device OD is configured to output information that the amount of refrigerant is insufficient.
  • the information output device OD is configured to issue a refrigerant shortage alarm.
  • the information output device OD may be configured to notify, for example, a refrigerant shortage alarm by sound. Further, the information output device OD may be, for example, a display for displaying a refrigerant shortage alarm.
  • the refrigerating apparatus R includes an outdoor unit 100 and an indoor unit 200.
  • the outdoor unit 100 and the indoor unit 200 are connected by a pipe.
  • the outdoor unit 100 includes a compressor 1, a condenser 2, a liquid receiver 3, an overcooling heat exchanger 4, and an accumulator 8 of the refrigerant circuit C1, a solenoid valve 10, a capillary tube 11, and a heater 12 of the refrigerant shortage detection circuit C2.
  • the inlet temperature sensor THa and the outlet temperature sensor THb, the solenoid valve 5 of the injection circuit C3, the control device CD, and the information output device OD are accommodated.
  • the indoor unit 200 houses the decompression device 6 and the evaporator 7 of the refrigerant circuit C1.
  • the refrigerant may have a temperature gradient.
  • a refrigerant having a temperature gradient such as R407C, R410A, DR55, R448A, and R463 may be used.
  • a single refrigerant such as R22 or R134a, a pseudo-azeotropic mixed refrigerant such as R410A or R404A, a non-azeotropic mixed refrigerant such as R407C, or the like may be used.
  • a refrigerant circulating in the refrigerant circuit a refrigerant having a double bond in the chemical formula and having a relatively small global warming potential or a mixture thereof may be used.
  • a natural refrigerant such as CO 2 or propane may be used as the refrigerant circulating in the refrigeration circuit.
  • FIG. 2 is a functional block diagram of the control device CD of the refrigerating device R according to the first embodiment.
  • the control device CD includes a control unit CD1, a compressor drive unit CD2, a pressure reducing device drive unit CD3, a solenoid valve drive unit CD4, a heater drive unit CD5, an evaluation value calculation unit CD6, and a refrigerant amount determination unit CD7. ,
  • the output control unit CD8 and the like are included.
  • the control unit CD1 is configured to control the compressor drive unit CD2, the decompression device drive unit CD3, the solenoid valve drive unit CD4, the heater drive unit CD5, the evaluation value calculation unit CD6, the refrigerant amount determination unit CD7, and the output control unit CD8. Has been done.
  • the compressor drive unit CD2 is configured to drive the compressor 1 based on an instruction from the control unit CD1.
  • the compressor drive unit CD2 is configured to control the rotation speed of the motor of the compressor 1 by controlling the frequency of the alternating current flowing through the motor of the compressor 1.
  • the decompression device drive unit CD3 is configured to drive the decompression device 6 based on an instruction from the control unit CD1.
  • the decompression device drive unit CD3 is configured to control the valve opening degree of the decompression device 6 by controlling a drive source such as a motor of the decompression device 6.
  • the solenoid valve drive unit CD4 is configured to drive the solenoid valve 5 and the solenoid valve 10 based on an instruction from the control unit CD1.
  • the solenoid valve drive unit CD4 is configured to control the valve opening degree of the solenoid valve 5 and the solenoid valve 10 by controlling a drive source such as a motor of the solenoid valve 5 and the solenoid valve 10.
  • the heater drive unit CD5 is configured to drive the heater 12 based on an instruction from the control unit CD1.
  • the heater drive unit CD5 is configured to control the temperature of the heater 12 by controlling the current flowing through the heating wire of the heater 12.
  • the evaluation value calculation unit CD6 is configured to calculate an evaluation value based on the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb.
  • the evaluation value calculation unit CD6 is configured to calculate the difference between the inlet temperature and the outlet temperature as an evaluation value.
  • the refrigerant amount determination unit CD7 is configured to determine whether or not the amount of refrigerant is insufficient based on the evaluation value calculated by the evaluation value calculation unit CD6.
  • a set threshold value is stored in advance in the refrigerant amount determination unit CD7.
  • the evaluation value may be 3K or more higher than the set threshold value.
  • the output control unit CD8 is configured to output information to the information output device OD when it is determined that the amount of refrigerant is insufficient.
  • the control device CD calculates an evaluation value based on the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb, and the amount of the refrigerant is calculated based on the calculated evaluation value. It is configured to determine if there is a shortage.
  • the control device CD is configured to calculate the difference between the inlet temperature and the outlet temperature when the heater 12 is operating as an evaluation value.
  • the control device CD is configured to determine that the amount of refrigerant is insufficient when the evaluation value is higher than the set threshold value.
  • the control device CD is configured to output information to the information output device OD when it is determined that the amount of refrigerant is insufficient.
  • FIG. 1 is a refrigerant circuit diagram of the refrigerating apparatus R according to the first embodiment during normal operation.
  • the refrigerant circuit C1 includes a compressor 1, a condenser 2, a liquid receiver 3, a first heat exchanger 4a of the overcooling heat exchanger 4, and a second heat exchanger 4b of the overcooling heat exchanger 4.
  • the depressurizing device 6, the evaporator 7, and the accumulator 8 flow in this order.
  • the refrigerant flowing into the compressor 1 is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 1.
  • the high-temperature and high-pressure gas refrigerant flows into the condenser 2, is condensed by the condenser 2, becomes a liquid refrigerant, and flows out from the condenser 2.
  • This liquid refrigerant flows into the liquid receiver 3 and is temporarily stored in the liquid receiver 3.
  • surplus refrigerant is generated depending on the inoperability of the indoor unit 200, the outside air temperature, the condensation temperature, and the like. This surplus refrigerant is stored in the liquid receiver 3.
  • This liquid refrigerant flows out from the liquid receiver 3, is overcooled in the first heat exchanger 4a and the second heat exchanger 4b of the overcooling heat exchanger 4, and flows out from the overcooling heat exchanger 4.
  • the supercooled refrigerant flows into the decompression device 6, is decompressed by the decompression device 6, becomes a low-pressure gas-liquid two-phase refrigerant, and flows out from the decompression device 6.
  • This low-pressure gas-liquid two-phase refrigerant flows into the evaporator 7 and is evaporated by the evaporator 7 to become a gas refrigerant.
  • This gas refrigerant flows into the compressor 1 through the accumulator 8. In this way, the refrigerant circulates in the refrigerant circuit C1.
  • a part of this refrigerant is depressurized by the solenoid valve 5 to become a gas-liquid two-phase refrigerant having an intermediate pressure, and flows into the injection port of the compressor 1 through the second heat exchanger 4b.
  • the solenoid valve 10 In the refrigerant shortage detection circuit C2, the solenoid valve 10 is in a fully closed state. Therefore, the refrigerant shortage detection circuit C2 is closed. Therefore, the refrigerant stored in the liquid receiver 3 does not reach the accumulator 8 through the refrigerant shortage detection circuit C2.
  • FIG. 3 is a refrigerant circuit diagram during the refrigerant shortage detection operation of the refrigerating apparatus R according to the first embodiment.
  • the refrigerant shortage detection operation is different from the normal operation in that the solenoid valve 10 is in an open state.
  • the solenoid valve 10 is opened according to an instruction from the control device CD.
  • the solenoid valve 10 may be opened by being instructed by the control device CD at a regular period. This periodic period may be, for example, hourly.
  • the control device CD calculates the difference between the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb as an evaluation value.
  • the difference between the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb is small.
  • the refrigerant is in a gas composition state (gas refrigerant)
  • the difference between the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb is large. This is because when the refrigerant is heated by the heater 12, the temperature is more likely to rise in the gas composition state than in the liquid composition state.
  • the control device CD determines that the amount of the refrigerant is insufficient when the difference between the inlet temperature and the outlet temperature of the refrigerant is larger than the set threshold value.
  • the control device CD sets an evaluation value based on the inlet temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature of the refrigerant detected by the outlet temperature sensor THb. It is configured to calculate and determine whether or not the amount of refrigerant is insufficient based on the calculated evaluation value. Therefore, it is possible to determine whether or not the amount of the refrigerant is insufficient based on the evaluation values in the liquid composition state and the gas composition state of the refrigerant in the refrigerant shortage detection circuit C2. Therefore, it is possible to accurately determine the shortage of the refrigerant amount, and it is possible to expand the detection range of the refrigerant amount.
  • the refrigerant shortage detection circuit C2 is connected to the inside of the liquid receiver 3 and the refrigerant circuit between the evaporator 7 and the accumulator 8. Therefore, the refrigerant can be directly flowed from the liquid receiver 3 into the refrigerant shortage detection circuit C2. Therefore, since the influence of the refrigerant circulation amount, temperature, and the like can be suppressed, the refrigerant shortage can be accurately determined. Further, the refrigerant can flow into the compressor 1 through the accumulator 8.
  • the refrigerant shortage detection circuit C2 includes a solenoid valve 10 that opens and closes the refrigerant shortage detection circuit C2. Therefore, the solenoid valve 10 opens and closes the refrigerant shortage detection circuit C2, so that the refrigerant detection operation can be periodically performed.
  • the solenoid valve 10 is connected to the refrigerant shortage detection circuit C2 between the liquid receiver 3 and the capillary tube 11. Therefore, it is possible to suppress the inflow of the refrigerant into the capillary tube 11 during normal operation.
  • the control device CD is configured to calculate the difference between the inlet temperature and the outlet temperature when the heater 12 is operating as an evaluation value. Therefore, it is possible to determine whether or not the amount of the refrigerant is insufficient by using the difference between the inlet temperature and the outlet temperature when the heater 12 is operating as an evaluation value.
  • control device CD is configured to determine that the amount of the refrigerant is insufficient when the evaluation value is higher than the set threshold value. Therefore, when the evaluation value is higher than the set threshold value, it can be determined that the amount of the refrigerant is insufficient.
  • the evaluation value is 3K or more higher than the set threshold value.
  • An error occurs in the temperature of the refrigerant detected by the inlet temperature sensor THa and the outlet temperature sensor THb.
  • the ambient temperatures of the inlet temperature sensor THa and the outlet temperature sensor THb vary. Even if these effects are taken into consideration, erroneous detection can be suppressed because the evaluation value is 3K or more higher than the set threshold value.
