WO2021225071A1 - 圧電素子および圧電スピーカー - Google Patents

圧電素子および圧電スピーカー Download PDF

Info

Publication number
WO2021225071A1
WO2021225071A1 PCT/JP2021/015843 JP2021015843W WO2021225071A1 WO 2021225071 A1 WO2021225071 A1 WO 2021225071A1 JP 2021015843 W JP2021015843 W JP 2021015843W WO 2021225071 A1 WO2021225071 A1 WO 2021225071A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric element
layer
film
piezoelectric film
Prior art date
Application number
PCT/JP2021/015843
Other languages
English (en)
French (fr)
Inventor
直浩 小原
栄貴 小沢
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180032597.6A priority Critical patent/CN115486095A/zh
Priority to JP2022519924A priority patent/JP7449373B2/ja
Priority to EP21799530.7A priority patent/EP4149118A4/en
Priority to KR1020227038273A priority patent/KR20220164538A/ko
Publication of WO2021225071A1 publication Critical patent/WO2021225071A1/ja
Priority to US18/052,464 priority patent/US20230096425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/501Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane parallel to the stacking direction, e.g. polygonal or trapezoidal in side view
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present invention relates to a piezoelectric element and a piezoelectric speaker.
  • a so-called exciter which vibrates an article as a diaphragm and produces a sound when it is attached in contact with various articles, is used for various purposes.
  • an exciter in an office, by attaching an exciter to a conference table, a whiteboard, a screen, or the like during a presentation or a conference call, sound can be produced instead of a speaker.
  • a guide sound, a warning sound, music, and the like can be sounded by attaching an exciter to the console, the A pillar, the ceiling, and the like.
  • a vehicle approach notification sound can be emitted from the bumper or the like by attaching an exciter to the bumper or the like.
  • variable element that generates vibration in such an exciter a combination of a coil and a magnet, a vibration motor such as an eccentric motor and a linear resonance motor, and the like are known. It is difficult to reduce the thickness of these variable elements.
  • the vibration motor has drawbacks such as a mass body needs to be increased in order to increase the vibration force, frequency modulation for adjusting the degree of vibration is difficult, and a response speed is slow.
  • a piezoelectric element in which a piezoelectric film having a piezoelectric layer sandwiched between electrode layers is used and a plurality of layers of the piezoelectric film are laminated can be considered.
  • a suitable piezoelectric film for example, the piezoelectric film (electro-acoustic conversion film) described in Patent Document 1 is exemplified.
  • This piezoelectric film comprises a piezoelectric layer (polypolymer composite piezoelectric body) in which piezoelectric particles are dispersed in a matrix made of a polymer material, electrode layers formed on both sides of the piezoelectric layer, and the electrode layer. It has a protective layer formed on the surface of the.
  • the piezoelectric element in which such a piezoelectric film is laminated, the piezoelectric element is attached to a diaphragm, and the piezoelectric film is expanded and contracted to bend the diaphragm. As a result, the diaphragm can be vibrated and sound can be output.
  • the piezoelectric film itself has low rigidity. However, by laminating a plurality of piezoelectric films, the rigidity of the entire device can be increased. Moreover, the laminated body of the piezoelectric film is very suitable because a high electric field strength can be secured without increasing the driving voltage.
  • the piezoelectric film described in Patent Document 1 is thin, has good flexibility, and has excellent piezoelectric properties. Therefore, by using the piezoelectric element in which the piezoelectric film is laminated as an exciter, for example, a flexible speaker that can be rolled up and carried by using a flexible article as a diaphragm can be realized.
  • piezoelectric film using a piezoelectric film having a piezoelectric layer formed by dispersing piezoelectric particles in a matrix containing a polymer material as described in Patent Document 1, in particular.
  • the impedance becomes high and a sufficient current cannot flow through the piezoelectric layer.
  • An object of the present invention is to solve such a problem of the prior art, and to obtain an impedance in a piezoelectric element using a piezoelectric film having a piezoelectric layer in which piezoelectric particles are dispersed in a matrix containing a polymer material. It is an object of the present invention to provide a piezoelectric element capable of improving sound pressure particularly in a high frequency band when the size is reduced and used as, for example, an electroacoustic converter, and a piezoelectric speaker using a piezoelectric film.
  • the present invention has the following configurations.
  • [1] A configuration in which a plurality of layers of piezoelectric films in which a piezoelectric layer containing piezoelectric particles is sandwiched between electrode layers in a matrix containing a polymer material is laminated, and adjacent piezoelectric films are attached by a bonding layer.
  • Have and The plane shape is polygonal
  • the impedance in a piezoelectric element and a piezoelectric speaker using a piezoelectric film having a piezoelectric layer formed by dispersing piezoelectric particles in a matrix containing a polymer material, the impedance can be reduced, for example, an electroacoustic converter or the like.
  • the sound pressure can be improved especially in a high frequency band.
  • FIG. 1 is a diagram conceptually showing an example of the first aspect of the piezoelectric element of the present invention.
  • FIG. 2 is a schematic perspective view of the piezoelectric element shown in FIG.
  • FIG. 3 is a schematic plan view of the piezoelectric element shown in FIG.
  • FIG. 4 is a diagram conceptually showing an example of a piezoelectric film constituting the piezoelectric element shown in FIG.
  • FIG. 5 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 6 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 7 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 1 is a diagram conceptually showing an example of the first aspect of the piezoelectric element of the present invention.
  • FIG. 2 is a schematic perspective view of the piezoelectric element shown in FIG.
  • FIG. 3 is a schematic plan view of
  • FIG. 8 is a diagram conceptually showing an example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 9 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 10 is a diagram conceptually showing another example of the piezoelectric element of the present invention.
  • FIG. 11 is a perspective view conceptually showing another example of the piezoelectric element of the present invention.
  • FIG. 12 is a perspective view conceptually showing another example of the piezoelectric element of the present invention.
  • FIG. 13 is a diagram conceptually showing an example of the second aspect of the piezoelectric element of the present invention.
  • FIG. 14 is a perspective view conceptually showing another example of the second aspect of the piezoelectric element of the present invention.
  • FIG. 14 is a perspective view conceptually showing another example of the second aspect of the piezoelectric element of the present invention.
  • FIG. 15 is a conceptual diagram of an example of an electroacoustic transducer using the piezoelectric element of the present invention.
  • FIG. 16 is a conceptual diagram of an example of a piezoelectric speaker using the second aspect of the piezoelectric element of the present invention.
  • FIG. 17 is a partially enlarged view for explaining another example of the piezoelectric element of the present invention.
  • FIG. 18 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 19 is a conceptual diagram for explaining a comparative example of the present invention.
  • FIG. 20 is a conceptual diagram for explaining a comparative example of the present invention.
  • FIG. 21 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 22 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 23 is a conceptual diagram for explaining the lead-out wiring in the piezoelectric element of the present invention.
  • FIG. 24 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 25 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 26 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 27 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 28 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 24 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 25 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 26 is a diagram conceptually showing another example of the connection
  • FIG. 29 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 30 is a diagram conceptually showing another example of the connection portion of the piezoelectric element of the present invention.
  • FIG. 31 is a diagram conceptually showing an example of the piezoelectric speaker of the present invention.
  • FIG. 32 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 33 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 34 is a conceptual diagram for explaining a comparative example of the present invention.
  • FIG. 35 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 36 is a conceptual diagram for explaining a comparative example of the present invention.
  • FIG. 37 is a conceptual diagram for explaining an embodiment of the present invention.
  • FIG. 38 is a conceptual diagram for explaining a comparative example of the present invention.
  • FIG. 39 is a conceptual diagram for explaining another example of the piezoelectric element.
  • FIG. 40 is a conceptual diagram for explaining another example of the piezoelectric element.
  • FIG. 41 is a conceptual diagram for explaining another example of the piezoelectric element.
  • FIG. 42 is a conceptual diagram for explaining another example of the piezoelectric element.
  • FIG. 43 is a conceptual diagram for explaining another example of the piezoelectric element.
  • FIG. 44 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 45 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 45 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 46 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 47 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 48 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 49 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 50 is a conceptual diagram for explaining an example of a sticking layer in an electroacoustic converter using a piezoelectric element.
  • FIG. 51 is a conceptual diagram for explaining another example of the sticking layer in the electroacoustic transducer using the piezoelectric element.
  • FIG. 52 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 53 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 54 is a conceptual diagram for explaining another example of an electroacoustic transducer using a piezoelectric element.
  • FIG. 55 is a conceptual diagram for explaining an embodiment of the present invention.
  • the description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the figures shown below are conceptual diagrams for explaining the present invention. Therefore, the size, thickness, positional relationship, etc. of each component are different from the actual ones.
  • FIG. 1 conceptually shows an example of the first aspect of the piezoelectric element of the present invention.
  • FIG. 2 conceptually shows a perspective view of the piezoelectric element shown in FIG. 1
  • FIG. 3 conceptually shows a plan view of the piezoelectric element shown in FIG. 1.
  • the piezoelectric element 10 shown in FIGS. 1 to 3 is formed by laminating five layers of piezoelectric films 12 by folding one piezoelectric film 12 four times. That is, the piezoelectric element 10 is a laminated piezoelectric element in which five layers of piezoelectric films 12 are laminated.
  • the piezoelectric film 12 has electrode layers on both sides of the piezoelectric layer 20 and covers both electrode layers. It has a protective layer.
  • the piezoelectric element of the present invention has a polygonal planar shape.
  • the planar shape means that, like the piezoelectric elements shown in FIGS. 1 to 3, in the case of a piezoelectric element in which a plurality of layers of the piezoelectric film 12 are laminated, the piezoelectric element is viewed from the stacking direction of the piezoelectric film 12.
  • the state viewed from this direction is also referred to as "planar view”. Therefore, in the case of the piezoelectric element 10 shown in FIGS. 1 to 3, the planar shape of the piezoelectric element 10 is the shape when viewed from above (or below) in the drawing of FIG.
  • the planar shape of the piezoelectric element 10 In the case of a piezoelectric element having a protrusion for connecting an external power source and an electrode layer like the piezoelectric element 10 of the first aspect of the present invention, the planar shape is a shape excluding the protrusion. ..
  • the shape of the main surface of the piezoelectric film is the planar shape of the piezoelectric element. It becomes. Further, even when a plurality of piezoelectric films 12 are laminated as shown in FIG.
  • the shape of the main surface of each piezoelectric film is regarded as a planar shape.
  • the main surface is the maximum surface of a sheet-like material (film, plate-like material, layer).
  • the piezoelectric element 10 shown in FIGS. 1 to 3 has a rectangular (rectangular) planar shape.
  • the planar shape of the piezoelectric element is not limited to a rectangle, and various shapes such as a triangle, a pentagon, and a hexagon can be used as long as it is a polygon.
  • a polygon having a planar shape has a protruding portion protruding from a side other than the shortest side. Since the piezoelectric element 10 has a rectangular planar shape, it has two long sides having the same length and two short sides having the same length.
  • the piezoelectric element 10 has a protruding portion 10a so as to protrude from the long side of the rectangle.
  • the piezoelectric element 10 projects from the long side of the rectangle to provide a protruding portion 10a, and the protruding portion 10a is provided with a connecting portion for connecting to an external power source to reduce the impedance and is used for, for example, an electroacoustic converter.
  • the sound pressure can be improved especially in the high frequency band. This point will be described in detail later.
  • the piezoelectric element 10 shown in FIGS. 1 to 3 has five layers of the piezoelectric film 12 laminated by folding the piezoelectric film 12 four times, but the present invention is not limited to this. That is, the piezoelectric element of the present invention may be one in which the piezoelectric film 12 is folded three times or less to laminate two to four layers of the piezoelectric film 12. Alternatively, the piezoelectric element of the present invention may be one in which 6 or more layers of the piezoelectric film 12 are laminated by folding back the piezoelectric film 5 times or more. The piezoelectric element of the present invention is preferably one in which three or more layers of the piezoelectric film 12 are laminated by folding back the piezoelectric film 12 twice or more. Further, the piezoelectric element of the present invention may be a stack of a plurality of piezoelectric elements obtained by folding the piezoelectric film 12 once or more.
  • the configuration in which a plurality of layers of the piezoelectric film 12 are laminated is not limited to the configuration in which the piezoelectric film 12 is folded back and laminated. That is, the piezoelectric element of the present invention has a configuration in which a plurality of layers of the piezoelectric film 12 are laminated by laminating a plurality of cut sheet-shaped piezoelectric films in both the first aspect and the second aspect. May be good. Further, the piezoelectric element according to the second aspect of the present invention, which will be described later and does not have a protruding portion for providing a connection portion with an external power source, may be composed of a single piezoelectric film that is not laminated. This point will be described in detail later.
  • FIG. 4 conceptually shows the piezoelectric film 12 by a cross-sectional view.
  • the piezoelectric film 12 includes a piezoelectric layer 20 which is a sheet-like material having piezoelectricity, a first thin film electrode 24 laminated on one surface of the piezoelectric layer 20, and a first thin film electrode. It has a first protective layer 28 laminated on 24, a second thin film electrode 26 laminated on the other surface of the piezoelectric layer 20, and a second protective layer 30 laminated on the second thin film electrode 26. ..
  • the piezoelectric film 12 is polarized in the thickness direction.
  • the piezoelectric layer 20 the first thin film electrode 24 and the second thin film electrode 26, and the first protective layer 28 and the first protective layer 28 are shown.
  • the 2 protective layers 30 are not shown separately.
  • the piezoelectric layer 20 is made of a polymer composite piezoelectric body in which piezoelectric particles 36 are dispersed in a matrix 34 containing a polymer material. ..
  • the matrix 34 preferably contains a polymer material having viscoelasticity at room temperature, and more preferably made of a polymer material having viscoelasticity at room temperature. That is, the matrix 34 is preferably a viscoelastic matrix having viscoelasticity at room temperature.
  • "normal temperature” refers to a temperature range of about 0 to 50 ° C.
  • the polymer composite piezoelectric body (piezoelectric layer 20) preferably has the following requirements.
  • (I) Flexibility For example, when gripping in a state of being loosely bent like a document like a newspaper or a magazine for carrying, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric body is hard, a correspondingly large bending stress is generated, cracks are generated at the interface between the polymer matrix and the piezoelectric particle, and there is a possibility that it will eventually lead to fracture. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Further, if the strain energy can be diffused to the outside as heat, the stress can be relaxed. Therefore, it is required that the loss tangent of the polymer composite piezoelectric body is appropriately large.
  • the flexible polymer composite piezoelectric material used as an exciter and an electroacoustic conversion film is required to behave hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less. Further, the loss tangent of the polymer composite piezoelectric body is required to be appropriately large for vibrations of all frequencies of 20 kHz or less. Further, it is preferable that the spring constant can be easily adjusted by laminating according to the rigidity of the mating material (diaphragm) to be attached. At that time, the thinner the attachment layer 14 is, the higher the energy efficiency is. be able to. Rigidity is, in other words, hardness, stiffness, spring constant, and the like.
  • a polymer solid has a viscoelastic relaxation mechanism, and a large-scale molecular motion causes a decrease in storage elastic modulus (Young's modulus) (relaxation) or a maximum loss elastic modulus (absorption) as the temperature rises or the frequency decreases.
  • Young's modulus storage elastic modulus
  • laxation maximum loss elastic modulus
  • absorption maximum loss elastic modulus
  • main dispersion the relaxation caused by the micro-Brownian motion of the molecular chain in the amorphous region
  • the temperature at which this main dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • the polymer composite piezoelectric body (piezoelectric layer 20), by using a polymer material having a glass transition point at room temperature as a matrix, it is hard against vibrations of 20 Hz to 20 kHz and is resistant to slow vibrations of several Hz or less. Is realized by a polymer composite piezoelectric material that behaves softly. In particular, in terms of preferably expressing this behavior, it is preferable to use a polymer material having a glass transition point at a frequency of 1 Hz at room temperature, that is, at 0 to 50 ° C. for the matrix of the polymer composite piezoelectric material.
  • the polymer material having a glass transition point at room temperature is, in other words, a polymer material having viscoelasticity at room temperature.
  • the polymer material having viscoelasticity at room temperature various known materials can be used.
  • a polymer material having a maximum value of tangent Tan ⁇ at a frequency of 1 Hz by a dynamic viscoelasticity test of 0.5 or more is used at room temperature, that is, at 0 to 50 ° C.
  • the polymer material having viscoelasticity at room temperature preferably has a storage elastic modulus (E') at a frequency of 1 Hz as measured by dynamic viscoelasticity measurement of 100 MPa or more at 0 ° C. and 10 MPa or less at 50 ° C.
  • E' storage elastic modulus
  • the polymer material having viscoelasticity at room temperature has a relative permittivity of 10 or more at 25 ° C.
  • a voltage is applied to the polymer composite piezoelectric body, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so that a large amount of deformation can be expected.
  • the polymer material has a relative permittivity of 10 or less at 25 ° C.
  • polymer material having viscoelasticity at room temperature satisfying such conditions examples include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinyl polyisoprene block copolymer, and polyvinylmethyl. Examples thereof include ketones and polybutyl methacrylate. Further, as these polymer materials, commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be preferably used.
  • Hybler 5127 manufactured by Kuraray Co., Ltd.
  • the polymer material it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
  • these polymer materials may use only 1 type, and may use a plurality of types in combination (mixing).
  • a plurality of polymer materials may be used in combination, if necessary. That is, in the matrix 34, in addition to a polymer material having viscoelasticity at room temperature such as cyanoethylated PVA for the purpose of adjusting dielectric properties and mechanical properties, other dielectric polymer materials are added as needed. It may be added.
  • dielectric polymer material examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
  • fluoropolymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethyl cellulose, cyanoethyl hydroxysaccharose, cyanoethyl hydroxycellulose, cyanoethyl hydroxypurrane, cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl.
  • Cyano groups such as hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycidolpulrane, cyanoethyl saccharose and cyanoethyl sorbitol.
  • a polymer having a cyanoethyl group a synthetic rubber such as a nitrile rubber or a chloroprene rubber, and the like are exemplified.
  • a polymer material having a cyanoethyl group is preferably used.
  • the dielectric polymer added in addition to the material having viscoelasticity at room temperature such as cyanoethylated PVA is not limited to one type, and a plurality of types may be added. ..
  • the matrix 34 contains a vinyl chloride resin, a thermoplastic resin such as polyethylene, polystyrene, methacrylic resin, polybutene and isobutylene, and a phenol resin for the purpose of adjusting the glass transition point Tg.
  • a thermoplastic resin such as polyethylene, polystyrene, methacrylic resin, polybutene and isobutylene
  • a phenol resin for the purpose of adjusting the glass transition point Tg.
  • Urea resin, melamine resin, alkyd resin, thermosetting resin such as mica and the like
  • a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added.
  • the amount added when a material other than the polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is added is not particularly limited, but is 30 mass in proportion to the matrix 34. It is preferably% or less.
  • the characteristics of the polymer material to be added can be exhibited without impairing the viscoelastic relaxation mechanism in the matrix 34, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion to the piezoelectric particles 36 and the electrode layer can be improved. In this respect, favorable results can be obtained.
  • the piezoelectric particles 36 can be used, but preferably, the piezoelectric particles 36 are made of ceramic particles having a perovskite-type or wurtzite-type crystal structure.
  • the ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead zirconate titanate (PLZT), barium titanate (BaTIO 3 ), zinc oxide (ZnO), and the like.
  • Examples thereof include a solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3).
  • the particle size of the piezoelectric particles 36 is not limited, and may be appropriately selected depending on the size of the piezoelectric film 12 and the application of the piezoelectric element 10.
  • the particle size of the piezoelectric particles 36 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 36 in this range, favorable results can be obtained in that the piezoelectric film 12 can achieve both high piezoelectric characteristics and flexibility.
  • the piezoelectric particles 36 in the piezoelectric layer 20 are uniformly and regularly dispersed in the matrix 34, but the present invention is not limited to this. That is, the piezoelectric particles 36 in the piezoelectric layer 20 may be irregularly dispersed in the matrix 34 as long as they are preferably uniformly dispersed. Further, the piezoelectric particles 36 may or may not have the same particle size.
  • the amount ratio of the matrix 34 to the piezoelectric particles 36 in the piezoelectric layer 20 is not limited, and the size and thickness of the piezoelectric film 12 in the plane direction, the use of the piezoelectric element 10, and the use of the piezoelectric element 10 are not limited. It may be appropriately set according to the characteristics required for the piezoelectric film 12.
  • the volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30 to 80%, more preferably 50% or more, still more preferably 50 to 80%.
  • the thickness of the piezoelectric layer 20 is not particularly limited, and is appropriately determined according to the application of the piezoelectric element 10, the number of laminated piezoelectric films in the piezoelectric element 10, the characteristics required for the piezoelectric film 12, and the like. , Just set it.
  • the thickness of the piezoelectric layer 20 is preferably 8 to 300 ⁇ m, more preferably 8 to 200 ⁇ m, further preferably 10 to 150 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • the piezoelectric layer 20 is preferably polarized (polled) in the thickness direction.
  • the polarization treatment will be described in detail later.
  • the piezoelectric film 12 of the illustrated example has a first thin film electrode 24 on one surface of such a piezoelectric layer 20, a first protective layer 28 on the surface thereof, and a piezoelectric layer.
  • the second thin film electrode 26 is provided on the other surface of the 20 and the second protective layer 30 is provided on the surface thereof.
  • the first thin film electrode 24 and the second thin film electrode 26 form an electrode pair.
  • the piezoelectric film 12 may have an insulating layer or the like that covers the exposed region of the piezoelectric layer 20 to prevent short circuits or the like.
  • both sides of the piezoelectric layer 20 are sandwiched between electrode pairs, that is, the first thin film electrode 24 and the second thin film electrode 26, and the laminated body is sandwiched between the first protective layer 28 and the second protective layer 30. It has a structure that is sandwiched between.
  • the region held by the first thin film electrode 24 and the second thin film electrode 26 is expanded and contracted according to the applied voltage.
  • the first thin film electrode 24 and the first protective layer 28, and the first and second in the second thin film electrode 26 and the second protective layer 30 are for convenience in order to explain the piezoelectric film 12. The name is given according to the drawing. Therefore, the first and second piezoelectric films 12 have no technical meaning and are irrelevant to the actual usage state.
  • the first protective layer 28 and the second protective layer 30 have a role of covering the first thin film electrode 24 and the second thin film electrode 26 and imparting appropriate rigidity and mechanical strength to the piezoelectric layer 20. Is responsible for. That is, in the piezoelectric film 12, the piezoelectric layer 20 composed of the matrix 34 and the piezoelectric particles 36 exhibits extremely excellent flexibility with respect to slow bending deformation, but is rigid depending on the application. And mechanical strength may be insufficient.
  • the piezoelectric film 12 is provided with a first protective layer 28 and a second protective layer 30 to supplement the piezoelectric film 12.
  • the piezoelectric film 12 may have only one of the first protective layer 28 and the second protective layer 30, or may not have the protective layer.
  • the piezoelectric film 12 preferably has at least one protective layer, and the first protective layer 28 and the second protective layer 28. It is preferable to have both layers 30.
  • the first protective layer 28 and the second protective layer 30 are not limited, and various sheet-like materials can be used.
  • various resin films are preferably exemplified.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfide
  • PMMA polymethylmethacrylate
  • PEI Polyetherimide
  • PEI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • a resin film made of a cyclic olefin resin or the like are preferably used.
  • the thickness of the first protective layer 28 and the second protective layer 30 there is no limitation on the thickness of the first protective layer 28 and the second protective layer 30. Further, the thicknesses of the first protective layer 28 and the second protective layer 30 are basically the same, but may be different. Here, if the rigidity of the first protective layer 28 and the second protective layer 30 is too high, not only the expansion and contraction of the piezoelectric layer 20 is restrained, but also the flexibility is impaired. Therefore, the thinner the first protective layer 28 and the second protective layer 30, the more advantageous it is, except when mechanical strength and good handleability as a sheet-like material are required.
  • the thickness of the first protective layer 28 and the second protective layer 30 is twice or less the thickness of the piezoelectric layer 20, it is possible to ensure both rigidity and appropriate flexibility. A favorable result can be obtained in terms of points.
  • the thickness of the first protective layer 28 and the second protective layer 30 is preferably 100 ⁇ m or less. 50 ⁇ m or less is more preferable, and 25 ⁇ m or less is further preferable.
  • a first thin film electrode 24 is provided between the piezoelectric layer 20 and the first protective layer 28, and a second thin film electrode 26 is provided between the piezoelectric layer 20 and the second protective layer 30. It is formed.
  • the first thin film electrode 24 is also referred to as a first electrode 24, and the second thin film electrode 26 is also referred to as a second electrode 26.
  • the first electrode 24 and the second electrode 26 are provided to apply a voltage to the piezoelectric layer 20 (piezoelectric film 12).
  • the materials for forming the first electrode 24 and the second electrode 26 are not limited, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, alloys thereof, laminates and composites of these metals and alloys, In addition, indium tin oxide and the like are exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the first electrode 24 and the second electrode 26.
  • the method of forming the first electrode 24 and the second electrode 26 can be used for film formation by vapor deposition method (vacuum film deposition method) such as vacuum deposition and sputtering, film formation by plating, and the above materials.
  • vapor deposition method vacuum film deposition method
  • sputtering film formation by plating
  • Various known methods such as a method of attaching the formed foil can be used.
  • thin films such as copper and aluminum formed by vacuum deposition are preferably used as the first electrode 24 and the second electrode 26 because the flexibility of the piezoelectric film 12 can be ensured.
  • a copper thin film produced by vacuum deposition is preferably used.
  • the thickness of the first electrode 24 and the second electrode 26 There is no limitation on the thickness of the first electrode 24 and the second electrode 26. Further, the thicknesses of the first electrode 24 and the second electrode 26 are basically the same, but may be different.
  • the product of the thickness of the first electrode 24 and the second electrode 26 and the Young's modulus is less than the product of the thickness of the first protective layer 28 and the second protective layer 30 and the Young's modulus. It is suitable because it does not significantly impair the flexibility.
  • the first protective layer 28 and the second protective layer 30 are PET
  • the first electrode 24 and the second electrode 26 are made of copper.
  • PET has a Young's modulus of about 6.2 GPa
  • copper has a Young's modulus of about 130 GPa.
  • the thickness of the first protective layer 28 and the second protective layer 30 is 25 ⁇ m