  • the control device CD is configured to output information to the information output device OD when it is determined that the amount of the refrigerant is insufficient. Therefore, when it is determined that the amount of the refrigerant is insufficient, the information that the amount of the refrigerant is insufficient can be output to the information output device OD.
  • the modified example of the refrigerating apparatus R according to the first embodiment has the same configuration, operation, and effect as the refrigerating apparatus R according to the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram of a modification 1 of the refrigerating apparatus R according to the first embodiment.
  • the refrigerant shortage detection circuit C2 is connected to the inside of the liquid receiver 3 and the refrigerant circuit C1 between the accumulator 8 and the compressor 1.
  • the outlet pipe of the refrigerant shortage detection circuit C2 is connected to the suction pipe of the compressor 1.
  • the refrigerant shortage detection circuit C2 is connected to the inside of the liquid receiver 3 and the refrigerant circuit C1 between the accumulator 8 and the compressor 1. There is. Therefore, the refrigerant can be directly flowed from the liquid receiver 3 into the refrigerant shortage detection circuit C2. Therefore, since the influence of the refrigerant circulation amount, temperature, and the like can be suppressed, the refrigerant shortage can be accurately determined. Further, the length of the pipe of the refrigerant shortage detection circuit C2 can be shortened as compared with the case where the refrigerant shortage detection circuit C2 is connected to the accumulator 8.
  • FIG. 5 is a refrigerant circuit diagram of a modification 2 of the refrigerating apparatus R according to the first embodiment.
  • the refrigerant shortage detection circuit C2 includes a solenoid valve 10 that opens and closes the refrigerant shortage detection circuit C2.
  • the solenoid valve 10 is connected to a refrigerant shortage detection circuit C2 between the capillary tube 11 and the inlet temperature sensor THa.
  • the refrigerant shortage detection circuit C2 includes a solenoid valve 10 that opens and closes the refrigerant shortage detection circuit C2. Therefore, the solenoid valve 10 opens and closes the refrigerant shortage detection circuit C2, so that the refrigerant detection operation can be periodically performed.
  • the solenoid valve 10 is connected to the refrigerant shortage detection circuit C2 between the capillary tube 11 and the inlet temperature sensor THa. Therefore, the amount of the refrigerant flowing through the solenoid valve 10 can be suppressed.
  • FIG. 6 is a refrigerant circuit diagram of a modification 3 of the refrigerating apparatus R according to the first embodiment.
  • the number of supercooled heat exchangers 4 is one. Specifically, the supercooled heat exchanger 4 does not have the first heat exchanger 4a in the refrigerating apparatus R according to the first embodiment, but has the second heat exchanger 4b.
  • the structure of the supercooling heat exchanger 4 and the refrigerating apparatus R is changed. It can be simplified.
  • FIG. 7 is a refrigerant circuit diagram of a modification 4 of the refrigerating apparatus R according to the first embodiment.
  • the refrigerant shortage detection circuit C2 is configured to branch from the refrigerant circuit C1 between the liquid receiver 3 and the supercooling heat exchanger.
  • the inlet pipe of the refrigerant shortage detection circuit C2 is connected to the outflow pipe of the liquid receiver 3.
  • the refrigerant shortage detection circuit C2 is configured to branch from the refrigerant circuit C1 between the liquid receiver 3 and the supercooling heat exchanger. .. Therefore, the structure of the refrigerant shortage detection circuit C2 and the liquid receiver 3 can be simplified.
  • FIG. 8 is a refrigerant circuit diagram of a modification 5 of the refrigerating apparatus R according to the first embodiment.
  • the refrigerant circuit C1 includes a plurality of compressors 1.
  • the plurality of compressors 1 are connected to the accumulator 8 and the condenser 2 in parallel with each other.
  • the refrigerant circuit C1 includes two compressors 1.
  • the supercooled heat exchanger 4 includes a first heat exchanger 4a and a plurality of second heat exchangers 4b.
  • the plurality of second heat exchangers 4b are connected to the first heat exchanger 4a and the decompression device 6 in parallel with each other.
  • Modification 5 of the refrigerating apparatus R according to the first embodiment includes a plurality of injection circuits C3.
  • the plurality of compressors 1 are connected to the accumulator 8 and the condenser 2 in parallel with each other. Therefore, the refrigerating capacity of the refrigerating apparatus R can be improved by the plurality of compressors 1.
  • FIG. 9 is a refrigerant circuit diagram of a modification 6 of the refrigerating apparatus R according to the first embodiment.
  • the refrigerating apparatus R includes a remote condensing unit.
  • the outdoor unit 100 includes a first unit 101 and a second unit 102.
  • the first unit 101 and the second unit 102 are connected by a pipe.
  • the first unit 101 includes a compressor 1, a liquid receiver 3, an overcooling heat exchanger 4, and an accumulator 8 of the refrigerant circuit C1, a solenoid valve 10, a capillary tube 11, a heater 12, and an inlet temperature of the refrigerant shortage detection circuit C2.
  • the sensor THa and the outlet temperature sensor THb, the solenoid valve 5 of the injection circuit C3, the control device CD, and the information output device OD are accommodated.
  • the condenser 2 of the refrigerant circuit C1 is housed in the second unit 102.
  • the condenser 2 of the refrigerant circuit C1 is housed in the second unit 102.
  • the condenser 2 is housed in a unit different from the unit in which the compressor 1 is housed.
  • the refrigerating apparatus R can be provided with a remote condensing unit.
  • the refrigerating apparatus R according to the second embodiment has the same configuration, operation, and effect as the refrigerating apparatus R according to the first embodiment and a modification.
  • FIG. 10 is a cross-sectional view schematically showing a piping structure inside a liquid receiver 3 of the refrigerating apparatus R according to the second embodiment.
  • the liquid receiver 3 includes an inflow pipe 3a, an outflow pipe 3b, and a housing 3c.
  • the inflow pipe 3a is configured to allow the refrigerant to flow into the liquid receiver 3.
  • the inflow pipe 3a is configured to extend linearly and then bend upward.
  • a refrigerant inlet is provided at the tip of the inflow pipe 3a.
  • the outflow pipe 3b is configured to allow the refrigerant to flow out from the liquid receiver 3.
  • the outflow pipe 3b is configured to extend linearly and then bend downward.
  • a refrigerant outlet is provided at the tip of the outflow pipe 3b.
  • the inflow pipe 3a and the outflow pipe 3b are inserted into the housing 3c.
  • the refrigerant shortage detection circuit C2 includes a refrigerant shortage detection pipe P.
  • the refrigerant shortage detection pipe P is connected to the liquid receiver 3.
  • the refrigerant shortage detection pipe P is inserted in the housing 3c.
  • the refrigerant shortage detection pipe is configured to extend linearly and then bend downward.
  • a refrigerant outlet is provided at the tip of the refrigerant shortage detection pipe P.
  • the outlet (first outlet) of the refrigerant shortage detection pipe P is located below the inlet of the inflow pipe 3a and above the outlet (second outlet) of the outflow pipe 3b. There is.
  • the refrigerant flowing out of the condenser 2 flows into the inside of the housing 3c of the liquid receiver 3 from the inflow pipe 3a of the liquid receiver 3 and is stored.
  • This refrigerant flows out from the outflow pipe 3b of the liquid receiver 3 to the supercooling heat exchanger 4. Further, a part of this refrigerant is directly taken out from the inside of the liquid receiver 3 by the refrigerant shortage detection pipe P, and flows out from the refrigerant shortage detection pipe P to the refrigerant shortage detection circuit C2.
  • FIG. 10 is a cross-sectional view schematically showing a normal state of the amount of refrigerant in the liquid receiver 3 of the refrigerating apparatus R according to the second embodiment.
  • the height of the liquid level S of the refrigerant exceeds the height of the outlet of the refrigerant shortage detection pipe P. That is, the outlet of the refrigerant shortage detection pipe P is located below the liquid level S of the refrigerant. Therefore, the liquid refrigerant flows out from the outlet of the refrigerant shortage detection pipe P.
  • the control device CD determines that the amount of the refrigerant is not insufficient. do.
  • FIG. 11 is a cross-sectional view schematically showing a state of insufficient amount of refrigerant in the liquid receiver 3 of the refrigerating apparatus R according to the second embodiment.
  • the amount of refrigerant is insufficient, the height of the liquid level S of the refrigerant is lower than the height of the outlet of the refrigerant shortage detection pipe P. That is, the outlet of the refrigerant shortage detection pipe P is located above the liquid level S of the refrigerant. Therefore, the gas refrigerant flows out from the outlet of the refrigerant shortage detection pipe P.
  • the control device CD determines that the amount of the refrigerant is insufficient. do.
  • FIG. 12 is a cross-sectional view schematically showing the turbulence of the liquid level S of the refrigerant inside the receiver 3 of the refrigerating apparatus R according to the second embodiment.
  • the liquid level S of the refrigerant may be disturbed inside the receiver 3.
  • the distance D in the height direction between the outlet (first outlet) of the refrigerant shortage detection pipe P and the outlet (second outlet) of the outflow pipe 3b is 5 mm or more. Therefore, when the amount of the refrigerant is determined, the influence of the disturbance of the liquid level S of the refrigerant is suppressed.
  • the height of the outlet (first outlet) of the refrigerant shortage detection pipe P and the outlet (second outlet) of the outflow pipe 3b The distance D in the radial direction is 15 mm or less.
  • the outlet (first outlet) of the refrigerant shortage detection pipe P is located below the inlet of the inflow pipe 3a and is located below the outlet of the outflow pipe 3b. It is located above (second outlet). Therefore, the control device CD can determine that the amount of refrigerant is not insufficient in the normal state of the amount of refrigerant, and can determine that the amount of refrigerant is insufficient in the state of insufficient amount of refrigerant.
  • the distance D in the height direction between the outlet (first outlet) of the refrigerant shortage detection pipe P and the outlet (second outlet) of the outflow pipe 3b is It is 5 mm or more and 15 mm or less. Therefore, when the amount of the refrigerant is determined, the influence of the disturbance of the liquid level S of the refrigerant can be suppressed. Therefore, it is possible to suppress erroneous detection of the amount of refrigerant.
  • the modified example of the refrigerating apparatus R according to the second embodiment has the same configuration, operation, and effect as the refrigerating apparatus R according to the second embodiment.
  • FIG. 13 is a cross-sectional view schematically showing the piping structure inside the receiver of the modification 1 of the refrigerating apparatus R according to the second embodiment.
  • the inflow pipe 3a of the liquid receiver 3 is configured to extend linearly to the tip.
  • FIG. 14 is a cross-sectional view schematically showing the piping structure inside the liquid receiver 3 of the modification 2 of the refrigerating apparatus R according to the second embodiment.
  • the inflow pipe 3a of the liquid receiver 3 is configured to extend linearly to the tip.
  • the refrigerant shortage detection pipe P is configured to extend linearly and then bend downward at a right angle.
  • the refrigerating apparatus R according to the third embodiment has the same configuration, operation, and effect as the refrigerating apparatus R according to the second embodiment and a modification.
  • FIG. 15 is a cross-sectional view schematically showing the internal configuration of the liquid receiver 3 of the refrigerating apparatus R according to the third embodiment.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI of FIG. In FIG. 16, the inflow pipe 3a is not shown for convenience of explanation.
  • the liquid receiving device 3 includes the partition plate 300.
  • the partition plate 300 is for stabilizing the liquid level S of the refrigerant.
  • the partition plate 300 is configured to partition the space in which the inflow port of the inflow pipe 3a is arranged and the space in which the outflow pipe 3b and the outflow port of the refrigerant shortage detection pipe P are arranged.
  • the upper end of the partition plate 300 is separated from the upper end of the inner peripheral surface of the housing 3c.
  • the lower end of the partition plate 300 is separated from the lower end of the inner peripheral surface of the housing 3c. That is, a gap GP between the partition plate 300 and the housing 3c is provided on the upper side and the lower side of the partition plate 300.
  • FIG. 17 is an enlarged cross-sectional view schematically showing the internal configuration of the liquid receiver 3 of the refrigerating apparatus R according to the second embodiment.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII of FIG. In FIG. 18, the inflow pipe 3a is not shown for convenience of explanation.
  • the lower end of the partition plate 300 is located below the outlet (second outlet) of the outflow pipe 3b.
  • the distance H1 between the lower end of the partition plate 300 and the inner peripheral surface of the housing 3c is shorter than the distance H2 between the outlet (second outlet) of the outflow pipe 3b and the inner peripheral surface of the housing 3c.
  • the liquid receiving device 3 includes the partition plate 300. Therefore, the partition plate 300 can stabilize the liquid level S of the refrigerant. Further, the lower end of the partition plate 300 is located below the outlet (second outlet) of the outflow pipe 3b. Therefore, the refrigerant can be discharged from the outflow pipe 3b in a state where the liquid level S of the refrigerant is stabilized.
  • the modified example of the refrigerating apparatus R according to the third embodiment has the same configuration, operation, and effect as the refrigerating apparatus R according to the third embodiment.
  • FIG. 19 is a cross-sectional view schematically showing the internal configuration of the receiver 3 of the modification 1 of the refrigerating apparatus R according to the third embodiment.
  • the liquid receiver 3 includes a plurality of partition plates 300.
  • the liquid receiver 3 includes three partition plates 300. The three partition plates 300 are arranged so as to be spaced apart from each other.
  • the liquid receiver 3 includes a plurality of partition plates 300. Therefore, the liquid level S of the refrigerant can be further stabilized by the plurality of partition plates 300.
  • FIG. 20 is a cross-sectional view schematically showing the configuration of the partition plate 300 of the liquid receiver 3 of the modification 2 of the refrigerating apparatus R according to the third embodiment.
  • FIG. 20 is a cross-sectional view corresponding to FIG.
  • the partition plate 300 of the liquid receiver 3 is a perforated plate. That is, the partition plate 300 is provided with a plurality of holes penetrating the partition plate 300 in the thickness direction of the partition plate 300. The partition plate 300 is arranged so as to cover the entire inner peripheral surface of the housing 3c.
  • the partition plate 300 is a perforated plate. Therefore, the liquid level S of the refrigerant can be further stabilized by the perforated plate.
  • FIG. 21 is a cross-sectional view schematically showing the configuration of the partition plate 300 of the liquid receiver 3 of the modification 3 of the refrigerating apparatus R according to the third embodiment.
  • FIG. 21 is a cross-sectional view corresponding to FIG.
  • the partition plate 300 of the liquid receiver 3 includes a flat plate portion 300a and a perforated plate portion 300b.
  • the flat plate portion 300a and the perforated plate portion 300b of the partition plate 300 are arranged so as to cover the entire inner peripheral surface of the housing 3c.
  • the flat plate portion 300a is arranged in the center of the housing 3c.
  • the flat plate portion 300a is not provided with a hole.
  • the perforated plate portion 300b is arranged between the upper end of the flat plate portion 300a and the upper end of the inner peripheral surface of the housing 3c and between the lower end of the flat plate portion 300a and the lower end of the inner peripheral surface of the housing 3c.
  • the perforated plate portion 300b is provided with a plurality of holes penetrating the perforated plate portion 300b in the thickness direction of the perforated plate portion 300b.
  • the partition plate 300 includes a flat plate portion 300a and a perforated plate portion 300b. Therefore, the liquid level S of the refrigerant can be further stabilized by the flat plate portion 300a and the perforated plate portion 300b.
  • FIG. 22 is a cross-sectional view schematically showing the internal configuration of the liquid receiver 3 of the refrigerating apparatus R according to the third embodiment.
  • the liquid receiver 3 includes a first container 31, a second container 32, a pressure equalizing pipe 33, and a connecting pipe 34.
  • An inflow pipe 3a and an outflow pipe 3b are connected to the first container 31.
  • a refrigerant shortage detection pipe P is connected to the second container 32.
  • the first container 31 is connected to the second container 32 by a pressure equalizing pipe 33 and a connecting pipe 34.
  • the refrigerant shortage detection pipe P is housed in a container separate from the inflow pipe 3a and the outflow pipe 3b.
  • the pressure equalizing pipe 33 is configured to allow the gas refrigerant to flow from the first container 31 to the second container 32.
  • the connection pipe 34 is configured to allow the liquid refrigerant to flow from the first container 31 to the second container 32.
  • the pressure equalizing pipe 33 is located above the inflow port of the inflow pipe 3a, the outflow port (first outflow port) of the refrigerant shortage detection pipe P, and the outflow port (second outflow port) of the outflow pipe 3b.
  • the connection pipe 34 is located below the inflow port of the inflow pipe 3a.
  • the liquid receiver 3 is connected to the first container 31 to which the inflow pipe 3a and the outflow pipe 3b are connected and the refrigerant shortage detection pipe P.
  • the pressure equalizing pipe 33 is located above the inflow port of the inflow pipe 3a, the outflow port (first outflow port) of the refrigerant shortage detection pipe P, and the outflow port (second outflow port) of the outflow pipe 3b.
  • the connection pipe 34 is located below the inflow port of the inflow pipe 3a. Therefore, when the amount of the refrigerant is determined, the influence of the disturbance of the liquid level S of the refrigerant can be suppressed. Therefore, it is possible to suppress erroneous detection of the amount of refrigerant.