  • the thickness of the first electrode 24 and the second electrode 26 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less. It is preferable, and 0.1 ⁇ m or less is more preferable.
  • the piezoelectric layer 20 formed by dispersing the piezoelectric particles 36 in a matrix 34 containing a polymer material having viscoelasticity at room temperature is formed by the first electrode 24 and the second electrode 26. It has a structure in which the laminated body is sandwiched between the first protective layer 28 and the second protective layer 30.
  • the maximum value of the loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement exists at room temperature, and the maximum value of 0.1 or more exists at room temperature. More preferred.
  • the piezoelectric film 12 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface of.
  • the piezoelectric film 12 preferably has a storage elastic modulus (E') at a frequency of 1 Hz as measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0 ° C. and 1 to 10 GPa at 50 ° C.
  • E' storage elastic modulus
  • the piezoelectric film 12 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can behave hard for vibrations of 20 Hz to 20 kHz and soft for vibrations of several Hz or less.
  • the product of the thickness and the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity is 1.0 ⁇ 10 6 to 2.0 ⁇ 10 6 N / m at 0 ° C. , It is preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N / m at 50 ° C.
  • the piezoelectric film 12 can be provided with appropriate rigidity and mechanical strength as long as the flexibility and acoustic characteristics are not impaired.
  • the piezoelectric film 12 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25 ° C. and a frequency of 1 kHz in the master curve obtained from the dynamic viscoelasticity measurement.
  • Ton ⁇ loss tangent
  • the frequency characteristics of the speaker using the piezoelectric film 12 become smooth, and the amount of change in sound quality when the minimum resonance frequency f 0 changes with the change in the curvature of the speaker can be reduced.
  • a sheet-like object 12a in which the first electrode 24 is formed on the first protective layer 28 is prepared.
  • the sheet-like material 12a may be produced by forming a copper thin film or the like as the first electrode 24 on the surface of the first protective layer 28 by vacuum vapor deposition, sputtering, plating or the like.
  • the first protective layer 28 with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used.
  • the separator may be removed after the second electrode 26 and the second protective layer 30 are thermocompression bonded, and before any member is laminated on the first protective layer 28.
  • a polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 36 such as PZT particles are added and stirred to prepare a dispersed coating material. ..
  • a polymer material having viscoelasticity at room temperature such as cyanoethylated PVA
  • the organic solvent is not limited, and various organic solvents such as dimethylformamide (DMF), methylethylketone, and cyclohexanone can be used.
  • the paint is cast (applied) to the sheet-like material 12a to evaporate the organic solvent and dry it.
  • a laminated body 12b having the first electrode 24 on the first protective layer 28 and forming the piezoelectric layer 20 on the first electrode 24 is produced.
  • the first electrode 24 is an electrode on the base material side when the piezoelectric layer 20 is applied, and does not indicate the vertical positional relationship in the laminated body.
  • the casting method of this paint is not particularly limited, and all known coating methods (coating devices) such as a slide coater and a doctor knife can be used.
  • the viscoelastic material is a material that can be melted by heating, such as cyanoethylated PVA
  • the laminate 12b may be produced by the method shown below. First, the viscoelastic material is heated and melted, and the piezoelectric particles 36 are added / dispersed thereto to prepare a melt. This melt is extruded into a sheet shape on the sheet-like material 12a shown in FIG. 5 by extrusion molding or the like, and cooled. As a result, as shown in FIG. 6, a laminated body 12b having the first electrode 24 on the first protective layer 28 and forming the piezoelectric layer 20 on the first electrode 24 can be produced.
  • a polymer piezoelectric material such as PVDF may be added to the matrix 34 in addition to the viscoelastic material such as cyanoethylated PVA.
  • the polymer piezoelectric materials to be added to the paint described above may be dissolved.
  • the polymer piezoelectric material to be added may be added to the above-mentioned heat-melted viscoelastic material and heat-melted.
  • the method for polarization treatment of the piezoelectric layer 20 is not limited, and known methods can be used.
  • electric field polling in which a DC electric field is directly applied to an object to be polarized is exemplified.
  • the first electrode 24 may be formed before the polarization treatment, and the electric field polling treatment may be performed using the first electrode 24 and the second electrode 26.
  • the polarization treatment is performed in the thickness direction of the piezoelectric layer 20 rather than in the plane direction.
  • a calendar treatment may be performed in which the surface of the piezoelectric layer 20 is smoothed by using a heating roller or the like. By performing this calendar processing, the thermocompression bonding process described later can be smoothly performed.
  • a sheet-like material 12c in which the second electrode 26 is formed on the second protective layer 30 is prepared.
  • the sheet-like material 12c may be produced by forming a copper thin film or the like as the second electrode 26 on the surface of the second protective layer 30 by vacuum vapor deposition, sputtering, plating or the like.
  • the second electrode 26 is directed toward the piezoelectric layer 20, and the sheet-like material 12c is laminated on the laminated body 12b that has undergone the polarization treatment of the piezoelectric layer 20.
  • the laminate of the laminate 12b and the sheet-like material 12c is thermocompression-bonded with a heating press device or a heating roller or the like so as to sandwich the second protective layer 30 and the first protective layer 28, and piezoelectric.
  • a film 12 is produced.
  • the piezoelectric element 10 of the present invention is formed by laminating a plurality of layers of piezoelectric films 12 by folding back.
  • the piezoelectric element 10 has a structure in which adjacent piezoelectric films 12 laminated by folding back are attached with an adhesive layer 14 (adhesive agent).
  • the adhesive layer 14 may be a layer made of an adhesive, a layer made of a pressure-sensitive adhesive, or a layer made of a material having the characteristics of both an adhesive and a pressure-sensitive adhesive.
  • An adhesive is an adhesive that has fluidity when bonded and then becomes solid.
  • the pressure-sensitive adhesive is a gel-like (rubber-like) soft solid that does not change in the gel-like state even after that.
  • the piezoelectric element 10 of the present invention vibrates the diaphragm 46 by expanding and contracting a plurality of laminated piezoelectric films 12, for example, as described later, to generate sound.
  • the adhesive layer 14 is preferably an adhesive layer made of an adhesive, which can obtain a solid and hard adhesive layer 14 rather than the adhesive layer made of an adhesive.
  • an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive is preferably exemplified.
  • Adhesion unlike adhesion, is useful when seeking high adhesion temperatures.
  • the thermoplastic type adhesive has "relatively low temperature, short time, and strong adhesion" and is suitable.
  • the thickness of the sticking layer 14 is not limited, and a thickness capable of exhibiting sufficient sticking force (adhesive force, adhesive force) is determined according to the material for forming the sticking layer 14. It may be set as appropriate.
  • a thickness capable of exhibiting sufficient sticking force adheresive force, adhesive force
  • the adhesive layer 14 when the adhesive layer 14 is thin, the effect of transmitting the expansion / contraction energy (vibration energy) of the piezoelectric layer 20 can be increased, and the energy efficiency can be increased.
  • the sticking layer 14 is thick and has high rigidity, the expansion and contraction of the piezoelectric film 12 may be restricted.
  • the piezoelectric element 10 of the present invention can make the sticking layer 14 thin.
  • the sticking layer 14 is preferably thinner than the piezoelectric layer 20. That is, in the piezoelectric element 10 of the present invention, the sticking layer 14 is preferably hard and thin.
  • the thickness of the sticking layer 14 is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, and even more preferably 0.1 to 10 ⁇ m after sticking.
  • the spring constant of the adhesive layer 14 is high, the expansion and contraction of the piezoelectric film 12 may be restricted. Therefore, it is preferable that the spring constant of the sticking layer 14 is equal to or less than the spring constant of the piezoelectric film 12.
  • the spring constant is "thickness x Young's modulus". Specifically, the product of the thickness of the adhesive layer 14 and the storage elastic modulus (E') at a frequency of 1 Hz by dynamic viscoelasticity measurement is 2.0 ⁇ 10 6 N / m or less at 0 ° C., 50. It is preferably 1.0 ⁇ 10 6 N / m or less at ° C.
  • the internal loss at a frequency of 1 Hz by the dynamic viscoelasticity measurement of the adhesive layer is 1.0 or less at 25 ° C. in the case of the adhesive layer 14 made of an adhesive, and in the case of the adhesive layer 14 made of an adhesive. It is preferably 0.1 or less at 25 ° C.
  • the piezoelectric element of the first aspect of the present invention has a polygonal planar shape, and has a protruding portion provided so as to project from a side other than the shortest side of the polygon.
  • the protruding portion has a connecting portion for connecting to an external power source.
  • the protruding portion is a portion protruding from a polygonal planar shape such as a triangle or a quadrangle.
  • the piezoelectric element according to the first aspect of the present invention is laminated, and the adjacent piezoelectric film 12 is basically adhered to the entire surface by the adhesive layer 14. That is, the protruding portion is a region that is not attached by the attachment layer 14 of the piezoelectric film 12.
  • the piezoelectric element 10 of the illustrated example is formed by folding and stacking rectangular piezoelectric films 12 so as to overlap each other, and has a rectangular planar shape. Therefore, the planar shape has two long sides and two short sides. Therefore, in the piezoelectric element 10, the protruding portion 10a is provided so as to protrude from the long side of the rectangle.
  • the piezoelectric element 10 is laminated by folding back the piezoelectric film 12 so that the folded portion has a long side of a rectangular shape having a flat shape. In other words, in the piezoelectric element 10, the piezoelectric film 12 is folded and laminated so that the folded ridge line becomes the long side of a rectangular shape having a flat shape.
  • the piezoelectric film 12 extends to the outside of the rectangle so as to protrude from the rectangular shape of the piezoelectric element 10, that is, the sticking layer 14. ,
  • the protruding portion 10a protruding from the long side.
  • the piezoelectric element 10 is provided with a connecting portion 40 for connecting the lead wiring 62 and the lead wiring 64 to be connected to the external electrode on the protruding portion 10a.
  • a through hole 28a is formed in the first protective layer 28 of the protruding portion 10a as conceptually shown by exemplifying the first electrode 24 side in FIG.
  • the through hole 28a is filled with the conductive material 40a to form a connecting portion 40 for connecting the external power source and the first electrode 24.
  • the conductive material 40a is not limited, and various known conductive materials can be used.
  • Examples thereof include conductive metal pastes such as silver paste, conductive carbon pastes, and conductive nanoinks.
  • the lead-out wiring 64 connected to the external power supply is fixed so as to come into contact with the conductive material 40a of the connection portion 40, and the external power supply and the first electrode 24 are connected.
  • a lead-out wiring 62 for connecting to an external electrode and a connecting portion 40 for connecting to the lead-out wiring 64 are provided on the protruding portion 10a so as to protrude from the long side of the rectangle.
  • the piezoelectric element of the present invention has such a configuration, so that the piezoelectric element using the piezoelectric film 12 having the piezoelectric layer 20 in which the piezoelectric particles 36 are dispersed in the matrix 34 containing the polymer material has a small impedance. Therefore, for example, when used as an electroacoustic converter or the like, a piezoelectric element capable of improving the sound pressure particularly in a high frequency band has been realized.
  • a protruding portion 10a is provided so as to project from the long side, and the protruding portion 10a is for connecting to an external power source.
  • a connection portion 40 is provided. That is, in the piezoelectric element 10, in the piezoelectric element having a rectangular planar shape, electricity for driving is supplied from the long side (side other than the shortest side) of the piezoelectric film 12. As described above, the electricity supplied in the piezoelectric element 10 is transmitted to the entire surface of the piezoelectric film 12 from the connection portion 40 between the first electrode 24 and the second electrode 26 and the external power source.
  • the area of the forming position of the protruding portion 10a on which the connecting portion 40 is provided that is, the frontage at the position where electricity is supplied. Is wide. Therefore, electricity can be transmitted so as to spread widely in the surface direction of the piezoelectric film 12, so that electricity is easily transmitted to the entire surface of the piezoelectric film 12, and the impedance is lowered.
  • the piezoelectric element 10 of the present invention when used as an exciter, for example, the sound pressure is improved especially in a high frequency band, and the sound pressure is high over a wide frequency band, and the sound quality is high. Can be output.
  • the second aspect of the piezoelectric element of the present invention which will be described later, and the piezoelectric film of the piezoelectric speaker of the present invention.
  • the piezoelectric element 10 of the present invention preferably has a low impedance. Specifically, when the capacitance of the piezoelectric film 12 is C [F], the impedance [ ⁇ ] at the frequency F [Hz] is [1 / (6.28 ⁇ F ⁇ C)] + 1. It is preferably as follows.
  • the impedance of the piezoelectric element 10 of the present invention is [1 / (6.28 ⁇ F ⁇ C)] It is more preferable that it is as follows.
  • the impedance of the piezoelectric element preferably satisfies this condition in the frequency range of 2 to 20 kHz, and further preferably satisfies this condition in the range of 2 to 10 kHz.
  • the piezoelectric element 10 of the present invention lowers the impedance, and when used as an exciter, an electroacoustic converter, or the like, for example, produces high sound pressure in a wide frequency band, particularly in a high frequency band. It can be obtained and can output high-quality sound.
  • this impedance the same applies to the piezoelectric element according to the second aspect of the present invention, which will be described later, and the piezoelectric film in the piezoelectric speaker of the present invention.
  • FIG. 9 illustrates a method in which the 24th side of the first electrode is illustrated and conceptually shown. That is, in the protruding portion 10a, the end portion of the first protective layer 28 is partially peeled off, and the lead wire 62 is inserted and fixed between the first electrode 24 and the first protective layer 28 to fix the outside. It may be a connection portion with an electrode. Further, as a method for constructing and forming the connecting portion, those described in JP-A-2016-015354 can also be preferably used.
  • the connecting portion 40 of the first electrode 24 and the connecting portion 40 of the second electrode 26 may be close to each other, separated from each other, or overlap each other as long as they are formed on the protruding portions. ..
  • the plane direction is the plane direction in the planar shape of the piezoelectric element 10.
  • the connecting portion 40 may be located at the end portion, at the center, or between the end portion and the center in the long side direction of the rectangle having the planar shape of the piezoelectric element 10.
  • one of the connecting portion 40 of the first electrode 24 and the connecting portion 40 of the second electrode 26 is provided in the vicinity of one end in the long side direction of the rectangle which is the planar shape of the piezoelectric element 10, and the other. May be provided near the other end.
  • one of the two connecting portions 40 may be provided near the end portion and the other may be provided at the central portion.
  • both of the two connecting portions 40 may be provided near one end in the longitudinal direction of the rectangle.
  • both of the two connecting portions 40 may be provided in the central portion in the longitudinal direction of the rectangle.
  • the connecting portion 40 of the first electrode 24 and the connecting portion 40 of the second electrode 26 are provided on one protruding portion 10a, but the present invention is not limited thereto. That is, in the piezoelectric element 10 of the present invention, a plurality of protruding portions may be provided as long as they project from the long side of the rectangular shape having a planar shape. For example, as conceptually shown in FIG. 10, two protrusions, a first protrusion 10a-1 and a second protrusion 10a-2, may be provided so as to protrude from the long side of the rectangle.
  • the first protruding portion 10a-1 is provided with the connecting portion 40 with the first electrode 24 (leading wiring 62), and the second protruding portion 10a-2 is provided with the second electrode 26 (leading wiring 64).
  • the connection portion 40 with and may be provided.
  • the vertical direction in the figure is the long side direction of the rectangle having the planar shape of the piezoelectric element, and the horizontal direction in the figure is the short side direction. Regardless of whether one protruding portion is provided on one side or a plurality of protruding portions are provided on one side, it is preferable that the length of the side on which the protruding portion is provided is long in the extending direction.
  • the length of the protruding portion in the extending direction of the side on which the protruding portion is provided is also referred to as "width of the protruding portion".
  • the width La of the protrusion is preferably 10% or more, preferably 50% or more of the length L of the side. It is more preferably 70% or more, particularly preferably 90% or more, and most preferably the same as or longer than the side length L.
  • a protruding portion 10a is provided so as to protrude from the long side of the rectangle at one end of the piezoelectric film 12 in the folding direction.
  • the present invention is not limited to this, and protrusions are provided so as to protrude from the long side of the rectangular shape having a planar shape at both ends of the piezoelectric film 12 to be folded and laminated in the folding direction. May be good. That is, in this case, in the piezoelectric film 12 that is folded back and laminated, protrusions are provided on the uppermost piezoelectric film 12 in the drawing and the lowermost piezoelectric film 12 in the drawing.
  • a connecting portion 40 with the first electrode 24 (leading wiring 62) is provided on the uppermost protruding portion, and a connecting portion with the second electrode 26 (leading wiring 64) is provided on the lowermost protruding portion. 40 may be provided.
  • the number of laminated piezoelectric films 12 is an even number
  • a configuration other than providing the first electrode and the connection portion between the second electrode and the external device on the protruding portion 10a can be used. That is, when the number of laminated piezoelectric films 12 is an even number, a configuration other than the configuration in which both the lead wiring 62 and the lead wiring 64 are provided on the protruding portion 10a can be used.
  • the lead-out wiring 62 is provided without providing the protrusion 10a on the uppermost layer. It may be connected and the lead-out wiring 64 may be connected by providing the protruding portion 10a on the lowermost layer.
  • a configuration other than providing the first electrode and the connection portion between the second electrode and the external device on the protruding portion 10a can be used. That is, even when the number of laminated piezoelectric films 12 is an odd number, it is possible to use a configuration other than the configuration in which both the lead wiring 62 and the lead wiring 64 are provided on the protruding portion 10a.
  • the drawer wiring 62 is connected without providing the protrusion 10a on the uppermost layer, and the protrusion 10a is provided on the lowermost layer to provide the drawer wiring 64. You may connect.
  • the number of laminated piezoelectric films 12 is an odd number, as shown in FIG. 41, if the lead-out wiring is provided in the uppermost layer and the lowermost layer, the pull-out direction of the lead-out wiring is opposite.
  • the protruding portion 10a is provided in the uppermost layer in the drawing, but the present invention is not limited to this.
  • the protruding portion 10a is provided in the lowermost layer in the drawing, and the connecting portion between the first electrode and the second electrode and the external device, that is, the drawer wiring 62 and the drawer wiring 64 are provided here. May be good. That is, in the piezoelectric element in which the piezoelectric film 12 is laminated, there is no limitation on the position of the protruding portion 10a with respect to the top-bottom direction and the left-right direction during use. This point is the same regardless of whether the number of laminated piezoelectric films 12 is odd or even.
  • the connecting portions between the first electrode and the second electrode and the external device that is, the drawer wiring 62 and It is possible to provide the lead wiring 64.
  • the configuration having no protrusion can be suitably used when the number of laminated piezoelectric films 12 is an odd number.
  • the lead wiring 62 is provided on the uppermost layer and the lead wiring 64 is provided on the lowermost layer.
  • the configuration to be provided is exemplified.
  • the piezoelectric element 10 shown in FIGS. 1 to 3 is provided with a protruding portion 10a protruding from the long side of a rectangular shape having a planar shape by extending the piezoelectric film 12 in the folding direction.
  • a protruding portion 10a protruding from the long side of a rectangular shape having a planar shape by extending the piezoelectric film 12 in the folding direction.
  • the piezoelectric film 12 is laminated by folding back so that the folded portion becomes a short side of a rectangular shape having a planar shape.
  • the configuration is also conceivable. That is, in this case, the piezoelectric element 10A is laminated by folding back the piezoelectric film 12 so that the folded ridge line becomes the short side of the rectangular shape having a flat shape.
  • a protruding portion 10Aa in which the piezoelectric film 12 protrudes from the long side of the rectangle is provided so as to be orthogonal to the folding direction of the piezoelectric film 12, and the protruding portion 10Aa is provided.
  • a connection portion 40 with the first electrode 24 (leading wire 62) and a connecting portion 40 with the second electrode 26 (leading wiring 64) may be provided.
  • the protrusion 10Aa is not limited to the configuration provided on the piezoelectric film 12 which is the end portion in the stacking direction. That is, as shown in FIG. 11, in the configuration in which the projecting portion 10Aa is provided so as to be orthogonal to the folding direction of the piezoelectric film 12, the piezoelectric film 12 in the intermediate layer such as the second layer and the third layer in the stacking direction is formed. A protruding portion 10Aa may be provided.
  • a piezoelectric element in which a plurality of layers of piezoelectric films 12 are laminated by folding back one piezoelectric film 12 like the piezoelectric element 10, as conceptually shown in FIG. 17, two adjacent layers of piezoelectric films 12
  • the thickness of the folded portion of the piezoelectric film 12 may be thicker than the thickness of the laminated body.
  • the thickness of the laminated body of the two adjacent piezoelectric films 12 includes the thickness of the sticking layer 14. At this time, there is no limitation on the thickness of the folded portion of the piezoelectric film 12.
  • t max is t. It is preferably 5 ⁇ 10 5 times or less of. That is, in the range of "t max ⁇ t ⁇ (5 ⁇ 10 5) " is preferable.
  • the maximum thickness of the folded portion t max is preferably at 2.5mm or less.
  • the folded-back portion of the piezoelectric film 12 may be a gap, may be filled with a sticking layer 14 (sticking agent), or may be a sticking layer 14. It may be filled with a material having a lower elastic modulus than the dressing agent.
  • the above-mentioned piezoelectric element has a structure in which a plurality of layers of piezoelectric films are laminated by folding back one piezoelectric film 12.
  • the first aspect of the piezoelectric element of the present invention is not limited to this configuration. That is, as in the piezoelectric element 10B conceptually shown in FIG. 12, in the first aspect of the present invention, a plurality of cut sheet-shaped piezoelectric films 12 are laminated to form the piezoelectric films 12 adjacent to each other in the lamination direction.
  • the configuration may be such that the sticking layer 14 is used for sticking.
  • each piezoelectric film 12 when a plurality of cut sheet-shaped piezoelectric films 12 are laminated, each piezoelectric film 12 is individually supplied with electricity to drive. Therefore, in the configuration in which the cut sheet-shaped piezoelectric films 12 are laminated, the shape of the main surface of each piezoelectric film 12 is regarded as the planar shape of the piezoelectric element. That is, in the case of a configuration in which rectangular piezoelectric films 12 are laminated as in the piezoelectric element 10B shown in FIG. 12, the shape of the main surface of the piezoelectric film 12 is regarded as the planar shape of the piezoelectric element 10B, and the length of the piezoelectric film 12 is long.
  • the protruding portion 10Ba may be provided so as to protrude from the side.
  • the piezoelectric element of the present invention described above has a rectangular planar shape. Therefore, in the planar shape, there are only two long sides and two short sides, and a protruding portion is provided that protrudes from the long side and forms a connecting portion for connecting to an external power source.
  • the planar shape is not limited to a rectangle, and a triangle and a polygon of a pentagon or more can be used, and a quadrangle other than a rectangle such as a trapezoid can also be used.
  • the side lengths are three or more.
  • the lengths of the three sides of the triangle may all be different.
  • the protruding portion may be provided so as to protrude from the side other than the shortest side. Therefore, a protrusion is provided from a certain side other than the shortest side of the polygon to form a connecting portion 40 with the first electrode 24, and a protrusion is provided from another side other than the shortest side of the polygon.
  • the connecting portion 40 with the second electrode 26 may be formed.
  • the plane shape is a triangle having all three sides having different lengths, it protrudes from the longest side to form a connecting portion 40 with the first electrode 24 (leading wire 62) and is the second longest.
  • a connecting portion 40 with the second electrode 26 (leading wiring 64) may be formed by providing a protruding portion from the side.
  • the piezoelectric element of the first aspect of the present invention when a plurality of protrusions are provided, it is preferable to provide them on the same side of the polygon, and it is preferable to provide all the protrusions on the longest side.
  • By providing a plurality of protrusions on the same side it is possible to easily connect to an external power supply, it is possible to easily route wiring for connecting to an external power supply, it is easy to manufacture a piezoelectric element, and the plane size of the piezoelectric element. Is preferable in that the size can be reduced.
  • connection portion in the piezoelectric element of the second aspect of the present invention which will be described later
  • the protruding portion and the connection portion in the piezoelectric film of the piezoelectric speaker of the present invention which will be described later. That is, in the piezoelectric element of the second aspect of the present invention, similarly to the connecting portion of the protruding portion in the piezoelectric element of the first aspect, the end is set on a side other than the shortest side of the polygon, as will be described later.
  • the connecting portion may be provided at a position within the upper limit separation distance from the portion.
  • a protruding portion may be provided on a side other than the shortest side of the polygon of the piezoelectric film, and a connecting portion may be provided on the protruding portion, according to the piezoelectric element of the first aspect.
  • the first aspect of the piezoelectric element of the present invention described above is that the piezoelectric film 12 is laminated in a plurality of layers and bonded by the bonding layer 14, except for the shortest side of the polygonal planar shape. It has a protruding portion protruding from the side of the above, and the protruding portion is provided with a connecting portion for connecting to an external power source.
  • the second aspect of the piezoelectric element of the present invention is the piezoelectric element having the same piezoelectric film 12, which has a polygonal planar shape and has a piezoelectric film 12 other than the shortest side of the polygon.
  • a connection portion for connecting the external power supply and the electrode layer is provided at a position within the upper limit separation distance from the end portion.
  • the upper limit separation distance is 1 / 2.1 (1 / 2.1) of the length of the shortest side of the polygon having a planar shape.
  • the upper limit separation distance is preferably two-fifths (2/5) of the length of the shortest side of the polygon having a planar shape, and one-fifth (1/5). 5) is more preferable.
  • the second aspect of such a piezoelectric element of the present invention may have only one piezoelectric film 12 which is not laminated.
  • the second aspect of the piezoelectric element of the present invention may be one in which one piezoelectric film 12 is folded back and a plurality of layers are laminated, as in the piezoelectric element 10 shown in FIGS. 1 to 3.
  • the second aspect of the piezoelectric element of the present invention may be one in which a plurality of cut sheet-shaped piezoelectric films 12 are laminated, as in the piezoelectric element 10B shown in FIG.
  • the adhesive layer 14 to which the adjacent piezoelectric films 12 are attached in the thickness direction is an indispensable constituent requirement. is not it. Therefore, when the second aspect of the piezoelectric element of the present invention is a configuration in which a plurality of layers of piezoelectric films 12 are laminated, known fastening of bolts and nuts, a frame body, a holding member of a sheet-like object, or the like. It may be fixed in a laminated state by means. However, if the adhesive layer 14 is not provided, the piezoelectric film 12 of each layer expands and contracts independently.
  • the second aspect of the piezoelectric element of the present invention also has a polygonal planar shape.
  • the planar shape of the piezoelectric element is the shape when the piezoelectric element is viewed in the stacking direction of the piezoelectric film 12 in the configuration in which the piezoelectric films 12 of a plurality of layers are laminated as described above. Further, when the piezoelectric element is composed of one piezoelectric film 12 which is not laminated, or when a plurality of cut sheet-shaped piezoelectric films 12 are laminated, the shape of the main surface of each piezoelectric film is changed. , Considered as the planar shape of the piezoelectric element.
  • the external power supply and the electrode layer are connected to a position within the upper limit separation distance from the end portion of the piezoelectric film 12 other than the shortest side of the polygon having a planar shape. It has a connection part of.
  • the upper limit separation distance is 1 / 2.1 of the length of the shortest side of the polygon.