  • 1 Compressor 2 Condenser, 3 Liquid receiver, 3a Inflow pipe, 3b Outflow pipe, 3c housing, 4 Overcooling heat exchanger, 4a 1st heat exchanger, 4b 2nd heat exchanger, 5 Electromagnetic valve, 10 electromagnetic valve, 6 decompression device, 7 evaporator, 8 accumulator, 11 capillary tube, 12 heater, 31 1st container, 32 2nd container, 33 pressure equalizing pipe, 34 connection pipe, 100 outdoor unit, 101 1st unit, 102 2nd unit, 200 indoor unit, 300 partition plate, C1 refrigerant circuit, C2 refrigerant shortage detection circuit, C3 injection circuit, CD control device, OD information output device, P refrigerant shortage detection pipe, R refrigeration device, THa inlet temperature Sensor, THb outlet temperature sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍装置(R)は、冷媒回路(C1)と、冷媒不足検知回路(C2)と、制御装置(CD)とを備えている。冷媒回路(C1)は、少なくとも1つの圧縮機(1)と、凝縮器(2)と、受液器(3)と、過冷却熱交換器(4)と、減圧装置(6)と、蒸発器(7)と、アキュムレータ(8)とを含んでいる。冷媒不足検知回路(C2)は、キャピラリチューブ(11)と、ヒータ(12)と、入口温度センサ(THa)と、出口温度センサ(THb)とを含んでいる。制御装置(CD)は、入口温度センサ(THa)により検知された冷媒の入口温度と出口温度センサ(THb)により検知された冷媒の出口温度とに基づいて評価値を算出し、算出した評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。

Description

冷凍装置
 本開示は、冷凍装置に関するものである。
 冷凍装置における冷媒量の過不足は、能力低下又は構成機器の損傷の原因になる。そこで、従来から冷凍装置に充填されている冷媒量の過不足を判定することが提案されている。例えば、特開2010-223542号公報(特許文献1)には、過冷却熱交換器の温度効率を算出し、算出した温度効率から冷媒量を推定して過不足を判定する冷凍空調装置が開示されている。この冷凍空調装置では、圧縮機の吐出側に設けた圧力センサにおいて吐出圧力が測定される。この吐出圧力に基づき飽和ガス温度が求められる。この飽和ガス温度と外気温度もしくは凝縮器の出口温度とにより温度効率が算出される。そして、温度効率が閾値を下回った場合、制御装置が冷媒不足であると判定する。
特開2010-223542号公報
 上記の公報に記載された冷凍空調装置では熱源側ユニットと利用側ユニットとが配管で接続されている。この配管は現地接続されるため、この配管は長くなる。したがって、熱源側ユニットと利用側ユニットとの間では冷媒の圧力損失が大きくなる。したがって、温度効率が算出されたときに、温度効率が実際の値よりも大きくなるため、温度効率の算出精度が低くなる。このため、冷媒量の誤検知が発生する。
 また、例えば、氷点下以下の外気での低外気運転などの運転条件または冷媒の循環量などの変動により冷媒量の不検知または誤検知が発生する。このため、冷媒量の検知可能な範囲が限られている。
 本開示は上記課題に鑑みてなされたものであり、その目的は、冷媒量の不足の判定を精度良く行うことができ、かつ冷媒量の検知範囲を拡大することができる冷凍装置を提供することである。
 本開示の冷凍装置は、冷媒回路と、冷媒不足検知回路と、制御装置とを備えている。冷媒回路は、冷媒を圧縮する少なくとも1つの圧縮機と、圧縮機から吐出された冷媒を凝縮させる凝縮器と、凝縮器から流出した冷媒が流入する受液器と、受液器から流出した冷媒を過冷却する過冷却熱交換器と、過冷却熱交換器において過冷却された冷媒を減圧する減圧装置と、減圧装置において減圧された前記冷媒を蒸発させる蒸発器と、蒸発器から流出した冷媒が流入するアキュムレータとを含んでいる。冷媒不足検知回路は、蒸発器と圧縮機との間の冷媒回路と受液器とに接続されている。冷媒不足検知回路は、受液器から流出した冷媒が流入するキャピラリチューブと、キャピラリチューブから流出した冷媒を加熱するヒータと、ヒータに流入する冷媒の入口温度を検知する入口温度センサと、ヒータから流出する冷媒の出口温度を検知する出口温度センサとを含んでいる。制御装置は、冷媒回路および冷媒不足検知回路を制御する。制御装置は、入口温度センサにより検知された冷媒の入口温度と出口温度センサにより検知された冷媒の出口温度とに基づいて評価値を算出し、算出した評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。
 本開示の冷凍装置によれば、制御装置は、入口温度センサにより検知された冷媒の入口温度と出口温度センサにより検知された冷媒の出口温度とに基づいて評価値を算出し、算出した評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。このため、冷媒量の不足の判定を精度良く行うことができ、かつ冷媒量の検知範囲を拡大することができる。
実施の形態1に係る冷凍装置の冷媒回路図である。 実施の形態1に係る冷凍装置の制御装置の機能ブロック図である。 実施の形態1に係る冷凍装置の冷媒検知運転時の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例1の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例2の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例3の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例4の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例5の冷媒回路図である。 実施の形態1に係る冷凍装置の変形例6の冷媒回路図である。 実施の形態2に係る冷凍装置の受液器内部の配管構造を概略的に示す断面図である。 実施の形態2に係る冷凍装置の受液器における冷媒量の不足状態を概略的に示す断面図である。 実施の形態2に係る冷凍装置の受液器における冷媒の液面の乱れを概略的に示す断面図である。 実施の形態2に係る冷凍装置の変形例1の受液器内部の配管構造を概略的に示す断面図である。 実施の形態2に係る冷凍装置の変形例2の受液器内部の配管構造を概略的に示す断面図である。 実施の形態3に係る冷凍装置の受液器内部の構成を概略的に示す断面図である。 図15のXIV-XIV線に沿う断面図である。 実施の形態3に係る冷凍装置の受液器内部の構成を概略的に示す拡大断面図である。 図17のXVIII-XVIII線に沿う断面図である。 実施の形態3に係る冷凍装置の変形例1の受液器内部の構成を概略的に示す断面図である。 実施の形態3に係る冷凍装置の変形例2の受液器の仕切り板の構成を概略的に示す断面図である。 実施の形態3に係る冷凍装置の変形例3の受液器の仕切り板の構成を概略的に示す断面図である。 実施の形態3に係る冷凍装置の変形例4の受液器の仕切り板の構成を概略的に示す断面図である。
 以下、実施の形態について図に基づいて説明する。なお、以下においては、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。
 実施の形態1.
 図1を参照して、実施の形態1に係る冷凍装置Rの構成について説明する。図1は、実施の形態1に係る冷凍装置Rの冷媒回路図である。
 図1に示されるように、実施の形態1に係る冷凍装置Rは、冷媒回路C1と、冷媒不足検知回路C2と、インジェクション回路C3と、制御装置CDと、情報出力装置ODとを備えている。
 冷媒回路C1は、圧縮機1と、凝縮器2と、受液器3と、過冷却熱交換器4と、減圧装置6と、蒸発器7と、アキュムレータ8とを含んでいる。圧縮機1と、凝縮器2と、受液器3と、過冷却熱交換器4と、減圧装置6と、蒸発器7と、アキュムレータ8とが配管で接続されることにより冷媒回路C1が構成されている。冷媒回路C1は、圧縮機1、凝縮器2、受液器3、過冷却熱交換器4、減圧装置6、蒸発器7、アキュムレータ8の順に冷媒が流れるように構成されている。
 圧縮機1は、冷媒を圧縮するように構成されている。圧縮機1は、冷媒を吸入し圧縮して吐出するように構成されている。圧縮機1は、冷媒を圧縮して高温かつ高圧の状態にするように構成されている。圧縮機1は、中間圧部に設けられたインジェクションポートを含んでいる。
 圧縮機1は、容量可変に構成されていてもよい。圧縮機1は、制御装置CDからの指示に基づいて周波数が変更されることで回転数が調整されることにより容量が変化するように構成されていてもよい。
 凝縮器2は、圧縮機1から吐出された冷媒を凝縮させるように構成されている。凝縮器2は、圧縮機1から吐出された冷媒を冷却して凝縮させるように構成されている。凝縮器2は、例えば、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ型熱交換器である。凝縮器2は、圧縮機1と受液器3とに配管により接続されている。
 受液器3は、凝縮器2から流出した冷媒が流入するように構成されている。受液器3は、凝縮器2から流出した冷媒を貯留可能に構成されている。受液器3は、冷媒回路C1において液化した余剰冷媒を貯留可能に構成されている。受液器3は、ガス冷媒と液冷媒とを分離させる機能を有している。受液器3は、凝縮器2と過冷却熱交換器4とに配管により接続されている。
 過冷却熱交換器4は、受液器3から流出した冷媒を過冷却するように構成されている。過冷却熱交換器4は、例えば、空冷式熱交換器である。また、過冷却熱交換器4は、例えば、水冷式熱交換器であってもよい。過冷却熱交換器4は、受液器3と減圧装置6とに配管により接続されている。
 過冷却熱交換器4は、第1熱交換器4aと、第2熱交換器4bとを含んでいる。第1熱交換器4aは、受液器3から流出した液冷媒を過冷却するように構成されている。第1熱交換器4aは、受液器3と第2熱交換器4bとに配管により接続されている。第2熱交換器4bは、第1熱交換器4aから流出した液冷媒を過冷却するように構成されている。第2熱交換器4bは、第1熱交換器4aと減圧装置6とに配管により接続されている。
 第2熱交換器4bは、高圧冷媒が流れる高圧側冷媒流路と、低圧冷媒が流れる低圧側冷媒流路とを有している。第2熱交換器4bは、高圧側冷媒流路を流れる高圧冷媒と低圧側冷媒流路を流れる低圧冷媒との間で熱交換が行われるように構成されている。
 減圧装置6は、過冷却熱交換器4において過冷却された冷媒を減圧するように構成されている。減圧装置6は、膨張弁である。減圧装置6は、例えば、電磁弁である。この電磁弁は、制御装置CDからの指示に基づいて冷媒の流量を調整可能に構成されている。減圧装置6は、過冷却熱交換器4と蒸発器7とに配管により接続されている。
 蒸発器7は、減圧装置6において減圧された冷媒を蒸発させるように構成されている。蒸発器7は、減圧装置6から流出した冷媒を加熱して蒸発させるように構成されている。蒸発器7は、例えば、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ型熱交換器である。蒸発器7は、減圧装置6とアキュムレータ8とに配管により接続されている。
 アキュムレータ8は、蒸発器7から流出した冷媒が流入するように構成されている。アキュムレータ8は、蒸発器7から流出した冷媒を貯留可能に構成されている。アキュムレータ8は余剰冷媒を貯留可能に構成されている。アキュムレータ8は、蒸発器7と圧縮機1とに配管により接続されている。
 冷媒不足検知回路C2は、蒸発器7と圧縮機1との間の冷媒回路C1と受液器3とに接続されている。本実施の形態では、冷媒不足検知回路C2は、アキュムレータ8と受液器3とに接続されている。また、冷媒不足検知回路C2は、受液器3の内部と、蒸発器7とアキュムレータ8との間の冷媒回路C1とに接続されている。
 冷媒不足検知回路C2は、電磁弁10と、キャピラリチューブ11と、ヒータ12と、入口温度センサTHaと、出口温度センサTHbとを含んでいる。冷媒不足検知回路C2では、電磁弁10と、キャピラリチューブ11と、入口温度センサTHaと、ヒータ12と、出口温度センサTHbとが配管により接続されている。
 電磁弁10は、冷媒不足検知回路C2を開閉するように構成されている。電磁弁10は、制御装置CDからの指示に基づいて冷媒不足検知回路C2を開閉可能に構成されている。電磁弁10は、受液器3とキャピラリチューブ11との間の冷媒不足検知回路C2に接続されている。電磁弁10は、受液器3とキャピラリチューブ11に配管により接続されている。
 キャピラリチューブ11は、受液器3から流出した冷媒が流入するように構成されている。キャピラリチューブ11は、冷媒不足検知回路C2を流れる冷媒の冷媒量を抑制するように構成されている。キャピラリチューブ11は、冷媒不足検知回路C2を流れる冷媒の圧力を低減するように構成されている。キャピラリチューブ11は、冷媒不足検知回路C2において電磁弁10と入口温度センサTHaとの間に配置されている。
 ヒータ12は、キャピラリチューブ11から流出した冷媒を加熱するように構成されている。ヒータ12は、制御装置CDからの指示に基づいて発熱することにより冷媒不足検知回路C2を流れる冷媒を加熱可能に構成されている。ヒータ12は、例えば、電熱ヒータである。
 入口温度センサTHaは、ヒータ12に流入する冷媒の入口温度を検知するように構成されている。入口温度センサTHaは、キャピラリチューブ11の出口側からヒータ12の入口側に至る流路のいずれかの位置に設けられている。入口温度センサTHaは、例えば、サーミスタである。
 出口温度センサTHbは、ヒータ12から流出する冷媒の出口温度を検知するように構成されている。出口温度センサTHbは、ヒータ12の出口側からアキュムレータ8の入口側に至る流路のいずれかの位置に設けられている。出口温度センサTHbは、例えば、サーミスタである。
 インジェクション回路C3は、過冷却熱交換器4と減圧装置6との間の冷媒回路C1から分岐し、第2熱交換器4bの低圧側流路を通って圧縮機1の中間圧側に接続されている。インジェクション回路C3は、電磁弁5を含んでいる。電磁弁5は、制御装置CDからの指示に基づいてインジェクション回路C3を流れる冷媒の冷媒量を調整可能に構成されている。電磁弁5と、第2熱交換器4bと、圧縮機1とは配管により接続されている。
 制御装置CDは、冷凍装置Rの全体を制御するように構成されている。制御装置CDは、例えば、マイクロコンピュータで構成されている。制御装置CDは、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含んでいる。ROMには制御プログラムが記憶されている。
 制御装置CDは、冷媒回路C1および冷媒不足検知回路C2を制御するように構成されている。また、制御装置CDは、インジェクション回路C3を制御するように構成されている。
 情報出力装置ODは、冷媒量が不足しているとの情報を出力するように構成されている。情報出力装置ODは、冷媒不足警報を発するように構成されている。情報出力装置ODは、例えば、冷媒不足警報を音で報知するように構成されていてもよい。また、情報出力装置ODは、例えば、冷媒不足警報を表示する表示器であってもよい。
 実施の形態1に係る冷凍装置Rは、室外ユニット100と、室内ユニット200とを備えている。室外ユニット100と室内ユニット200とは配管により接続されている。室外ユニット100には、冷媒回路C1の圧縮機1、凝縮器2、受液器3、過冷却熱交換器4およびアキュムレータ8と、冷媒不足検知回路C2の電磁弁10、キャピラリチューブ11、ヒータ12、入口温度センサTHaおよび出口温度センサTHbと、インジェクション回路C3の電磁弁5と、制御装置CDと、情報出力装置ODとが収容されている。室内ユニット200には、冷媒回路C1の減圧装置6および蒸発器7が収容されている。
 冷媒は、温度勾配を有していてもよい。冷媒には、例えば、R407C、R410A、DR55、R448A、R463等の温度勾配を有する冷媒が使用されてもよい。
 冷媒には、例えば、R22またはR134a等の単一冷媒、R410AまたはR404A等の擬似共沸混合冷媒、ならびに、R407C等の非共沸混合冷媒等が使用されてもよい。その他にも、冷媒回路を循環する冷媒には、化学式内に二重結合を含み、地球温暖化係数が比較的小さい値とされている冷媒またはその混合物が使用されてもよい。なお、化学式内に二重結合を含む冷媒には、例えば、CFおよびCF=CH等が該当する。また、その他にも、冷凍回路を循環する冷媒には、COまたはプロパン等の自然冷媒が使用されてもよい。
 図1および図2を参照して、制御装置CDについて詳しく説明する。図2は、実施の形態1に係る冷凍装置Rの制御装置CDの機能ブロック図である。
 制御装置CDは、制御部CD1と、圧縮機駆動部CD2と、減圧装置駆動部CD3と、電磁弁駆動部CD4と、ヒータ駆動部CD5と、評価値算出部CD6と、冷媒量判定部CD7と、出力制御部CD8とを含んでいる。
 制御部CD1は、圧縮機駆動部CD2、減圧装置駆動部CD3、電磁弁駆動部CD4、ヒータ駆動部CD5、評価値算出部CD6、冷媒量判定部CD7および出力制御部CD8を制御するように構成されている。
 圧縮機駆動部CD2は、制御部CD1からの指示に基づいて圧縮機1を駆動させるように構成されている。例えば、圧縮機駆動部CD2は、圧縮機1のモータに流す交流電流の周波数を制御することにより圧縮機1のモータの回転数を制御するように構成されている。
 減圧装置駆動部CD3は、制御部CD1からの指示に基づいて減圧装置6を駆動させるように構成されている。例えば、減圧装置駆動部CD3は、減圧装置6のモータ等の駆動源を制御することにより減圧装置6の弁開度を制御するように構成されている。
 電磁弁駆動部CD4は、制御部CD1からの指示に基づいて電磁弁5および電磁弁10を駆動させるように構成されている。例えば、電磁弁駆動部CD4は、電磁弁5および電磁弁10のモータ等の駆動源を制御することにより電磁弁5および電磁弁10の弁開度を制御するように構成されている。
 ヒータ駆動部CD5は、制御部CD1からの指示に基づいてヒータ12を駆動させるように構成されている。例えば、ヒータ駆動部CD5は、ヒータ12の電熱線に流れる電流を制御することによりヒータ12の温度を制御するように構成されている。
 評価値算出部CD6は、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度とに基づいて評価値を算出するように構成されている。評価値算出部CD6は、入口温度と出口温度との差を評価値として算出するように構成されている。
 冷媒量判定部CD7は、評価値算出部CD6において算出された評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。冷媒量判定部CD7には予め設定閾値が記憶されている。評価値は、設定閾値よりも3K以上高くてもよい。
 出力制御部CD8は、冷媒量が不足していると判定された場合に情報出力装置ODに情報を出力させるように構成されている。
 制御装置CDは、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度とに基づいて評価値を算出し、算出した評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。
 制御装置CDは、ヒータ12の作動時における入口温度と出口温度との差を評価値として算出するように構成されている。
 制御装置CDは、評価値が設定閾値よりも高い場合に冷媒量が不足していると判定するように構成されている。
 制御装置CDは、冷媒量が不足していると判定された場合に情報出力装置ODに情報を出力させるように構成されている。
 次に、実施の形態1に係る冷凍装置Rの動作について説明する。
 図1を参照して、実施の形態1に係る冷凍装置Rの通常運転について説明する。図1は、実施の形態1に係る冷凍装置Rの通常運転時の冷媒回路図である。
 通常運転では、冷媒回路C1には、圧縮機1、凝縮器2、受液器3、過冷却熱交換器4の第1熱交換器4a、過冷却熱交換器4の第2熱交換器4b、減圧装置6、蒸発器7、アキュムレータ8の順に冷媒が流れる。
 圧縮機1に流入した冷媒は、圧縮機1により圧縮されて高温および高圧のガス冷媒となり、圧縮機1から吐出される。この高温および高圧のガス冷媒は、凝縮器2に流入し、凝縮器2により凝縮されて液冷媒となり、凝縮器2から流出する。この液冷媒は、受液器3に流入し、受液器3に一時的に貯留される。冷媒回路C1には、室内ユニット200の運転不可、外気温度、凝縮温度等に応じて余剰冷媒が生じる。受液器3には、この余剰冷媒が貯留される。この液冷媒は、受液器3から流出し、過冷却熱交換器4の第1熱交換器4aおよび第2熱交換器4bにおいて過冷却され、過冷却熱交換器4から流出する。この過冷却された冷媒は、減圧装置6に流入し、減圧装置6により減圧されて低圧の気液二相冷媒となり、減圧装置6から流出する。この低圧の気液二相冷媒は、蒸発器7に流入し、蒸発器7により蒸発されてガス冷媒となる。このガス冷媒は、アキュムレータ8を通って、圧縮機1に流入する。このようにして、冷媒は、冷媒回路C1を循環する。
 インジェクション回路C3では、過冷却熱交換器4の第2熱交換器4bから減圧装置6に向かう冷媒の一部は第2熱交換器4bに流れる。この冷媒の一部は、電磁弁5により減圧されて中間圧の気液二相冷媒となり、第2熱交換器4bを通って、圧縮機1のインジェクションポートに流入する。
 冷媒不足検知回路C2では、電磁弁10は全閉の状態である。このため、冷媒不足検知回路C2は閉じられている。したがって、受液器3に貯留された冷媒は、冷媒不足検知回路C2を通って、アキュムレータ8に到達しない。
 続いて、図3を参照して、実施の形態1に係る冷凍装置Rの冷媒不足検知運転について説明する。図3は、実施の形態1に係る冷凍装置Rの冷媒不足検知運転時の冷媒回路図である。
 冷媒不足検知運転は、電磁弁10が開かれた状態である点で、通常運転と異なっている。冷媒不足検知運転では、制御装置CDからの指示により電磁弁10が開かれる。定期的な期間で、制御装置CDから指示されることにより、電磁弁10が開かれてもよい。この定期的な期間は、例えば、1時間毎であってもよい。
 電磁弁10が開かれることにより、受液器3に貯留された冷媒は、キャピラリチューブ11に流入し、冷媒の圧力が低減される。この冷媒は、キャピラリチューブ11からヒータ12に向けて流れ、ヒータ12により加熱される。制御装置CDは、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度との差を評価値として算出する。
 冷媒が液組成状態(液冷媒)の場合には、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度との差が小さい。冷媒がガス組成状態(ガス冷媒)の場合には、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度との差が大きい。これは、冷媒がヒータ12により加熱されたときに、液組成状態よりもガス組成状態の方が温度が上昇しやすいためである。
 制御装置CDは、この冷媒の入口温度と出口温度との差が設定閾値よりも大きい場合に冷媒量が不足していると判定する。
 次に、実施の形態1に係る冷凍装置Rの作用効果について説明する。
 実施の形態1に係る冷凍装置Rによれば、制御装置CDは、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度とに基づいて評価値を算出し、算出した評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている。したがって、冷媒不足検知回路C2における冷媒の液組成状態およびガス組成状態での評価値に基づいて冷媒量が不足しているか否かを判定することができる。このため、冷媒量の不足の判定を精度良く行うことができ、かつ冷媒量の検知範囲を拡大することができる。
 実施の形態1に係る冷凍装置Rによれば、冷媒不足検知回路C2は、受液器3の内部と、蒸発器7とアキュムレータ8との間の冷媒回路とに接続されている。このため、受液器3から冷媒不足検知回路C2に冷媒を直接流入させることができる。したがって、冷媒循環量、温度等の影響を抑制することができるため、冷媒不足を正確に判定することができる。また、冷媒をアキュムレータ8を通して圧縮機1に流入させることができる。
 実施の形態1に係る冷凍装置Rによれば、冷媒不足検知回路C2は、冷媒不足検知回路C2を開閉する電磁弁10を含んでいる。このため、電磁弁10が冷媒不足検知回路C2を開閉することにより、定期的に冷媒検知運転を実施することができる。