  • the position of the connecting portion closest to the end of the side of the polygon having a planar shape may be located within the upper limit separation distance.
  • FIG. 13 describes a second aspect of the piezoelectric element of the present invention by taking a piezoelectric element 42 having one rectangular piezoelectric film 12 which is not laminated is taken as an example.
  • the upper part is a plan view
  • the lower part is a cross-sectional view in the thickness direction.
  • hatching is omitted in order to clearly show the configuration.
  • the piezoelectric element 42 shown in FIG. 13 uses the same members as the piezoelectric element 10 and the like described above, the same members are designated by the same reference numerals, and the following description mainly describes different points.
  • the piezoelectric element 42 shown in FIG. 13 has one rectangular piezoelectric film 12 that is not laminated.
  • a connecting portion for connecting the external power supply and the electrode layer is provided at a position within the upper limit separation distance Ld from the end of the long side.
  • the through hole 28a and the through hole 30a are filled with a conductive material 40a such as silver paste, and the external power supply is connected to the connection portion 40 for connecting the external power supply to the first electrode 24 and the second electrode 26.
  • the connection portion 40 is used for this purpose.
  • the lead wiring 62 and the lead wiring 64 for connecting to the external electrode are connected to both connecting portions 40, for example.
  • the second aspect of the piezoelectric element of the present invention has such a configuration, and similarly to the first aspect of the piezoelectric element described above, in the piezoelectric element 42 having a rectangular planar shape, from the long side side of the rectangle. By supplying power, the impedance is lowered. As a result, even in this second aspect, when used as an electroacoustic converter, an exciter, or the like, the sound pressure is particularly improved in a high frequency band, and the sound pressure is high and high over a wide frequency band. Sound quality can be output.
  • connection portion for connecting to the external power supply is not limited to the connection portion 40 shown in FIG. 8, and the configuration shown in FIG. 9 is the same as in the first aspect described above. Connections of various known configurations such as are available. In the configuration shown in FIG. 9, the contact portion with the lead wiring in the electrode layer is the connection portion. Similar to the first aspect of the piezoelectric element of the present invention described above, in the second aspect of the piezoelectric element of the present invention, the piezoelectric of the connecting portion 40 of the first electrode 24 and the connecting portion 40 of the second electrode 26 There is no limitation on the positional relationship of the film in the plane direction. Further, in the piezoelectric element 42 shown in FIG.
  • the connecting portion 40 of the first electrode 24 and the connecting portion 40 of the second electrode 26 are located within the upper limit separation distance from the ends of the long sides of the rectangle, which are different from each other. It may be provided. Further, also in the second aspect of the piezoelectric element of the present invention, the planar shape is not limited to a rectangle, and various shapes can be used.
  • the connecting portion 40 may be provided at a position within the upper limit separation distance from the portion. At this time, the connecting portion 40 is preferably provided on the same side of the polygon, and more preferably provided on the longest side, as in the case of the protruding portion in the first aspect.
  • the connecting portion 40 corresponds to each piezoelectric film 12 as described above. Should be provided.
  • the piezoelectric film 12 when the plurality of layers of the piezoelectric film 12 are laminated, the piezoelectric film 12 having the protruding portion corresponding to the first aspect and the protruding portion corresponding to the second aspect are provided.
  • the piezoelectric film 12 which does not exist may be mixed.
  • the piezoelectric element of the present invention when a plurality of layers of piezoelectric films 12 are laminated, at least one layer may have a protrusion in the first aspect, and at least one in the second aspect.
  • the connection portion may be provided at a position within the upper limit separation distance from the end of the side other than the side having the shortest layer.
  • the piezoelectric film 12 in which one sheet is folded back and the plurality of layers are laminated and the cut sheet-shaped piezoelectric film 12 are laminated. Therefore, the piezoelectric film may be laminated in a plurality of layers.
  • the figure is shown as an example.
  • the connecting portion 40 may be provided. As described above, this configuration is suitable when the number of laminated piezoelectric films is an odd number.
  • product information may be partially displayed on the piezoelectric element of the present invention and the piezoelectric speaker of the present invention described later.
  • the display position of the product information any position can be used as long as it is a visible position on the outer surface of the piezoelectric element.
  • the information display position include the main surface of the piezoelectric element, the main surface of the piezoelectric film 12, the side surface of the laminate of the piezoelectric film 12, and the protruding portion in the first aspect of the piezoelectric element of the present invention.
  • the side surface of the laminated body is a surface orthogonal to the laminating direction.
  • the main surface may be any of the two surfaces.
  • the product information may be displayed on the lead wire connected to the connection portion of the piezoelectric element, and may be displayed on the cover material when the lead wire is provided with a covering material or the like that protects the lead wiring from corrosion.
  • a protective film such as a moisture-proof film, a protective plate, a housing, or the like
  • information may be displayed on these members. A plurality of display positions of these information may be used in combination.
  • the information display means a known method can be used.
  • drawing (printing) by printing means such as inkjet, engraving by laser processing and mechanical grinding, sticking of sheet-like objects such as stickers, printing by general printing methods such as intaglio printing and letterpress printing, and printing by general printing methods, and Examples of these combinations and the like.
  • the two-dimensional bar code includes a QR (Quick Response) code (registered trademark), a micro QR code (registered trademark), an SP code, a Veri Code, a Maxi Code, and a CP (Computer Purpose) code.
  • QR Quick Response
  • micro QR code registered trademark
  • SP code Veri Code
  • Maxi Code a Maxi Code
  • CP Computer Purpose
  • Various known two-dimensional barcodes such as Date Matrix, Date Matrix ECC200, Code 1, Aztec code, interactor code, card e, chameleon code, and Semacode are available.
  • a storage means readable by radio waves or the like such as an RFID tag using the UHF band and the HF band, or an RFID tag with a memory function, may be attached to the piezoelectric element.
  • an identification number identification code
  • Inspection history / inspection data such as information, material information, production condition information, raw material unit and production / processing day unit information, usage information, customer information, inspection date and time, inspection type such as energization inspection, etc.
  • Company information of the manufacturer such as company name and company logo, product brand name, production control information, production environment information, test history information, and the like are exemplified.
  • the product brand name includes the product logo.
  • the piezoelectric element of the present invention and the piezoelectric speaker of the present invention described later may be provided with various means for preventing falsification.
  • various means for preventing falsification for example, in the case of a piezoelectric element in which a plurality of layers of piezoelectric films 12 are laminated, it is preferable to peel off the adjacent piezoelectric films 12 so that it can be found that the performance has deteriorated.
  • tamper-proof means it is provided between adjacent piezoelectric films 12, and when the adjacent piezoelectric films 12 are peeled off, it is also peeled off, and characters and symbols such as "peeling", "invalid" and "VOID" are used.
  • a tamper-proof sticker that remains on the main surface of the piezoelectric film 12 and / or the main surface of the sticking layer 14, and a strip-shaped sticker that is stuck over a plurality of layers of piezoelectric films and breaks when the piezoelectric film 12 is peeled off.
  • various known tamper-proof seals such as the tamper-proof seal described in JP-A-7-199813 and JP-A-2006-23348 can be used.
  • the piezoelectric element having a structure in which a plurality of layers of piezoelectric films 12 are laminated is used as an exciter for vibrating the diaphragm and generating sound from the diaphragm.
  • the piezoelectric element of the present invention is adhered to the diaphragm 46 by the sticking layer 48, and the sound is heard from the diaphragm 46. It is used as an exciter to generate. That is, FIG. 15 shows an example of an electroacoustic converter using the piezoelectric element 10 of the present invention.
  • the piezoelectric layer 20 constituting the piezoelectric film 12 in which a plurality of layers are laminated is formed by dispersing the piezoelectric particles 36 in the matrix 34. Further, the first electrode 24 and the second electrode 26 are provided so as to sandwich the piezoelectric layer 20 in the thickness direction.
  • the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage.
  • the piezoelectric film 12 shrinks in the thickness direction.
  • the piezoelectric film 12 expands and contracts in the plane direction due to the pore ratio. This expansion and contraction is about 0.01 to 0.1%.
  • the thickness of the piezoelectric layer 20 is preferably about 8 to 300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is very small, about 0.3 ⁇ m at the maximum.
  • the piezoelectric film 12 that is, the piezoelectric layer 20
  • the piezoelectric film 12 has a size much larger than the thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film 12 is 20 cm, the piezoelectric film 12 expands and contracts by a maximum of about 0.2 mm when a voltage is applied.
  • the diaphragm 46 is attached to the piezoelectric element 10 by the attachment layer 48. Therefore, the expansion and contraction of the piezoelectric film 12 causes the diaphragm 46 to bend, and as a result, the diaphragm 46 vibrates in the thickness direction.
  • the diaphragm 46 emits a sound due to the vibration in the thickness direction. That is, the diaphragm 46 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 12, and generates a sound corresponding to the driving voltage applied to the piezoelectric film 12.
  • a general piezoelectric film made of a polymer material such as PVDF the molecular chains are oriented with respect to the stretching direction by stretching in the uniaxial direction after the polarization treatment, and as a result, a large piezoelectric property is exhibited in the stretching direction. It is known to be obtained. Therefore, a general piezoelectric film has in-plane anisotropy in the piezoelectric characteristics, and has anisotropy in the amount of expansion and contraction in the plane direction when a voltage is applied.
  • the piezoelectric film 12 having the piezoelectric layer 20 made of a polymer composite piezoelectric body in which the piezoelectric particles 36 are dispersed in the matrix 34 is stretched after the polarization treatment. Large piezoelectric characteristics can be obtained without this. Therefore, the piezoelectric film 12 has no in-plane anisotropy in the piezoelectric characteristics, and expands and contracts isotropically in all directions in the plane direction. That is, in the piezoelectric element 10 of the present invention, the piezoelectric film 12 expands and contracts isotropically and two-dimensionally.
  • the piezoelectric element 10 of the present invention in which such a piezoelectric film 12 that expands and contracts isotropically two-dimensionally is laminated, compared with the case where a general piezoelectric film such as PVDF that expands and contracts significantly in only one direction is laminated.
  • the diaphragm 46 can be vibrated with a large force, and a louder and more beautiful sound can be generated.
  • the piezoelectric element 10 is formed by stacking a plurality of layers by folding back such a piezoelectric film 12.
  • the adjacent piezoelectric films 12 are further attached to each other by the attachment layer 14. Therefore, even if the rigidity of each piezoelectric film 12 is low and the stretching force is small, the rigidity is increased by laminating the piezoelectric films 12, and the stretching force of the piezoelectric element 10 is increased.
  • the piezoelectric element 10 of the present invention even if the diaphragm 46 has a certain degree of rigidity, the diaphragm 46 is sufficiently flexed with a large force to sufficiently vibrate the diaphragm 46 in the thickness direction. It is possible to generate a sound in the diaphragm 46. Further, the thicker the piezoelectric layer 20, the larger the expansion / contraction force of the piezoelectric film 12, but the larger the driving voltage required for expansion / contraction by the same amount.
  • the preferable thickness of the piezoelectric layer 20 is about 300 ⁇ m at the maximum, so that even if the voltage applied to each piezoelectric film 12 is small, it is sufficient. , The piezoelectric film 12 can be expanded and contracted.
  • the adhesive layer 48 for attaching the piezoelectric element 10 and the diaphragm 46 is not limited, and various known adhesives and adhesives can be used. It is possible. As an example, the same as the above-mentioned adhesive layer 14 is exemplified.
  • the preferred sticking layer 48 (sticking agent) is also the same as the sticking layer 14.
  • the diaphragm 46 is not limited, and various articles can be used.
  • the vibrating plate 46 include plate materials such as resin plates and glass plates, advertising / announcement media such as signs, office equipment and furniture such as tables, whiteboards and projection screens, and organic electroluminescence (OLED (OLED).
  • OLED organic electroluminescence
  • Display devices such as displays and liquid crystal displays, vehicle components such as consoles, A-pillars, ceilings and bumpers, and building materials such as walls of houses are exemplified.
  • the diaphragm 46 to which the piezoelectric element 10 is attached preferably has flexibility, and more preferably windable.
  • various flexible sheet-like materials such as a resin film (plastic film) can be used.
  • a flexible panel-shaped display device such as a flexible display panel is particularly preferably exemplified. Further, it is more preferable that the display device can also be wound up.
  • the vibrating plate 46 and the piezoelectric element, that is, the exciter are attached by drawing out wiring. It is preferable to avoid it.
  • the piezoelectric element in which the piezoelectric film 12 is laminated is used as an exciter, it is preferable that the sticking layer 48 for sticking the piezoelectric element (exciter) and the diaphragm 46 is provided avoiding the lead wiring. That is, it is preferable not to attach the sticking layer 48 to the lead-out wiring.
  • the piezoelectric element on which the piezoelectric film 12 is laminated has a protruding portion 10a for connecting the lead-out wiring and the electrode layer, not only the lead-out wiring but also the protruding portion 10a is not attached to the diaphragm 46. Is preferable. That is, when the piezoelectric element on which the piezoelectric film 12 is laminated has a protruding portion 10a for connecting the lead-out wiring and the electrode layer, it is preferable not to provide the sticking layer 48 on the protruding portion either.
  • the piezoelectric element When the piezoelectric element is used as an exciter, it may be necessary to separate the piezoelectric element and the diaphragm 46 for the purpose of various adjustments, repairs, reattachment, and the like.
  • the lead-out wiring for example, as in the examples described later, copper foil tape or the like is used, and in many cases, the mechanical strength is not high. Therefore, if the lead-out wiring is attached to the diaphragm 46, there is a high possibility that the lead-out wiring will be damaged when the diaphragm 46 and the piezoelectric element are separated from each other. Further, it is very difficult to separate the diaphragm 46 and the piezoelectric element without damaging the lead-out wiring.
  • the piezoelectric element it is mainly the laminated portion in which the piezoelectric film 12 is laminated that vibrates the diaphragm 46.
  • the lead-out wiring is attached to the diaphragm 46, the frequency of this portion is different from that of other regions due to the presence of the lead-out wiring, which may adversely affect the sound output.
  • the piezoelectric element has the protruding portion 10a, the piezoelectric film 12 is not laminated on the protruding portion 10a.
  • the protruding portion 10a is attached to the diaphragm 46, similarly, the frequency differs between the protruding portion 10a and the laminated portion of the piezoelectric film 12, which may adversely affect the sound output. It is also conceivable to attach the entire surface of the piezoelectric element to the diaphragm 46 to control the vibration of the diaphragm 46 as a whole. However, in this case, the problem that occurs when the diaphragm 46 and the piezoelectric element are separated from each other is unavoidable.
  • connection portion between the connection line with the external device and the lead wiring and the connection portion between the lead wiring and the electrode layer are positions where the electric flow, that is, the electric resistance changes significantly. Easy to generate heat. If such a place, that is, the lead-out wiring is attached to the diaphragm 46, heat cannot be dissipated efficiently, and heat may be generated at a high temperature.
  • the lead-out wiring and the diaphragm 46 are not attached.
  • the protruding portion 10a is provided, the protruding portion 10a and the diaphragm 46 are more preferably not attached. This makes it possible to easily separate the piezoelectric element and the diaphragm 46 without damaging the lead-out wiring, enable suitable audio output in which adverse effects due to regions having different frequencies are prevented, and further, lead-out wiring. And the heat generation around the lead wiring can be suppressed. Regarding this point, the same applies to the configuration in which the protrusion 10a is provided on either the long side or the short side, or the configuration without the protrusion, which will be described later.
  • FIGS. 44 to 49 and 52 to 54 an example is shown as a conceptual diagram in FIGS. 44 to 49 and 52 to 54.
  • the electrode and the protective layer are shown integrally, and the sticking layer 14 to which the adjacent piezoelectric film 12 is stuck is omitted. ing.
  • the sticking layer 14 since the sticking layer 14 is omitted, the portion protruding from the folded end portion of the piezoelectric film 12 is shown as the protruding portion 10a for convenience.
  • the diaphragm 16 and the piezoelectric element are formed without providing the sticking layer 48 on the protruding portion 10a. It is preferable to attach and.
  • the sticking layer 48 is provided so as to include the entire planar shape of the piezoelectric element in a plan view, and the sticking property is provided between the protruding portion 10a and the sticking layer 48.
  • a non-sticking layer 49 that does not exist may be provided.
  • having no adhesiveness means having neither adhesiveness nor adhesiveness.
  • the non-sticking layer 49 is shown to be embedded in the sticking layer 48.
  • the configuration having the non-sticking layer 49 is not limited to this, and the sticking layer 48 may have a step and / or an inclined portion due to the non-sticking layer 49.
  • the case where the protruding portion 10a is on the side close to the diaphragm 16 is, in other words, a case where the protruding portion 10a is provided in the layer of the piezoelectric film 12 to be attached to the diaphragm 16.
  • the sticking layer 48 is formed in a planar shape, that is, in a region that does not overlap with the protruding portion 10a when viewed in a plan view. Is provided, and the diaphragm 16 and the piezoelectric element (piezoelectric film 12) are preferably attached.
  • the sticking layer 48 is provided so as to include the entire planar shape of the piezoelectric element in a plan view, and the sticking property is formed in the region where the protrusion 10a and the sticking layer 48 overlap.
  • the non-sticking layer 49 may be provided.
  • the protruding portion 10a is on the side far from the diaphragm 16, in other words, the protruding portion 10a is provided in the layer most distant from the layer of the piezoelectric film 12 to be attached to the diaphragm 16 in the stacking direction. This is the case.
  • the sticking layer 48 is not provided only on the lead-out wiring, and the sticking layer 48 is provided on the region other than the lead-out wiring of the protrusion 10a to vibrate. It may be attached to the plate 16.
  • the protruding portion 10a is a single layer, and as described above, when the driving power is supplied, the frequency of the protruding portion 10a is different from that of the laminated portion. Therefore, when the piezoelectric element has the protruding portion 10a, it is preferable that the protruding portion 10a is not attached to the diaphragm 46 either.
  • the sticking layer 48 on the lead-out wiring.
  • a region without the sticking layer 48 is provided in a band shape corresponding to the region where the lead wiring 64 exists, and the vibrating plate 16 and the piezoelectric element (piezoelectric film 12) are provided by the sticking layer 48.
  • the attachment layer 48 is provided so as to include the entire planar shape of the piezoelectric element in a plan view, and is attached to the region where the lead wiring 64 and the attachment layer 48 overlap.
  • the non-sticking layer 49 having no property may be provided in a band shape.
  • the vibrating plate 46 is attached by the attachment layer 48 in a strip shape with respect to the region where the lead wiring is provided, as shown in FIGS. 48 and 49.
  • the sticking layer 48 is not provided in the region.
  • the sticking layer 48 may not be provided only in the region where the piezoelectric element (piezoelectric film 12) does not have the lead wiring 64.
  • the sticking layer 48 may be provided so as to stick the entire surface of the piezoelectric element, and the non-sticking layer 49 may be provided only in the region of the lead wiring 64 of the piezoelectric element (piezoelectric film 12).
  • the lead wiring 64 corresponds to the protruding side 12s and is parallel to the side 12s and is drawn out.
  • the sticking layer 48 may not be provided in the band-shaped region B in which the wiring 64 exists.
  • a sticking layer 48 is provided so as to stick the entire surface of the piezoelectric element, and the lead-out wiring 64 covers the sticking layer 48 on the side protruding from the piezoelectric element (piezoelectric film 12) including this region B.
  • the non-sticking layer 49 may be provided in a strip shape.
  • connection portion between the connection line with the external device and the leader wiring and the connection portion between the leader wiring and the electrode layer are positions where the electrical resistance changes significantly, and heat is likely to be generated.
  • a heat radiating plate 47 may be provided at the arrangement portion of the lead wiring such as the protruding portion 10a.
  • the sticking layer 48 is provided on the lower surface of the piezoelectric element shown in FIG. 42, that is, on the protruding portion 10a side to attach the diaphragm 46, as shown in FIG. 52, the protruding portion 10a and the sticking layer are attached.
  • a non-sticking layer 49 may be provided between the non-sticking layer 49 and the heat radiating plate 47 may be provided between the non-sticking layer 49 and the lead-out wiring 64.
  • the protrusion 10a shown in FIG. 45 is located on the side closer to the diaphragm 46, as shown in FIG. 53, the non-sticking layer 49 and the protrusion 10a provided corresponding to the protrusion 10a are formed. A heat sink 47 may be provided between them. Further, if the protruding portion 10a shown in FIG. 47 is located on the side far from the diaphragm 46, the heat radiating plate 47 may be provided on the protruding portion 10a so as to cover the drawer wiring 64 as shown in FIG. 54.
  • the heat radiating plate 47 is not limited, and if it is a plate-shaped member having heat radiating property, that is, high thermal conductivity, a heat radiating plate (heat radiating sheet) such as a graphite sheet and a heat radiating sheet containing a heat radiating filler having high thermal conductivity. ), Various known plate materials (sheet-like materials) can be used. Alumina and the like are exemplified as the heat radiating filler having high thermal conductivity. Further, the heat sink 47 preferably has flexibility.
  • the piezoelectric speaker of the present invention has the above-mentioned piezoelectric film and diaphragm, and the piezoelectric film and the diaphragm are attached by the above-mentioned bonding layer.
  • FIG. 31 conceptually shows an example of the piezoelectric speaker of the present invention. Since the piezoelectric speaker shown in FIG. 31 is composed of the same members as the electroacoustic converter using the piezoelectric element 10 of the present invention shown in FIG. 15 as an exciter, the same members are designated by the same reference numerals and the following description will be given. Mainly does different things.
  • the piezoelectric element of the present invention used as the exciter described above is a laminate of a plurality of piezoelectric films 12.
  • a single piezoelectric film 12 which is not laminated, a diaphragm 46, and a bonding layer 48 for bonding the piezoelectric film 12 and the diaphragm 46 are attached.
  • the piezoelectric film 12, the diaphragm 46, and the bonding layer 48 are all the same as those described above.
  • the piezoelectric film 12 has a polygonal planar shape and has a side other than the shortest side of the polygon, similarly to the piezoelectric element of the first aspect of the present invention described above. It has a protruding portion 70a provided so as to protrude from the.
  • the piezoelectric speaker 70 of the present invention has a connecting portion for connecting to an external power source at the protruding portion 70a, similarly to the piezoelectric element of the first aspect of the present invention.
  • a projecting portion 70a is formed so as to project from the long side of the rectangle, and a connecting portion is provided on the projecting portion 70a.
  • the protruding portion is a portion that protrudes from a polygonal planar shape such as a triangle or a quadrangle.
  • the portion acting as an exciter is basically entirely attached by the attachment layer 48. That is, in the piezoelectric speaker 70 of the present invention, the protruding portion is a region that is not attached by the attachment layer 48 of the piezoelectric film 12.
  • the piezoelectric speaker 70 of the present invention has only one layer of the piezoelectric film 12. In this case, the planar shape of the piezoelectric film 12 is the shape of the main surface of the piezoelectric film 12 as described above.
  • a connecting portion for connecting the external power supply and the electrode layer is provided on the protruding portion 70a of the piezoelectric film 12.
  • a through hole is provided in the protective layer of the protrusion 70a, and the through hole is filled with a conductive material to connect the lead wiring 62 and the lead wiring 64.
  • the protective layer of the protrusion 70a is peeled off, and the drawer wiring 62 and the drawer wiring 64 are inserted between the protective layer and the electrode.
  • the piezoelectric film 12 is thin and has good flexibility, but depending on the rigidity of the piezoelectric film 12 and the rigidity of the vibrating plate 46, even one piezoelectric film 12 is sufficient.
  • the vibration plate 46 can be vibrated to appropriately output sound.
  • connection portion for connecting to the external power supply is not limited to the connection portions shown in FIGS. 8 and 9, and like the piezoelectric element of the present invention described above, connections having various known configurations are used. The department is available. Similar to the piezoelectric element of the present invention described above, also in the piezoelectric speaker of the present invention, the positional relationship between the connection portion 40 of the first electrode 24 and the connection portion 40 of the second electrode 26 in the plane direction of the piezoelectric film is also determined. There is no limit. Further, in the piezoelectric film 12 of the piezoelectric speaker of the present invention, the planar shape is not limited to a rectangle, and various shapes can be used. And a connection part may be provided. At this time, the protrusions are preferably provided on the same side of the polygon, and more preferably on the longest side, as described above, as in the protrusions in the first aspect of the piezoelectric element of the present invention. Is.
  • the piezoelectric element having only one non-stacked piezoelectric film can be used as an electroacoustic conversion film such as a piezoelectric speaker that outputs sound by vibrating itself.
  • FIG. 16 conceptually shows an example of a flat plate type piezoelectric speaker using the piezoelectric element 42 having only one non-stacked piezoelectric film 12 described above.
  • the piezoelectric speaker 50 is a flat plate type piezoelectric speaker that uses the piezoelectric element 42 (piezoelectric film 12) as a diaphragm that converts an electric signal into vibration energy.
  • the piezoelectric speaker 50 can also be used as a microphone, a sensor, or the like. Furthermore, this piezoelectric speaker can also be used as a vibration sensor.
  • the piezoelectric speaker 50 includes a piezoelectric element 42, a case 52, a viscoelastic support 56, and a frame body 58.
  • the case 52 is a thin housing made of plastic or the like and having one side open. Examples of the shape of the housing include a rectangular parallelepiped shape, a cubic shape, and a cylindrical shape.
  • the frame body 58 is a frame material having a through hole having the same shape as the open surface of the case 52 in the center and engaging with the open surface side of the case 52.
  • the viscoelastic support 56 has appropriate viscosity and elasticity, supports the piezoelectric element 42, and applies a constant mechanical bias to any part of the piezoelectric film to move the piezoelectric element 42 back and forth without waste.
  • a non-woven fabric such as wool felt and wool felt containing PET and the like, glass wool and the like are exemplified.
  • the back-and-forth movement of the film is a movement in a direction perpendicular to the surface of the film.
  • the piezoelectric speaker 50 accommodates the viscoelastic support 56 in the case 52, and covers the case 52 and the viscoelastic support 56 with the piezoelectric element 42. Then, the frame body 58 is fixed to the case 52 in a state where the periphery of the piezoelectric element 42 is pressed against the upper end surface of the case 52 by the frame body 58.
  • the height (thickness) of the viscoelastic support 56 is thicker than the height of the inner surface of the case 52. Therefore, in the piezoelectric speaker 50, the viscoelastic support 56 is held in a state of being thinned by being pressed downward by the piezoelectric element 42 at the peripheral portion of the viscoelastic support 56. Similarly, in the peripheral portion of the viscoelastic support 56, the curvature of the piezoelectric element 42 suddenly fluctuates, and the piezoelectric element 42 is formed with a rising portion that becomes lower toward the periphery of the viscoelastic support 56. Further, the central region of the piezoelectric element 42 is pressed by the viscoelastic support 56 having a square columnar shape to be (omitted) flat.
  • the piezoelectric speaker 50 absorbs this extension by the action of the viscoelastic support 56.
  • the rising portion of the piezoelectric element 42 changes its angle in the rising direction.
  • the piezoelectric element 42 having the flat portion moves upward.
  • the piezoelectric element 42 contracts in the plane direction due to the application of the driving voltage to the second electrode 26 and the first electrode 24, the rising portion of the piezoelectric element 42 falls in the direction in which the rising portion of the piezoelectric element 42 collapses in order to absorb the contracted portion.