 また、電磁弁10は、受液器3とキャピラリチューブ11との間の冷媒不足検知回路C2に接続されている。このため、通常運転時にキャピラリチューブ11に冷媒が流入することを抑制できる。
 実施の形態1に係る冷凍装置Rによれば、制御装置CDは、ヒータ12の作動時における入口温度と出口温度との差を評価値として算出するように構成されている。このため、ヒータ12の作動時における入口温度と出口温度との差を評価値として、冷媒量が不足しているか否かを判定することができる。
 実施の形態1に係る冷凍装置Rによれば、制御装置CDは、評価値が設定閾値よりも高い場合に冷媒量が不足していると判定するように構成されている。このため、評価値が設定閾値よりも高い場合に冷媒量が不足していると判定することができる。
 実施の形態1に係る冷凍装置Rによれば、評価値は、設定閾値よりも3K以上高い。入口温度センサTHaおよび出口温度センサTHbでは検知された冷媒の温度に誤差が生じる。また、入口温度センサTHaおよび出口温度センサTHbの周囲の温度にばらつきが生じる。これらの影響を考慮しても、評価値が設定閾値よりも3K以上高いことにより、誤検知を抑制することができる。
 実施の形態1に係る冷凍装置Rによれば、制御装置CDは、冷媒量が不足していると判定された場合に情報出力装置ODに情報を出力させるように構成されている。このため、冷媒量が不足していると判定された場合に情報出力装置ODに冷媒量が不足しているとの情報を出力することができる。
 次に、実施の形態1に係る冷凍装置Rの変形例について説明する。実施の形態1に係る冷凍装置Rの変形例は、特に説明しない限り、実施の形態1に係る冷凍装置Rと同一の構成、動作および作用効果を有している。
 図4を参照して、実施の形態1に係る冷凍装置Rの変形例1について説明する。図4は、実施の形態1に係る冷凍装置Rの変形例1の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例1では、冷媒不足検知回路C2は、受液器3の内部と、アキュムレータ8と圧縮機1との間の冷媒回路C1とに接続されている。冷媒不足検知回路C2の出口配管は、圧縮機1の吸入配管に接続されている。
 実施の形態1に係る冷凍装置Rの変形例1によれば、冷媒不足検知回路C2は、受液器3の内部と、アキュムレータ8と圧縮機1との間の冷媒回路C1とに接続されている。このため、受液器3から冷媒不足検知回路C2に冷媒を直接流入させることができる。したがって、冷媒循環量、温度等の影響を抑制することができるため、冷媒不足を正確に判定することができる。また、冷媒不足検知回路C2がアキュムレータ8に接続されている場合に比べて、冷媒不足検知回路C2の配管の長さを短くすることができる。
 図5を参照して、実施の形態1に係る冷凍装置Rの変形例2について説明する。図5は、実施の形態1に係る冷凍装置Rの変形例2の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例2では、冷媒不足検知回路C2は、冷媒不足検知回路C2を開閉する電磁弁10を含んでいる。電磁弁10は、キャピラリチューブ11と入口温度センサTHaとの間の冷媒不足検知回路C2に接続されている。
 実施の形態1に係る冷凍装置Rによれば、冷媒不足検知回路C2は、冷媒不足検知回路C2を開閉する電磁弁10を含んでいる。このため、電磁弁10が冷媒不足検知回路C2を開閉することにより、定期的に冷媒検知運転を実施することができる。
 また、電磁弁10は、キャピラリチューブ11と入口温度センサTHaとの間の冷媒不足検知回路C2に接続されている。このため、電磁弁10に流れる冷媒の冷媒量を抑制することができる。
 図6を参照して、実施の形態1に係る冷凍装置Rの変形例3について説明する。図6は、実施の形態1に係る冷凍装置Rの変形例3の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例3では、過冷却熱交換器4は、1つである。具体的には、過冷却熱交換器4は、実施の形態1に係る冷凍装置Rにおける第1熱交換器4aを有しておらず第2熱交換器4bを有している。
 実施の形態1に係る冷凍装置Rの変形例3によれば、過冷却熱交換器4は第1熱交換器4aを有していないため、過冷却熱交換器4および冷凍装置Rの構造を簡易にすることができる。
 図7を参照して、実施の形態1に係る冷凍装置Rの変形例4について説明する。図7は、実施の形態1に係る冷凍装置Rの変形例4の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例4では、冷媒不足検知回路C2は、受液器3と過冷却熱交換器との間の冷媒回路C1から分岐するように構成されている。冷媒不足検知回路C2の入口配管は、受液器3の流出配管に接続されている。
 実施の形態1に係る冷凍装置Rの変形例4によれば、冷媒不足検知回路C2は、受液器3と過冷却熱交換器との間の冷媒回路C1から分岐するように構成されている。このため、冷媒不足検知回路C2および受液器3の構造を簡易にすることができる。
 図8を参照して、実施の形態1に係る冷凍装置Rの変形例5について説明する。図8は、実施の形態1に係る冷凍装置Rの変形例5の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例5では、冷媒回路C1は、複数の圧縮機1を含んでいる。複数の圧縮機1は、アキュムレータ8と凝縮器2とに互いに並列に接続されている。本実施の形態では、冷媒回路C1は、2つの圧縮機1を含んでいる。
 過冷却熱交換器4は、第1熱交換器4aと、複数の第2熱交換器4bとを含んでいる。複数の第2熱交換器4bは、第1熱交換器4aと減圧装置6とに互いに並列に接続されている。実施の形態1に係る冷凍装置Rの変形例5は、複数のインジェクション回路C3を備えている。
 実施の形態1に係る冷凍装置Rの変形例5によれば、複数の圧縮機1は、アキュムレータ8と凝縮器2とに互いに並列に接続されている。このため、複数の圧縮機1により冷凍装置Rの冷凍能力を向上させることができる。
 図9を参照して、実施の形態1に係る冷凍装置Rの変形例6について説明する。図9は、実施の形態1に係る冷凍装置Rの変形例6の冷媒回路図である。
 実施の形態1に係る冷凍装置Rの変形例6では、冷凍装置Rは、リモート式コンデンシングユニットを備えている。室外ユニット100は、第1ユニット101と、第2ユニット102とを含んでいる。第1ユニット101と第2ユニット102とは配管により接続されている。第1ユニット101には、冷媒回路C1の圧縮機1、受液器3、過冷却熱交換器4およびアキュムレータ8と、冷媒不足検知回路C2の電磁弁10、キャピラリチューブ11、ヒータ12、入口温度センサTHaおよび出口温度センサTHbと、インジェクション回路C3の電磁弁5と、制御装置CDと、情報出力装置ODとが収容されている。第2ユニット102には、冷媒回路C1の凝縮器2が収容されている。第2ユニット102には、冷媒回路C1の凝縮器2が収容されている。冷凍装置Rでは、凝縮器2は、圧縮機1が収容されたユニットとは別のユニットに収容されている。
 実施の形態1に係る冷凍装置Rの変形例6によれば、冷凍装置Rは、リモート式コンデンシングユニットを備えることが可能となる。
 実施の形態2.
 実施の形態2に係る冷凍装置Rは、特に説明しない限り、実施の形態1に係る冷凍装置Rおよび変形例と同一の構成、動作および作用効果を有している。
 図10を参照して、実施の形態2に係る冷凍装置Rの受液器3内部の配管構造について説明する。図10は、実施の形態2に係る冷凍装置Rの受液器3内部の配管構造を概略的に示す断面図である。
 受液器3は、流入配管3aと、流出配管3bと、筐体3cを含んでいる。流入配管3aは、受液器3に冷媒を流入させるように構成されている。流入配管3aは、直線状に延びてから上方に向けて折れ曲がるように構成されている。流入配管3aの先端に冷媒の流入口が設けられている。流出配管3bは、受液器3から冷媒を流出させるように構成されている。流出配管3bは、直線状に延びてから下方に向けて折れ曲がるように構成されている。流出配管3bの先端に冷媒の流出口が設けられている。流入配管3aおよび流出配管3bは、筐体3cに挿入されている。
 冷媒不足検知回路C2は、冷媒不足検知用配管Pを含んでいる。冷媒不足検知用配管Pは、受液器3に接続されている。冷媒不足検知用配管Pは、筐体3cに挿入されている。冷媒不足検知用配管は、直線状に延びてから下方に向けて折れ曲がるように構成されている。冷媒不足検知用配管Pの先端に冷媒の流出口が設けられている。冷媒不足検知用配管Pの流出口(第1流出口)は、流入配管3aの流入口よりも下方に位置し、かつ流出配管3bの流出口(第2流出口)よりも上方に位置している。
 凝縮器2から流出した冷媒は、受液器3の流入配管3aから受液器3の筐体3cの内部に流入し貯留される。この冷媒は、受液器3の流出配管3bから過冷却熱交換器4に流出する。また、この冷媒の一部は、冷媒不足検知用配管Pにより受液器3内部から直接取り出され、冷媒不足検知用配管Pから冷媒不足検知回路C2に流出する。
 図10は、実施の形態2に係る冷凍装置Rの受液器3における冷媒量の正常状態を概略的に示す断面図である。冷媒量の正常状態の場合には、冷媒の液面Sの高さは、冷媒不足検知用配管Pの流出口の高さを上回る。つまり、冷媒不足検知用配管Pの流出口は、冷媒の液面Sよりも下方に位置する。このため、冷媒不足検知用配管Pの流出口から液冷媒が流出する。この場合には、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度との差が小さいため、制御装置CDは冷媒量が不足していないと判定する。
 図11は、実施の形態2に係る冷凍装置Rの受液器3における冷媒量の不足状態を概略的に示す断面図である。冷媒量の不足状態の場合には、冷媒の液面Sの高さは、冷媒不足検知用配管Pの流出口の高さを下回る。つまり、冷媒不足検知用配管Pの流出口は、冷媒の液面Sよりも上方に位置する。このため、冷媒不足検知用配管Pの流出口からガス冷媒が流出する。この場合には、入口温度センサTHaにより検知された冷媒の入口温度と出口温度センサTHbにより検知された冷媒の出口温度との差が大きいため、制御装置CDは冷媒量が不足していると判定する。
 図12は、実施の形態2に係る冷凍装置Rの受液器3内部での冷媒の液面Sの乱れを概略的に示す断面図である。受液器3内部では冷媒の液面Sが乱れることがある。冷媒不足検知用配管Pの流出口(第1流出口)と流出配管3bの流出口(第2流出口)との高さ方向の距離Dは、5mm以上である。このため、冷媒量が判定されるときに、冷媒の液面Sの乱れによる影響が抑制される。冷媒不足を検知する精度の向上および冷媒不足の誤検知の抑制のため、冷媒不足検知用配管Pの流出口(第1流出口)と流出配管3bの流出口(第2流出口)との高さ方向の距離Dは、15mm以下である。
 次に、実施の形態2に係る冷凍装置Rの作用効果について説明する。
 実施の形態2に係る冷凍装置Rによれば、冷媒不足検知用配管Pの流出口(第1流出口)は、流入配管3aの流入口よりも下方に位置し、かつ流出配管3bの流出口(第2流出口)よりも上方に位置している。このため、制御装置CDは、冷媒量の正常状態において冷媒量が不足していないと判定することができ、冷媒量の不足状態において冷媒量が不足していると判定することができる。
 実施の形態2に係る冷凍装置Rによれば、冷媒不足検知用配管Pの流出口(第1流出口)と流出配管3bの流出口(第2流出口)との高さ方向の距離Dは、5mm以上15mm以下である。このため、冷媒量が判定されるときに、冷媒の液面Sの乱れによる影響を抑制することができる。したがって、冷媒量の誤検知を抑制することができる。
 次に、実施の形態2に係る冷凍装置Rの変形例について説明する。実施の形態2に係る冷凍装置Rの変形例は、特に説明しない限り、実施の形態2に係る冷凍装置Rと同一の構成、動作および作用効果を有している。
 図13を参照して、実施の形態2に係る冷凍装置Rの変形例1について説明する。図13は、実施の形態2に係る冷凍装置Rの変形例1の受液器内部の配管構造を概略的に示す断面図である。実施の形態2に係る冷凍装置Rの変形例1では、受液器3の流入配管3aは、先端まで直線状に延びるように構成されている。
 図14を参照して、実施の形態2に係る冷凍装置Rの変形例2について説明する。図14は、実施の形態2に係る冷凍装置Rの変形例2の受液器3内部の配管構造を概略的に示す断面図である。実施の形態2に係る冷凍装置Rの変形例2では、受液器3の流入配管3aは、先端まで直線状に延びるように構成されている。冷媒不足検知用配管Pは、直線状に延びてから下方に向けて直角に折れ曲がるように構成されている。
 実施の形態3.