  • the angle of the piezoelectric element 42 is changed so as to be closer to a flat surface. As a result, the piezoelectric element 42 having the flat portion moves downward.
  • the piezoelectric speaker 50 generates sound by the vibration of the piezoelectric element 42.
  • the piezoelectric element 42 of the present invention the conversion from the expansion / contraction motion to the vibration can also be achieved by holding the piezoelectric element 42 in a curved state. Therefore, the piezoelectric element 42 of the present invention is not a flat plate-shaped piezoelectric speaker 50 having rigidity as shown in FIG. 16, but a piezoelectric speaker having flexibility even if it is simply held in a curved state, a vibration sensor, and the like. Can function as.
  • a piezoelectric speaker using such a piezoelectric element 42 can be housed in a bag or the like by, for example, being rolled or folded, taking advantage of its good flexibility. Therefore, according to the piezoelectric element 42, it is possible to realize a piezoelectric speaker that can be easily carried even if it has a certain size. Further, as described above, the piezoelectric element 42 is excellent in flexibility and flexibility, and has no in-plane anisotropy of piezoelectric characteristics. Therefore, the piezoelectric element 42 has little change in sound quality regardless of which direction it is bent, and moreover, there is little change in sound quality with respect to a change in curvature.
  • the piezoelectric speaker using the piezoelectric element 42 has a high degree of freedom in the installation location, and can be attached to various articles as described above.
  • a so-called wearable speaker can be realized by attaching the piezoelectric element 42 to clothing such as clothes and portable items such as a bag in a curved state.
  • the piezoelectric element of the present invention has a structure in which a plurality of layers of piezoelectric films are laminated and a structure in which only one piezoelectric film is not laminated, both of which vibrate or expand and contract to output electricity. It can be used for various purposes such as sensors.
  • the piezoelectric element of the present invention can be suitably used as, for example, various sensors, acoustic devices, ultrasonic transducers, actuators, vibration damping materials, and vibration power generation devices.
  • the sensor include an ultrasonic sensor, a pressure sensor, a tactile sensor, a strain sensor, a vibration sensor, and the like.
  • acoustic devices include microphones, pickups, speakers, exciters, and the like. More specific applications include noise cancellers, artificial vocal cords, buzzers for preventing the invasion of pests and vermin, furniture, wallpaper, signage, and the like.
  • the ultrasonic transducer include an ultrasonic probe and a hydrophone.
  • Examples of the actuator include actuators used for preventing water droplets from adhering, transporting, stirring, polishing, haptics, and the like.
  • Examples of haptics include automobiles, smartphones, games, and the like.
  • Examples of the damping material include vibration damping materials (dampers) used for containers, vehicles, buildings, and sports equipment such as skis and rackets.
  • the vibration power generation device for example, a vibration power generation device used by being applied to a road, a floor, a mattress, a chair, shoes, a tire, a wheel, a personal computer keyboard, or the like is exemplified.
  • the configuration of the connecting portion is not limited to the examples shown in FIGS. 8 and 9.
  • the first electrode 24 and the first electrode 24 and the first electrode 24 and the first electrode 24 and the piezoelectric film 12 are not provided with the piezoelectric layer 20 at the end portion of the piezoelectric film 12 at the forming position of the connecting portion such as the protruding portion 10a.
  • the second electrode 26 may be exposed and this portion may be used as a connecting portion. That is, the electrode layer may be exposed, and the lead wire 62 may be connected to the exposed first electrode 24, and the lead wire 64 may be connected to the exposed second electrode 26. Similar to the example shown in FIG.
  • the contact portion between the electrode layer and the lead wire is the connection portion in the present invention.
  • the lead wiring 62 and the exposed second electrode 26 are exposed. It is preferable to provide an insulating layer between the 1 electrode 24 and the lead wire 64 and the exposed second electrode 26.
  • connection portion between the lead-out wiring 62 and the lead-out wiring 64 and the first electrode 24 and the second electrode 26 of the piezoelectric element 10 is a portion where the current density rapidly increases, and heat is likely to be generated. .. Therefore, it is preferable that the contact portion where the leader wiring and the connection portion come into contact with each other has a large area. That is, if the lead-out wiring and the electrode layer shown in FIGS. 9 and 24 and 25 are directly in contact with each other, it is preferable that the contact area between the electrode layer and the lead-out wire is large. Further, in the case of the connection portion 40 for connecting the lead wire and the electrode layer via the conductive material 40a shown in FIGS.
  • the conductive material 40a that is, the through hole and the lead wire are in contact with each other.
  • a large area is preferable.
  • the area of the contact portion where the leader wiring and the connection portion come into contact is simply referred to as "the contact area between the drawer wiring and the connection portion".
  • the contact area between the lead wiring and the connection portion is preferably large, but there is no limitation.
  • the contact area between the lead-out wiring and the connecting portion is preferably set according to the area of the piezoelectric film 12.
  • the preferable contact area between the lead wiring and the connection portion is also affected by the drive voltage, the thickness of the electrode layer, the resistance of the conductive material 40a, etc., but as an example, the contact area between the lead wiring and the connection portion is , 0.03% or more of the area of the piezoelectric film 12 is preferable.
  • the contact area between the lead wiring and the connecting portion is more preferably 0.2% or more, and further preferably 0.6% or more of the area of the piezoelectric film 12.
  • the area of the piezoelectric film 12 is specifically the area of the main surface (maximum surface) of either the front surface or the back surface of the piezoelectric film 12. Further, it is preferable that the contact area between the lead wiring and the connecting portion is widened so as to be proportional to the area of the piezoelectric film 12 according to the area of the piezoelectric film 12.
  • the area of the piezoelectric film 12 means that in the case of the piezoelectric element 10 in which the piezoelectric film 12 is folded and laminated, the piezoelectric film 12 is not folded back, that is, the piezoelectric film 12 is expanded. It is the area of the piezoelectric film 12 in the state. Further, in the case of a piezoelectric element in which a plurality of cut sheet-shaped piezoelectric films 12 are laminated as shown in FIG. 12, and a piezoelectric element having only one piezoelectric film 12 as shown in FIG. 13, and the present invention. In the case of a piezoelectric speaker, it is the area of each piezoelectric film.
  • the contact area between the lead wiring and the connection portion is the contact area between the electrode layer and the lead wiring.
  • the connecting portion 40 for connecting the lead wiring and the electrode layer via the conductive material 40a shown in FIGS. 3, 8 and 13 the contact area between the lead wiring and the connecting portion 40 penetrates. This is the contact area between the hole and the lead-out wiring.
  • the total contact area between all the through holes and the drawer wiring is taken as the contact area between the drawer wiring and the connecting portion.
  • the width of the lead wiring 62 and the lead wiring 64 is wide, the contact area between the connection portion and the lead wiring, that is, the contact area between the electrode layer and the lead wiring also increases. Become wider.
  • the protrusions 10a-1 and the protrusions 10a-1 and the protrusions are similar to those in FIG.
  • the width of the lead-out wiring is limited by the width of the protruding portion.
  • the width of the lead-out wiring 62 and the lead-out wiring 64 is wide, the contact area between the electrode layer and the lead-out wiring is also wide. That is, when the protruding portion is provided, the connecting portion is formed on the protruding portion, and the lead-out wiring is connected, the width of the protruding portion is also important. As described above, the width of the protruding portion is the length of the side on which the protruding portion is formed in the extending direction.
  • the width La of the protrusion is 10 of the side length L. % Or more, more preferably 50% or more, further preferably 70% or more, particularly preferably 90% or more, equal to or greater than the side length L. Is most preferable.
  • the piezoelectric layer 20 of the piezoelectric film 12 has a preferable thickness of 10 to 300 ⁇ m and is very thin. Therefore, in order to prevent a short circuit, it is preferable that the lead-out wiring is provided at different positions in the surface direction of the piezoelectric film 12. That is, it is preferable that the drawer wiring 62 and the drawer wiring 64 are provided so as to be offset in the surface direction of the piezoelectric film 12. In addition, in the laminated piezoelectric element in which the piezoelectric films are folded and laminated, it is preferable that the lead wires serving as heat generating portions are separated from each other as much as possible in the width direction of the lead wires. That is, as conceptually shown in FIG.
  • the distance b between the leader wiring 62 and the drawer wiring 64 in the width direction is wide.
  • the width of the lead-out wiring is the length in the extending direction of the side on which the lead-out wiring is provided, similar to the width of the protruding portion described above.
  • the piezoelectric element and the piezoelectric speaker (piezoelectric film) of the present invention are provided with connecting portions corresponding to sides other than the narrowest side of the polygon in the planar shape.
  • a connecting portion is provided corresponding to the long side so that a current flows from the long side, and the lead wiring is connected. Therefore, in the piezoelectric element of the present invention, the width of the lead-out wiring and the interval in the width direction can be widened, and heat generation can be suitably suppressed.
  • the width of the lead-out wiring is not limited, but a wide width is preferable in that the contact area between the lead-out wiring and the connection portion can be easily widened.
  • the current linear density of the lead wiring is preferably 1 A / cm or less in order to suppress heat generation in the lead wiring.
  • the current line density of the lead wiring is a value obtained by dividing the current value [A] of the current flowing into the lead wiring by the width [cm] of the lead wiring.
  • the width of the lead-out wiring is 10% or more (1/10) of the length of the side corresponding to the connection portion provided in the piezoelectric element, that is, the length of the side in which the lead-out wiring is provided.
  • the above) is preferable, 20% or more is more preferable, and 30% or more is further preferable.
  • the width a of the lead-out wiring 62 and the lead-out wiring 64 is 2 cm or more.
  • the capacitance of the piezoelectric film 12 becomes larger (impedance becomes smaller), so that the amount of current flowing through the piezoelectric film 12 with respect to the same applied voltage increases.
  • the width of the lead-out wiring is set to 10% or more of the side on which the lead-out wiring is provided, the current linear density of the lead-out wiring can be stably reduced to 1 A / cm or less.
  • the thickness of the electrode layer is set than 0.1 [mu] m, preferably since the current density divided by the cross-sectional area of the current amount of lead wirings flowing through the lead wire can be made 1 ⁇ 10 5 A / cm 2 or less.
  • the interval in the width direction of the lead wiring is preferably 25% or more (1/4 or more), more preferably 30% or more, and even more preferably 40% or more of the length of the side on which the leader wiring is provided. That is, in the example shown in FIG. 23, in the piezoelectric element, the length of the side on which the lead wiring is provided is 20 cm, so that the distance b in the width direction between the lead wiring 62 and the lead wiring 64 is set to 5 cm or more. Is preferable.
  • FIG. 23 exemplifies the connection portions shown in FIGS. 9, 24 and 25, but with respect to the above points, the through holes shown in FIGS. 3, 8 and 13 are made of a conductive material.
  • the connecting portion 40 filled with 40a the conductive material 40a includes not only the metal paste such as the silver paste described above, but also a non-conductive paste-like material containing the conductive material as a filler such as flakes and particles. include.
  • the connecting portion 40 having a through hole provided in the protective layer and ending the conductive material 40a in the through hole may be provided with a plurality of connecting portions for one lead-out wiring.
  • five connection portions 40 may be provided for each of the lead wiring 62 and the lead wiring 64.
  • the contact area between the connection portion 40 (through hole) and the lead-out wiring is large.
  • the lead wiring has a wide width.
  • the five connection portions in FIG. 28 are conceptually shown in FIG.
  • the width of the leader wiring is widened as much as possible so that the lead wiring 62 and the lead wiring 64 do not overlap in the surface direction of the piezoelectric film 12, and the lead wiring and the piezoelectric element ( It is more preferable to provide as many connecting portions 40 as possible in the overlapping portion with the protruding portion 10a).
  • FIGS. 27 to 30 are examples in which the piezoelectric element 10 has a protruding portion 10a, but with respect to the above points, unlike the piezoelectric element shown in FIG. 13, the piezoelectric element 10 is connected without having a protruding portion. The same applies to the configuration for forming the portion 40.
  • a piezoelectric film as shown in FIG. 4 was produced by the method shown in FIGS. 5 to 7 described above.
  • cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in methyl ethyl ketone (MEK) at the following composition ratio.
  • PZT particles were added to this solution at the following composition ratio and dispersed by a propeller mixer (rotation speed: 2000 rpm) to prepare a coating material for forming a piezoelectric layer.
  • PZT particles ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1000 parts by mass ⁇ Cyanoethylated PVA ⁇ ⁇ ⁇ ⁇ ⁇ 100 parts by mass ⁇ MEK ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 600 parts by mass
  • PZT particles commercially available PZT raw material powder was sintered at 1000 to 1200 ° C., and then crushed and classified so as to have an average particle size of 3.5 ⁇ m.
  • a sheet-like material as shown in FIG. 5 was prepared by vacuum-depositing a copper thin film having a thickness of 0.1 ⁇ m on a long PET film having a width of 23 cm and a thickness of 4 ⁇ m. That is, in this example, the second electrode and the first electrode are copper-deposited thin films having a thickness of 0.1 m, and the second protective layer and the first protective layer are PET films having a thickness of 4 ⁇ m.
  • a PET film having a thickness of 50 ⁇ m with a separator temporary support PET
  • the separator of each protective layer is used. Removed.
  • a paint for forming the previously prepared piezoelectric layer was applied onto the first electrode (copper-deposited thin film) of the sheet-like material using a slide coater. The paint was applied so that the film thickness of the coating film after drying was 40 ⁇ m. Next, the material coated with the paint on the sheet-like material was heated and dried in an oven at 120 ° C. to evaporate the MEK. As a result, as shown in FIG. 6, a laminate having a copper first electrode on the PET first protective layer and forming a piezoelectric layer having a thickness of 40 ⁇ m on the first electrode is produced. bottom.
  • the piezoelectric layer of this laminated body was subjected to polarization treatment by a known method.
  • the polarization treatment was performed so that the polarization direction was the thickness direction of the piezoelectric layer.
  • the same sheet-like material obtained by vacuum-depositing a copper thin film on a PET film was laminated on the polarized body.
  • the laminate of the laminate and the sheet-like material is thermocompression-bonded at 120 ° C. using a laminator device to bond the piezoelectric layer to the second electrode and the first electrode to form the piezoelectric layer.
  • a piezoelectric film as shown in FIG. 4 was produced by sandwiching the laminate between the two electrodes and the first electrode and sandwiching the laminate between the second protective layer and the first protective layer.
  • Example 1 The produced piezoelectric film was cut out to a size of 20 ⁇ 27 cm. This piezoelectric film was folded back four times in the direction of 27 cm at 5 cm intervals. Further, in the region where the piezoelectric films were laminated, adjacent piezoelectric films were attached with an adhesive layer.
  • an adhesive sheet having a thickness of 25 ⁇ m LIOELM TSU0041SI manufactured by Toyochem Co., Ltd.
  • the same adhesive layer was used for other examples.
  • the center of the circle was 9 cm from the longitudinal end of the rectangle and 1 cm from the lateral end of the connection. Therefore, the distance between the connecting portions in the longitudinal direction of the rectangle is 2 cm.
  • the shape (developed view) of the cut-out piezoelectric film, the plan view and the side view of the produced piezoelectric element are conceptually shown in FIG.
  • a copper foil tape was attached to the connection portion as a lead-out wiring.
  • a piezoelectric element was produced by forming connecting portions for connecting the first electrode and the second electrode to an external power source on both sides of the protective layer of the protruding portion of the produced laminate, as in Example 1.
  • the center of the circle was set at a position 1 cm from the end in the lateral direction and 1 cm from the end in the longitudinal direction of the rectangle.
  • the shape (developed view) of the cut-out piezoelectric film, the plan view and the front view of the produced piezoelectric element are conceptually shown in FIG.
  • a copper foil tape was attached to the connection portion as a lead-out wiring.
  • the produced piezoelectric film was cut out into a shape having a rectangular shape (main body) of 25 ⁇ 20 cm and having a rectangular protrusion of 2 ⁇ 5 cm at one end in the longitudinal direction of one long side. The long and short sides of the protrusion were matched to the body. This piezoelectric film was folded back four times in the direction of 25 cm at intervals of 5 cm. In the region where the piezoelectric films were laminated, adjacent piezoelectric films were attached with an adhesive layer.
  • FIG. 20 conceptually shows the shape (developed view) of the cut-out piezoelectric film, the plan view, the side view, and the front view of the produced piezoelectric element.
  • a copper foil tape was attached to the connection portion as a lead-out wiring.
  • Example 2 The produced piezoelectric film was cut into a shape having a rectangular shape (main body) of 5 ⁇ 100 cm and having a rectangular protrusion of 2 ⁇ 20 cm at one end in the longitudinal direction of one long side. The long and short sides of the protrusion were matched to the body. This piezoelectric film was folded back four times in the direction of 100 cm at intervals of 20 cm. In the region where the piezoelectric films were laminated, adjacent piezoelectric films were attached with an adhesive layer.
  • FIG. 21 conceptually shows the shape (developed view) of the cut-out piezoelectric film, the plan view, the side view, and the front view of the produced piezoelectric element.
  • a copper foil tape was attached to the connection portion as a lead-out wiring.
  • Example 3 In the first embodiment, a piezoelectric element is produced and the connecting portion is formed on the protruding portion in the same manner as in the first embodiment, except that the position of the connecting portion formed on the protruding portion is changed to a position 1 cm from the end portion in the longitudinal direction. It was formed, and a copper foil tape was attached to the connection portion as a lead wire. Therefore, the distance between the connecting portions in the longitudinal direction of the rectangle is 18 cm.
  • FIG. 22 conceptually shows the shape (developed view) of the cut-out piezoelectric film, the side view and the front view of the produced piezoelectric element.
  • the piezoelectric element of the present invention having a projecting portion protruding from the long side of a rectangular shape having a planar shape and having a connecting portion with an external power supply at the projecting portion protrudes from the short side of the rectangle.
  • the impedance can be suppressed to be lower than that of the piezoelectric element of the comparative example having the protruding portion. Further, as shown in Examples 1 and 3, in the present invention, the impedance does not change even if the distance between the connecting portions is changed.
  • a PET film having a thickness of 300 ⁇ m and a thickness of 30 ⁇ 70 cm was prepared.
  • the produced piezoelectric element was attached to the center of the diaphragm by matching the longitudinal direction and the lateral direction.
  • the diaphragm and the piezoelectric element were attached using a double-sided tape having a thickness of 30 ⁇ m (Nitto Denko KK, No. 5603).
  • the diaphragm was erected by supporting the short side of the diaphragm of 30 x 70 cm.
  • a microphone is installed at a position 1 m from the center of the piezoelectric element in the normal direction (direction perpendicular to the PET film), and the laminated piezoelectric element is driven to drive the frequency 2 kHz, 5 kHz, 10 kHz. , 15 kHz, and 20 kHz were measured.
  • the input signal to the laminated piezoelectric element was a sweep sine wave (50 Vrms) of 20 to 20 kHz. The results are shown in Table 2 below.
  • the piezoelectric element of the present invention having a projecting portion protruding from the long side of a rectangular shape having a planar shape and having a connecting portion with an external power source at the protruding portion protrudes from the short side of the rectangle.
  • the vibrating plate can be vibrated more preferably in a high frequency region of 15 kHz or more to obtain a high sound pressure.
  • the sound pressure does not change even if the distance between the connecting portions is changed.
  • the piezoelectric element of the present invention having a protruding portion protruding from the long side of a rectangular rectangle having a planar shape and having a connecting portion with an external power source at the protruding portion has a frequency F [Hz]. Since the impedance [ ⁇ ] satisfies "[1 / (6.28 x F x C)] + 1" or less, a high sound pressure can be obtained.
  • Table 4 taking Example 3 as a representative example, the measured impedance value [ ⁇ ] at a frequency of 2 to 20 kHz, and the impedance threshold value [ ⁇ ] at “[1 / (6.28 ⁇ F ⁇ C)] + 1”.
  • Example 3 the capacitance of the piezoelectric element is 1.07 ⁇ F (see Table 3).
  • Table 4 also shows the measurement results of sound pressure. If the value obtained by subtracting the measured value from the impedance threshold value is positive, the measured value is "[1 / (6.28 ⁇ F ⁇ C)] + 1" or less.
  • the piezoelectric element of Example 3 has an impedance of "[1 / (6.28 ⁇ F ⁇ C)] + 1" or less in the entire frequency range of 2 to 20 kHz. As a result, the piezoelectric element of Example 3 outputs a high sound pressure in the entire frequency range of 2 to 20 kHz.
  • the piezoelectric film of the piezoelectric element and the piezoelectric speaker of the present invention has the same impedance [ ⁇ ] at a frequency of 2 to 20 kHz in all other examples including the following Examples 4 and later. .28 ⁇ F ⁇ C)] +1 ”or less.
  • Example 4 In Example 3, a piezoelectric element was produced and connected to the protrusions in the same manner as in Example 3, except that the piezoelectric film was cut into a size of 20 ⁇ 29 cm and 2 cm protrusions were formed on the uppermost and lowermost stages of the folding. A portion was formed, and a copper foil tape was attached to the connection portion as a lead wire. That is, this piezoelectric element is a rectangle having a planar shape of 20 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from both long sides.
  • the shape (developed view) of the cut-out piezoelectric film, the side view and the plan view of the produced piezoelectric element are conceptually shown in FIG. 32.
  • the sound pressure of the produced piezoelectric element was measured in the same manner as before. The results are shown in Table 5 below. For reference, Table 5 also shows the sound pressure measurement results of Example 3.
  • the piezoelectric element capable of outputting a high sound pressure can be obtained by providing the protruding portion on the long side.
  • Example 5 In Example 3, a piezoelectric element was produced in the same manner as in Example 3 except that the piezoelectric film was cut out to a size of 10 ⁇ 27 cm by halving the 20 cm side and folded back at intervals of 5 cm in the direction of 27 cm. Was formed, and a copper foil tape was attached to the connection portion as a lead-out wiring. Therefore, the planar shape of this piezoelectric element is a rectangle of 10 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the long side.
  • the shape (developed view) of the cut-out piezoelectric film, the side view and the plan view of the produced piezoelectric element are conceptually shown in FIG. 33.
  • Comparative Example 5 In Comparative Example 1, a piezoelectric element was produced in the same manner as in Comparative Example 1 except that the piezoelectric film was cut into a size of 52 ⁇ 5 cm and folded back in the direction of 52 cm at half intervals of 10 cm. A copper foil tape was attached to the connection part as a lead wire. Therefore, the planar shape of this piezoelectric element is a rectangle of 10 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the short side. The shape (developed view) of the cut-out piezoelectric film, the plan view and the front view of the produced piezoelectric element are conceptually shown in FIG. 34.
  • Example 5 The sound pressure of the piezoelectric elements produced in Example 5 and Comparative Example 5 was measured in the same manner as before. The results are shown in Table 6 below. As shown in Table 6, the piezoelectric element of the present invention having a protruding portion protruding from the long side and having a connecting portion with an external device has a protruding portion on the short side to connect with the external device. Higher sound pressure is obtained than the piezoelectric element of the example.
  • Example 6 The piezoelectric film was cut out to a size of 20 ⁇ 7 cm. A 20 ⁇ 5 cm adhesive layer was attached to the cut-out piezoelectric film. The sticking layer was stuck so that the side of 20 cm was put together and the piezoelectric film protruded by 2 cm from the side of 7 cm. As the sticking layer, a double-sided tape having a thickness of 30 ⁇ m (Nitto Denko KK, No. 5603) was used. That is, the planar shape of this piezoelectric film is a rectangle of 20 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the long side.
  • a connecting portion was formed on the protruding portion in the same manner as in the third embodiment, and a copper foil tape was attached to the connecting portion as a lead-out wiring.
  • a plan view and a side view of the laminate of the piezoelectric film and the bonding layer are conceptually shown in FIG. 35.
  • a diaphragm a PET film having a thickness of 300 ⁇ m and a thickness of 30 ⁇ 70 cm was prepared.
  • a piezoelectric speaker was manufactured by attaching a bonding layer to the center of the diaphragm by matching the longitudinal direction and the lateral direction (see FIG. 31). [Comparative Example 6] The piezoelectric film was cut out to 22 x 5 cm.
  • a 20 ⁇ 5 cm adhesive layer was attached to the cut-out piezoelectric film.
  • the sticking layer was stuck so that the side of 5 cm was put together and the piezoelectric film protruded by 2 cm from the side of 22 cm.
  • the same double-sided tape as before was used as the sticking layer. That is, the planar shape of this piezoelectric film is a rectangle of 20 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the short side.
  • a connecting portion was formed on the protruding portion, and a copper foil tape was attached to the connecting portion as a lead-out wiring.
  • FIG. 36 A plan view and a side view of the laminate of the piezoelectric film and the adhesive layer are conceptually shown in FIG. 36.
  • a diaphragm was attached in the same manner as in Example 6 to produce a piezoelectric speaker.
  • Example 7 The piezoelectric film was cut out to a size of 10 ⁇ 7 cm. A 10 ⁇ 5 cm adhesive layer was attached to the cut-out piezoelectric film. The sticking layer was stuck so that the side of 10 cm was put together and the piezoelectric film protruded by 2 cm from the side of 7 cm. The same double-sided tape as before was used as the sticking layer. That is, the planar shape of this piezoelectric film is a rectangle of 10 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the long side. A connecting portion was formed on the protruding portion in the same manner as in the third embodiment, and a copper foil tape was attached to the connecting portion as a lead-out wiring.
  • FIG. 37 A plan view and a side view of the laminate of the piezoelectric film and the adhesive layer are conceptually shown in FIG. 37.
  • a diaphragm was attached in the same manner as in Example 6 to produce a piezoelectric speaker.
  • the piezoelectric film was cut out to a size of 12 x 5 cm.
  • a 10 ⁇ 5 cm adhesive layer was attached to the cut-out piezoelectric film.
  • the sticking layer was stuck so that the side of 5 cm was put together and the piezoelectric film protruded by 2 cm from the side of 12 cm.
  • the same double-sided tape as before was used as the sticking layer.
  • the planar shape of this piezoelectric film is a rectangle of 10 ⁇ 5 cm, and has a protruding portion of 2 cm protruding from the short side. Similar to Comparative Example 1, a connecting portion was formed on the protruding portion, and a copper foil tape was attached to the connecting portion as a lead-out wiring.
  • a plan view and a front view of the laminate of the piezoelectric film and the bonding layer are conceptually shown in FIG. 38.
  • a diaphragm was attached in the same manner as in Example 6 to produce a piezoelectric speaker.
  • Example 7 The sound pressure of the piezoelectric speakers produced in Example 7 and Comparative Example 7 was measured under the same conditions as above. The results are shown in Table 8 below. As shown in Tables 7 and 8, even a piezoelectric speaker using a single-layer piezoelectric film as an exciter has a protruding portion protruding from the long side, and the protruding portion is provided with a connection portion with an external device. Compared to the piezoelectric speaker of the comparative example in which the piezoelectric speaker of the present invention is provided with a protruding portion on the short side and is connected to an external device, a high sound pressure is obtained particularly in a high frequency region of 10 kHz or more.
  • Example 8 and Example 9 A piezoelectric element was produced in the same manner as in Example 4, a connecting portion was formed at the protruding portion, and a copper foil tape was attached to the connecting portion as a lead-out wiring. That is, this piezoelectric element is a rectangle having a planar shape of 20 ⁇ 5 cm, and has a 2 cm protruding portion protruding from both long sides (see FIG. 32). A diaphragm was attached to the produced piezoelectric element in the same manner as before, and the sound pressure was measured. However, in Example 8, as conceptually shown in the upper part of FIG. 55, a sticking layer (hatched portion) was provided so as not to stick the protruding portion, and the diaphragm was stuck.
  • a sticking layer hatchched portion
  • Example 9 As shown in the lower part of FIG. 55, a sticking layer (shaded portion) was provided on the entire surface of the piezoelectric element including the protruding portion, and the diaphragm was stuck. In FIG. 55, the sticking layer to which the adjacent piezoelectric film is stuck is omitted. The results are shown in Table 9 below.
  • Example 8 in which the protruding portion is not attached to the diaphragm is compared with Example 9 in which the protruding portion is attached to the diaphragm.
  • Example 9 Expresses good acoustic characteristics.
  • It can be suitably used as an exciter, an electroacoustic converter, a vibration sensor, etc. that abuts on various members to generate sound, and as a speaker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

インピーダンスを小さくして、例えば電気音響変換器等として用いた際に、特に高周波数帯域での音圧を向上できる圧電素子および圧電フィルムを用いる圧電スピーカーの提供を課題とする。高分子マトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した圧電フィルムを用い、平面形状が多角形で、最も短い辺ではない辺から突出する突出部を有し、突出部に、外部電源と電極層とを接続するための接続部を設け、または、最も短い辺ではない辺の端部近傍に同接続部を設けることにより、課題を解決する。

Description

圧電素子および圧電スピーカー
 本発明は、圧電素子、および、圧電スピーカーに関する。
 各種の物品に接触して取り付けることで、物品を振動板として振動させて音を出す、いわゆるエキサイター(励起子)が、各種の用途に利用されている。
 例えば、オフィスであれば、プレゼンテーションおよび電話会議等の際に、会議用テーブル、ホワイトボードおよびスクリーン等にエキサイターを取り付けることで、スピーカーの代わりに音を出すことができる。自動車等の車両であれば、コンソール、Aピラーおよび天井等にエキサイターを取り付けることで、ガイド音、警告音および音楽等を鳴らすことができる。また、ハイブリット車および電気自動車のように、エンジン音が出ない自動車の場合には、バンパー等にエキサイターを取り付けることで、バンパー等から車両接近通報音を出すことができる。
 このようなエキサイターにおいて振動を生じる可変素子としては、コイルとマグネットとの組み合わせ、ならびに、偏心モータおよび線形共振モータなどの振動モータ等が知られている。
 これらの可変素子は、薄型化が困難である。特に、振動モータは、振動力を増加するためには質量体を大きくする必要がある、振動の程度を調節するための周波数変調が難しく応答速度が遅い等の難点がある。
 このような問題を解決できるエキサイターとして、圧電体層を電極層で挟持してなる圧電フィルムを用い、圧電フィルムを、複数層、積層した圧電素子が考えられる。
 好適な圧電フィルムとして、例えば、特許文献1に記載される圧電フィルム(電気音響変換フィルム)が例示される。この圧電フィルムは、高分子材料からなるマトリックス中に圧電体粒子を分散してなる圧電体層(高分子複合圧電体)と、この圧電体層の両面に形成された電極層と、この電極層の表面に形成された保護層とを有するものである。
特開2014-014063号公報
 このような圧電フィルムを積層した圧電素子では、圧電素子を振動板に貼着して、圧電フィルムを伸縮させることにより振動板を撓ませる。これにより、振動板を振動させて、音を出力することができる。
 圧電フィルム自体は、剛性は低い。しかしながら、複数の圧電フィルムを積層することで、素子全体の剛性を高めることができる。しかも、圧電フィルムの積層体では、駆動電圧を上げなくても、高い電界強度を確保できるため、非常に好適である。
 特許文献1に記載される圧電フィルムは、薄く、しかも、良好な可撓性を有する上に、優れた圧電特性を有する。そのため、この圧電フィルムを積層した圧電素子をエキサイターとして用いることにより、例えば、可撓性を有する物品を振動板として、丸めて持ち運びが可能な可撓性を有するスピーカー等を実現できる。
 ところで、音質が良好な音を出力するためには、広い周波数帯域に対応して、音圧を向上させる必要がある。また、圧電フィルムを積層した圧電素子によって、音圧を向上させるためには、十分な電流を圧電体層に流す必要がある。
 ここで、圧電体層に十分な電流を流すためには、圧電素子のインピーダンスを下げる必要がある。圧電素子のインピーダンスが高いと、圧電体層に流れる電流が小さくなり、特に高周波数帯域、中でも15kHz以上の高周波数帯域の音圧が低くなってしまう。
 ここで、本発明者らの検討によると、特に特許文献1に記載されるような、高分子材料を含むマトリックス中に圧電体粒子を分散してなる圧電体層を有する圧電フィルムを用いた圧電素子では、外部電源から電極層への電力供給の位置が不適正であると、インピーダンスが高くなってしまい、十分な電流を圧電体層に流せなくなってしまう。
 本発明の目的は、このような従来技術の問題点を解決することにあり、高分子材料を含むマトリックス中に圧電体粒子を分散した圧電体層を有する圧電フィルムを用いる圧電素子において、インピーダンスを小さくして、例えば電気音響変換器等として用いた際に、特に高周波数帯域での音圧を向上できる圧電素子、および、圧電フィルムを用いる圧電スピーカーを提供することにある。
 このような目的を達成するために、本発明は、以下の構成を有する。
 [1] 高分子材料を含むマトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した圧電フィルムを、複数層、積層して、隣接する圧電フィルムを貼着層で貼着した構成を有し、かつ、
 平面形状が多角形であり、
 圧電フィルムが、多角形の最も短い辺以外の辺から突出する突出部を有し、突出部に、外部電源と電極層とを接続するための接続部を設けたことを特徴とする圧電素子。
 [2] 突出部を複数有し、複数の突出部が、多角形の同じ辺から突出する、[1]に記載の圧電素子。
 [3] 突出部が、多角形の最も長い辺から突出する、[1]または[2]に記載の圧電素子。
 [4] 圧電フィルムの静電容量をC[F]とした際に、周波数F[Hz]におけるインピーダンス[Ω]が
   [1/(6.28×F×C)]+1
以下である、[1]~[3]のいずれかに記載の圧電素子。
 [5] 圧電フィルムを、1回以上、折り返すことにより、圧電フィルムを、複数層、積層したものである、[1]~[4]のいずれかに記載の圧電素子。
 [6] 圧電フィルムの少なくとも1層が、電極層の少なくとも一方に積層される保護層を有する、[1]~[5]のいずれかに記載の圧電素子。
 [7] 高分子材料を含むマトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した圧電フィルムを有し、かつ、
 平面形状が多角形であり、
 圧電フィルムの、多角形の最も短い辺以外の辺の端部から上限離間距離以内の位置に、外部電源と電極層とを接続するための接続部を有するものであり、さらに、上限離間距離が、多角形の最も短い辺の長さの2.1分の1であることを特徴とする圧電素子。
 [8] 接続部を、多角形の同じ辺の端部から上限離間距離以内の位置に有する、[7]に記載の圧電素子。
 [9] 接続部を、多角形の最も長い辺の端部から上限離間距離以内の位置に有する、[8]に記載の圧電素子。
 [10] 圧電フィルムの静電容量をC[F]とした際に、周波数F[Hz]におけるインピーダンス[Ω]が
   [1/(6.28×F×C)]+1
以下である、[7]~[9]のいずれかに記載の圧電素子。
 [11] 圧電フィルムを、複数層、積層したものである、[7]~[10]のいずれかに記載の圧電素子。
 [12] 圧電フィルムを、1回以上、折り返すことにより、圧電フィルムを、複数層、積層したものである、[11]に記載の圧電素子。
 [13] 隣接する圧電フィルムを貼着する貼着層を有する、[11]または[12]に記載の圧電素子。
 [14] 圧電フィルムの少なくとも1層が、電極層の少なくとも一方に積層される保護層を有する、[7]~[13]のいずれかに記載の圧電素子。
 [15] 圧電体層が、シアノエチル基を有する高分子材料に圧電体粒子を含む、[1]~[14]のいずれかに記載の圧電素子。
 [16] 高分子材料が、シアノエチル化ポリビニルアルコールである、[15]に記載の圧電素子。
 [17] 高分子材料を含むマトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した、平面形状が多角形の圧電フィルムと、振動板と、圧電フィルムと振動板とを貼着する貼着層とを有し、
 圧電フィルムが、多角形の最も短い辺以外の辺から突出する突出部を有し、突出部に、外部電源と電極層とを接続するための接続部を設けたことを特徴とする圧電スピーカー。
 本発明によれば、高分子材料を含むマトリックス中に圧電体粒子を分散してなる圧電体層を有する圧電フィルムを用いる圧電素子および圧電スピーカーにおいて、インピーダンスを小さくして、例えば電気音響変換器等として用いた際に、特に、高周波数帯域での音圧を向上できる。
図1は、本発明の圧電素子の第1の態様の一例を概念的に示す図である。 図2は、図1に示す圧電素子の概略斜視図である。 図3は、図1に示す圧電素子の概略平面図である。 図4は、図1に示す圧電素子を構成する圧電フィルムの一例を概念的に示す図である。 図5は、圧電フィルムの作製方法の一例を説明するための概念図である。 図6は、圧電フィルムの作製方法の一例を説明するための概念図である。 図7は、圧電フィルムの作製方法の一例を説明するための概念図である。 図8は、本発明の圧電素子の接続部の一例を概念的に示す図である。 図9は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図10は、本発明の圧電素子の別の例を概念的に示す図である。 図11は、本発明の圧電素子の別の例を概念的に示す斜視図である。 図12は、本発明の圧電素子の別の例を概念的に示す斜視図である。 図13は、本発明の圧電素子の第2の態様の一例を概念的に示す図である。 図14は、本発明の圧電素子の第2の態様の別の例を概念的に示す斜視図である。 図15は、本発明の圧電素子を用いる電気音響変換器の一例の概念図である。 図16は、本発明の圧電素子の第2の態様を用いる圧電スピーカーの一例の概念図である。 図17は、本発明の圧電素子の別の例を説明するための部分拡大図である。 図18は、本発明の実施例を説明するための概念図である。 図19は、本発明の比較例を説明するための概念図である。 図20は、本発明の比較例を説明するための概念図である。 図21は、本発明の実施例を説明するための概念図である。 図22は、本発明の実施例を説明するための概念図である。 図23は、本発明の圧電素子における引出配線を説明するための概念図である。 図24は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図25は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図26は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図27は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図28は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図29は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図30は、本発明の圧電素子の接続部の別の例を概念的に示す図である。 図31は、本発明の圧電スピーカーの一例を概念的に示す図である。 図32は、本発明の実施例を説明するための概念図である。 図33は、本発明の実施例を説明するための概念図である。 図34は、本発明の比較例を説明するための概念図である。 図35は、本発明の実施例を説明するための概念図である。 図36は、本発明の比較例を説明するための概念図である。 図37は、本発明の実施例を説明するための概念図である。 図38は、本発明の比較例を説明するための概念図である。 図39は、圧電素子の別の例を説明するための概念図である。 図40は、圧電素子の別の例を説明するための概念図である。 図41は、圧電素子の別の例を説明するための概念図である。 図42は、圧電素子の別の例を説明するための概念図である。 図43は、圧電素子の別の例を説明するための概念図である。 図44は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図45は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図46は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図47は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図48は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図49は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図50は、圧電素子を用いる電気音響変換器における貼着層の一例を説明するための概念図である。 図51は、圧電素子を用いる電気音響変換器における貼着層の別の例を説明するための概念図である。 図52は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図53は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図54は、圧電素子を用いる電気音響変換器の別の例を説明するための概念図である。 図55は、本発明の実施例を説明するための概念図である。
 以下、本発明の圧電素子および圧電スピーカーについて、添付の図面に示される好適実施態様を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、以下に示す図は、いずれも、本発明を説明するための概念図である。従って、各構成要素の大きさ、厚さ、および、位置関係等は、実際のものとは異なる。
 図1に、本発明の圧電素子の第1の態様の一例を概念的に示す。図2に、図1に示す圧電素子の斜視図を、図3に、図1に示す圧電素子の平面図を、それぞれ概念的に示す。
 図1~図3に示す圧電素子10は、1枚の圧電フィルム12を、4回、折り返すことにより、5層の圧電フィルム12を積層したものである。すなわち、この圧電素子10は、5層の圧電フィルム12を積層した積層圧電素子である。
 図2では、図面を簡略化して、圧電素子10の構成を明瞭に示すために省略するが、圧電フィルム12は、圧電体層20の両面に電極層を有し、両電極層を覆って、保護層を有するものである。
 後に詳述するが、本発明の圧電素子は、多角形の平面形状を有する。
 平面形状とは、図1~図3に示す圧電素子のように、圧電フィルム12を、複数層、積層した圧電素子の場合には、圧電素子を、圧電フィルム12の積層方向から見た際における形状である。以下、この方向から見た状態を、『平面視』ともいう。
 従って、図1~3に示す圧電素子10であれば、圧電素子10の平面形状は、図1の図中上方(または下方)から見た際における形状であり、図3の平面図の形状が、圧電素子10の平面形状である。なお、本発明の第1の態様の圧電素子10のように、外部電源と電極層とを接続するための突出部を有する圧電素子の場合には、平面形状は、突出部を除く形状である。
 ただし、後述する第2の態様における一例のように、圧電フィルム12を積層しない、1層の圧電フィルムのみを有する圧電素子の場合には、圧電フィルムの主面の形状が、圧電素子の平面形状となる。さらに、後述する図12に示す構成のように、複数枚の圧電フィルム12を積層した場合にも、各圧電フィルム毎に、主面の形状を平面形状と見なす。この点に関しては、本発明の圧電スピーカーの圧電フィルム12も同様である。なお、主面とは、シート状物(フィルム、板状物、層)の最大面である。
 図1~図3に示す圧電素子10は、長方形(矩形)の平面形状を有する。
 なお、本発明において、圧電素子の平面形状は、長方形に制限はされず、多角形であれば、三角形、五角形および六角形などの、各種の形状が利用可能である。
 本発明の圧電素子の第1の態様では、平面形状である多角形の、最も短い辺以外の辺から突出する、突出部を有する。圧電素子10は、長方形の平面形状を有するので、同じ長さの2つの長辺と、同じ長さの2つの短辺とを有する。従って、圧電素子10は、長方形の長辺から突出するように、突出部10aを有する。圧電素子10は、長方形の長辺から突出して突出部10aを設け、突出部10aに外部電源と接続するための接続部を設けることにより、インピーダンスを小さくして、例えば電気音響変換器等に利用した際に、特に高周波数帯域での音圧を向上できる。この点に関しては、後に詳述する。
 図1~3に示す圧電素子10は、圧電フィルム12を、4回、折り返すことにより、圧電フィルム12を5層、積層しているが、本発明は、これに制限はされない。
 すなわち、本発明の圧電素子は、圧電フィルム12を、3回以下、折り返すことにより、圧電フィルム12を2層~4層、積層したものでもよい。あるいは、本発明の圧電素子は、圧電フィルムを5回以上、折り返すことより、圧電フィルム12を6層以上、積層したものでもよい。
 本発明の圧電素子は、圧電フィルム12を2回以上、折り返すことで、圧電フィルム12を3層以上、積層したものであるのが好ましい。
 また、本発明の圧電素子は、圧電フィルム12を、1回以上折り返した圧電素子を、複数、積層したものであってもよい。
 なお、本発明の圧電素子において、圧電フィルム12を、複数層、積層した構成は、圧電フィルム12を折り返して積層した構成に制限はされない。
 すなわち、本発明の圧電素子は、第1の態様および第2の態様共に、カットシート状の圧電フィルムを、複数枚、積層することで、圧電フィルム12を、複数層、積層した構成であってもよい。
 また、外部電源との接続部を設けるための突出部を有さない、後述する、本発明の第2の態様の圧電素子は、積層されない、1枚の圧電フィルムで構成されてもよい。この点に関しては、後に詳述する。
 図4に、圧電フィルム12を断面図によって概念的に示す。
 図4に示すように、圧電フィルム12は、圧電性を有するシート状物である圧電体層20と、圧電体層20の一方の面に積層される第1薄膜電極24と、第1薄膜電極24上に積層される第1保護層28と、圧電体層20の他方の面に積層される第2薄膜電極26と、第2薄膜電極26上に積層される第2保護層30とを有する。後述するが、圧電フィルム12は、厚さ方向に分極されている。
 なお、図面を簡潔にして、圧電素子10の構成を明確に示すために、図2では、圧電体層20、第1薄膜電極24および第2薄膜電極26、ならびに、第1保護層28および第2保護層30は、区別して示していない。
 圧電フィルム12において、圧電体層20は、図4に概念的に示すように、高分子材料を含むマトリックス34中に、圧電体粒子36を分散してなる高分子複合圧電体からなるものである。マトリックス34は、好ましくは、常温で粘弾性を有する高分子材料を含むのが好ましく、常温で粘弾性を有する高分子材料からなるのがより好ましい。すなわち、マトリックス34は、常温で粘弾性を有する、粘弾性マトリックスであるのが好ましい。
 なお、本発明において、「常温」とは、0~50℃程度の温度域を指す。
 ここで、高分子複合圧電体(圧電体層20)は、次の用件を具備したものであるのが好ましい。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
 以上をまとめると、エキサイターおよび電気音響変換フィルムとして用いるフレキシブルな高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
 さらに、貼り付ける相手材(振動板)の剛性に合わせて、積層することで、簡便にバネ定数を調節できるのが好ましく、その際、貼着層14は薄ければ薄いほど、エネルギー効率を高めることができる。剛性とは、言い換えれば、例えば、硬さ、コシ、および、バネ定数などである。
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下と共に大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層20)において、マトリックスとしてガラス転移点が常温にある高分子材料を用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
 なお、ガラス転移点が常温にある高分子材料とは、言い換えると、常温で粘弾性を有する高分子材料である。
 常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0~50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックスと圧電体粒子との界面の応力集中が緩和され、高い可撓性が期待できる。
 また、常温で粘弾性を有する高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
 また、常温で粘弾性を有する高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
 このような条件を満たす常温で粘弾性を有する高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、高分子材料としては,シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
 このような常温で粘弾性を有する高分子材料を用いるマトリックス34は、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、マトリックス34には、誘電特性や機械的特性の調節等を目的として、シアノエチル化PVA等の常温で粘弾性を有する高分子材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層20のマトリックス34において、シアノエチル化PVA等の常温で粘弾性を有する材料に加えて添加される誘電性ポリマーは、1種に限定はされず、複数種を添加してもよい。
 また、マトリックス34には、誘電性高分子材料以外にも、ガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテンおよびイソブチレンなどの熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂およびマイカなどの熱硬化性樹脂等を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
 圧電体層20のマトリックス34において、シアノエチル化PVA等の常温で粘弾性を有する高分子材料以外の材料を添加する際の添加量には、特に限定は無いが、マトリックス34に占める割合で30質量%以下とするのが好ましい。
 これにより、マトリックス34における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子36および電極層との密着性向上等の点で好ましい結果を得ることができる。
 圧電体粒子36は、公知のものが利用可能であるが、好ましくは、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子36を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
 このような圧電体粒子36の粒径には制限はなく、圧電フィルム12のサイズ、および、圧電素子10の用途等に応じて、適宜、選択すれば良い。圧電体粒子36の粒径は、1~10μmが好ましい。
 圧電体粒子36の粒径をこの範囲とすることにより、圧電フィルム12が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
 なお、図4おいては、圧電体層20中の圧電体粒子36は、マトリックス34中に、均一かつ規則性を持って分散されているが、本発明は、これに制限はされない。
 すなわち、圧電体層20中の圧電体粒子36は、好ましくは均一に分散されていれば、マトリックス34中に不規則に分散されていてもよい。
 さらに、圧電体粒子36は、粒径が揃っていても、揃っていなくてもよい。
 圧電フィルム12において、圧電体層20中におけるマトリックス34と圧電体粒子36との量比には、制限はなく、圧電フィルム12の面方向の大きさおよび厚さ、圧電素子10の用途、ならびに、圧電フィルム12に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20中における圧電体粒子36の体積分率は、30~80%が好ましく、50%以上がより好ましく、50~80%がさらに好ましい。
 マトリックス34と圧電体粒子36との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
 圧電フィルム12において、圧電体層20の厚さには、特に限定はなく、圧電素子10の用途、圧電素子10における圧電フィルムの積層数、圧電フィルム12に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電フィルム12を伸縮させるために必要な電圧(電位差)は大きくなる。
 圧電体層20の厚さは、8~300μmが好ましく、8~200μmがより好ましく、10~150μmがさらに好ましく、15~100μmが特に好ましい。
 圧電体層20の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 圧電体層20は、厚さ方向に分極処理(ポーリング)されているのが好ましい。分極処理に関しては、後に詳述する。
 図4に示すように、図示例の圧電フィルム12は、このような圧電体層20の一面に、第1薄膜電極24を有し、その表面に第1保護層28を有し、圧電体層20の他方の面に、第2薄膜電極26を有し、その表面に第2保護層30を有してなる構成を有する。ここで、第1薄膜電極24と第2薄膜電極26とが電極対を形成する。
 なお、圧電フィルム12は、これらの層に加えて、圧電体層20が露出する領域を覆って、ショート等を防止する絶縁層等を有していてもよい。
 すなわち、圧電フィルム12は、圧電体層20の両面を電極対、すなわち、第1薄膜電極24および第2薄膜電極26で挟持し、この積層体を、第1保護層28および第2保護層30で挟持してなる構成を有する。
 このように、圧電フィルム12において、第1薄膜電極24および第2薄膜電極26で挾持された領域は、印加された電圧に応じて伸縮される。
 なお、本発明において、第1薄膜電極24および第1保護層28、ならびに、第2薄膜電極26および第2保護層30における第1および第2とは、圧電フィルム12を説明するために、便宜的に図面に合わせて名称を付しているものである。従って、圧電フィルム12における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
 圧電フィルム12において、第1保護層28および第2保護層30は、第1薄膜電極24および第2薄膜電極26を被覆すると共に、圧電体層20に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム12において、マトリックス34と圧電体粒子36とからなる圧電体層20は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム12は、それを補うために第1保護層28および第2保護層30が設けられる。
 なお、本発明の圧電素子において、圧電フィルム12の第1保護層28および第2保護層30は、必須の構成要件ではない。従って、圧電フィルム12は、第1保護層28および第2保護層30の、いずれか一方の保護層のみを有するものであってもよく、保護層を有さない物でもよい。
 しかしながら、圧電フィルム12(圧電素子)の強度、薄膜電極および圧電体層の保護等の点では、圧電フィルム12は、少なくとも一方の保護層を有するのが好ましく、第1保護層28および第2保護層30の両方を有するのが好ましい。
 第1保護層28および第2保護層30には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。
 中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
 第1保護層28および第2保護層30の厚さにも、制限はない。また、第1保護層28および第2保護層30の厚さは、基本的に同じであるが、異なってもよい。
 ここで、第1保護層28および第2保護層30の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、第1保護層28および第2保護層30は、薄いほど有利である。
 圧電フィルム12においては、第1保護層28および第2保護層30の厚さが、圧電体層20の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 例えば、圧電体層20の厚さが50μmで第1保護層28および第2保護層30がPETからなる場合、第1保護層28および第2保護層30の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
 圧電フィルム12において、圧電体層20と第1保護層28との間には第1薄膜電極24が、圧電体層20と第2保護層30との間には第2薄膜電極26が、それぞれ形成される。以下の説明では、第1薄膜電極24を第1電極24、第2薄膜電極26を第2電極26、とも言う。
 第1電極24および第2電極26は、圧電体層20(圧電フィルム12)に電圧を印加するために設けられる。
 本発明において、第1電極24および第2電極26の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、チタン、クロムおよびモリブデン等の金属、これらの合金、これらの金属および合金の積層体および複合体、ならびに、酸化インジウムスズ等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、第1電極24および第2電極26として好適に例示される。
 また、第1電極24および第2電極26の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)による成膜、めっきによる成膜、ならびに、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。
 中でも特に、圧電フィルム12の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅およびアルミニウム等の薄膜は、第1電極24および第2電極26として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
 第1電極24および第2電極26の厚さには、制限はない。また、第1電極24および第2電極26の厚さは、基本的に同じであるが、異なってもよい。
 ここで、前述の第1保護層28および第2保護層30と同様に、第1電極24および第2電極26の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、第1電極24および第2電極26は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
 圧電フィルム12においては、第1電極24および第2電極26の厚さと、ヤング率との積が、第1保護層28および第2保護層30の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 一例として、第1保護層28および第2保護層30がPETで、第1電極24および第2電極26が銅からなる組み合わせを考える。この組み合わせでは、PETのヤング率が約6.2GPa、銅のヤング率が約130GPaである。従って、この場合、第1保護層28および第2保護層30の厚さが25μmだとすると、第1電極24および第2電極26の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、0.1μm以下がさらに好ましい。
 上述したように、圧電フィルム12は、常温で粘弾性を有する高分子材料を含むマトリックス34に圧電体粒子36を分散してなる圧電体層20を、第1電極24と第2電極26とで挟持し、さらに、この積層体を、第1保護層28と第2保護層30とで挟持してなる構成を有する。
 このような圧電フィルム12は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。
 これにより、圧電フィルム12が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
 圧電フィルム12は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPa、50℃において1~10GPaであるのが好ましい。
 これにより、常温で圧電フィルム12が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
 また、圧電フィルム12は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。
 これにより、圧電フィルム12が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
 さらに、圧電フィルム12は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。
 これにより、圧電フィルム12を用いたスピーカーの周波数特性が平滑になり、スピーカーの曲率の変化に伴って最低共振周波数f0が変化した際における音質の変化量も小さくできる。
 以下、図5~図7の概念図を参照して、図4に示す圧電フィルム12の製造方法の一例を説明する。
 まず、図5に示すように、第1保護層28の上に第1電極24が形成されたシート状物12aを準備する。このシート状物12aは、第1保護層28の表面に、真空蒸着、スパッタリング、および、めっき等によって、第1電極24として銅薄膜等を形成して作製すればよい。
 第1保護層28が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの第1保護層28を用いても良い。セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、第2電極26および第2保護層30を熱圧着した後、第1保護層28に何らかの部材を積層する前に、取り除けばよい。
 一方で、有機溶媒に、シアノエチル化PVA等の常温で粘弾性を有する高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子36を添加し、攪拌して分散してなる塗料を調製する。以下の説明では、シアノエチル化PVA等の常温で粘弾性を有する高分子材料を、『粘弾性材料』とも言う。
 有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 シート状物12aを準備し、かつ、塗料を調製したら、この塗料をシート状物12aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図6に示すように、第1保護層28の上に第1電極24を有し、第1電極24の上に圧電体層20を形成してなる積層体12bを作製する。なお、第1電極24とは、圧電体層20を塗布する際の基材側の電極を差し、積層体における上下の位置関係を示すものではない。
 この塗料のキャスティング方法には、特に、限定はなく、スライドコータおよびドクターナイフ等の公知の塗布方法(塗布装置)が、全て、利用可能である。
 なお、粘弾性材料がシアノエチル化PVAのように加熱溶融可能な物であれば、以下に示す方法で積層体12bを作製してもよい。まず、粘弾性材料を加熱溶融して、これに圧電体粒子36を添加/分散してなる溶融物を作製する。この溶融物を、押し出し成形等によって、図5に示すシート状物12aの上にシート状に押し出し、冷却する。これにより、図6に示すような、第1保護層28の上に第1電極24を有し、第1電極24の上に圧電体層20を形成してなる積層体12bを作製できる。
 上述したように、圧電フィルム12において、マトリックス34には、シアノエチル化PVA等の粘弾性材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
 マトリックス34に、これらの高分子圧電材料を添加する際には、上述した塗料に添加する高分子圧電材料を溶解すればよい。または、上述した加熱溶融した粘弾性材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
 第1保護層28の上に第1電極24を有し、第1電極24の上に圧電体層20を形成してなる積層体12bを作製したら、圧電体層20の分極処理(ポーリング)を行う。
 圧電体層20の分極処理の方法には、制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第1電極24を形成して、第1電極24および第2電極26を利用して、電界ポーリング処理を行ってもよい。
 また、本発明の圧電フィルム12を製造する際には、分極処理は、圧電体層20の面方向ではなく、厚さ方向に分極を行うのが好ましい。
 なお、この分極処理の前に、圧電体層20の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する熱圧着工程がスムーズに行える。
 このようにして積層体12bの圧電体層20の分極処理を行う一方で、第2保護層30の上に第2電極26が形成されたシート状物12cを、準備する。このシート状物12cは、第2保護層30の表面に、真空蒸着、スパッタリング、および、めっき等によって第2電極26として銅薄膜等を形成して、作製すればよい。
 次いで、図7に示すように、第2電極26を圧電体層20に向けて、シート状物12cを、圧電体層20の分極処理を終了した積層体12bに積層する。
 さらに、この積層体12bとシート状物12cとの積層体を、第2保護層30と第1保護層28とを挟持するようにして、加熱プレス装置や加熱ローラ対等で熱圧着して、圧電フィルム12を作製する。
 本発明の圧電素子10は、折り返すことによって、圧電フィルム12を複数層、積層したものである。圧電素子10は、折り返しによって積層された、隣接する圧電フィルム12を貼着層14(貼着剤)で貼着した構成を有する。
 本発明において、貼着層14は、隣接する圧電フィルム12を貼着可能であれば、公知のものが、各種、利用可能である。
 従って、貼着層14は、接着剤からなる層でも、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。接着剤とは、貼り合わせる際には流動性を有し、その後、固体になる貼着剤である。粘着剤とは、貼り合わせる際にはゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない貼着剤である。