 実施の形態3に係る冷凍装置Rは、特に説明しない限り、実施の形態2に係る冷凍装置Rおよび変形例と同一の構成、動作および作用効果を有している。
 図15および図16を参照して、実施の形態3に係る冷凍装置Rの受液器3内部の構成について説明する。図15は、実施の形態3に係る冷凍装置Rの受液器3内部の構成を概略的に示す断面図である。図16は、図15のXVI-XVIに沿う断面図である。なお、図16では、説明の便宜のため、流入配管3aは図示されていない。
 実施の形態3に係る冷凍装置Rでは、受液器3は、仕切り板300を含んでいる。仕切り板300は、冷媒の液面Sを安定化させるためのものである。仕切り板300は、流入配管3aの流入口が配置された空間と、流出配管3bおよび冷媒不足検知用配管Pの流出口が配置された空間とを仕切るように構成されている。仕切り板300の上端は筐体3cの内周面の上端から離れている。仕切り板300の下端は筐体3cの内周面の下端から離れている。つまり、仕切り板300の上側および下側に仕切り板300と筐体3cとの間の隙間GPが設けられている。
 図17および図18を参照して、仕切り板300の構成について詳しく説明する。
 図17は、実施の形態2に係る冷凍装置Rの受液器3内部の構成を概略的に示す拡大断面図である。図18は、図17のXVIII-XVIII線に沿う断面図である。なお、図18では、説明の便宜のため、流入配管3aは図示されていない。
 仕切り板300の下端は、流出配管3bの流出口(第2流出口)よりも下方に位置している。仕切り板300の下端と筐体3cの内周面との距離H1は、流出配管3bの流出口(第2流出口)と筐体3cの内周面との距離H2よりも短い。
 次に、実施の形態3に係る冷凍装置Rの作用効果について説明する。
 実施の形態3に係る冷凍装置Rによれば、受液器3は、仕切り板300を含んでいる。このため、仕切り板300により冷媒の液面Sを安定化させることができる。また、仕切り板300の下端は、流出配管3bの流出口(第2流出口)よりも下方に位置している。このため、冷媒の液面Sを安定化させた状態で、冷媒を流出配管3bから流出させることができる。
 続いて、実施の形態3に係る冷凍装置Rの変形例について説明する。実施の形態3に係る冷凍装置Rの変形例は、特に説明しない限り、実施の形態3に係る冷凍装置Rと同一の構成、動作および作用効果を有している。
 図19を参照して、実施の形態3に係る冷凍装置Rの変形例1について説明する。図19は、実施の形態3に係る冷凍装置Rの変形例1の受液器3内部の構成を概略的に示す断面図である。
 実施の形態3に係る冷凍装置Rの変形例1では、受液器3は、複数の仕切り板300を含んでいる。実施の形態3に係る冷凍装置Rの変形例1では、受液器3は、3つの仕切り板300を含んでいる。3つの仕切り板300は、互いに間隔をあけて並んでいる。
 実施の形態3に係る冷凍装置Rの変形例1によれば、受液器3は、複数の仕切り板300を含んでいる。このため、複数の仕切り板300により冷媒の液面Sをさらに安定化させることができる。
 図20を参照して、実施の形態3に係る冷凍装置Rの変形例2について説明する。図20は、実施の形態3に係る冷凍装置Rの変形例2の受液器3の仕切り板300の構成を概略的に示す断面図である。図20は、図16に対応する断面図である。
 実施の形態3に係る冷凍装置Rの変形例2では、受液器3の仕切り板300は、多孔板である。つまり、仕切り板300には、仕切り板300の厚み方向に仕切り板300を貫通する複数の孔が設けられている。仕切り板300は、筐体3cの内周面の全体を覆うように配置されている。
 実施の形態3に係る冷凍装置Rの変形例2によれば、仕切り板300は多孔板である。このため、多孔板により冷媒の液面Sをさらに安定化させることができる。
 図21を参照して、実施の形態3に係る冷凍装置Rの変形例3について説明する。図21は、実施の形態3に係る冷凍装置Rの変形例3の受液器3の仕切り板300の構成を概略的に示す断面図である。図21は、図16に対応する断面図である。
 実施の形態3に係る冷凍装置Rの変形例3では、受液器3の仕切り板300は、平板部300aと、多孔板部300bとを含んでいる。仕切り板300の平板部300aおよび多孔板部300bは、筐体3cの内周面の全体を覆うように配置されている。
 平板部300aは筐体3cの中央に配置されている。平板部300aには孔は設けられていない。多孔板部300bは、平板部300aの上端と筐体3cの内周面の上端との間および平板部300aの下端と筐体3cの内周面の下端との間に配置されている。多孔板部300bには、多孔板部300bの厚み方向に多孔板部300bを貫通する複数の孔が設けられている。
 実施の形態3に係る冷凍装置Rの変形例3によれば、仕切り板300は平板部300aおよび多孔板部300bを含んでいる。このため、平板部300aおよび多孔板部300bにより冷媒の液面Sをさらに安定化させることができる。
 図22を参照して、実施の形態3に係る冷凍装置Rの変形例4について説明する。図22は、実施の形態3に係る冷凍装置Rの受液器3内部の構成を概略的に示す断面図である。
 実施の形態3に係る冷凍装置Rの変形例4では、受液器3は、第1容器31と、第2容器32と、均圧配管33と、接続配管34とを含んでいる。第1容器31には流入配管3aおよび流出配管3bが接続されている。第2容器32には冷媒不足検知用配管Pが接続されている。第1容器31は、均圧配管33および接続配管34により第2容器32に接続されている。冷媒不足検知用配管Pは、流入配管3aおよび流出配管3bとは別の容器に収容されている。均圧配管33は、ガス冷媒を第1容器31から第2容器32に流すように構成されている。接続配管34は、液冷媒を第1容器31から第2容器32に流すように構成されている。
 均圧配管33は、流入配管3aの流入口、冷媒不足検知用配管Pの流出口(第1流出口)および流出配管3bの流出口(第2流出口)よりも上方に位置している。接続配管34は、流入配管3aの流入口よりも下方に位置している。
 実施の形態3に係る冷凍装置Rの変形例4によれば、受液器3は、流入配管3aおよび流出配管3bが接続された第1容器31と、冷媒不足検知用配管Pが接続された第2容器32とを含んでいる。均圧配管33は、流入配管3aの流入口、冷媒不足検知用配管Pの流出口(第1流出口)および流出配管3bの流出口(第2流出口)よりも上方に位置している。接続配管34は、流入配管3aの流入口よりも下方に位置している。よって、冷媒量が判定されるときに、冷媒の液面Sの乱れによる影響を抑制することができる。したがって、冷媒量の誤検知を抑制することができる。
 上記の各実施の形態は適宜組み合わせ可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 凝縮器、3 受液器、3a 流入配管、3b 流出配管、3c 筐体、4 過冷却熱交換器、4a 第1熱交換器、4b 第2熱交換器、5 電磁弁、10 電磁弁、6 減圧装置、7 蒸発器、8 アキュムレータ、11 キャピラリチューブ、12 ヒータ、31 第1容器、32 第2容器、33 均圧配管、34 接続配管、100 室外ユニット、101 第1ユニット、102 第2ユニット、200 室内ユニット、300 仕切り板、C1 冷媒回路、C2 冷媒不足検知回路、C3 インジェクション回路、CD 制御装置、OD 情報出力装置、P 冷媒不足検知用配管、R 冷凍装置、THa 入口温度センサ、THb 出口温度センサ。

Claims (16)

  1.  冷媒を圧縮する少なくとも1つの圧縮機と、前記圧縮機から吐出された前記冷媒を凝縮させる凝縮器と、前記凝縮器から流出した前記冷媒が流入する受液器と、前記受液器から流出した前記冷媒を過冷却する過冷却熱交換器と、前記過冷却熱交換器において過冷却された前記冷媒を減圧する減圧装置と、前記減圧装置において減圧された前記冷媒を蒸発させる蒸発器と、前記蒸発器から流出した前記冷媒が流入するアキュムレータとを含む冷媒回路と、
     前記蒸発器と前記圧縮機との間の前記冷媒回路と前記受液器とに接続され、かつ前記受液器から流出した前記冷媒が流入するキャピラリチューブと、前記キャピラリチューブから流出した前記冷媒を加熱するヒータと、前記ヒータに流入する前記冷媒の入口温度を検知する入口温度センサと、前記ヒータから流出する前記冷媒の出口温度を検知する出口温度センサとを含む冷媒不足検知回路と、
     前記冷媒回路および前記冷媒不足検知回路を制御する制御装置とを備え、
     前記制御装置は、前記入口温度センサにより検知された前記冷媒の前記入口温度と前記出口温度センサにより検知された前記冷媒の前記出口温度とに基づいて評価値を算出し、算出した前記評価値に基づいて冷媒量が不足しているか否かを判定するように構成されている、冷凍装置。
  2.  前記冷媒不足検知回路は、前記受液器の内部と、前記蒸発器と前記アキュムレータとの間の前記冷媒回路とに接続されている、請求項1に記載の冷凍装置。
  3.  前記冷媒不足検知回路は、前記受液器の内部と、前記アキュムレータと前記圧縮機との間の前記冷媒回路とに接続されている、請求項1に記載の冷凍装置。
  4.  前記冷媒不足検知回路は、前記受液器と前記過冷却熱交換器との間の前記冷媒回路から分岐するように構成されている、請求項1~3のいずれか1項に記載の冷凍装置。
  5.  前記冷媒回路は、複数の前記圧縮機を含み、
     複数の前記圧縮機は、前記アキュムレータと前記凝縮器とに互いに並列に接続されている、請求項1~4のいずれか1項に記載の冷凍装置。
  6.  前記冷媒不足検知回路は、前記冷媒不足検知回路を開閉する電磁弁を含み、
     前記電磁弁は、前記受液器と前記キャピラリチューブとの間の前記冷媒不足検知回路に接続されている、請求項1~5のいずれか1項に記載の冷凍装置。
  7.  前記冷媒不足検知回路は、前記冷媒不足検知回路を開閉する電磁弁を含み、
     前記電磁弁は、前記キャピラリチューブと前記入口温度センサとの間の前記冷媒不足検知回路に接続されている、請求項1~5のいずれか1項に記載の冷凍装置。