 ここで、本発明の圧電素子10は、積層した複数枚の圧電フィルム12を伸縮させることで、例えば、後述するように振動板46を振動させて、音を発生させる。従って、本発明の圧電素子10は、各圧電フィルム12の伸縮が、直接的に伝達されるのが好ましい。圧電フィルム12の間に、振動を緩和するような粘性を有する物質が存在すると、圧電フィルム12の伸縮のエネルギーの伝達効率が低くなってしまい、圧電素子10の駆動効率が低下してしまう。
 この点を考慮すると、貼着層14は、粘着剤からなる粘着剤層よりも、固体で硬い貼着層14が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい貼着層14としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が好適に例示される。
 接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
 本発明の圧電素子10において、貼着層14の厚さには制限はなく、貼着層14の形成材料に応じて、十分な貼着力(接着力、粘着力)を発現できる厚さを、適宜、設定すればよい。
 ここで、本発明の圧電素子10は、貼着層14が薄い方が、圧電体層20の伸縮エネルギー(振動エネルギー)の伝達効果を高くして、エネルギー効率を高くできる。また、貼着層14が厚く剛性が高いと、圧電フィルム12の伸縮を拘束する可能性もある。さらに、上述のように、本発明の圧電素子10は、隣接する圧電フィルム12では、同じ極性の電極層が対面するので、同士がショートする恐れが無い。そのため、本発明の圧電素子10は、貼着層14を薄くできる。
 この点を考慮すると、貼着層14は、圧電体層20よりも薄いのが好ましい。すなわち、本発明の圧電素子10において、貼着層14は、硬く、薄いのが好ましい。
 具体的には、貼着層14の厚さは、貼着後の厚さで0.1~50μmが好ましく、0.1~30μmがより好ましく、0.1~10μmがさらに好ましい。
 本発明の圧電素子10においては、貼着層14のバネ定数が高いと、圧電フィルム12の伸縮を拘束する可能性がある。従って、貼着層14のバネ定数は圧電フィルム12のバネ定数と同等か、それ以下であるのが好ましい。なお、バネ定数は、『厚さ×ヤング率』である。
 具体的には、貼着層14の厚さと、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において2.0×106N/m以下、50℃において1.0×106N/m以下であるのが好ましい。
 また、貼着層の動的粘弾性測定による周波数1Hzでの内部損失が、粘着剤からなる貼着層14の場合には25℃において1.0以下、接着剤からなる貼着層14の場合には25℃において0.1以下であるのが好ましい。
 上述したように、本発明の第1の態様の圧電素子は、多角形の平面形状を有し、多角形の最も短い辺、以外の辺から突出するように設けられた突出部を有し、この突出部に、外部電源と接続するための接続部を有する。
 なお、本発明の第1の態様の圧電素子において、突出部とは、三角形および四角形等の多角形の平面形状から突出する部分である。本発明の第1の態様の圧電素子は、積層されて隣接する圧電フィルム12は、基本的に全面を貼着層14によって貼着される。すなわち、突出部とは、圧電フィルム12の貼着層14で貼着されない領域である。
 図示例の圧電素子10は、長方形の圧電フィルム12を折り返して重なるように積層したものであり、平面形状は長方形である。そのため、平面形状では、2辺の長辺と、2辺の短辺とを有する。従って、圧電素子10において、突出部10aは、長方形の長辺から突出するように設けられる。
 圧電素子10は、折り返し部が平面形状である長方形の長辺となるように、圧電フィルム12を折り返して積層している。言い換えれば、圧電素子10は、折り返しによる稜線が、平面形状である長方形の長辺となるように、圧電フィルム12を折り返して積層している。
 圧電素子10では、積層される圧電フィルム12の図中最上層において、圧電フィルム12を、圧電素子10の平面形状である長方形すなわち貼着層14から突出するように長方形の外部まで延在させて、長辺から突出する突出部10aとする。
 圧電素子10は、この突出部10aに、外部電極と接続する引出配線62および引出配線64を接続するための接続部40を設ける。
 図示例の圧電素子10においては、図8に第1電極24側を例示して概念的に示すように、突出部10aの第1保護層28に貫通孔28aを形成する。貫通孔28aの形成方法には、制限はなく、第1保護層28の形成材料に応じて、レーザー加工、溶剤を用いた溶解除去、および、機械研磨等の機械的な加工等の公知の方法で行えばよい。
 この貫通孔28aに導電性材料40aを充填して、外部電源と第1電極24とを接続するための接続部40とする。導電性材料40aには、制限はなく、公知の導電性材料が、各種、利用可能である。一例として、銀ペーストなどの導電性金属ペースト、導電性カーボンペースト、および、導電性ナノインク等が例示される。
 この接続部40の導電性材料40aに接触するように、外部電源に接続される引出配線64を固定して、外部電源と第1電極24とを接続する。
 本発明の圧電素子10は、このように長方形の長辺から突出するように設けた突出部10aに、外部電極と接続するための引出配線62および引出配線64と接続するための接続部40を設ける。
 本発明の圧電素子は、このような構成を有することにより、高分子材料を含むマトリックス34中に圧電体粒子36を分散した圧電体層20を有する圧電フィルム12を用いる圧電素子において、インピーダンスを小さくして、例えば電気音響変換器等として用いた際に、特に高周波数帯域での音圧を向上できる圧電素子を実現している。
 上述したように、音質が良好な音を出力するためには、広い周波数帯域に対応して、音圧を向上させる必要がある。また、圧電フィルムを積層した圧電素子をエキサイターとして用いる際に、音圧を向上させるためには、十分な電流を圧電体層に流す必要がある。
 圧電体層に十分な電流を流すためには、圧電素子のインピーダンス(抵抗)を下げる必要がある。圧電素子のインピーダンスが高いと、圧電体層に流れる電流が小さくなり、特に高周波数帯域、中でも15kHz以上の高周波数帯域の音圧が低くなってしまう。
 ところが、高分子材料を含むマトリックス中に圧電体粒子を分散してなる圧電体層を有する圧電フィルム12を用いる圧電素子では、外部電源から電極層への電力供給の位置が不適正であると、インピーダンスが高くなってしまい、十分な電流を圧電体層に流せなくなってしまう。
 圧電フィルム12を用いる圧電素子において、供給された駆動のための電気は、電極層と外部電源との接続部から、圧電フィルム12全面に伝わっていく。この際において、接続部が形成される位置の面積、すなわち、電気の供給位置の間口が狭いと、電気が広がるようにして伝わることができない。その結果、電気の供給位置の間口が狭いと、電気が圧電フィルム12の全面に伝わりにくく、その結果、インピーダンスが高くなってしまう。
 これに対して、本発明の圧電素子10は、長方形の平面形状を有する圧電素子10において、長辺から突出するように突出部10aを設け、この突出部10aに、外部電源と接続するための接続部40を設ける。
 すなわち、圧電素子10では、長方形の平面形状を有する圧電素子において、圧電フィルム12の長辺(最も短い辺以外の辺)から、駆動のための電気を供給する。
 上述のように、圧電素子10において、供給された電気は、第1電極24および第2電極26と外部電源との接続部40から、圧電フィルム12の全面に伝わっていく。この際に、長方形の長辺から突出する突出部10aに接続部40を設ける圧電素子10では、接続部40が設けられる突出部10aの形成位置の面積、すなわち、電気が供給される位置における間口が広い。そのため、電気が圧電フィルム12の面方向に大きく広がるようにして伝わることができるので、電気が圧電フィルム12の全面に伝わり易く、インピーダンスが低くなる。
 その結果、本発明の圧電素子10によれば、例えばエキサイターとして用いた場合に、特に高周波数帯域での音圧を向上して、広い周波数帯域に渡って、音圧が高い、高音質の音を出力できる。
 この作用効果に関しては、後述する本発明の圧電素子の第2の態様、および、本発明の圧電スピーカーの圧電フィルムに関しても、同様である。
 上述のように、本発明の圧電素子10は、インピーダンスが低いのが好ましい。
 具体的には、圧電フィルム12の静電容量をC[F]とした際に、周波数F[Hz]におけるインピーダンス[Ω]が
   [1/(6.28×F×C)]+1
以下であるのが好ましい。本発明の圧電素子10のインピーダンスは、
   [1/(6.28×F×C)]
以下であるのがより好ましい。
 圧電素子のインピーダンスは、周波数2~20kHzの範囲で、この条件を満たすのがより好ましく、2~10kHzの範囲で、この条件を満たすのがさらに好ましい。
 本発明の圧電素子10は、上記条件を満たすことにより、インピーダンスを低くして、例えば、エキサイターおよび電気音響変換器等として利用した際に、広い周波数帯域、特に高周波数帯域で、高い音圧を得ることができ、高音質の音を出力できる。
 このインピーダンスに関しては、後述する本発明の第2の態様の圧電素子、および、本発明の圧電スピーカーにおける圧電フィルムも同様である。
 本発明の圧電素子10において、突出部10aにおける電極と引出配線との接続方法には、制限はなく、図8に示す方法以外にも、公知の各種の方法が利用可能である。
 一例として、図9に第1電極24側を例示して概念的に示す方法が例示される。すなわち、突出部10aにおいて、第1保護層28の端部を、一部、剥離し、第1電極24と第1保護層28との間に引出配線62を挿入して固定することで、外部電極との接続部としてもよい。
 また、接続部の構成および形成方法としては、特開2016-015354号公報に記載されるものも、好適に利用可能である。
 圧電素子10において、突出部10aにおける、第1電極24の接続部40と、第2電極26の接続部40との、圧電フィルムの面方向の位置関係にも、制限はない。
 すなわち、第1電極24の接続部40と、第2電極26の接続部40とは、突出部に形成されていれば、面方向に近接しても、離間しても、重複してもよい。面方向とは、圧電素子10の平面形状における面方向である。また、接続部40は、圧電素子10の平面形状である長方形の長辺方向において、端部に位置しても、中央に位置しても、端部と中央の中間に位置してもよい。
 従って、第1電極24の接続部40と第2電極26の接続部40とは、例えば、圧電素子10の平面形状である長方形の長辺方向において、一方を1つの端部近傍に設け、他方を他の端部近傍に設けてもよい。あるいは、長方形の長手方向において、2つの接続部40の一方を端部近傍に設け、他方を中央部に設けてもよい。あるいは、長方形の長手方向において、2つの接続部40の両方を、1つの端部近傍に設けてもよい。あるいは、長方形の長手方向において、2つの接続部40の両方を中央部に設けてもよい。
 この点に関しては、後述する本発明の第2の態様の圧電素子、および、本発明の圧電スピーカーにおける圧電フィルムも、同様である。
 図示例の圧電素子10において、1つの突出部10aに、第1電極24の接続部40と、第2電極26の接続部40とを設けているが、本発明は、これに制限はされない。
 すなわち、本発明の圧電素子10においては、平面形状である長方形の長辺から突出すれば、複数の突出部を設けてもよい。
 例えば、図10に概念的に示すように、長方形の長辺から突出して、第1突出部10a-1と、第2突出部10a-2との2つの突出部を設けてもよい。この際には、一例として、第1突出部10a-1に第1電極24(引出配線62)との接続部40を設け、第2突出部10a-2に第2電極26(引出配線64)との接続部40を設ければよい。なお、図10では、図中上下方向が圧電素子の平面形状である長方形の長辺方向で、図中横方向が、同短辺方向である。
 なお、突出部は、1つの辺に1つの場合でも、1つの辺に複数を設ける場合でも、突出部が設けられる辺の延在方向の長さが長い方が好ましい。以下の説明では、突出部の、突出部が設けられる辺の延在方向の長さを、『突出部の幅』ともいう。
 具体的には、突出部が設けられる辺の長さをL、突出部の幅をLaとすると、突出部の幅Laが、辺の長さLの10%以上であるのが好ましく、50%以上であるのがより好ましく、70%以上であるのがさらに好ましく、90%以上であるのが特に好ましく、辺の長さLと同じ、または、それ以上であるのが最も好ましい。
 また、図示例の圧電素子10では、圧電フィルム12の折り返し方向の一方の端部において、長方形の長辺から突出するように、突出部10aを設けている。
 しかしながら、本発明は、これに制限はされず、折り返して積層される圧電フィルム12の折り返し方向の両方の端部において、平面形状である長方形の長辺から突出するように、突出部を設けてもよい。すなわち、この際には、折り返して積層される圧電フィルム12において、図中の最上段の圧電フィルム12と、図中の最下段の圧電フィルム12とに、突出部が設けられる。
 この際には、一例として、最上段の突出部に第1電極24(引出配線62)との接続部40を設け、最下段の突出部に第2電極26(引出配線64)との接続部40を設ければよい。
 すなわち、1枚の圧電フィルム12を折り返すことで、複数層を積層した圧電素子においては、圧電フィルム12の積層数等に応じて、引出配線の取り付け位置は、様々な態様が利用可能である。なお、この点に関しては、突出部10aを長辺および短辺のいずれに設ける構成でも、後述する突出部を有さない構成でも、同様である。
 図39~図43に、一例を概念図で示す。なお、図39~図43では、図面を簡略化して構成を明確に示すために、電極および保護層を一体で示し、また、隣接する圧電フィルムを貼着する貼着層14を省略している。
 圧電フィルム12の積層数が偶数である場合には、突出部10aに第1電極および第2電極と外部装置との接続部を設ける以外の構成も利用可能である。すなわち、圧電フィルム12の積層数が偶数である場合には、突出部10aに引出配線62および引出配線64の両者を設ける構成以外も利用可能である。
 例えば、圧電フィルム12の積層数が2層である図39、および、圧電フィルム12の積層数が4層である図40に示すように、最上層に突出部10aを設けずに引出配線62を接続し、最下層に突出部10aを設けて引出配線64を接続してもよい。
 また、圧電フィルム12の積層数が奇数である場合にも、突出部10aに第1電極および第2電極と外部装置との接続部を設ける以外の構成も利用可能である。すなわち、圧電フィルム12の積層数が奇数である場合にも、突出部10aに引出配線62および引出配線64の両者を設ける構成以外も利用可能である。
 例えば、圧電フィルム12の積層数が3層である図41に示すように、最上層に突出部10aを設けずに引出配線62を接続し、最下層に突出部10aを設けて引出配線64を接続してもよい。
 圧電フィルム12の積層数が奇数である場合には、図41に示すように、最上層と最下層とに引出配線を設けると、引出配線の引出し方向が、逆方向になる。
 また、図1の圧電素子10では、突出部10aを図中最上層に設けているが、本発明は、これに制限はされない。例えば、図42に示すように、突出部10aを図中最下層に設け、此処に、第1電極および第2電極と外部装置との接続部、すなわち、引出配線62および引出配線64を設けてもよい。
 すなわち、圧電フィルム12を積層した圧電素子において、使用時における、天地方向および左右方向に対する突出部10aの位置には、制限はない。この点に関しては、圧電フィルム12の積層数が奇数でも偶数でも、同様である。
 また、後述する突出部を有さない構成でも、圧電フィルム12の積層数等に応じて、各種の位置に、第1電極および第2電極と外部装置との接続部、すなわち、引出配線62および引出配線64を設けることが可能である。
 突出部を有さない構成は、圧電フィルム12の積層数が奇数である場合に、好適に利用可能である。例えば、図43に圧電フィルム12を3層、積層した例で示すように、圧電フィルム12の積層数が奇数である場合には、最上層に引出配線62を設け、最下層に引出配線64を設ける構成が例示される。
 図1~図3に示す圧電素子10は、圧電フィルム12を折り返し方向に延在させることで、平面形状である長方形の長辺から突出する突出部10aを設けているが、本発明は、これに制限はされない。
 圧電フィルム12を折り返すことで積層した構成としては、例えば、図11に概念的に示す圧電素子10Aのように、折り返し部が平面形状である長方形の短辺となるように、圧電フィルム12を折り返す構成も考えられる。すなわち、この場合には、圧電素子10Aは、折り返しによる稜線が、平面形状である長方形の短辺となるように、圧電フィルム12を折り返して積層している。
 このような圧電素子10Aでは、圧電フィルム12を折り返し方向に延在させることで、平面形状である長方形から突出させると、突出部は、長方形の短辺から突出する。
 従って、この際には、図11に概念的に示すように、圧電フィルム12の折り返し方向と直交するように、長方形の長辺から圧電フィルム12が突出する突出部10Aaを設け、この突出部10Aaに、第1電極24(引出配線62)との接続部40、および、第2電極26(引出配線64)との接続部40を設ければよい。
 この際において、突出部10Aaは、積層方向の端部となる圧電フィルム12に設ける構成に制限はされない。すなわち、図11に示すように、圧電フィルム12の折り返し方向と直交するように突出部10Aaを設ける構成では、積層方向の2層目および3層目など、中間となる層の圧電フィルム12に、突出部10Aaを設けてもよい。
 圧電素子10のように、1枚の圧電フィルム12を折り返すことで、複数層の圧電フィルム12を積層した圧電素子においては、図17に概念的に示すように、隣接する2層の圧電フィルム12の積層体の厚さより、圧電フィルム12の折り返し部の厚さが厚くなってもよい。なお、隣接する2層の圧電フィルム12の積層体の厚さには、貼着層14の厚さも含む。
 この際における圧電フィルム12の折り返し部の厚さには、制限はない。好ましくは、図17に示すように、隣接する2層の圧電フィルム12の積層体の厚さをt、この圧電フィルム12の折り返し部の最大厚さをtmaxとした際に、tmaxがtの5×105倍以下であるのが好ましい。すなわち、『tmax≦t×(5×105)』であるのが好ましい。例えば、隣接する2層の圧電素子の積層体の厚さtが50μmである場合には、折り返し部の最大厚さをtmaxは2.5mm以下であるのが好ましい。
 この際において、圧電フィルム12の折り返し部は、図17に示すように、空隙でもよく、あるいは、貼着層14(貼着剤)で満たされてもよく、あるいは、貼着層14となる貼着剤よりも弾性率の低い材料で満たされていてもよい。
 以上の圧電素子は、1枚の圧電フィルム12を折り返すことで、複数層の圧電フィルムを積層した構成を有するものである。しかしながら、本発明の圧電素子の第1の態様は、この構成に制限はされない。
 すなわち、図12に概念的に示す圧電素子10Bのように、本発明の第1の態様は、カットシート状の圧電フィルム12を、複数枚、積層して、積層方向に隣接する圧電フィルム12を貼着層14によって貼着した構成であってもよい。
 本発明の圧電素子の第1の態様において、カットシート状の複数枚の圧電フィルム12を積層した場合には、各圧電フィルム12が個々に電気を供給されて駆動する。従って、カットシート状の圧電フィルム12を積層した構成では、各圧電フィルム12の主面の形状を、圧電素子の平面形状と見なす。
 すなわち、図12に示す圧電素子10Bのように、長方形の圧電フィルム12を積層した構成であれば、圧電フィルム12の主面の形状を圧電素子10Bの平面形状と見なして、圧電フィルム12の長辺から突出するように、突出部10Baを設ければよい。
 以上説明した本発明の圧電素子は、長方形の平面形状を有する。従って、平面形状において、辺は2辺の長辺と2辺の短辺しか存在せず、長辺から突出して、外部電源と接続するための接続部を形成する突出部を設けている。
 しかしながら、本発明の圧電素子において、平面形状は長方形に制限はされず、三角形および五角形以上の多角形も利用可能であり、台形等、長方形以外の四角形も利用可能である。
 ここで、圧電素子の平面形状によっては、辺の長さが3種以上の場合も有る。例えば、平面形状が三角形の圧電素子では、三角形の三辺の長さが、全て異なる場合も有る。
 本発明の圧電素子の第1の態様では、多角形の平面形状において。辺の長さが3種以上の場合には、最も短い辺以外の辺から突出するように、突出部を設ければよい。
 従って、多角形の最も短い辺以外の或る辺から突出部を設けて、第1電極24との接続部40を形成し、多角形の最も短い辺以外の別の辺から突出部を設けて、第2電極26との接続部40を形成してもよい。例えば、平面形状が、3辺の長さが全て異なる三角形である場合には、最も長い辺から突出して、第1電極24(引出配線62)との接続部40を形成し、2番目に長い辺から突出部を設けて、第2電極26(引出配線64)との接続部40を形成してもよい。
 しかしながら、本発明の第1の態様の圧電素子においては、複数の突出部を設ける場合には、多角形の同じ辺に設けるのが好ましく、全ての突出部を最も長い辺に設けるのが好ましい。
 複数の突出部を同じ辺に設けることにより、外部電源と接続を容易にできる、外部電源との接続ための配線の取り回しを簡易にできる、圧電素子の作製が容易になる、圧電素子の平面サイズを小さくできる等の点で好ましい。
 以上の点に関しては、後に示す、本発明の第2の態様の圧電素子における接続部、および、後述する本発明の圧電スピーカーの圧電フィルムにおける突出部および接続部に関しても、同様である。
 すなわち、本発明の第2の態様の圧電素子においては、第1の態様の圧電素子における突出部の接続部と同様にして、後述するように、多角形の最も短い辺以外の辺に、端部から上限離間距離以内の位置に接続部を設ければよい。また、本発明の圧電スピーカーにおいては、第1の態様の圧電素子に準じて、圧電フィルムの多角形の最も短い辺以外の辺に突出部を設け、突出部に接続部を設ければよい。
 以上、説明した本発明の圧電素子の第1の態様は、圧電フィルム12を、複数層、積層して、貼着層14で貼着したものであり、多角形の平面形状の最も短い辺以外の辺から突出して、突出部を有し、この突出部に、外部電源と接続するための接続部を設ける。
 これに対して、本発明の圧電素子の第2の態様は、同様の圧電フィルム12を有する圧電素子であって、平面形状が多角形であり、多角形の最も短い辺以外の圧電フィルム12の端部から、上限離間距離以内の位置に、外部電源と電極層とを接続するための接続部を有するものである。また、本発明の圧電素子の第2の態様において、上限離間距離とは、平面形状である多角形の最も短い辺の長さの2.1分の1(1/2.1)である。本発明の圧電素子の第2の態様において、上限離間距離は、平面形状である多角形の最も短い辺の長さの5分の2(2/5)が好ましく、5分の1(1/5)がより好ましい。
 このような本発明の圧電素子の第2の態様は、積層されない1枚の圧電フィルム12のみを有するものでもよい。
 あるいは、本発明の圧電素子の第2の態様は、図1~図3に示す圧電素子10のように、1枚の圧電フィルム12を折り返して、複数層、積層したものであってもよい。
 あるいは、本発明の圧電素子の第2の態様は、図12に示す圧電素子10Bのように、複数枚のカットシート状の圧電フィルム12を積層したものであってもよい。
 なお、本発明の圧電素子の第2の態様において、複数層の圧電フィルム12を積層する場合には、厚さ方向に隣接する圧電フィルム12を貼着する貼着層14は、必須の構成要件ではない。従って、本発明の圧電素子の第2の態様が、複数層の圧電フィルム12を積層した構成である場合には、ボルトとナット、枠体、および、シート状物の挟持部材等の公知の締結手段によって、積層状態で固定されたものでもよい。
 しかしながら、貼着層14を有さない場合には、各層の圧電フィルム12が独立して伸縮してしまう。このように、個々の圧電フィルム12が独立して伸縮した場合には、積層圧電素子としての駆動効率が低下してしまい、圧電素子全体としての伸縮が小さくなって、当接した振動板等を十分に振動させられなくなってしまう可能性がある。
 この点を考慮すると、本発明の圧電素子の第2の態様でも、複数層の圧電フィルム12を積層する構成では、第1の態様の圧電素子のように、隣接する圧電フィルム12同士を貼着する貼着層14を有するのが好ましい。
 本発明の圧電素子の第2の態様も、多角形の平面形状を有する。
 なお、本発明において、圧電素子の平面形状とは、上述のように、複数層の圧電フィルム12を積層した構成では、圧電フィルム12の積層方向に圧電素子を見た際の形状である。また、圧電素子が、積層されない1枚の圧電フィルム12で構成される場合、および、複数枚のカットシート状の圧電フィルム12を積層した構成の場合には、各圧電フィルムの主面の形状を、圧電素子の平面形状と見なす。
 本発明の圧電素子の第2の態様では、平面形状である多角形の最も短い辺以外の圧電フィルム12の端部から、上限離間距離以内の位置に、外部電源と電極層とを接続するための接続部を有するものである。
 また、本発明の圧電素子の第2の態様において、上限離間距離とは、多角形の最も短い辺の長さの2.1分の1である。
 なお、本発明の圧電素子の第2の態様においては、接続部における、平面形状となる多角形の辺の端部に最も近接する位置が、上限離間距離以内に位置すれば良い。
 図13に、積層されない1枚の長方形の圧電フィルム12を有する圧電素子42を例に、本発明の圧電素子の第2の態様を説明する。図13において、上は平面図、下は厚さ方向の断面図である。なお、断面図においては、構成を明確に示すために、ハッチングは省略する。また、図13に示す圧電素子42は、上述した圧電素子10等と、同じ部材を多用するので、同じ部材には同じ符号を付し、以下の説明は、異なる点を主に行う。
 図13に示す圧電素子42は、積層されない1枚の長方形の圧電フィルム12を有するものである。従って、圧電素子42において、平面形状は長方形で、最も短い辺は、長方形の短辺となる。
 従って、圧電素子42においては、平面形状の多角形における最も短い辺、すなわち、長方形における短辺の長さをLとすると、上限離間距離Ldは、『Ld=L/2.1』となる。上述のように、上限離間距離Ldは、好ましくは『Ld=2L/5』であり、より好ましくは『Ld=L/5』である。
 本発明の圧電素子の第2の態様においては、長辺の端部から、上限離間距離Ld以内の位置に、外部電源と電極層とを接続するための接続部を設ける。
 図13に示される圧電素子においては、長方形の一方の長辺の端部から上限離間距離Ld(Ld=L/2.1)以内の位置に、図8と同様の接続部40を設けている。
 すなわち、長方形の一方の長辺の端部から上限離間距離Ld以内の位置において、第1保護層28に貫通孔28aを、第2保護層30に貫通孔30aを、それぞれ形成する。
 この貫通孔28aおよび貫通孔30aに、銀ペースト等の導電性材料40aを充填して、第1電極24に外部電源を接続するための接続部40、および、第2電極26に外部電源を接続するための接続部40とする。なお、図13では省略するが、上述の例と同様、両接続部40には、例えば、外部電極と接続するための引出配線62および引出配線64が接続される。
 本発明の圧電素子の第2の態様は、このような構成を有することにより、上述した圧電素子の第1の態様と同様、長方形の平面形状を有する圧電素子42において、長方形の長辺側から電力を供給することで、インピーダンスを低くする。その結果、この第2の態様でも、例えば電気音響変換器およびエキサイター等として用いた場合に、特に高周波数帯域での音圧を向上して、広い周波数帯域に渡って、音圧が高い、高音質の音を出力できる。
 本発明の圧電素子の第2の態様において、外部電源と接続するための接続部は、図8に示す接続部40に制限はされず、上述した第1の態様と同様、図9に示す構成などの公知の各種の構成の接続部が利用可能である。なお、図9に示す構成においては、電極層における引出配線との接触部が、接続部となる。
 上述した本発明の圧電素子の第1の態様と同様、本発明の圧電素子の第2の態様においても、第1電極24の接続部40と、第2電極26の接続部40との、圧電フィルムの面方向の位置関係にも、制限はない。また、図12に示す圧電素子42においては、第1電極24の接続部40と、第2電極26の接続部40とは、長方形の互いに異なる長辺の端部から上限離間距離以内の位置に設けてもよい。
 さらに、本発明の圧電素子の第2の態様も、平面形状は長方形に限定はされず、各種の形状が利用可能であり、多角形の最も短い辺以外の辺において、上述のように、端部から上限離間距離以内の位置に接続部40を設ければよい。この際において、接続部40は、多角形の同じ辺に設けるのが好ましく、最も長い辺に設けるのがより好ましいは、第1の態様における突出部と同様である。
 本発明の圧電素子の第2の態様において、図12に示されるように、複数枚の圧電フィルム12を積層した構成では、個々の圧電フィルム12に対応して、上述したように、接続部40を設ければよい。
 なお、本発明の圧電素子においては、複数層の圧電フィルム12を積層する場合には、第1の態様に対応する突出部を有する圧電フィルム12と、第2の態様に対応する突出部を有さない圧電フィルム12とが、混在してもよい。すなわち、本発明の圧電素子において、複数層の圧電フィルム12を積層する場合には、第1の態様では、少なくとも1層が突出部を有していればよく、第2の態様では、少なくとも1層が最も短い辺以外の辺の端部から上限離間距離の距離以内の位置に、接続部を有すればよい。
 また、本発明の圧電素子は、圧電フィルムを、複数層、積層する場合には、一枚を折り返して複数層を積層した圧電フィルム12と、カットシート状の圧電フィルム12とを、積層することで、圧電フィルムを、複数層、積層した構成としてもよい。
 さらに、本発明の圧電素子の第2の態様において、図1等に示すように、1枚の圧電フィルム12を折り返すことで、複数層の圧電フィルム12を積層する場合には、一例として、図14に概念的に示すように、圧電フィルム12の最上層および最下層において、長方形の平面形状の長辺の端部から、短辺の長さLに対して、上限離間距離Ld以内の位置に、接続部40を設ければよい。この構成は、圧電フィルムの積層数が奇数である場合に好適なのは、上述のとおりである。
 本発明の圧電素子および、後述する本発明の圧電スピーカーには、必要に応じて、一部に、製品情報を表示してもよい。
 製品情報の表示位置は、圧電素子の外表面の視認可能な位置であれば、全ての位置が利用可能である。
 情報の表示位置は、一例として、圧電素子の主面、圧電フィルム12の主面、圧電フィルム12の積層体の側面、および、本発明の圧電素子の第1の態様における突出部等が例示される。なお、積層体の側面とは、積層方向と直交する面である。主面は、2面のうちの、いずれの面であってもよい。
 また、製品情報は、圧電素子の接続部に接続される引出配線に表示してもよく、引出配線を腐食から保護する被覆材等を有する場合には、被覆材に表示してもよい。
 圧電素子が、防湿フィルム等の保護フィルム、保護板、および、筐体等で覆われる場合には、これらの部材に、情報を表示してもよい。
 これらの情報の表示位置は、複数を併用してもよい。
 情報の表示手段も、公知の方法が、利用可能である。一例として、インクジェットなどの印刷手段による描画(印字)、レーザー加工および機械研削などによる刻印、シールなどのシート状物の貼着、凹版印刷および凸版印刷などの一般的な印刷方法による印刷、ならびに、これらの組み合わせ等が例示される。
 情報の表記方法(表現方法)にも制限はなく、公知の方法が利用可能である。一例として、文字、数字、記号、絵柄、一次元または二次元のバーコード、および、これらの組み合わせ等が例示される。なお、二次元バーコードは、QR(Quick Response)コード(登録商標)、マイクロQRコード(登録商標)、SPコード、ベリコード(Veri Code)、マキシコード(Maxi Code)、CP(Computer Purpose)コード、Date Matrix、Date Matrix ECC200、Code 1、Aztec code、インタクタコード、カードe、カメレオン・コード、および、Semacode等の公知の各種の二次元バーコードが利用可能である。
 また、情報の表記に替えて、UHF帯およびHF帯などを用いるRFIDタグ、メモリ機能付きのRFIDタグなどの、電波等で読み取り可能な記憶手段を圧電素子に貼着してもよい。
 情報の内容にも、制限はなく、各種の情報が利用可能である。
 一例として、シリアルナンバー、ロット番号および製品番号などの個体に特有で圧電素子の製造メーカーが有する個体情報と紐付け可能な識別番号(識別記号)、製造年月日/加工年月日、生産号機情報、材料情報、生産条件の情報、原材料単位および生産/加工日単位における何番目の品物かの情報、用途の情報、顧客情報、検査日時および通電検査など検査の種類などの検査履歴/検査データ、企業名および企業のロゴなどの製造メーカーの企業情報、製品ブランド名、生産管理情報、生産環境の情報、ならびに、試験履歴の情報等が例示される。なお、製品ブランド名には、製品のロゴを含む。
 また、本発明の圧電素子、および、後述する本発明の圧電スピーカーには、改ざんを防止するための、各種の手段を設けてもよい。
 例えば、複数層の圧電フィルム12を積層した圧電素子であれば、隣接する圧電フィルム12を剥離して、性能を劣化させたことが判明できるようにするのが好ましい。
 このような改ざん防止手段としては、隣接する圧電フィルム12の間に設けられ、隣接する圧電フィルム12を剥離すると、自身も剥離され、『剥離』、『無効』および『VOID』等の文字、記号および絵柄等が圧電フィルム12の主面および/または貼着層14の主面に残る改ざん防止シール、複数層の圧電フィルムに跨って貼着され、圧電フィルム12を剥離すると破断して戻らなくなる帯状の改ざん防止シール、ならびに、隣接する圧電フィルム12を剥離すると、再度、貼着できなくなる手段等が例示される。
 改ざん防止シールは、例えば、特開平7-199813号公報および特開2006-23348号公報等に記載される改ざん防止シール等、公知の改ざん防止シールが、各種、利用可能である。
 このような本発明の圧電素子において、複数層の圧電フィルム12を積層した構成を有する圧電素子は、振動板を振動させて、振動板から音を発生するための、エキサイターとして用いられる。
 一例として、図15に上述した圧電素子10を例示して概念的に示すように、本発明の圧電素子は、一例として、貼着層48によって振動板46に接着されて、振動板46から音を発生するための、エキサイターとして用いられる。すなわち、図15には、本発明の圧電素子10を用いる電気音響変換器の一例が示される。
 上述したように、本発明の圧電素子10において、複数層が積層される圧電フィルム12を構成する圧電体層20は、マトリックス34に圧電体粒子36を分散してなるものである。また、圧電体層20を厚さ方向で挟むように、第1電極24および第2電極26が設けられる。
 このような圧電体層20を有する圧電フィルム12の第1電極24および第2電極26に電圧を印加すると、印加した電圧に応じて圧電体粒子36が分極方向に伸縮する。その結果、圧電フィルム12(圧電体層20)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルム12は、面方向にも伸縮する。
 この伸縮は、0.01~0.1%程度である。
 上述したように、圧電体層20の厚さは、好ましくは8~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電フィルム12すなわち圧電体層20は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム12の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルム12は伸縮する。
 上述したように、振動板46は、貼着層48によって圧電素子10に貼着されている。従って、圧電フィルム12の伸縮によって、振動板46は撓み、その結果、振動板46は、厚さ方向に振動する。
 この厚さ方向の振動によって、振動板46は、音を発する。すなわち、振動板46は、圧電フィルム12に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルム12に印加した駆動電圧に応じた音を発生する。
 ここで、PVDF等の高分子材料からなる一般的な圧電フィルムは、分極処理後に一軸方向に延伸処理することで、延伸方向に対して分子鎖が配向し、結果として延伸方向に大きな圧電特性が得られることが知られている。そのため、一般的な圧電フィルムは、圧電特性に面内異方性を有し、電圧を印加された場合の面方向の伸縮量に異方性がある。
 これに対して、本発明の圧電素子10において、マトリックス34中に圧電体粒子36を分散してなる高分子複合圧電体からなる圧電体層20を有する圧電フィルム12は、分極処理後に延伸処理をせずとも大きな圧電特性が得られる。そのため、この圧電フィルム12は、圧電特性に面内異方性がなく、面方向では全方向に等方的に伸縮する。すなわち、本発明の圧電素子10において、圧電フィルム12は、等方的に二次元的に伸縮する。このような等方的に二次元的に伸縮する圧電フィルム12を積層した本発明の圧電素子10によれば、一方向にしか大きく伸縮しないPVDF等の一般的な圧電フィルムを積層した場合に比べ、大きな力で振動板46を振動することができ、より大きく、かつ、美しい音を発生できる。
 上述したように、圧電素子10は、このような圧電フィルム12を折り返すことで、複数層、積層したものである。図示例の圧電素子10は、好ましい態様として、さらに、隣接する圧電フィルム12同士を、貼着層14で貼着している。
 そのため、1枚毎の圧電フィルム12の剛性が低く、伸縮力は小さくても、圧電フィルム12を積層することにより、剛性が高くなり、圧電素子10としての伸縮力は大きくなる。その結果、本発明の圧電素子10は、振動板46がある程度の剛性を有するものであっても、大きな力で振動板46を十分に撓ませて、厚さ方向に振動板46を十分に振動させて、振動板46に音を発生させることができる。
 また、圧電体層20が厚い方が、圧電フィルム12の伸縮力は大きくなるが、その分、同じ量、伸縮させるのに必要な駆動電圧は大きくなる。ここで、上述したように、本発明の圧電素子10において、好ましい圧電体層20の厚さは、最大でも300μm程度であるので、個々の圧電フィルム12に印加する電圧が小さくても、十分に、圧電フィルム12を伸縮させることが可能である。
 本発明の圧電素子10をエキサイターとして用いる電気音響変換器において、圧電素子10と振動板46とを貼着する貼着層48には、制限はなく、公知の各種の粘着剤および接着剤が利用可能である。
 一例として、上述した貼着層14と同様のものが例示される。好ましい貼着層48(貼着剤)も、貼着層14と同様である。
 本発明の圧電素子をエキサイターとして用いる電気音響変換器において、振動板46にも、制限はなく、各種の物品が利用可能である。
 振動板46としては、一例として、樹脂製の板およびガラス板等の板材、看板などの広告・告知媒体、テーブル、ホワイトボードおよび投映用スクリーンなどのオフィス機器および家具、有機エレクトロルミネセンス(OLED(Organic Light Emitting Diode)ディスプレイおよび液晶ディスプレイなどの表示デバイス、コンソール、Aピラー、天井およびバンパー等自動車などの車両の部材、ならびに、住宅の壁などの建材等が例示される。
 本発明の圧電素子10をエキサイターとして用いる電気音響変換器において、圧電素子10を貼着する振動板46は、可撓性を有するのが好ましく、巻き取り可能であるのがより好ましい。
 可撓性を有する振動板46としては、樹脂フィルム(プラスチックフィルム)等の可撓性を有するシート状物が、各種、利用可能である。可撓性を有する振動板46としては、フレキシブルディスプレイパネルなどの可撓性を有するパネル状の表示デバイスが、特に好適に例示される。また、表示デバイスも、巻き取り可能であるのが、より好ましい。
 本発明の圧電素子10に限らず、圧電フィルム12を積層した圧電素子をエキサイターとして用いる場合には、図15に示すように、振動板46と圧電素子すなわちエキサイターとの貼着は、引出配線を避けて行うのが好ましい。
 言い換えれば、圧電フィルム12を積層した圧電素子をエキサイターとして用いる場合には、圧電素子(エキサイター)と振動板46とを貼着する貼着層48は、引出配線を避けて設けるのが好ましい。すなわち、引出配線には、貼着層48を貼着しないのが好ましい。
 また、圧電フィルム12を積層した圧電素子が、引出配線と電極層とを接続するための突出部10aを有する場合には、引出配線のみならず、突出部10aも、振動板46に貼着しないのが好ましい。すなわち、圧電フィルム12を積層した圧電素子が、引出配線と電極層とを接続するための突出部10aを有する場合には、突出部にも、貼着層48を設けないのが好ましい。
 圧電素子をエキサイターとして用いる場合には、例えば、各種の調節、修理、および、貼着のやり直し等を目的として、圧電素子と振動板46とを剥離する必要が生じる場合もある。引出配線は、例えば後述する実施例のように、銅箔テープ等が利用され、多くの場合、機械的な強度は高くない。
 そのため、引出配線が振動板46に貼着されていると、振動板46と圧電素子とを剥離する際に、引出配線を損傷してしまう可能性が高い。また、引出配線を損傷せずに、振動板46と圧電素子とを剥離することは、非常に困難である。
 また、圧電素子において、振動板46を振動させるのは、主に圧電フィルム12が積層された積層部である。ここで、引出配線が振動板46に貼着されていると、引出配線を有する分、この部分のみ、他の領域と振動数が異なり、音声の出力に悪影響を及ぼす可能性がある。
 さらに、圧電素子が突出部10aを有する場合、突出部10aには、圧電フィルム12が積層されていない。そのため、突出部10aが振動板46に貼着されていると、同様に、突出部10aと圧電フィルム12の積層部とで振動数が異なり、音声の出力に悪影響を及ぼす可能性がある。
 圧電素子の全面を振動板46に貼着して、全体として、振動板46の振動を制御する方法も考えられる。しかながら、この場合、上述した振動板46と圧電素子との剥離の際に生じる問題が避けられない。
 加えて、上述のように、外部装置との接続線と引出配線との接続部、および、引出配線と電極層との接続部は、電気の流れ、すなわち電気抵抗が大きく変化する位置であり、発熱し易い。
 このような場所、すなわち引出配線が振動板46に貼着されていると、放熱を効率良く行うことができず、高温に発熱してしまう可能性がある。
 これに対し、圧電フィルム12を積層した圧電素子においては、好ましくは、引出配線と振動板46とを貼着しない。さらに、突出部10aを有する場合には、より好ましくは突出部10aと振動板46とを貼着しない。
 これにより、引出配線を損傷することなく圧電素子と振動板46との剥離を容易に行うことを可能にし、振動数が異なる領域による悪影響を防止した好適な音声出力を可能にし、さらに、引出配線および引出配線周辺の発熱を抑制できる。
 なお、この点に関しては、突出部10aを長辺および短辺のいずれに設ける構成でも、後述する突出部を有さない構成でも、同様である。
 以下、図44~図49および図52~図54に、一例を概念図で示す。なお、図44~図49等では、図面を簡略化して構成を明確に示すために、電極および保護層を一体で示し、また、隣接する圧電フィルム12を貼着する貼着層14を省略している。
 さらに、図44以降では、貼着層14を省略しているので、圧電フィルム12の折り返しの端部よりも突出する部分を、便宜的に突出部10aとして示している。
 まず、突出部10aが振動板16に近い側にある場合には、図44に示すように、貼着層48を突出部10aには設けずに、振動板16と圧電素子(圧電フィルム12)とを貼着するのが好ましい。
 あるいは、図45に示すように、平面視において、貼着層48を、圧電素子の平面形状の全面を内包するように設け、突出部10aと貼着層48との間に、貼着性を有さない非貼着層49を設けてもよい。なお、貼着性を有さないとは、粘着性および接着性のいずれも有さない、という意味である。
 図45では、非貼着層49が、貼着層48に埋め込まれたように示している。しかしながら、非貼着層49を有する構成は、これに制限はされず、貼着層48が、非貼着層49に起因する段差および/または傾斜部を有してもよい。この点に関しては、以下に示す例も同様である。
 なお、突出部10aが振動板16に近い側にある場合とは、言い換えれば、振動板16と貼着される圧電フィルム12の層に、突出部10aを有する場合である。
 逆に、突出部10aが振動板16からに遠い側に有る場合には、図46に示すように、平面形状において、すなわち平面視した際に、突出部10aと重複しない領域に貼着層48を設け、振動板16と圧電素子(圧電フィルム12)とを貼着するのが好ましい。
 あるいは、図47に示すように、平面視において、貼着層48を圧電素子の平面形状の全面を内包するように設け、突出部10aと貼着層48とが重複する領域に、貼着性を有さない非貼着層49を設けてもよい。
 なお、突出部10aが振動板16に遠い側にある場合とは、言い換えれば、振動板16と貼着される圧電フィルム12の層と、積層方向に最も離間する層に、突出部10aを有する場合である。
 なお、図44~図47に示す、突出部10aを有する場合でも、引出配線のみに貼着層48を設けず、突出部10aの引出配線以外の領域には貼着層48を設けて、振動板16に貼着してもよい。
 しかしながら、突出部10aは単層であり、上述のように、駆動電力を供給された際に、積層部とは振動数が異なる。従って、圧電素子が突出部10aを有する場合には、突出部10aも、振動板46に貼着しないのが好ましい。
 突出部10aを有さない場合にも、同様に、引出配線には、貼着層48を設けないのが好ましい。
 例えば、図48に示すように、引出配線64が存在する領域に対応して、貼着層48の無い領域を帯状に設けて、貼着層48によって、振動板16と圧電素子(圧電フィルム12)とを貼着するのが好ましい。
 あるいは、図49に示すように、貼着層48を、平面視において、圧電素子の平面形状の全面を内包するように設け、引出配線64と貼着層48とが重複する領域に、貼着性を有さない非貼着層49を帯状に設けてもよい。
 なお、圧電素子が吐出部を有さない場合における、貼着層48による振動板46の貼着は、図48および図49に示すように、引出配線が設けられた領域に対して、帯状の領域に貼着層48を設けない構成に制限はされない。
 例えば、図50に概念的に示すように、圧電素子(圧電フィルム12)の引出配線64が無い領域のみ、貼着層48を設けないようにしてもよい。あるいは、圧電素子全面を貼着するように貼着層48を設け、圧電素子(圧電フィルム12)の引出配線64の領域のみ、非貼着層49を設けてもよい。
 あるいは、図48および図49と同様、図51に概念的に示すように、圧電素子(圧電フィルム12)において引出配線64が突出する辺12sに対応して、この辺12sと平行で、かつ、引出配線64が存在する帯状の領域Bには、貼着層48を設けないようにしてもよい。あるいは、圧電素子全面を貼着するように貼着層48を設け、この領域Bを含んで、引出配線64が圧電素子(圧電フィルム12)から突出する側の貼着層48を覆うように、帯状に非貼着層49を設けてもよい。
 上述のように、外部装置との接続線と引出配線との接続部、および、引出配線と電極層との接続部は、電気抵抗が大きく変化する位置であり、発熱し易い。
 これに対応して、圧電フィルム12を積層した圧電素子において、突出部10a等の引出配線の配置部には、放熱板47を設けてもよい。
 例えば、図42に示す圧電素子の図中下面すなわち突出部10a側に貼着層48を設けて振動板46を貼着する場合には、図52に示すように、突出部10aと貼着層48との間に非貼着層49を設け、非貼着層49と引出配線64との間に、放熱板47を設けてもよい。
 また、図45に示す突出部10aが振動板46に近い側にある構成であれば、図53に示すように、突出部10aに対応して設けた非貼着層49と突出部10aとの間に、放熱板47を設けてもよい。
 さらに、図47に示す突出部10aが振動板46と遠い側にある構成であれば、図54に示すように、引出配線64を覆って、突出部10aに放熱板47を設けてもよい。
 放熱板47には、制限はなく、放熱性すなわち高い熱伝導性を有する板状の部材であれば、グラファイトシート、および、熱伝導性が高い放熱フィラーを含む放熱シート等、放熱板(放熱シート)として利用されている、公知の板材(シート状物)が、各種、利用可能である。なお、熱伝導性が高い放熱フィラーとしては、アルミナ等が例示される。
 また、放熱板47は、可撓性を有するのが好ましい。
 なお、以上の点に関しては、後述する本発明の圧電スピーカーも、同様である。
 本発明の圧電スピーカーは、上述した圧電フィルムと振動板とを有し、上述した貼着層によって、圧電フィルムと振動板とを貼着したものである。
 図31に本発明の圧電スピーカーの一例を概念的に示す。
 なお、図31に示す圧電スピーカーは、図15に示す本発明の圧電素子10をエキサイターとして用いる電気音響変換器と同じ部材で構成されるので、同じ部材には同じ符号を付し、以下の説明は、異なる点を主に行う。
 上述したエキサイターとして用いる本発明の圧電素子は、複数の圧電フィルム12を積層したものである。これに対して、図31に示す本発明の圧電スピーカー70は、積層されない一枚の圧電フィルム12と、振動板46と、圧電フィルム12と振動板46とを貼着する貼着層48とを有する。圧電フィルム12、振動板46および貼着層48は、いずれも、上述したものと同様のものである。
 また、本発明の圧電スピーカー70において、圧電フィルム12は、上述した本発明の第1の態様の圧電素子と同様に、多角形の平面形状を有し、多角形の最も短い辺、以外の辺から突出するように設けられた突出部70aを有する。本発明の圧電スピーカー70は、本発明の第1の態様の圧電素子と同様に、この突出部70aに、外部電源と接続するための接続部を有する。
 例えば、圧電フィルム12が長方形であれば、長方形の長辺から突出するように突出部70aが形成され、この突出部70aに接続部が設けられる。
 突出部とは、三角形および四角形等の多角形の平面形状から突出する部分である。本発明の圧電スピーカーは、エキサイターとして作用する部分は、基本的に全面を貼着層48によって貼着される。すなわち、本発明の圧電スピーカー70において、突出部とは、圧電フィルム12の貼着層48で貼着されない領域である。
 なお、本発明の圧電スピーカー70は、圧電フィルム12を、1層のみ、有する。この際においては、圧電フィルム12の平面形状とは、圧電フィルム12の主面の形状であるのは、上述のとおりである。
 上述した本発明の第1の態様の圧電素子と同様、本発明の圧電スピーカー70においても、圧電フィルム12の突出部70aに外部電源と電極層とを接続する接続部が設けられる。例えば、図8に示す例と同様に、この突出部70aの保護層に貫通孔を設け、この貫通孔に導電性材料を充填して、引出配線62および引出配線64を接続する。あるいは、図9に示す例と同様に、突出部70aの保護層を剥離して、保護層と電極との間に引出配線62および引出配線64を挿入する。
 上述のように、圧電フィルム12は、薄く、良好な可撓性を有するものであるが、圧電フィルム12が有する剛性、および、振動板46の剛性によっては、1枚の圧電フィルム12でも、十分に振動板46を振動させて、好適に音声を出力できる。
 本発明の圧電スピーカーにおいて、外部電源と接続するための接続部は、図8および図9に示す接続部に制限はされず、上述した本発明の圧電素子と同様、公知の各種の構成の接続部が利用可能である。
 上述した本発明の圧電素子と同様、本発明の圧電スピーカーにおいても、第1電極24の接続部40と、第2電極26の接続部40との、圧電フィルムの面方向の位置関係にも、制限はない。
 さらに、本発明の圧電スピーカーの圧電フィルム12も、平面形状は長方形に限定はされず、各種の形状が利用可能であり、多角形の最も短い辺以外の辺において、上述のように、突出部および接続部を設ければよい。この際において、突出部は、多角形の同じ辺に設けるのが好ましく、最も長い辺に設けるのがより好ましいは、上述のように、本発明の圧電素子の第1の態様における突出部と同様である。
 他方、本発明の圧電素子において、積層されない1枚の圧電フィルムのみを有する圧電素子は、それ自体が振動することで音を出力する、圧電スピーカーなどの電気音響変換フィルムとして利用可能である。
 図16に、上述した積層されない1枚の圧電フィルム12のみを有する圧電素子42を利用する、平板型の圧電スピーカーの一例を概念的に示す。
 この圧電スピーカー50は、圧電素子42(圧電フィルム12)を、電気信号を振動エネルギーに変換する振動板として用いる、平板型の圧電スピーカーである。なお、圧電スピーカー50は、マイクロフォンおよびセンサー等として使用することも可能である。さらに、この圧電スピーカーは、振動センサーとしても利用可能である。
 圧電スピーカー50は、圧電素子42と、ケース52と、粘弾性支持体56と、枠体58とを有して構成される。
 ケース52は、プラスチック等で形成される、一面が開放する薄い筐体である。筐体の形状としては、直方体状、立方体状、および、円筒状とが例示される。
 また、枠体58は、中央にケース52の開放面と同形状の貫通孔を有する、ケース52の開放面側に係合する枠材である。
 粘弾性支持体56は、適度な粘性と弾性を有し、圧電素子42を支持すると共に、圧電フィルムのどの場所でも一定の機械的バイアスを与えることによって、圧電素子42の伸縮運動を無駄なく前後運動に変換させるためのものである。一例として、羊毛のフェルトおよびPET等を含んだ羊毛のフェルトなどの不織布、ならびに、グラスウール等が例示される。なお、フィルムの前後運動とは、フィルムの面に垂直な方向の運動である。
 圧電スピーカー50は、ケース52の中に粘弾性支持体56を収容して、圧電素子42によってケース52および粘弾性支持体56を覆う。その上で、圧電素子42の周辺を枠体58によってケース52の上端面に押圧した状態で、枠体58をケース52に固定することで、構成される。
 ここで、圧電スピーカー50においては、粘弾性支持体56は、高さ(厚さ)がケース52の内面の高さよりも厚い。
 そのため、圧電スピーカー50では、粘弾性支持体56の周辺部では、粘弾性支持体56が圧電素子42によって下方に押圧されて厚さが薄くなった状態で、保持される。また、同じく粘弾性支持体56の周辺部において、圧電素子42の曲率が急激に変動し、圧電素子42に、粘弾性支持体56の周辺に向かって低くなる立上がり部が形成される。さらに、圧電素子42の中央領域は四角柱状の粘弾性支持体56に押圧されて、(略)平面状になっている。
 圧電スピーカー50は、第1電極24および第2電極26への駆動電圧の印加によって、圧電素子42が面方向に伸長すると、この伸長分を吸収するために、粘弾性支持体56の作用によって、圧電素子42の立上がり部が、立ち上がる方向に角度を変える。その結果、平面状の部分を有する圧電素子42は、上方に移動する。
 逆に、第2電極26および第1電極24への駆動電圧の印加によって、圧電素子42が面方向に収縮すると、この収縮分を吸収するために、圧電素子42の立上がり部が、倒れる方向すなわち圧電素子42が平面に近くなる方向に角度を変える。その結果、平面状の部分を有する圧電素子42は、下方に移動する。
 圧電スピーカー50は、この圧電素子42の振動によって、音を発生する。
 なお、本発明の圧電素子42において、伸縮運動から振動への変換は、圧電素子42を湾曲させた状態で保持することでも達成できる。
 従って、本発明の圧電素子42は、図16に示すような剛性を有する平板状の圧電スピーカー50ではなく、単に湾曲状態で保持することでも、可撓性を有する圧電スピーカー、および、振動センサー等として機能させることができる。
 このような圧電素子42を利用する圧電スピーカーは、良好な可撓性を生かして、例えば丸めて、または、折り畳んで、カバン等に収容することが可能である。そのため、圧電素子42によれば、ある程度の大きさであっても、容易に持ち運び可能な圧電スピーカーを実現できる。
 また、上述のように、圧電素子42は、柔軟性および可撓性に優れ、しかも、面内に圧電特性の異方性が無い。そのため、圧電素子42は、どの方向に屈曲させても音質の変化が少なく、しかも、曲率の変化に対する音質変化も少ない。従って、圧電素子42を利用する圧電スピーカーは、設置場所の自由度が高く、また、上述したように、様々な物品に取り付けることが可能である。例えば、圧電素子42を、湾曲状態で洋服など衣料品およびカバンなどの携帯品等に装着することで、いわゆるウエアラブルなスピーカーを実現できる。
 さらに、本発明の圧電素子は、圧電フィルムを、複数層、積層した構成、および、積層されない1枚の圧電フィルムのみを有する構成、共に、自身が振動または伸縮させられることで電気を出力する振動センサーなど、各種の用途に利用可能である。
 より具体的には、本発明の圧電素子は、一例として、各種のセンサー、音響デバイス、超音波トランスデューサー、アクチュエータ、制振材、および、振動発電装置として、好適に使用することができる。
 センサーとしては、例えば、超音波センサー、圧力センサー、触覚センサー、歪みセンサー、および、振動センサー等が例示される。
 音響デバイスとしては、例えば、マイクロフォン、ピックアップ、スピーカーおよびエキサイター等が例示される。より具体的な用途としては、ノイズキャンセラー、人工声帯、害虫・害獣侵入防止用ブザー、家具、壁紙、サイネージ等が例示される。
 超音波トランスデューサとしては、例えば、超音波探触子およびハイドロホン等が例示される。
 アクチュエータとしては、例えば、水滴付着防止、輸送、攪拌、研磨およびハプティクス等に用いるアクチュエータが例示される。ハプティクスとしては、自動車、スマートフォン、および、ゲーム等が例示される。
 制振材としては、例えば、容器、乗り物、建物、ならびに、スキーおよびラケットなどのスポーツ用具等に用いる制振材(ダンパー)が例示される。
 さらに、振動発電装置としては、例えば、道路、床、マットレス、椅子、靴、タイヤ、車輪およびパソコンキーボード等に適用して用いる振動発電装置が例示される。
 上述のように、本発明の圧電素子および圧電スピーカーにおいて、接続部の構成は、図8および図9に示す例に制限はされない。
 他の好ましい例として、図24および図25に示すように、例えば突出部10aなどの接続部の形成位置において、圧電フィルム12の端部に圧電体層20を設けずに、第1電極24および第2電極26をむき出しにして、此処を接続部としてもよい。すなわち、電極層をむき出しにして、むき出しになった第1電極24に引出配線62を、むき出しになった第2電極26に引出配線64を、それぞれ、接続してもよい。
 図9に示す例と同様に、本例においても、電極層と引出配線との接触部が、本発明における接続部となる。
 また、圧電フィルム12の端部に圧電体層20を設けずに、第1電極24および第2電極26をむき出しにして、此処を接続部とする構成では、引出配線62およびむき出しになった第1電極24と、引出配線64およびむき出しになった第2電極26との間に、絶縁層を設けるのが好ましい。
 ここで、引出配線62および引出配線64と、圧電素子10(圧電フィルム12)の第1電極24および第2電極26との接続部は、電流密度が急激に上昇する部位であり、発熱しやすい。
 そのため、引出配線と接続部とが接触する接触部は、面積が広い方が好ましい。すなわち、図9、ならびに、図24および図25に示す、引出配線と電極層とが、直接、接触する接続部であれば、電極層と引出配線との接触面積が広い方が好ましい。また、図3、図8および図13に示す、導電性材料40aを介して引出配線と電極層とを接続する接続部40であれば、導電性材料40aすなわち貫通孔と、引出配線との接触面積が広い方が好ましい。
 以下の説明では、引出配線と接続部とが接触する接触部の面積を、単に、『引出配線と接続部との接触面積』ともいう。
 引出配線と接続部との接触面積を広くすることにより、発熱を分散して、引出配線62および圧電フィルム12が、部分的に高温になることを防止できる。
 引出配線と接続部との接触面積は、広い方が好ましいが、制限はない。
 ここで、引出配線と接続部との接触面積は、圧電フィルム12の面積に応じて設定するのが好ましい。引出配線と接続部との好ましい接触面積は、駆動電圧、電極層の厚さ、および、導電性材料40aの抵抗等にも影響を受けるが、一例として、引出配線と接続部との接触面積は、圧電フィルム12の面積の0.03%以上が好ましい。引出配線と接続部との接触面積を、圧電フィルム12の面積の0.03%以上とすることにより、発熱を好適に分散して、引出配線62および圧電フィルム12が、部分的に高温になることを好適に防止できる。
 引出配線と接続部との接触面積は、圧電フィルム12の面積の0.2%以上がより好ましく、0.6%以上がさらに好ましい。
 なお、圧電フィルム12の面積とは、具体的には、圧電フィルム12の表面および裏面のいずれか一方の主面(最大面)の面積である。また、引出配線と接続部との接触面積は、圧電フィルム12の面積に応じて、圧電フィルム12の面積に比例するように広くするのが好ましい。
 なお、圧電フィルム12の面積とは、図1等に示すように、圧電フィルム12を折り返して積層した圧電素子10の場合には、圧電フィルム12を折り返さない状態、すなわち、圧電フィルム12を広げた状態における圧電フィルム12の面積である。また、図12に示すような複数枚のカットシート状の圧電フィルム12を積層した圧電素子、および、図13に示すように1枚の圧電フィルム12のみを有する圧電素子の場合、ならびに、本発明の圧電スピーカーの場合には、個々の圧電フィルムの面積である。
 また、図9、ならびに、図24および図25に示す、引出配線と電極層とが、直接、接触する接続部の場合には、引出配線と接続部との接触面積は、電極層と引出配線との接触面積である。他方、図3、図8および図13に示す、導電性材料40aを介して引出配線と電極層とを接続する接続部40の場合には、引出配線と接続部40との接触面積は、貫通孔と引出配線との接触面積である。ここで、後述するように、複数の接続部40を有する場合には、全ての貫通孔と引出配線との接触面積の合計を、引出配線と接続部との接触面積とする。
 図9、ならびに、図24および図25に示す例では、引出配線62および引出配線64の幅が広いと、接続部と引出配線との接触面積、すなわち、電極層と引出配線との接触面積も広くなる。
 しかしながら、図26に概念的に示すように、圧電体層20を設けずに、第1電極24および第2電極26をむき出しにした場合でも、図10と同様に、突出部10a-1および突出部10a-2を設け、此処に引出配線62および引出配線64を設けた場合は、突出部の幅によって、引出配線の幅が制限を受ける。そのため、突出部を設けた場合には、必ずしも、引出配線62および引出配線64の幅が広いと、電極層と引出配線との接触面積も広くなるとは言い切れない。つまり、突出部を設け、突出部に接続部を形成して引出配線を接続した場合には、突出部の幅も重要となる。
 なお、上述のように、突出部の幅とは、突出部が形成される辺の、延在方向の長さである。
 この点を考慮しても、上述のように、突出部が設けられる辺の長さをL、突出部の幅をLaとした際に、突出部の幅Laが、辺の長さLの10%以上であるのが好ましく、50%以上であるのがより好ましく、70%以上であるのがさらに好ましく、90%以上であるのが特に好ましく、辺の長さLと同じ、または、それ以上であるのが最も好ましい。
 圧電フィルム12の圧電体層20は、好ましい厚さが10~300μmであり、非常に薄い。そのため、ショートを防止するためには、引出配線は、圧電フィルム12の面方向に異なる位置に設けるのが好ましい。すなわち、引出配線62と引出配線64とは、圧電フィルム12の面方向にオフセットして設けるのが好ましい。
 加えて、圧電フィルムを折り返して積層した積層圧電素子において、発熱部となる引出配線同士は、引出配線の幅方向に、できるだけ離間しているのが好ましい。すなわち、図23に概念的に示すように、引出配線62と引出配線64との幅方向の間隔bが広い方が好ましい。
 なお、引出配線の幅とは、上述した突出部の幅と同様に、引出配線が設けられる辺の延在方向の長さである。
 上述のように、本発明の圧電素子および圧電スピーカー(圧電フィルム)は、平面形状における多角形の最も狭い辺以外の辺に対応して、接続部を設ける。例えば、圧電素子(圧電フィルム)の平面形状が長方形である場合には、長辺から電流を流すように、長辺に対応して接続部を設け、引出配線を接続する。
 そのため、本発明の圧電素子では、引出配線の幅、および、幅方向の間隔を広くすることができ、発熱も好適に抑制できる。
 本発明の圧電素子および圧電スピーカーにおいて、引出配線の幅には、制限はないが、引出配線と接続部との接触面積を広くし易い点で、広い方が好ましい。
 本発明の圧電素子では、引出配線での発熱を抑制するために、引出配線の電流線密度を1A/cm以下とするのが好ましい。引出配線の電流線密度とは、引出配線に流れ込む電流の電流値[A]を、引出配線の幅[cm]で割った値である。
 本発明の圧電素子および圧電スピーカーにおいて、引出配線の幅は、圧電素子に設けられる接続部に対応する辺の長さ、すなわち、引出配線が設けられる辺の長さの10%以上(1/10以上)が好ましく、20%以上がより好ましく、30%以上がさらに好ましい。例えば、図23に示すように、圧電素子において、引出配線64が設けられる辺の長さが20cmである場合には、引出配線62および引出配線64の幅aを2cm以上とするのが好ましい。
 圧電フィルム12が大きくなるほど、圧電フィルム12の静電容量が大きくなる(インピーダンスが小さくなる)ため、同じ印加電圧に対する圧電フィルム12に流れる電流量は多くなる。しかしながら、引出配線の幅を、引出配線が設けられる辺の10%以上とすることにより、引出配線の電流線密度を、安定的に1A/cm以下にできる。
 また、電極層の厚さを0.1μm以上にすることで、引出配線に流れる電流量を引出配線の断面積で割った電流密度を1×105A/cm2以下にできるので好ましい。
 本発明の圧電素子および圧電スピーカーにおいて、引出配線の幅方向の間隔にも、制限はないが、上述のように、広い方が好ましい。
 引出配線の幅方向の間隔は、引出配線が設けられる辺の長さの25%以上(1/4以上)が好ましく、30%以上がより好ましく、40%以上がさらに好ましい。すなわち、図23に示す例であれば、圧電素子において、引出配線が設けられる辺の長さが20cmであるので、引出配線62と引出配線64との幅方向の間隔bを5cm以上とするのが好ましい。
 なお、図23は、図9、ならびに、図24および図25に示す接続部を例にしているが、以上の点に関しては、図3、図8および図13に示す、貫通孔に導電性材料40aを充填した接続部40でも同様である。
 この接続部40において、導電性材料40aは、上述した銀ペーストなどの金属ペースト等のみならず、非導電性のペースト状の材料に、導電性材料をフレークおよび粒子等のフィラーとして含有する材料も含む。
 上述のように、保護層に貫通孔を設けて、貫通孔に導電性材料40aを終点した接続部40は、1つの引出配線に対して、複数の接続部を設けてもよい。
 例えば、図27に概念的に示すように、引出配線62および引出配線64の、それぞれに対して、5つの接続部40を設けてもよい。
 ここで、本発明の圧電素子においては、接続部40(貫通孔)と引出配線との接触面積が広い方が好ましい。また、発熱抑制の点では、引出配線は、幅が広い方が好ましい。これに対応して、図28に概念的に示すように、図27における5つの接続部を、引出配線の幅方向に配列して、接続部40と引出配線との接触面積を増やすと共に、引出配線の幅を広くするのが好ましい。
 また、同じ引出配線の幅でも、図29に概念的に示すように、接続部40の数を増加して、接続部40と引出配線との接触面積を増やすのが、より好ましい。
 さらには、図30に概念的に示すように、引出配線62と引出配線64とが、圧電フィルム12の面方向に重複しないように、できるだけ引出配線の幅を広くし、引出配線と圧電素子(突出部10a)との重複部において、出来るだけ多数の接続部40を設けるのが、さらに好ましい。
 なお、図27~図30に示す例は、圧電素子10が突出部10aを有する例であるが、以上の点に関しては、図13に示す圧電素子のように、突出部を有さないで接続部40を形成する構成でも、同様である。
 以上、本発明の圧電素子および圧電スピーカーについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。
 [圧電フィルムの作製]
 上述した図5~図7に示す方法によって、図4に示すような圧電フィルムを作製した。
 まず、下記の組成比で、シアノエチル化PVA(信越化学工業社製、CR-V)をメチルエチルケトン(MEK)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・1000質量部
・シアノエチル化PVA・・・・・・・100質量部
・MEK・・・・・・・・・・・・・・600質量部
 なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径3.5μmになるように解砕および分級処理したものを用いた。
 一方、幅が23cm、厚さ4μmの長尺なPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなる、図5に示すようなシート状物を用意した。すなわち、本例においては、第2電極および第1電極は、厚さ0.1mの銅蒸着薄膜であり、第2保護層および第1保護層は厚さ4μmのPETフィルムとなる。
 なお、プロセス中、良好なハンドリングを得るために、PETフィルムには厚さ50μmのセパレータ(仮支持体PET)付きのものを用い、薄膜電極および保護層の熱圧着後に、各保護層のセパレータを取り除いた。
 このシート状物の第1電極(銅蒸着薄膜)の上に、スライドコータを用いて、先に調製した圧電体層を形成するための塗料を塗布した。塗料は、乾燥後の塗膜の膜厚が40μmになるように、塗布した。
 次いで、シート状物の上に塗料を塗布した物を、120℃のオーブンで加熱乾燥することでMEKを蒸発させた。これにより、図6に示すような、PET製の第1保護層の上に銅製の第1電極を有し、その上に、厚さが40μmの圧電体層を形成してなる積層体を作製した。
 この積層体の圧電体層に、公知の方法で分極処理を施した。分極処理は、分極方向が圧電体層の厚さ方向となるように行った。
 分極処理を行った積層体の上に、図7に示すように、PETフィルムに銅薄膜を真空蒸着してなる同じシート状物を積層した。
 次いで、積層体とシート状物との積層体を、ラミネータ装置を用いて120℃で熱圧着することで、圧電体層と第2電極および第1電極とを接着して、圧電体層を第2電極と第1電極とで挟持し、この積層体を、第2保護層と第1保護層とで挟持した、図4に示すような圧電フィルムを作製した。
 [実施例1]
 作製した圧電フィルムを、20×27cmに切り出した。
 この圧電フィルムを、27cmの方向に、5cm間隔で、4回、折り返した。さらに、圧電フィルムが積層された領域において、隣接する圧電フィルムを貼着層で貼着した。なお、貼着層は、厚さ25μmの接着シート(トーヨーケム社製、LIOELM TSU0041SI)を用いた。なお、貼着層は、これ以外の例も同じ物を用いた。
 これにより、圧電フィルムを折り返して5層を積層した、平面形状が5×20cmの長方形で、長辺から2cm突出する突出部を有する、図1~図3に示すような積層体を作製した。従って、本例では、折り返しの稜線は、平面形状の長方形の長辺と一致する。
 作製した積層体の突出部の保護層両面に、炭酸ガスレーザによって直径5mmの貫通孔を形成した。次いで、貫通孔に銀ペーストを充填することで、第1電極および第2電極と、外部電源とを接続するための接続部を形成して、図1~3に示すような圧電素子を作製した。接続部は、円の中心が長方形の長手方向の端部から9cm、短手方向の端部から1cmの位置とした。従って、長方形の長手方向の接続部の間隔は2cmである。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の平面図および側面図を、図18に概念的に示す。
 接続部に、引出配線として、銅箔テープを貼着した。
 [比較例1]
 作製した圧電フィルムを、102×5cmに切り出した。
 この圧電フィルムを、102cmの方向に、20cm間隔で、4回、折り返した。圧電フィルムが積層された領域において、隣接する圧電フィルムを貼着層で貼着した。
 これにより、圧電フィルムを折り返して5層を積層した、平面形状が5×20cmの長方形で、短辺から2cm突出する突出部を有する積層体を作製した。従って、本例では、折り返しの稜線は、平面形状の長方形の短辺と一致する。
 作製した積層体の突出部の保護層両面に、実施例1と同様に第1電極および第2電極と外部電源とを接続するための接続部を形成して、圧電素子を作製した。接続部は、円の中心が長方形の短手方向の端部から1cm、長手方向の端部から1cmの位置とした。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の平面図および正面図を、図19に概念的に示す。
 接続部に、引出配線として、銅箔テープを貼着した。
 [比較例2]
 作製した圧電フィルムを、25×20cmの長方形(本体)で、かつ、一方の長辺の長手方向の端部に、2×5cmの長方形の突出部を有する形状に切り出した。突出部の長辺および短辺は、本体に一致させた。
 この圧電フィルムを、25cmの方向に、5cm間隔で、4回、折り返した。圧電フィルムが積層された領域において、隣接する圧電フィルムを貼着層で貼着した。
 これにより、圧電フィルムを折り返して5層を積層した、平面形状が5×20cmの長方形で、短辺から2cm突出する突出部を有する積層体を作製した。従って、本例では、折り返しの稜線は、平面形状の長方形の長辺と一致する。
 作製した積層体の突出部の保護層両面に、実施例1と同様に第1電極および第2電極と外部電源とを接続するための接続部を形成して、圧電素子を作製した。接続部は、円の中心が長方形の短手方向の端部から1cm、長手方向の端部から1cmの位置とした。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の平面図、側面図および正面図を、図20に概念的に示す。
 接続部に、引出配線として、銅箔テープを貼着した。
 [実施例2]
 作製した圧電フィルムを、5×100cmの長方形(本体)で、かつ、一方の長辺の長手方向の端部に、2×20cmの長方形の突出部を有する形状に切り出した。突出部の長辺および短辺は、本体に一致させた。
 この圧電フィルムを、100cmの方向に、20cm間隔で、4回、折り返した。圧電フィルムが積層された領域において、隣接する圧電フィルムを貼着層で貼着した。
 これにより、圧電フィルムを折り返して5層を積層した、平面形状が5×20cmの長方形で、長辺から2cm突出する突出部を有する積層体を作製した。従って、本例では、折り返しの稜線は、平面形状の長方形の短辺と一致する。
 作製した積層体の突出部の保護層両面に、実施例1と同様に第1電極および第2電極と外部電源とを接続するための接続部を形成して、圧電素子を作製した。接続部は、円の中心が長方形の長手方向の端部から9cm、短手方向の端部から1cmの位置とした。従って、長方形の長手方向の接続部の間隔は2cmである。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の平面図、側面図および正面図を、図21に概念的に示す。
 接続部に、引出配線として、銅箔テープを貼着した。
 [実施例3]
 実施例1において、突出部に形成する接続部の位置を、長手方向の端部から1cmの位置に変更した以外は、実施例1と同様に、圧電素子を作製し、突出部に接続部を形成し、接続部に引出配線として銅箔テープを貼着した。従って、長方形の長手方向の接続部の間隔は18cmである。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の側面図および正面図を、図22に概念的に示す。
 [評価]
 作製した圧電素子について、インピーダンス、音圧、および、静電容量を測定した。
 <インピーダンスの測定>
 作製した圧電素子の引出し配線に、インピーダンスアナライザを接続し、各圧電素子の周波数2kHz、5kHz、10kHz、15kHz、および、20kHzにおけるインピーダンスを測定した。測定電圧は10Vrmsとした。
 結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001