  8.  前記制御装置は、前記ヒータの作動時における前記入口温度と前記出口温度との差を前記評価値として算出するように構成されている、請求項1~7のいずれか1項に記載の冷凍装置。
  9.  前記制御装置は、前記評価値が設定閾値よりも高い場合に前記冷媒量が不足していると判定するように構成されている、請求項1~8のいずれか1項に記載の冷凍装置。
  10.  前記評価値は、前記設定閾値よりも3K以上高い、請求項9に記載の冷凍装置。
  11.  前記冷媒量が不足しているとの情報を出力する情報出力装置をさらに備え、
     前記制御装置は、前記冷媒量が不足していると判定された場合に前記情報出力装置に前記情報を出力させるように構成されている、請求項1~10のいずれか1項に記載の冷凍装置。
  12.  前記受液器は、前記受液器に前記冷媒を流入させる流入配管と、前記受液器から前記冷媒を流出させる流出配管とを含み、
     前記冷媒不足検知回路は、前記受液器に接続された冷媒不足検知用配管を含み、
     前記冷媒不足検知用配管の第1流出口は、前記流入配管の流入口よりも下方に位置し、かつ前記流出配管の第2流出口よりも上方に位置している、請求項1~11のいずれか1項に記載の冷凍装置。
  13.  前記冷媒不足検知用配管の前記第1流出口と前記流出配管の前記第2流出口との高さ方向の距離は、5mm以上15mm以下である、請求項12に記載の冷凍装置。
  14.  前記受液器は、仕切り板を含み、
     前記仕切り板の下端は、前記流出配管の前記第2流出口よりも下方に位置している、請求項12に記載の冷凍装置。
  15.  前記受液器は、前記流入配管および前記流出配管が接続された第1容器と、前記冷媒不足検知用配管が接続された第2容器と、均圧配管と、接続配管とを含み、
     前記第1容器は、前記均圧配管および前記接続配管により前記第2容器に接続されており、
     前記均圧配管は、前記流入配管の前記流入口、前記冷媒不足検知用配管の前記第1流出口および前記流出配管の前記第2流出口よりも上方に位置しており、
     前記接続配管は、前記流入配管の前記流入口よりも下方に位置している、請求項12に記載の冷凍装置。
  16.  前記冷媒は、温度勾配を有している、請求項1~15のいずれか1項に記載の冷凍装置。
PCT/JP2020/019337 2020-05-14 2020-05-14 冷凍装置 WO2021229766A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/019337 WO2021229766A1 (ja) 2020-05-14 2020-05-14 冷凍装置
JP2022522448A JP7393536B2 (ja) 2020-05-14 2020-05-14 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019337 WO2021229766A1 (ja) 2020-05-14 2020-05-14 冷凍装置

Publications (1)

Publication Number Publication Date
WO2021229766A1 true WO2021229766A1 (ja) 2021-11-18

Family

ID=78525566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019337 WO2021229766A1 (ja) 2020-05-14 2020-05-14 冷凍装置

Country Status (2)

Country Link
JP (1) JP7393536B2 (ja)
WO (1) WO2021229766A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169461A (ja) * 1986-12-27 1988-07-13 三菱電機株式会社 空気調和機
JPH05346271A (ja) * 1992-06-15 1993-12-27 Toshiba Corp 冷媒加熱型エアコンの制御装置
JPH06101911A (ja) * 1992-08-26 1994-04-12 Hitachi Ltd 非共沸混合冷媒を用いた冷凍サイクル
JP2004218865A (ja) * 2003-01-10 2004-08-05 Daikin Ind Ltd 冷凍装置及び冷凍装置の冷媒量検出方法
JP2005282885A (ja) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2007139244A (ja) * 2005-11-16 2007-06-07 Fujitsu General Ltd 冷凍装置
JP2011122767A (ja) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd 空気調和機および空気調和機の冷媒量検出方法
WO2013027232A1 (ja) * 2011-08-19 2013-02-28 三菱電機株式会社 冷凍サイクル装置
JP2016050680A (ja) * 2014-08-28 2016-04-11 三菱電機株式会社 冷凍空調装置
JP2018119746A (ja) * 2017-01-26 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308393A (ja) * 2005-07-25 2005-11-04 Daikin Ind Ltd 冷凍装置及び冷凍装置の冷媒量検出方法
JP2018109452A (ja) * 2016-12-28 2018-07-12 三菱重工サーマルシステムズ株式会社 均油制御装置、冷媒回路システム、及び均油制御方法
WO2020066005A1 (ja) * 2018-09-28 2020-04-02 三菱電機株式会社 冷凍サイクル装置
JP7012867B2 (ja) * 2018-10-17 2022-02-14 三菱電機株式会社 室外機及びそれを備える冷凍サイクル装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169461A (ja) * 1986-12-27 1988-07-13 三菱電機株式会社 空気調和機
JPH05346271A (ja) * 1992-06-15 1993-12-27 Toshiba Corp 冷媒加熱型エアコンの制御装置
JPH06101911A (ja) * 1992-08-26 1994-04-12 Hitachi Ltd 非共沸混合冷媒を用いた冷凍サイクル
JP2004218865A (ja) * 2003-01-10 2004-08-05 Daikin Ind Ltd 冷凍装置及び冷凍装置の冷媒量検出方法
JP2005282885A (ja) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2007139244A (ja) * 2005-11-16 2007-06-07 Fujitsu General Ltd 冷凍装置
JP2011122767A (ja) * 2009-12-10 2011-06-23 Mitsubishi Heavy Ind Ltd 空気調和機および空気調和機の冷媒量検出方法
WO2013027232A1 (ja) * 2011-08-19 2013-02-28 三菱電機株式会社 冷凍サイクル装置
JP2016050680A (ja) * 2014-08-28 2016-04-11 三菱電機株式会社 冷凍空調装置
JP2018119746A (ja) * 2017-01-26 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍装置

Also Published As

Publication number Publication date
JPWO2021229766A1 (ja) 2021-11-18
JP7393536B2 (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
JP6292480B2 (ja) 冷凍装置
EP2000751A2 (en) Refrigeration air conditioning device
JP5430602B2 (ja) 空気調和装置
JP4462435B2 (ja) 冷凍装置
JPWO2019053858A1 (ja) 冷凍サイクル装置および冷凍装置
JP2001221526A (ja) 冷凍空調装置
CN109312961B (zh) 制冷装置的热源机组
JP4462436B2 (ja) 冷凍装置
JP7154388B2 (ja) 室外機及びそれを備える冷凍サイクル装置
JP6588626B2 (ja) 冷凍装置
JP2009186033A (ja) 二段圧縮式冷凍装置
JP2018132224A (ja) 二元冷凍システム
JP4476946B2 (ja) 冷凍装置
JP4902723B2 (ja) 凝縮圧力検知システム及び冷凍サイクルシステム
JP2005214575A (ja) 冷凍装置
US12044444B2 (en) Refrigeration cycle apparatus
WO2014103013A1 (ja) ヒートポンプシステム
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
WO2021229766A1 (ja) 冷凍装置
JP6449979B2 (ja) 冷凍装置
JP6844667B2 (ja) 熱源ユニット及び冷凍装置
JP2000337740A (ja) 冷媒量調整方法及び冷媒量判定装置
JPWO2017094172A1 (ja) 空気調和装置
JP6590945B2 (ja) 冷凍装置
JP2009036508A (ja) 過冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935825

Country of ref document: EP

Kind code of ref document: A1