 表1に示されるように、平面形状である長方形の長辺から突出する突出部を有し、この突出部に外部電源との接続部を有する本発明の圧電素子は、長方形の短辺から突出する突出部を有する比較例の圧電素子に比して、インピーダンスを低く抑えることが出来る。
 また、実施例1と実施例3とに示されるように、本発明においては、接続部の間隔を変えてもインピーダンスは変化しない。
 <音圧の測定>
 振動板として、厚さが300μmで、30×70cmのPETフィルムを用意した。
 長手方向と短手方向とを一致させて、この振動板の中央に、作製した圧電素子を貼着した。なお、振動板と圧電素子との貼着は、厚さ30μmの両面テープ(日東電工社製、No.5603)を用いて行った。
 30×70cmの振動板の短辺を支持して、振動板を立設した。振動板(PETフィルム)側において、圧電素子の中心から法線方向(PETフィルムに垂直な方向)に1mの位置に、マイクロホンを設置し、積層圧電素子を駆動して、周波数2kHz、5kHz、10kHz、15kHz、および、20kHzにおける音圧を測定した。
 積層圧電素子への入力信号は、20~20kHzのスイープサイン波(50Vrms)とした。
 結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002

 表2に示されるように、平面形状である長方形の長辺から突出する突出部を有し、この突出部に外部電源との接続部を有する本発明の圧電素子は、長方形の短辺から突出する突出部を有する比較例の圧電素子に比して、特に15kHz以上の高周波数領域において、より好適に振動板を振動させて、高い音圧を得ることができる。
 また、実施例1と実施例3とに示されるように、本発明においては、接続部の間隔を変えても音圧は変化しない。
 <静電容量>
 LCRメータを圧電素子の引出配線に接続し、各圧電素子の静電容量を測定した。
 結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003

 表3に示されるように、平面形状である長方形の長辺から突出する突出部を有し、この突出部に外部電源との接続部を有する本発明の圧電素子は、周波数F[Hz]におけるインピーダンス[Ω]が『[1/(6.28×F×C)]+1』以下を満たすので、高い音圧が得られる。
 表4に、実施例3を代表例として、2~20kHzの周波数における、インピーダンスの実測値[Ω]、『[1/(6.28×F×C)]+1』におけるインピーダンスの閾値[Ω]、および、インピーダンスの閾値から実測値を減じた値の具体例を示す。なお、実施例3において、圧電素子の静電容量は1.07μF(表3参照)である。また、表4には、音圧の測定結果も併記する。
 インピーダンスの閾値から実測値を減じた値が正であれば、実測値は『[1/(6.28×F×C)]+1』以下である。
Figure JPOXMLDOC01-appb-T000004

 表4に示すように、実施例3の圧電素子は、周波数2~20kHzの全域においてインピーダンスが『[1/(6.28×F×C)]+1』以下である。その結果、実施例3の圧電素子は、周波数2~20kHzの全域で、高い音圧を出力している。
 なお、本発明の圧電素子および圧電スピーカーの圧電フィルムは、以下の実施例4以降も含め、その他の例も、全て、周波数2~20kHzにおけるインピーダンス[Ω]は、同様に『[1/(6.28×F×C)]+1』以下であった。
 [実施例4]
 実施例3において、圧電フィルムを20×29cmに切り出し、折り返しの最上段および最下段に、2cmの突出部を形成した以外は、実施例3と同様に、圧電素子を作製し、突出部に接続部を形成し、接続部に引出配線として銅箔テープを貼着した。
 すなわち、この圧電素子は、平面形状が20×5cmの長方形で、両方の長辺から突出する2cmの突出部を有する。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の側面図および平面図を、図32に概念的に示す。
 作製した圧電素子について、先と同様に、音圧を測定した。結果を下記の表5に示す。なお、表5には、参考として、実施例3の音圧測定結果も併記する。
Figure JPOXMLDOC01-appb-T000005

 表5に示すように、突出部を形成する辺を、平面形状の別の辺にしても、長辺に突出部を設けることにより、高い音圧を出力できる圧電素子が得られる。
 [実施例5]
 実施例3において、20cm側を半分にして10×27cmに圧電フィルムを切り出し、27cmの方向に5cm間隔で折り返した以外は、実施例3と同様に、圧電素子を作製し、突出部に接続部を形成し、接続部に引出配線として銅箔テープを貼着した。従って、この圧電素子の平面形状は10×5cmの長方形で、長辺から突出する2cmの突出部を有する。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の側面図および平面図を、図33に概念的に示す。
 [比較例5]
 比較例1において、圧電フィルムを52×5cmに切り出し、52cmの方向に半分の10cm間隔で折り返した以外は、比較例1と同様に、圧電素子を作製し、突出部に接続部を形成し、接続部に引出配線として銅箔テープを貼着した。従って、この圧電素子の平面形状は10×5cmの長方形で、短辺から突出する2cmの突出部を有する。
 切り出した圧電フィルムの形状(展開図)、作製した圧電素子の平面図および正面図を、図34に概念的に示す。
 実施例5および比較例5で作製した圧電素子について、先と同様に、音圧を測定した。
 結果を、下記の表6に示す。
Figure JPOXMLDOC01-appb-T000006

 表6に示すように、長辺から突出する突出部を有し、外部装置との接続部を設けた本発明の圧電素子は、短辺に突出部を設けて外部装置との接続を行う比較例の圧電素子に比して、高い音圧を得られている。
 [実施例6]
 圧電フィルムを20×7cmに切り出した。
 切り出した圧電フィルムに、20×5cmの貼着層を貼着した。貼着層は、20cmの辺を合わせて、7cmの辺から圧電フィルムが2cm突出するように貼着した。貼着層は、厚さ30μmの両面テープ(日東電工社製、No.5603)を用いた。
 すなわち、この圧電フィルムの平面形状は20×5cmの長方形で、長辺から突出する2cmの突出部を有する。突出部に、実施例3と同様に、接続部を形成し、接続部に引出配線として銅箔テープを貼着した。圧電フィルムと貼着層との積層体の平面図および側面図を、図35に概念的に示す。
 振動板として、厚さが300μmで、30×70cmのPETフィルムを用意した。長手方向と短手方向とを一致させて、この振動板の中央に、貼着層を貼着して、圧電スピーカーを作製した(図31参照)。
 [比較例6]
 圧電フィルムを22×5cmに切り出した。
 切り出した圧電フィルムに、20×5cmの貼着層を貼着した。貼着層は、5cmの辺を合わせて、22cmの辺から圧電フィルムが2cm突出するように貼着した。貼着層は、先と同じ両面テープを用いた。
 すなわち、この圧電フィルムの平面形状は20×5cmの長方形で、短辺から突出する2cmの突出部を有する。突出部に、比較例1と同様に、接続部を形成し、接続部に引出配線として銅箔テープを貼着した。圧電フィルムと貼着層との積層体の平面図および側面図を、図36に概念的に示す。
 以下、実施例6と同様に振動板を貼着して、圧電スピーカーを作製した。
 実施例6および比較例6で作製した圧電スピーカーについて、先と同様の条件で、音圧を測定した。
 結果を、下記の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 [実施例7]
 圧電フィルムを10×7cmに切り出した。
 切り出した圧電フィルムに10×5cmの貼着層を貼着した。貼着層は、10cmの辺を合わせて、7cmの辺から圧電フィルムが2cm突出するように貼着した。貼着層は、先と同じ両面テープを用いた。
 すなわち、この圧電フィルムの平面形状は10×5cmの長方形で、長辺から突出する2cmの突出部を有する。突出部に、実施例3と同様に、接続部を形成し、接続部に引出配線として銅箔テープを貼着した。圧電フィルムと貼着層との積層体の平面図および側面図を、図37に概念的に示す。
 以下、実施例6と同様に振動板を貼着して、圧電スピーカーを作製した。
 [比較例7]
 圧電フィルムを12×5cmに切り出した。
 切り出した圧電フィルムに10×5cmの貼着層を貼着した。貼着層は、5cmの辺を合わせて、12cmの辺から圧電フィルムが2cm突出するように貼着した。貼着層は、先と同じ両面テープを用いた。
 すなわち、この圧電フィルムの平面形状は10×5cmの長方形で、短辺から突出する2cmの突出部を有する。突出部に、比較例1と同様に、接続部を形成し、接続部に引出配線として銅箔テープを貼着した。圧電フィルムと貼着層との積層体の平面図および正面図を、図38に概念的に示す。
 以下、実施例6と同様に振動板を貼着して、圧電スピーカーを作製した。
 実施例7および比較例7で作製した圧電スピーカーについて、先と同様の条件で、音圧を測定した。
 結果を、下記の表8に示す。
Figure JPOXMLDOC01-appb-T000008

 表7および表8に示すように、1層の圧電フィルムをエキサイターとして用いる圧電スピーカーであっても、長辺から突出する突出部を有し、この突出部に外部装置との接続部を設けた本発明の圧電スピーカーは、短辺に突出部を設けて外部装置との接続を行う比較例の圧電スピーカーに比して、特に10kHz以上の高周波数領域において、高い音圧を得られている。
 [実施例8および実施例9]
 実施例4と同様に圧電素子を作製し、突出部に接続部を形成し、接続部に引出配線として銅箔テープを貼着した。すなわち、この圧電素子は、平面形状が20×5cmの長方形で、両方の長辺から突出する2cmの突出部を有する(図32参照)。
 作製した圧電素子について、先と同様に振動板を貼着して、音圧を測定した。
 ただし、実施例8では、図55の上段に概念的に示すように、突出部を貼着しないように貼着層(斜線部)を設けて、振動板を貼着した。これに対し、実施例9では、図55の下段に示すように、突出部も含めて圧電素子の全面に貼着層を(斜線部)を設けて、振動板を貼着した。なお、図55においては、隣接する圧電フィルムを貼着する貼着層は、省略している。
 結果を下記の表9に示す。
Figure JPOXMLDOC01-appb-T000009

 表9に示すように、突出部を有する同じ圧電素子を用いた場合でも、突出部を振動板に貼着しない実施例8は、突出部を振動板に貼着した実施例9に比して、良好な音響特性を発現している。
 各種の部材に当接して音を発生させるエキサイター、電気音響変換器、および、振動センサー等、および、スピーカーとして、好適に利用可能である。
 10,10A,10B,42 圧電素子
 10a,10a-1,10a-2,10Aa,10Ba 突出部
 10a-1 第1突出部
 10a-2 第2突出部
 12 圧電フィルム
 12a、12c シート状物
 12b 積層体
 14,48 貼着層
 20 圧電体層
 24 第1(薄膜)電極
 26 第2(薄膜)電極
 28 第1保護層
 28a,30a 貫通孔
 30 第2保護層
 34 マトリックス
 36 圧電体粒子
 40 接続部
 40a 導電性材料
 46 振動板
 50 圧電スピーカー
 52 ケース
 56 粘弾性支持体
 58 枠体
 62,64 引出配線
 70 圧電スピーカー
 70a 突出部

Claims (9)

  1.  高分子材料を含むマトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した圧電フィルムを、複数層、積層して、隣接する前記圧電フィルムを貼着層で貼着した構成を有し、かつ、
     平面形状が多角形であり、
     前記圧電フィルムが、前記多角形の最も短い辺以外の辺から突出する突出部を有し、前記突出部に、外部電源と前記電極層とを接続するための接続部を設けたことを特徴とする圧電素子。
  2.  前記突出部を複数有し、複数の前記突出部が、前記多角形の同じ辺から突出する、請求項1に記載の圧電素子。
  3.  前記突出部が、前記多角形の最も長い辺から突出する、請求項1または2に記載の圧電素子。
  4.  前記圧電フィルムの静電容量をC[F]とした際に、周波数F[Hz]におけるインピーダンス[Ω]が
       [1/(6.28×F×C)]+1
    以下である、請求項1~3のいずれか1項に記載の圧電素子。
  5.  前記圧電フィルムを、1回以上、折り返すことにより、前記圧電フィルムを、複数層、積層したものである、請求項1~4のいずれか1項に記載の圧電素子。
  6.  前記圧電フィルムの少なくとも1層が、前記電極層の少なくとも一方に積層される保護層を有する、請求項1~5のいずれか1項に記載の圧電素子。
  7.  前記圧電体層が、シアノエチル基を有する前記高分子材料に前記圧電体粒子を含む、請求項1~6のいずれか1項に記載の圧電素子。
  8.  前記高分子材料が、シアノエチル化ポリビニルアルコールである、請求項7に記載の圧電素子。
  9.  高分子材料を含むマトリックス中に圧電体粒子を含む圧電体層を電極層で挟持した、平面形状が多角形の圧電フィルムと、振動板と、前記圧電フィルムと前記振動板とを貼着する貼着層とを有し、
     前記圧電フィルムが、前記多角形の最も短い辺以外の辺から突出する突出部を有し、前記突出部に、外部電源と前記電極層とを接続するための接続部を設けたことを特徴とする圧電スピーカー。
PCT/JP2021/015843 2020-05-07 2021-04-19 圧電素子および圧電スピーカー WO2021225071A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180032597.6A CN115486095A (zh) 2020-05-07 2021-04-19 压电元件及压电扬声器
JP2022519924A JP7449373B2 (ja) 2020-05-07 2021-04-19 圧電素子および圧電スピーカー
EP21799530.7A EP4149118A4 (en) 2020-05-07 2021-04-19 PIEZOELECTRIC ELEMENT AND PIEZOELECTRIC SPEAKER
KR1020227038273A KR20220164538A (ko) 2020-05-07 2021-04-19 압전 소자 및 압전 스피커
US18/052,464 US20230096425A1 (en) 2020-05-07 2022-11-03 Piezoelectric element and piezoelectric speaker

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020082135 2020-05-07
JP2020-082135 2020-05-07
JP2021-067879 2021-04-13
JP2021067879 2021-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/052,464 Continuation US20230096425A1 (en) 2020-05-07 2022-11-03 Piezoelectric element and piezoelectric speaker

Publications (1)

Publication Number Publication Date
WO2021225071A1 true WO2021225071A1 (ja) 2021-11-11

Family

ID=78467954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015843 WO2021225071A1 (ja) 2020-05-07 2021-04-19 圧電素子および圧電スピーカー

Country Status (7)

Country Link
US (1) US20230096425A1 (ja)
EP (1) EP4149118A4 (ja)
JP (1) JP7449373B2 (ja)
KR (1) KR20220164538A (ja)
CN (1) CN115486095A (ja)
TW (1) TW202143515A (ja)
WO (1) WO2021225071A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200154213A1 (en) * 2017-07-26 2020-05-14 Yamaha Corporation Transducer
WO2023042542A1 (ja) * 2021-09-16 2023-03-23 富士フイルム株式会社 圧電素子および電気音響変換器
WO2023053750A1 (ja) * 2021-09-28 2023-04-06 富士フイルム株式会社 圧電素子および電気音響変換器
CN116477849A (zh) * 2023-04-10 2023-07-25 之江实验室 一种铁酸铋纳米柱阵列及其制备方法
WO2023188929A1 (ja) * 2022-03-30 2023-10-05 富士フイルム株式会社 圧電フィルム、圧電素子、および、電気音響変換器
WO2023188966A1 (ja) * 2022-03-30 2023-10-05 富士フイルム株式会社 圧電フィルム、圧電素子、および、電気音響変換器
WO2024009774A1 (ja) * 2022-07-08 2024-01-11 富士フイルム株式会社 画像表示装置
WO2024180931A1 (ja) * 2023-02-28 2024-09-06 富士フイルム株式会社 積層圧電素子および電気音響変換器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117606651B (zh) * 2023-11-23 2024-05-24 哈尔滨工业大学 一种触觉传感器及接触位点的识别方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054486A (ja) * 1983-09-05 1985-03-28 Toshiba Corp 高分子素子のリ−ド線接続部
JPS6181000A (ja) * 1984-09-28 1986-04-24 Toshiba Corp 積層高分子圧電型超音波探触子
JPH07199813A (ja) 1993-12-28 1995-08-04 Dainippon Printing Co Ltd 改ざん防止シール及び改ざん防止通帳
JP2004343453A (ja) * 2003-05-15 2004-12-02 Sony Corp 車両用オーディオ装置
JP2006023348A (ja) 2004-07-06 2006-01-26 Santen Pharmaceut Co Ltd 改ざん防止シール
JP2014014063A (ja) 2011-09-30 2014-01-23 Fujifilm Corp 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP2014209724A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 電気音響変換フィルム
JP2015070110A (ja) * 2013-09-30 2015-04-13 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
JP2016015354A (ja) 2014-06-30 2016-01-28 富士フイルム株式会社 電気音響変換フィルムおよび電気音響変換フィルムの導通方法
WO2018020887A1 (ja) * 2016-07-27 2018-02-01 富士フイルム株式会社 ピックアップセンサおよび生体センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206294B2 (ja) * 2018-11-08 2023-01-17 富士フイルム株式会社 積層圧電素子および電気音響変換器
EP4132007A4 (en) * 2020-03-30 2023-08-30 FUJIFILM Corporation PIEZOELECTRIC MULTILAYER COMPONENT

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054486A (ja) * 1983-09-05 1985-03-28 Toshiba Corp 高分子素子のリ−ド線接続部
JPS6181000A (ja) * 1984-09-28 1986-04-24 Toshiba Corp 積層高分子圧電型超音波探触子
JPH07199813A (ja) 1993-12-28 1995-08-04 Dainippon Printing Co Ltd 改ざん防止シール及び改ざん防止通帳
JP2004343453A (ja) * 2003-05-15 2004-12-02 Sony Corp 車両用オーディオ装置
JP2006023348A (ja) 2004-07-06 2006-01-26 Santen Pharmaceut Co Ltd 改ざん防止シール
JP2014014063A (ja) 2011-09-30 2014-01-23 Fujifilm Corp 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP2014209724A (ja) * 2013-03-29 2014-11-06 富士フイルム株式会社 電気音響変換フィルム
JP2015070110A (ja) * 2013-09-30 2015-04-13 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
JP2016015354A (ja) 2014-06-30 2016-01-28 富士フイルム株式会社 電気音響変換フィルムおよび電気音響変換フィルムの導通方法
WO2018020887A1 (ja) * 2016-07-27 2018-02-01 富士フイルム株式会社 ピックアップセンサおよび生体センサ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200154213A1 (en) * 2017-07-26 2020-05-14 Yamaha Corporation Transducer
WO2023042542A1 (ja) * 2021-09-16 2023-03-23 富士フイルム株式会社 圧電素子および電気音響変換器
WO2023053750A1 (ja) * 2021-09-28 2023-04-06 富士フイルム株式会社 圧電素子および電気音響変換器
WO2023188929A1 (ja) * 2022-03-30 2023-10-05 富士フイルム株式会社 圧電フィルム、圧電素子、および、電気音響変換器
WO2023188966A1 (ja) * 2022-03-30 2023-10-05 富士フイルム株式会社 圧電フィルム、圧電素子、および、電気音響変換器
WO2024009774A1 (ja) * 2022-07-08 2024-01-11 富士フイルム株式会社 画像表示装置
WO2024180931A1 (ja) * 2023-02-28 2024-09-06 富士フイルム株式会社 積層圧電素子および電気音響変換器
CN116477849A (zh) * 2023-04-10 2023-07-25 之江实验室 一种铁酸铋纳米柱阵列及其制备方法
CN116477849B (zh) * 2023-04-10 2024-04-26 之江实验室 一种铁酸铋纳米柱阵列及其制备方法

Also Published As

Publication number Publication date
TW202143515A (zh) 2021-11-16
JPWO2021225071A1 (ja) 2021-11-11
EP4149118A1 (en) 2023-03-15
JP7449373B2 (ja) 2024-03-13
CN115486095A (zh) 2022-12-16
KR20220164538A (ko) 2022-12-13
US20230096425A1 (en) 2023-03-30
EP4149118A4 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2021225071A1 (ja) 圧電素子および圧電スピーカー
JP7206294B2 (ja) 積層圧電素子および電気音響変換器
JP7137690B2 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
JP7390390B2 (ja) 圧電フィルムおよび圧電フィルムの製造方法
KR102633884B1 (ko) 전기 음향 변환기
WO2021199800A1 (ja) 積層圧電素子
WO2021187086A1 (ja) 積層圧電素子および電気音響変換器
WO2021100428A1 (ja) 電気音響変換器
JP7137689B2 (ja) 圧電フィルム、積層圧電素子および電気音響変換器
JP7386324B2 (ja) 積層圧電素子および電気音響変換器
WO2023047958A1 (ja) 積層圧電素子および電気音響変換器
WO2023053931A1 (ja) 圧電素子および圧電スピーカー
WO2021095546A1 (ja) 積層圧電素子
WO2023021944A1 (ja) 圧電素子および圧電スピーカー
WO2023153280A1 (ja) 圧電フィルムおよび積層圧電素子
WO2023048022A1 (ja) 圧電素子および圧電スピーカー
WO2023157532A1 (ja) 圧電素子および電気音響変換器
WO2024180931A1 (ja) 積層圧電素子および電気音響変換器
WO2023248696A1 (ja) 圧電フィルム、圧電素子および電気音響変換器、ならびに、圧電フィルムの製造方法
WO2023181699A1 (ja) 電気音響変換器
WO2023157636A1 (ja) 圧電フィルムおよび積層圧電素子
WO2023153126A1 (ja) 圧電素子および電気音響変換器
WO2023149233A1 (ja) 圧電フィルムおよび積層圧電素子
WO2023286544A1 (ja) 圧電フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519924

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227038273

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021799530

Country of ref document: EP

Effective date: 20221207